HYB25D128323C-L4.5 [INFINEON]

128 Mbit DDR SGRAM; 128兆位的DDR SGRAM
HYB25D128323C-L4.5
型号: HYB25D128323C-L4.5
厂家: Infineon    Infineon
描述:

128 Mbit DDR SGRAM
128兆位的DDR SGRAM

双倍数据速率
文件: 总53页 (文件大小:1117K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet, V1.7, July 2003  
HYB25D128323C[-3/-3.3]  
HYB25D128323C[-3.6/L3.6]  
HYB25D128323C[-4.5/L4.5]  
HYB25D128323C-5  
128 Mbit DDR SGRAM  
Memory Products  
N e v e r s t o p t h i n k i n g .  
Edition 2003-07  
Published by Infineon Technologies AG,  
St.-Martin-Strasse 53,  
81669 München, Germany  
© Infineon Technologies AG 2003.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as a guarantee of  
characteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding  
circuits, descriptions and charts stated herein.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
Data Sheet, V1.7, July 2003  
HYB25D128323C[-3/-3.3]  
HYB25D128323C[-3.6/L3.6]  
HYB25D128323C[-4.5/L4.5]  
HYB25D128323C-5  
128 Mbit DDR SGRAM  
Memory Products  
N e v e r s t o p t h i n k i n g .  
HYB25D128323C[-3/-3.3], HYB25D128323C[-3.6/L3.6], HYB25D128323C[-4.5/L4.5], HYB25D128323C-5  
Revision History:  
V1.7  
2003-07  
Previous Version:  
V1.51  
2002-07  
Page  
all  
Subjects (major changes since last revision)  
new data sheet template  
43  
AC Operation Conditions: Input Slew Rate added  
46  
Timing Parameters for speed sorts –3, –3.3, –3.6, –4.5, and –5: Write DQS High/Low added  
Timing Parameters for speed sorts L3.6 and L4.5: Write DQS High/Low added  
48  
Previous Version:  
V1.51  
2002-07  
9, 13, 42, 46, extended VDD range for –3.6 and L3.6  
48  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
techdoc.mp@infineon.com  
Template: mp_a4_v2.0_2003-06-06.fm  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Table of Contents  
1
1.1  
1.2  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3
3.1  
3.2  
3.3  
3.3.1  
3.4  
3.4.1  
3.4.2  
3.4.3  
3.4.3.1  
3.4.3.2  
3.5  
3.5.1  
3.5.2  
3.5.3  
3.5.4  
3.5.5  
3.5.6  
3.5.7  
3.5.8  
3.5.9  
3.5.10  
3.5.11  
3.5.12  
3.5.13  
3.5.14  
3.5.15  
3.5.16  
3.6  
3.6.1  
3.6.2  
3.6.3  
3.6.4  
3.6.5  
3.6.6  
3.7  
Register Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Extended Mode Register Setup (EMRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Signal and Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Special Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Clock Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Command Inputs and Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Data Strobe and Data Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Operation at Burst Reads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Operation at Burst Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Description of Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Power-Up Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Mode Register Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Extended Mode Register Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Bank Activation Command (ACT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Precharge Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Self Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Auto Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Power Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Burst Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Burst Read Operation: (READ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Burst Write Operation (WRITE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Burst Stop Command (BST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Data Mask (DMx) Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Autoprecharge Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Read with Autoprecharge (READA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Write with Autoprecharge (WRITEA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Burst Interruption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Read Interrupted by a Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Read Interrupted by a Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Read Interrupted by a Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Write Interrupted by a Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Write Interrupted by a Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Write Interrupted by a Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Operations and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Function Truth Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
DDR SGRAM Simplified State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
3.8  
3.9  
4
5
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Data Sheet  
5
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
List of Figures  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Figure 9  
Ball Out 128Mbit DDR SGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Functional blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Mode Register Bitmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Extended Mode Register Bitmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Command and Address Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
DQS Timing for Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
DQS and DM Timing at Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
