IKZA50N65RH5 [INFINEON]

Silicon Carbide Schottky Diode;IGBT TRENCHSTOP™ 5;
IKZA50N65RH5
型号: IKZA50N65RH5
厂家: Infineon    Infineon
描述:

Silicon Carbide Schottky Diode;IGBT TRENCHSTOP™ 5

双极性晶体管
文件: 总16页 (文件大小:1347K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IKZA50N65RH5  
CoolSiC Hybrid Discrete  
CoolSiC Hybrid Discrete - TRENCHSTOP 5 H5 IGBT co-packed with half-rated 6th generation CoolSiC diode  
Features  
• VCE = 650 V  
• IC = 50 A  
• Ultra-low switching losses due to the combination of TRENCHSTOPTM 5 and CoolSiCTM  
technology as well as the Kelvin emitter pin  
• Benchmark efficiency in hard switching topologies  
• Plug-and-play replacement of pure silicon devices  
• Simplified PCB design due to the optimized pin-out of the four-pin package  
• Improved wave soldering quality due to the increased clearance of the Kelvin emitter and gate  
pins  
• Maximum junction temperature Tvjmax = 175°C  
• Qualified according to JEDEC for target applications  
• Pb-free lead plating; RoHS compliant  
• Complete product spectrum and PSpice Models: http://www.infineon.com/igbt/  
Potential applications  
• Industrial SMPS  
• Industrial UPS  
• Solar string inverter  
• Energy storage  
• Charger  
Product validation  
• Qualified for applications listed above based on the test conditions in the relevant tests of  
JEDEC20/22  
Description  
Package pin definition:  
• Pin C & backside - collector  
• Pin E - emitter  
• Pin K - Kelvin emitter  
• Pin G - gate  
Type  
Package  
Marking  
IKZA50N65RH5  
PG-TO247-4-3  
K50ERH5  
Datasheet  
www.infineon.com  
Please read the sections "Important notice" and "Warnings" at the end of this document  
Revision 1.10  
2022-09-22  
IKZA50N65RH5  
CoolSiC Hybrid Discrete  
Table of contents  
Table of contents  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
IGBT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Characteristics diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Testing conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
1
2
3
4
5
6
Datasheet  
2
Revision 1.10  
2022-09-22  
IKZA50N65RH5  
CoolSiC Hybrid Discrete  
1 Package  
1
Package  
Table 1  
Characteristic values  
Symbol Note or test condition  
Parameter  
Values  
Typ.  
13  
Unit  
Min.  
Max.  
Internal emitter  
inductance measured 5  
mm (0.197 in.) from case  
LE  
nH  
Storage temperature  
Soldering temperature  
Tstg  
-55  
150  
260  
°C  
°C  
wave soldering 1.6 mm (0.063 in.) from case  
for 10 s  
Mounting torque  
M
M3 screw Maximum of mounting process: 3  
0.6  
40  
Nm  
Thermal resistance,  
junction-ambient  
Rth(j-a)  
K/W  
2
IGBT  
Table 2  
Maximum rated values  
Symbol Note or test condition  
Parameter  
Values  
650  
80  
Unit  
Collector-emitter voltage  
VCE  
Tvj ≥ 25 °C  
V
A
DC collector current,  
limited by Tvjmax  
IC  
limited by bondwire  
Tc = 25 °C  
Tc = 100 °C  
56  
Pulsed collector current, tp  
limited by Tvjmax  
ICpulse  
200  
A
A
Turn-off safe operating  
area  
VCE ≤ 650 V, tp = 1 µs, Tvj ≤ 175 °C  
tp ≤ 10 µs, D < 0.01  
200  
Gate-emitter voltage  
VGE  
VGE  
20  
30  
V
V
Transient gate-emitter  
voltage  
Power dissipation  
Ptot  
Tc = 25 °C  
305  
W
Tc = 100 °C  
152.5  
Table 3  
Characteristic values  
Symbol Note or test condition  
Parameter  
Values  
Typ.  
1.65  
1.85  
1.95  
4
Unit  
Min.  
Max.  
Collector-emitter  
saturation voltage  
VCEsat IC = 50 A, VGE = 15 V  
Tvj = 25 °C  
Tvj = 125 °C  
Tvj = 175 °C  
2.1  
V
Gate-emitter threshold  
voltage  
VGEth  
IC = 0.5 mA, VCE = VGE  
3.2  
4.8  
V
(table continues...)  
Datasheet  
3
Revision 1.10  
2022-09-22  
IKZA50N65RH5  
CoolSiC Hybrid Discrete  
2 IGBT  
Table 3  
(continued) Characteristic values  
Symbol Note or test condition  
Parameter  
Values  
Typ.  
Unit  
Min.  
Max.  
Zero gate-voltage collector  
current  
ICES  
VCE = 650 V, VGE = 0 V  