DQS Pre/Postamble at Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Power-Up Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 10 Mode Register Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 11 Activate to Read or Write Command Timing (one bank) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 12 Activate Bank A to Activate Bank B Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 13 Precharge Command Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 14 Self Refresh timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 15 Autorefresh timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 16 Power Down Mode timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 17 Burst Read Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 18 Burst Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 19 Burst Stop for Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 20 Data Mask Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 21 Read Burst with Autoprecharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 22 Read Concurrent Auto Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 23 Write Burst with Auto Precharge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 24 Read interrupted by Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 25 Read interrupted by Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 26 Read interrupted by Precharge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 27 Write interrupted by Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 28 Write interrupted by Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 29 Write interrupted by Precharge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 30 DDR SGRAM Simplified State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 31 Output Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 32 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Data Sheet  
6
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Data Sheet  
7
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
List of Tables  
Table 1  
Table 2  
Table 3  
Table 4  
Table 5  
Table 6  
Table 7  
Table 8  
Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Signal and Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
IO Driver Strength and Interface Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Mapping of DQSx and DMx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Precharge Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Burst Mode and Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Concurrent Read Auto Precharge Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Concurrent Write Auto Precharge Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Command Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Function Truth Table I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Function Truth Table for CKE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Power & DC Operation Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
AC Operation Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Pin Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Timing Parameters for speed sorts –3, –3.3, –3.6, –4.5, and –5 . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Timing Parameters for speed sorts L3.6 and L4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
HYB25D128323C–3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
HYB25D128323C–3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
HYB25D128323C–3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
HYB25D128323C–4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
HYB25D128323C–5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
HYB25D128323CL3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
HYB25D128323CL4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Operating Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 9  
Table 10  
Table 11  
Table 12  
Table 13  
Table 14  
Table 15  
Table 16  
Table 17  
Table 18  
Table 19  
Table 20  
Table 21  
Table 22  
Table 23  
Table 24  
Table 25  
Table 26  
Data Sheet  
8
V1.7, 2003-07  
128 Mbit DDR SGRAM  
HYB25D128323C[-3/-3.3]  
HYB25D128323C[-3.6/L3.6]  
HYB25D128323C[-4.5/L4.5]  
HYB25D128323C-5  
1
Overview  
1.1  
Features  
Maximum clock frequency up to 333 MHz  
Maximum data rate up to 666 Mbps/pin  
Data transfer on both edges of clock  
Programmable CAS latency of 2, 3 and 4 clocks  
Programmable burst length of 2, 4 and 8  
Integrated DLL to align DQS and DQ transitions with CLK  
Data transfer signals are synchronized with byte wise bidirectional Data Strobe  
Data Strobe signal edge-aligned with data for Read operations  
Data Strobe signal center aligned with data for Write operations  
Differential clock inputs (CLK and CLK)  
Data mask for masking write data, one DM per byte  
Organization 1024K × 32 × 4 banks  
4096 rows and 256 columns per bank  
4K Refresh (32ms)  
Refresh Interval 7.8 µsec  
Autorefresh and Self Refresh available  
Standard JEDEC TF-XBGA 128 package  
Self-mirrored, symmetrical ball out  
Matched Impedance Mode interface (Z0=60)  
SSTL-2 JEDEC Weak Mode interface (Z0=34)  
IO voltage VDDQ = 2.5 V  
V
DD power supply memory core:  
– Speed sorts –3 and –3.3: 2.5 V < VDD < 2.9 V  
– Speed sorts L4.5, –4.5, and –5: VDD = 2.5 V  
– Speed sorts L3.6 and –3.6 support both VDD modes  
Table 1  
Performance  
Part Number Speed Code  
3  
3.3  
3.3  
3.6  
3.6  
4.5  
4.5  
5.0  
5.0  
L3.6  
3.6  
L4.5  
4.5  
Unit  
ns  
CAS Latency 4  
tCK4min.  
fCK4max.  
tCK3min.  
fCK3max.  
tQH  
3
333  
4.0  
250  
1.05  
0.30  
300  
4.0  
278  
4.2  
222  
4.5  
200  
5.0  
278  
4.2  
222  
4.5  
MHz  
ns  
CAS Latency 3  
250  
1.15  
0.30  
238  
1.26  
0.33  
222  
1.58  
0.45  
200  
1.75  
0.5  
238  
1.26  
0.33  
222  
1.58  
0.45  
MHz  
ns  
Data Out Window  
DQS-DQ Skew  
tDQSQ  
ns  
1.2  
Description  
The Infineon 128Mbit DDR SGRAM is a ultra high performance graphics memory device, designed to meet all  
requirements for high bandwidth intensive applications like PC graphics systems.  
The 128Mbit DDR SGRAM uses a double-data-rate DRAM architecture organized as 4 banks × 4096 rows × 256  
columns × 32 bits. The double-data-rate architecture is essentially a 2n prefetch architecture, with an interface  
designed to transfer two data words per clock cycle at the I/O pins. A single Read or Write access to the DDR  
Data Sheet  
9
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Overview  
SGRAM consists of a single 64-bit wide, one clock cycle data transfer at the internal DRAM core and two  
corresponding 32-bit wide, one-half clock cycle data transfers at the I/O pins. The result is a data rate of 666 Mbits  
/ sec per pin. The external data interface is 32 bit wide and achieves at 333 MHz system clock a peak bandwidth  
of 2.66 Gigabytes/sec.  
The device is supplied with 2.5 V resp. within the range of 2.5 V - 2.9 V for the memory core and 2.5 V for the  
output drivers. Two drivers strengths are available: 2.5 V Matched Impedance Mode and SSTL2 Weak Mode. The  
“Matched Impedance Mode” interface is optimized for high frequency digital data transfers and matches the  
impedance of graphics board systems (60Ohm).  
Auto Refresh and Self Refresh operations are both supported.  
A standard JEDEC TF-XBGA 128 package is used which enables ultra high speed clock and data transfer rates.  
The signals are mapped symmetrically to the balls in order to enable mirrored mounting in application.  
The chip is fabricated in Infineon technologies advanced 256M process technology.  
Data Sheet  
10  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Pin Configuration  
2
Pin Configuration  
11  
1
2
3
4
5
6
7
8
9
10  
12  
DQS0 DM0  
DQ3  
VDDQ  
VSSQ  
VSS  
DQ2  
DQ1  
VSSQ  
VSSQ  
DQ0  
DQ31  
DQ28 VSSQ  
DM3 DQS3  
VDDQ DQ27  
VSSQ  
DQ29  
DQ30  
VSSQ  
VSSQ  
A
B
C
D
E
F
DQ4  
VDDQ  
NC  
VDDQ  
VDDQ VDDQ  
NC  
DQ6  
DQ7  
DQ5  
VSSQ  
VDD  
VDD  
VSS  
VDD  
VSS  
VSSQ  
VSS  
VSSQ DQ26 DQ25  
VDD VDDQ DQ24  
VDDQ  
DQ17 DQ16  
DQ19 DQ18  
DQS2 DM2  
DQ21 DQ20  
VSSQ  
VSSQ  
VSSQ  
VSSQ  
VSSQ  
VSS  
VSSQ VDDQ DQ15 DQ14  
VSSQ VDDQ DQ13 DQ12  
VDDQ  
VDDQ  
NC  
TOP VIEW  
128 BALL XBGA  
4 Banks x 4096 Rows  
VSSQ  
DM1 DQS1  
NC  
G
H
J
x 256 Columns x 32 Bits  
VSSQ VDDQ DQ11 DQ10  
VDDQ  
VDDQ  
VDD  
DQ22  
CAS# WE#  
VSS  
A10  
A2  
VSS  
VDD  
A9  
DQ9  
NC  
DQ8  
NC  
DQ23  
VSS  
VDD  
A11  
A3  
VSS  
VSSQ VDDQ  
VSS  
VDD  
RFU  
A5  
K
L
BA1  
A0  
CLK CLK#  
A8/AP CKE  
RAS#  
CS#  
NC  
NC  
NC  
RFU  
A7  
MCL  
VREF  
BA0  
A1  
A4  
A6  
M
Figure 1  
Ball Out 128Mbit DDR SGRAM  
Note:The inner matrix of 4 × 4 balls will be used as thermal VSS contacts ncluding the thermal VSS contacts, the  
total amount of balls is 144  
Data Sheet  
11  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Pin Configuration  
Table 2  
Pin  
Signal and Pin Description  
IO Type Detailed Function  
CLK, CLK  
Input  
Clock: CLK and CLK# are differential clock inputs. All address and command inputs  
are latched on the crossing of the positive edge of CLK and the negative edge of CLK.  