Tvj = 25 °C  
Tvj = 175 °C  
Tvj = 25 °C  
700  
µA  
2000  
Zero gate-voltage collector  
current  
ICES  
IGES  
VCE = 480 V, VGE = 0 V  
VCE = 0 V, VGE = 20 V  
IC = 50 A, VCE = 20 V  
25  
µA  
nA  
Gate-emitter leakage  
current  
100  
Transconductance  
Input capacitance  
Output capacitance  
gfs  
Cies  
Coes  
Cres  
62  
2660  
320  
10  
S
VCE = 25 V, VGE = 0 V, f = 250 kHz  
VCE = 25 V, VGE = 0 V, f = 250 kHz  
VCE = 25 V, VGE = 0 V, f = 250 kHz  
pF  
pF  
pF  
Reverse transfer  
capacitance  
Gate charge  
QG  
IC = 50 A, VGE = 15 V, VCC = 520 V  
120  
21  
nC  
ns  
Turn-on delay time  
td(on)  
VCC = 400 V, VGE = 0/15 V, Tvj = 25 °C,  
RGon = 12 Ω, RGoff = 12 Ω, IC = 25 A  
Lσ = 30 nH, Cσ = 30 pF  
Tvj = 25 °C, IC = 5 A  
19  
20  
Tvj = 150 °C,  
IC = 25 A  
Tvj = 150 °C,  
IC = 5 A  
18  
6
Rise time (inductive load)  
tr  
VCC = 400 V, VGE = 0/15 V, Tvj = 25 °C,  
RGon = 12 Ω, RGoff = 12 Ω, IC = 25 A  
Lσ = 30 nH, Cσ = 30 pF  
ns  
ns  
Tvj = 25 °C, IC = 5 A  
3
7
Tvj = 150 °C,  
IC = 25 A  
Tvj = 150 °C,  
IC = 5 A  
3
Turn-off delay time  
td(off)  
VCC = 400 V, VGE = 0/15 V, Tvj = 25 °C,  
RGon = 12 Ω, RGoff = 12 Ω, IC = 25 A  
Lσ = 30 nH, Cσ = 30 pF  
180  
Tvj = 25 °C, IC = 5 A  
200  
200  
Tvj = 150 °C,  
IC = 25 A  
Tvj = 150 °C,  
IC = 5 A  
250  
(table continues...)  
Datasheet  
4
Revision 1.10  
2022-09-22  
IKZA50N65RH5  
CoolSiC Hybrid Discrete  
2 IGBT  
Table 3  
(continued) Characteristic values  
Symbol Note or test condition  
Parameter  
Values  
Typ.  
18  
Unit  
Min.  
Max.  
Fall time (inductive load)  
tf  
VCC = 400 V, VGE = 0/15 V, Tvj = 25 °C,  
ns  
RGon = 12 Ω, RGoff = 12 Ω, IC = 25 A  
Lσ = 30 nH, Cσ = 30 pF  
Tvj = 25 °C, IC = 5 A  
25  
25  
Tvj = 150 °C,  
IC = 25 A  
Tvj = 150 °C,  
IC = 5 A  
35  
Turn-on energy  
Eon  
Eoff  
Ets  
VCC = 400 V, VGE = 0/15 V, Tvj = 25 °C,  
RGon = 12 Ω, RGoff = 12 Ω, IC = 25 A  
Lσ = 30 nH, Cσ = 30 pF  
0.2  
mJ  
mJ  
mJ  
Tvj = 25 °C, IC = 5 A  
0.05  
0.27  
Tvj = 150 °C,  
IC = 25 A  
Tvj = 150 °C,  
IC = 5 A  
0.08  
0.18  
Turn-off energy  
VCC = 400 V, VGE = 0/15 V, Tvj = 25 °C,  
RGon = 12 Ω, RGoff = 12 Ω, IC = 25 A  
Lσ = 30 nH, Cσ = 30 pF  
Tvj = 25 °C, IC = 5 A  
0.05  
0.27  
Tvj = 150 °C,  
IC = 25 A  
Tvj = 150 °C,  
IC = 5 A  
0.08  
0.38  
Total switching energy  
VCC = 400 V, VGE = 0/15 V, Tvj = 25 °C,  
RGon = 12 Ω, RGoff = 12 Ω, IC = 25 A  
Lσ = 30 nH, Cσ = 30 pF  
Tvj = 25 °C, IC = 5 A  
0.1  
Tvj = 150 °C,  
IC = 25 A  
0.54  
Tvj = 150 °C,  
IC = 5 A  
0.16  
IGBT thermal resistance,  
junction-case  
Rth(j-c)  
Tvj  
0.5  
K/W  
°C  
Operating junction  
temperature  
-40  
175  
Datasheet  
5
Revision 1.10  
2022-09-22  
IKZA50N65RH5  
CoolSiC Hybrid Discrete  
3 Diode  
3
Diode  
Table 4  
Maximum rated values  
Symbol Note or test condition  
VRRM Tvj ≥ 25 °C  
Parameter  
Values  
Unit  
Repetitive peak reverse  
voltage  
650  
V
Diode forward current,  
limited by Tvjmax  
IF  
Tc = 25 °C  
33.7  
22.8  
75  
A
A
Tc = 100 °C  
Diode pulsed current, tp  
IFpulse  
1)  
limited by Tvjmax  
1)  
Pulse current level depends on Tvj of diode chip, see also Fig. "Maximum pulse current as a function of junction temperature"  
Table 5  
Characteristic values  
Symbol Note or test condition  
Parameter  
Values  
Typ.  
1.35  
Unit  
Min.  
Max.  
Diode forward voltage  
VF  
IF = 20 A  
Tvj = 25 °C  
Tvj = 125 °C  
Tvj = 175 °C  
1.5  
V
1.55  
1.65  
Diode thermal resistance,  
junction-case  
Rth(j-c)  
Tvj  
1.5  
K/W  
°C  
Operating junction  
temperature  
-40  
175  
Note:  
For optimum lifetime and reliability, Infineon recommends operating conditions that do not exceed 80% of  
the maximum ratings stated in this datasheet.  
Electrical Characteristic at Tvj = 25°C, unless otherwise specified.  
Dynamic test circuit, parasitic inductance Lσ, parasitic capacitor Cσ from Fig. E. Energy losses include “tail”  