Output data (DQ’s and DQS) is referenced to the crossing of CLK and CLK.  
CKE  
Input  
Clock Enable: CKE HIGH activates and CKE LOW deactivates the internal clock,  
input buffers and output drivers. Taking CKE LOW provides PRECHARGE POWER-  
DOWN and SELF REFRESH operations (all banks idle), or ACTIVE POWER-DOWN  
(row active in any bank). CKE is synchronous for POWER-DOWN entry and exit, and  
for SELF REFRESH entry. CKE is asynchronous for SELF-REFRESH exit. CKE must  
be maintained HIGH trough out READ and WRITE accesses. Input buffers (excluding  
CLK, CLK) are disabled during POWER-DOWN. Input buffers (excluding CKE) are  
disabled during SELF REFRESH. CKE is an SSTL2 input but will detect an LVCMOS  
LOW level after VDD is applied.  
CS  
Input  
Chip Select: CS# enables the command decoder when low and disables it when high.  
When the command decoder is disabled, new commands are ignored, but internal  
operations continue. CS# is considered part of the command code.  
RAS, CAS, WE Input  
Command Inputs: CAS, RAS, and WE (along with CS) define the command to be  
executed.  
BA1, BA0  
Input  
Bank Address Inputs: BA0 and BA1 select to which internal bank an ACTIVE, READ,  
WRITE, or PRECHARGE command is being applied. They also define which mode  
register (mode register or extended mode register) is loaded during a MODE  
REGISTER SET command.  
A11.. A0  
Input  
Address Inputs: During a Bank Activate command cycle, A0-A11 defines the row  
address (RA0-RA11). During a Read or Write command cycle, A0-A7 defines the  
column address (CA0-CA7).  
In addition to the column address, A8/AP is used to invoke autoprecharge operation  
at the end of the burst read or write cycle. If A8 is high, the active bank is precharged.  
If A8 is low, the Autoprecharge function is disabled.  
During a Precharge command cycle, A8/AP is used to determine, which bank(s) will  
be precharged. If A8/AP is high, all four banks will be precharged regardless of the  
state of BA0 and BA1. If A8/AP is low, BA0 and BA1 define the bank to be precharged.  
The address inputs also provide the op-code during a MODE REGISTER SET  
command.  
DQS3.. DQS0 I/O  
Data Strobes: The DQSx are the bidirectional strobe signals. At read cycles, the  
DQSx signals are generated by the SGRAM and are edge-aligned to the data. At write  
cycles, the DQS signals are generated by the controller. The rising or falling edge  
indicates the center of the data valid window. Before and after a transfer cycle, DQSx  
enters a preamble and a postamble state. The DQSx signals are mapped to the  
following data bytes: DQS0 to DQ0.. DQ7, DQS1 to DQ8.. DQ15, DQS2 to  
DQ16..DQ23, DQS3 to DQ24.. DQ31.  
DQ31.. DQ0  
I/O  
Data Input/Output: The DQx signals form the 32 bit wide data bus. At READ cycles  
the pins are outputs and during WRITE cycles inputs. The data is transferred at both  
edges of the DQSx signals.  
Data Sheet  
12  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Pin Configuration  
Table 2  
Pin  
Signal and Pin Description (cont’d)  
IO Type Detailed Function  
DM3.. DM0  
Input  
Input Data Mask: The DM signals are input mask signal for WRITE data. They mask  
off a complete byte on the data bus. DMx = 1 prevents the corresponding byte from  
being written. DM3 corresponds to DQ31..DQ24, DM2 to DQ23..DQ16, DM1 to  
DQ15..DQ8, DM0 to DQ7..DQ0. DM signals are sampled on both edges of DQS.  
Although DM pins are input-only, the DM loading is designed to match that of DQ and  
DQS pins.  
VREF  
Input  
Voltage Reference: VREF is the reference voltage input signal.  
VDD, VSS  
Supply Power Supply: Power and Ground for the internal logic.  
DD = 2.5 V ±5% for L4.5, –4.5, and -5  
V
2.5 V 5% < VDD < 2.9 V for –3.6 and L3.6  
2.5 V < VDD < 2.9 V for –3 and –3.3  
VDDQ, VSSQ  
Supply IO Power Supply: Isolated Power and Ground for the output buffers to provide  
improved noise immunity. VDDQ = 2.5V ± 5%  
NC, RFU  
MCL  
Please do not connect No Connect, Reserved for Future Use pins.  
Must be connected to low  
Data Sheet  
13  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Pin Configuration  
Column Addresses A7-A0, AP  
Column Address Buffer  
Row Addresses A11-A0, BA1-BA0  
Row Address Buffer  
Column Address Counter  
Row Decoder  
Row Decoder  
Row Decoder  
Row Decoder  
Memory  
Array  
Memory  
Array  
Memory  
Array  
Memory  
Array  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
4096 x 256  
x 32 bit  
4096 x 256  
x 32 bit  
4096 x 256  
x 32 bit  
4096 x 256  
x 32 bit  
Input Buffers  
Output Buffers  
CLK  
CLK#  
CKE  
DQ31-DQ24  
DQ23-DQ16  
DQ15-DQ8  
DQ7-DQ0  
CS#  
RAS#  
CAS#  
WE#  
V
ref  
Figure 2  
Functional blocks  
Data Sheet  
14  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Register Set  
3
Register Set  
3.1  
Mode Register  
The mode register stores the data for controlling the various operating modes of the DDR SGRAM. It programs  
CAS latency, addressing mode, burst length, test mode, DLL ON and various vendor specific options. The default  
value of the mode register is not defined. Therefore the mode register must be written after power up to operate  
the DDR SGRAM. The DDR SGRAM should be activated with CKE already high prior to writing into the Mode  
Register. The Mode Register is written by using the MRS command. The state of the address signals registered  
in the same cycle as MRS command is written in the mode register. The value can be changed as long as all banks  
are in the idle state.  
The mode register is divided into various fields depending on functionality. The burst length uses A2.. A0, CAS  
latency (read latency from column address) uses A6.. A4. A7 is used for test mode, A8 is used for DLL Reset. A7,  
A8 and BA1 must be set to low for normal DDR SGRAM operation. A9.. A11 is reserved for future use. BA0 selects  
Extended Mode Register Setup operation when set to 1. Refer to the table for specific codes for various burst  
length, addressing modes and CAS latencies.  
Address Bus  
BA1  
0
BA0  
0
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
BT  
A2  
A1  
A0  
RFU  
RFU  
RFU  
DLL  
TM  
CAS Latency  
Burst Length  
Mode Register  
Extended Mode  
Register Access  
Burst Type  
A3 Type  
Testmode  
A7  
BA0  
Accessed Register  
mode  
0
1
Mode Register  
0
1
Normal  
0
1
Sequential  
Reserved  
Extend. Mode Reg.  