and diode reverse recovery.  
Datasheet  
6
Revision 1.10  
2022-09-22  
IKZA50N65RH5  
CoolSiC Hybrid Discrete  
4 Characteristics diagrams  
4
Characteristics diagrams  
Power dissipation as a function of case temperature  
Collector current as a function of case temperature  
Ptot = f(Tc)  
IC = f(Tc)  
Tvj ≤ 175 °C  
Tvj ≤ 175 °C, VGE ≥ 15 V  
320  
280  
240  
200  
160  
120  
80  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
40  
0
25  
50  
75  
100  
125  
150  
175  
25  
50  
75  
100  
125  
150  
175  
Typical output characteristic  
IC = f(VCE  
Typical output characteristic  
IC = f(VCE  
)
)
Tvj = 25 °C  
Tvj = 150 °C  
200  
200  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
60  
60  
40  
40  
20  
20  
0
0
0
1
2
3
4
5
0
1
2
3
4
5
Datasheet  
7
Revision 1.10  
2022-09-22  
IKZA50N65RH5  
CoolSiC Hybrid Discrete  
4 Characteristics diagrams  
Typical transfer characteristic  
Typical collector-emitter saturation voltage as a  
function of junction temperature  
VCEsat = f(Tvj)  
IC = f(VGE  
)
VCE = 20 V  
VGE = 15 V  
200  
180  
160  
140  
120  
100  
80  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
60  
40  
20  
0
25  
50  
75  
100  
125  
150  
175  
2.5  
3.5  
4.5  
5.5  
6.5  
7.5  
8.5  
9.5  
Typical switching times as a function of collector  
current  
t = f(IC)  
Typical switching times as a function of gate resistor  
t = f(RG)  
IC = 25 A, VCC = 400 V, Tvj = 150 °C, VGE = 0/15 V  
VCC = 400 V, Tvj = 150 °C, VGE = 0/15 V, RG = 12 Ω  
1000  
100  
10  
1000  
100  
10  
1
1
0
30  
60  
90  
120  
150  
5
15  
25  
35  
45  
55  
65  
Datasheet  
8
Revision 1.10  
2022-09-22  
IKZA50N65RH5  
CoolSiC Hybrid Discrete  
4 Characteristics diagrams  
Typical switching times as a function of junction  
temperature  
Gate-emitter threshold voltage as a function of  
junction temperature  
t = f(Tvj)  
VGEth = f(Tvj)  
IC = 25 A, VCC = 400 V, VGE = 0/15 V, RG = 12 Ω  
IC = 0.5 mA  
1000  
100  
10  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
1
25  
50  
75  
100  
125  
150  
175  
25  
50  
75  
100  
125  
150  
Typical switching energy losses as a function of  
collector current  
Typical switching energy losses as a function of gate  
resistor  
E = f(IC)  
E = f(RG)  
VCC = 400 V, Tvj = 150 °C, VGE = 0/15 V, RG = 12 Ω  
IC = 25 A, VCC = 400 V, Tvj = 150 °C, VGE = 0/15 V  
7
6
5
4
3
2
1
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0
30  
60  
90  
120  
150  
5
15  
25  
35  
45  
55  
65  
Datasheet  
9
Revision 1.10  
2022-09-22  
IKZA50N65RH5  
CoolSiC Hybrid Discrete  
4 Characteristics diagrams  
Typical switching energy losses as a function of  
junction temperature  
Typical switching energy losses as a function of  
collector emitter voltage  
E = f(Tvj)  
E = f(VCE)  
IC = 25 A, VCC = 400 V, VGE = 0/15 V, RG = 12 Ω  
IC = 25 A, Tvj = 150 °C, VGE = 0/15 V, RG = 12 Ω  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
25  
50  
75  
100  
125  
150  
175  
200  
250  
300  
350  
400  
450  
500  
Typ. reverse current vs. reverse voltage as a function Typical gate charge  
of Tvj  
ICES = f(VCE  
VGE = f(QG)  
IC = 50 A  
)
0.1  
16  
14  
12  
10  
8
0.01  
0.001  
0.0001  
1E-5  
6
1E-6  
4
1E-7  
2
1E-8  
0
0
100  
200  
300  
400  
500  
600  
700  
20  
40  
60  
80  
100  
120  
Datasheet  
10  
Revision 1.10  
2022-09-22  
IKZA50N65RH5  
CoolSiC Hybrid Discrete  
4 Characteristics diagrams  
Typical capacitance as a function of collector-emitter IGBT transient thermal impedance as a function of  
voltage  
C = f(VCE  
f = 250 kHz, VGE = 0 V  
pulse width  
Zth(j-c) = f(tp)  
D = tp/T  
)
10000  
1
1000  
100  
10  
0.1  
0.01  
0.001  
1
1E-6  
1E-5  
0.0001 0.001  
0.01  
0.1  
1
0
5
10  
15  
20  
25  
30  
Diode transient thermal impedance as a function of  
pulse width  
Maximum pulse current as a function of junction  