Testmode  
DLL Reset  
CAS Latency  
A8  
DLL Reset  
A6  
A5  
A4  
Latency  
0
1
No  
0
0
1
1
1
0
0
1
0
2
3
4
Yes  
All other Reserved  
Burst Length  
Length  
A2  
A1  
A0  
Sequential  
Interleave  
0
0
0
0
1
1
1
0
1
2
4
8
2
4
8
All other Reserved  
Figure 3  
Mode Register Bitmap  
Data Sheet  
15  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Register Set  
3.2  
Extended Mode Register Setup (EMRS)  
The Extended Mode Register is responsible for enabling / disabling the DLL in the HYB25D128323C and for  
selecting the interface type for the IOs and input pins. The Extended Mode Register can be programmed by  
performing a normal Mode Register Setup operation and setting the BA0 bit to high. All other bits of the EMRS  
register are reserved and should be set to low.  
The Bit A0 enables / disables the DLL.  
The Bits A1 and A6 set the driver strength of the IOs. For detailed explanation, refer to the following table.  
Table 3  
A6  
IO Driver Strength and Interface Settings  
A1  
Drive Strength  
Strength/  
IO Power Supply Comment  
VDDQ  
Impedance  
0
0
1
1
0
1
0
1
SSTL-2 weak  
SSTL-2 weak  
RFU  
60% / 34Ohm  
60% / 34Ohm  
RFU  
2.5V  
2.5V  
RFU  
2.5V  
replacement for strong mode  
Do not use  
matched  
impedance mode  
30% / 60Ohm  
output driver matches line  
impedance  
Note:The combination A6=0 and A1=0 defines SSTL-2 strong mode in 32M DDR SGRAM which is not supported  
in this device.  
Address Bus  
BA1  
0
BA0  
1
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
RFU must be set to "0"  
DS1  
RFU must be set to "0"  
DS0  
DLL  
Extended Mode Register  
Extended Mode  
Register Access  
BA0  
Accessed Register  
A6  
A1  
Drive Strength  
A0  
DLL Enable  
0
1
Mode Register  
0
0
1
1
0
1
0
1
SSTL II-Weak Mode  
SSTL II-Weak Mode  
RFU  
0
1
Enable  
Disable  
Extend. Mode Reg.  
Matched Impedance 2.5V  
Figure 4  
3.3  
Extended Mode Register Bitmap  
Signal and Timing Description  
General Description  
3.3.1  
The 128Mbit DDR SGRAM is a 16MByte Synchronous Graphics DRAM. It consists of four banks. Each bank is  
organized as 4096 rows × 256 columns × 32 bits.  
Read and Write accesses are burst oriented. Accesses begin with the registration of an Activate command, which  
is then followed by a Read or Write command. The address bits registered coincident with the Activate command  
are used to select the bank and the row to be accessed. BA1 and BA0 select the bank, address bits A11.. A0 select  
the row. Address bits A7.. A0 registered coincident with the Read or Write command are used to select the starting  
column location for the burst access.  
The regular Single Data Rate SGRAM read and write cycles only use the rising edge of the external clock input.  
For the DDR SGRAM, the special signals DQSx (Data Strobe) are used to mark the data valid window. During  
Data Sheet  
16  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Register Set  
read bursts, the data valid window coincides with the high or low level of the DQSx signals. During write bursts,  
the DQSx signal marks the center of the valid data window. Data is available at every rising and falling edge of  
DQSx, therefore the data transfer rate is doubled.  
For Read accesses, the DQSx signals are aligned to the clock signal CLK.  
3.4  
Special Signal Description  
Clock Signal  
3.4.1  
The DDR SGRAM operates with a differential clock (CLK and CLK#) input. CLK is used to latch the address and  
command signals. Data input and DMx signals are latched with DQSx. The DDR SGRAM implements a Delay  
Locked Loop circuit (DLL) which tracks both edges of the CLK input signal and aligns the DQS output edges with  
the CLK input edges.  
The minimum and maximum clock cycle time is defined by tCK. The maximum value for tCK is defined to provide a  
lower bound for the operation frequency of the internal DLL circuit. The minimum and maximum clock duty cycle  
are specified using the minimum clock high time tCH and the minimum clock low time tCL respectively.  