temperature  
Zth(j-c) = f(tp)  
IFpulse = f(Tvj)  
D = tp/T  
210  
180  
150  
120  
90  
1
0.1  
0.01  
0.001  
60  
30  
0
1E-6 1E-5 0.0001 0.001 0.01  
0.1  
1
10  
25  
50  
75  
100  
125  
150  
175  
Datasheet  
11  
Revision 1.10  
2022-09-22  
IKZA50N65RH5  
CoolSiC Hybrid Discrete  
4 Characteristics diagrams  
Typical diode forward current as a function of forward Typical diode forward voltage as a function of  
voltage  
junction temperature  
IF = f(VF)  
VF = f(Tvj)  
80  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
70  
60  
50  
40  
30  
20  
10  
0
25  
50  
75  
100  
125  
150  
175  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
Datasheet  
12  
Revision 1.10  
2022-09-22  
IKZA50N65RH5  
CoolSiC Hybrid Discrete  
5 Package outlines  
5
Package outlines  
PG-TO247-4-3  
MILLIMETERS  
MIN.  
DIMENSIONS  
MAX.  
5.10  
2.51  
2.10  
0.25  
1.30  
0.79  
0.20  
1.44  
0.66  
21.10  
16.85  
1.35  
25.27  
5.10  
15.90  
13.50  
2.60  
A
A1  
A2  
A3  
b
4.90  
2.31  
1.90  
0.05  
1.10  
0.65  
-
b1  
b2  
b3  
c
1.34  
0.58  
20.90  
16.25  
1.05  
24.97  
4.90  
15.70  
13.10  
2.40  
D
D1  
D2  
D3  
D4  
E
DOCUMENT NO.  
Z8B00184785  
REVISION  
03  
E1  
E2  
e1  
e2  
e3  
L
SCALE 2:1  
0
5
10mm  
5.08  
2.79  
2.54  
19.80  
-
20.10  
4.30  
3.70  
7.40  
2.60  
6.00  
EUROPEAN PROJECTION  
L1  
øP  
øP1  
øP2  
Q
3.50  
7.00  
2.40  
5.60  
S
6.15  
ISSUE DATE  
T
9.80  
6.00  
10.20  
6.40  
21.08.2017  
U
Figure 1  
Datasheet  
13  
Revision 1.10  
2022-09-22  
IKZA50N65RH5  
CoolSiC Hybrid Discrete  
6 Testing conditions  
6
Testing conditions  
VGE(t)  
I,V  
90% VGE  
trr = ta + tb  
dIF/dt  
Qrr = Qa + Qb  
a
b
10% VGE  
t
Qa  
Qb  
IC(t)  
dI  
90% IC  
90% IC  
10% IC  
10% IC  
Figure C. Definition of diode switching  
characteristics  
t
VCE(t)  
t
t
td(off)  
tf  
td(on)  
tr  
Figure A.  
VGE(t)  
90% VGE  
Figure D.  
10% VGE  
t
IC(t)  
CC  
2% IC  
t
VCE(t)  
Figure E. Dynamic test circuit  
Parasitic inductance L ,  
parasitic capacitor C ,  
s
s
relief capacitor C ,  
(only for ZVT switching)  
r
t2  
t4  
E
=
VCE x IC x dt  
E
=
VCE x IC x dt  
off  
on  
2% VCC  
t1  
t3  
t
t1  
t2  
t3  
t4  
Figure B.  
Figure 2  
Datasheet  
14  
Revision 1.10  
2022-09-22  
IKZA50N65RH5  
CoolSiC Hybrid Discrete  
Revision history  
Revision history  
Document revision  
Date of release Description of changes  
V1.1  
V2.1  
n/a  
2020-03-20  
2020-07-27  
2020-11-30  
Preliminary Data Sheet  
Final Data Sheet  
Datasheet migrated to a new system with a new layout and new revision  
number schema: target or preliminary datasheet = 0.xy; final datasheet =  
1.xy  
1.10  
2022-09-22  
Rename of product family name from “Hybrid CoolSiC IGBT” to  
“CoolSiC hybrid discrete”  
Corrected the values in table of Zth = f(tp) diode diagram  
Datasheet  
15  
Revision 1.10  
2022-09-22  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
Edition 2022-09-22  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
Important notice  
Please note that this product is not qualified  
according to the AEC Q100 or AEC Q101 documents  
of the Automotive Electronics Council.  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer’s compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer’s products and any use of the product of  
Infineon Technologies in customer’s applications.  
Warnings  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
©
2022 Infineon Technologies AG  
All Rights Reserved.  
Except as otherwise explicitly approved by Infineon  
Technologies in  
a written document signed by  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or  
any consequences of the use thereof can reasonably  
be expected to result in personal injury.  
Document reference  
IFX-AAL367-003  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to such  
application.  