The internal DLL circuit requires additional 200 clock cycles after DLL reset for internal clock stabilization.  
3.4.2  
Command Inputs and Addresses  
Like single data rate SGRAMs, each combination of RAS#, CAS# and WE# input in conjunction with CS# input at  
a rising edge of the clock determines a DDR SGRAM command.  
VIH  
CLK, CLK#  
VIL  
tIS  
VIH  
VTT  
VIL  
Address,  
CS#, RAS#,  
CAS#, WE#,  
CKE  
Valid  
Valid  
tIH  
Figure 5  
3.4.3  
Command and Address Signal Timing  
Data Strobe and Data Mask  
Operation at Burst Reads  
3.4.3.1  
The Data Strobes provide a 3-state output signal to the receiver circuits of the controller during a read burst. The  
data strobe signal goes tRPRE clock cycle low before data is driven by the DDR SGRAM and then toggles low to  
high and high to low till the end of the burst. The CAS latency is specified to the first low to high transition. The  
edges of the Output Data signals and the edges of the data strobe signals during a read are nominally coincident  
with edges of the input clock. The tolerance of these edges is specified by the parameters tAC and tDQSCK and is  
referenced to the crossing point of the CLK and CLK# signal. The tDQSQ timing parameter describes the skew  
between the data strobe edge and the output data edge.  
The following table summarizes the mapping of DQSx and DMx signals to the data bus.  
Data Sheet  
17  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Register Set  
Table 4  
Mapping of DQSx and DMx  
data strobe signal  
data mask signal  
Controlled data bus  
DQS0  
DQS1  
DQS2  
DQS3  
DM0  
DM1  
DM2  
DM3  
DQ7 .. DQ0  
DQ8 .. DQ15  
DQ16 .. DQ23  
DQ24 .. DQ31  
The minimum time during which the output data is valid is critical for the receiving device. This also applies to the  
Data Strobe DQS during a read since it is tightly coupled to the output data. The parameters tQH and tDQSQ define  
the minimum output data valid window.  
Prior to a burst of read data, given that the device is not currently in burst read mode, the data strobe signals transit  
from Hi-Z to a valid logic low. This is referred to as the data strobe “read preamble” tRPRE  
.
Once the burst of read data is concluded, given that no subsequent burst read operation is initiated, the data strobe  
signals transit from a valid logic low to Hi-Z. This is referred to as the data strobe “read postamble” tRPST  
.
T0  
T1  
T2  
T3  
T4  
tCH  
tCL  
tCK  
tHP  
VIH  
CLK,  
VIL  
CLK#  
tDQSCK  
"Preamble"  
tRPRE  
"Postamble"  
tRPST  
VIH  
VTT  
VIL  
DQS  
DQx  
tAC  
VIH  
VTT  
VIL  
D
D+1  
D+2  
D+3  
tQH  
tDQSQ  
tQHS  
Figure 6  
DQS Timing for Read  
3.4.3.2  
Operation at Burst Write  
During a write burst, control of the data strobe is driven by the memory controller. The DQSx signals are nominally  
centered with respect to data and data mask. The tolerance of the data and data mask edges versus the data  
strobe edges during writes are specified by the setup and hold time parameters of data (tQDQSS & tQDQSH) and data  
mask (tDMDQSS & tDMDQSH). The input data is masked in the same cycle when the corresponding DMx signal is high  
(i.e. the DMx mask to write latency is zero.)  