相关型号:

IKZA50N65SS5

IGBT TRENCHSTOP™ 5;Silicon Carbide Schottky Diode
INFINEON

IKZA75N120CH7

TRENCHSTOP™ IGBT7
INFINEON

IL-10-0001

Pulse Transformer, GENERAL PURPOSE Application(s), 1:1:1, ROHS COMPLIANT
SCHURTER

IL-10-0002

Pulse Transformer, GENERAL PURPOSE Application(s), 3:1:1, ROHS COMPLIANT
SCHURTER

IL-10-0003

Pulse Transformer, GENERAL PURPOSE Application(s), 1:1:1, ROHS COMPLIANT
SCHURTER

IL-10P-S3EN2

Board Connector, 10 Contact(s), 1 Row(s), Male, Straight, Solder Terminal,
JAE

IL-10P-S3EN2-1

Board Connector, 10 Contact(s), 1 Row(s), Male, Straight, Solder Terminal,
JAE

IL-10P-S3EN2-3

Board Connector, 10 Contact(s), 1 Row(s), Male, Straight, Solder Terminal,
JAE

IL-10P-S3EN2-B1

Board Connector, 10 Contact(s), 1 Row(s), Male, Straight, Solder Terminal,
JAE

IL-10P-S3EN2-B3

Board Connector, 10 Contact(s), 1 Row(s), Male, Straight, Solder Terminal,
JAE

IL-10P-S3FP2

Board Connector, 10 Contact(s), 1 Row(s), Male, Right Angle, Solder Terminal,
JAE

IL-10P-S3FP2-1

Board Connector, 10 Contact(s), 1 Row(s), Male, Right Angle, Solder Terminal,
JAE