Data Sheet  
18  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Register Set  
VIH  
VTT  
VIL  
DQSx  
tDMDQSS  
tDMDQSS  
VIH  
VTT  
VIL  
DMx  
DQx  
tDMDQSH  
tDMDQSH  
tQDQSH  
tQDQSH  
VIH  
VTT  
VIL  
Q
Q+1  
Q+2  
tQDQSS  
Q+3  
Q+4  
tQDQSS  
Input Data masked  
Figure 7  
DQS and DM Timing at Write  
Prior to a burst of write data, given that the controller is not currently in burst write mode, the data strobe signal  
(DQSx) transits from Hi-Z to a valid logic low. This is referred to as the data strobe “Write Preamble”. Once the  
burst of write data is concluded, given that no subsequent burst write operation is initiated, the data strobe signal  
(DQSx) transits from a valid logic low to Hi-Z. This is referred to as the data strobe “Write Postamble”, tWPST. For  
DDR SGRAM, data is written with a delay which is defined by the parameter tDQSS (DDR write latency). This is  
different than the single data rate SGRAM where data is written in the same cycle as the Write command is issued.  
VIH  
CLK,  
CLK#  
VIL  
WR  
tDQSS  
tWPST  
tWPREH  
VIH  
VTT  
VIL  
DQSx  
DQx  
"Preamble"  
tWPRES  
"Postamble"  
VIH  
VTT  
VIL  
Q
Q+1  
Q+2  
Q+3  
Figure 8  
DQS Pre/Postamble at Write  
Data Sheet  
19  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Register Set  
3.5  
Description of Timings  
Power-Up Sequence  
3.5.1  
The following sequence is highly recommended for Power-Up:  
1. Apply power and start clock. Maintain CKE=L and the other pins are in NOP conditions at the input  
2. Apply VDD before or at the same time as VDDQ, apply VDDQ before or at the same time as VREF & VTT  
3. Start clock, maintain stable conditions for 200 µs min.  
4. Apply NOP and set CKE to high  
5. Apply a Precharge All command  
6. Issue EMRS (extended mode register set) command to enable the DLL  
7. Issue a Mode Register Set command for “DLL reset“. 200 cycles of clock input are required to lock the DLL.  
8. Issue Precharge commands for all banks of the device.  
9. Issue two or more Auto-Refresh commands.  
10. Issue a Mode Register Set command. (This step may also be taken as step 6)  
Clock  
any  
DLL  
PREA  
EMRS  
PREA  
ARef  
ARef  
MRS  
Command  
NOP  
Reset  
Comm.  
t
t
t
t
t
t
MRD  
2 Clock  
min.  
RP  
MRD  
RP  
RFC  
RFC  
200 Clock min.  
Figure 9  
Power-Up Sequence  
3.5.2  
Mode Register Set Timing  
The DDR SGRAM should be activated with CKE already high prior to writing into the mode register. Two clock  
cycles are required to complete the write operation in the mode register. The mode register contents can be  
changed using the same command and clock cycle requirements during operation as long as all banks are in the  
idle state.  
Clk  
any  
Comm.  
PREA  
NOP  
MRS  
NOP  
NOP  
NOP  
Command  
t
t
MRD  
RP  
Figure 10 Mode Register Set Timing  
3.5.3  
Extended Mode Register Set Timing  
The timing of the Extended Mode Register Setup operation is equivalent to the Mode Register Setup timing.  
Data Sheet  
20  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Register Set  
3.5.4  
Bank Activation Command (ACT)  
The Bank Activation command is initiated by issuing an ACT command at the rising edge of the clock. The DDR  
SGRAM has four independent banks which are selected by the two Bank select Addresses (BA0, BA1). The Bank  
Activation command must be applied before any Read or Write operation can be executed. The delay from the  
Bank Activation command to the first read or write command must meet or exceed the minimum of RAS to CAS  
delay time (tRCDDC min. for read commands and tRCDWR min. for write commands). Once a bank has been activated,  
it must be precharged before another Bank Activate command can be applied to the same bank. The minimum  
time interval between interleaved Bank Activate commands (Bank A to Bank B and vice versa) is the Bank to Bank  
activation delay time (tRRD min).  
Clk  
READ  
ACT  
t
or  
Command  
Addresses  
PRE  
NOP  
ACT  
WRITE  
RCDRD for read  
t
RCDWR for write  
Bank A  
Bank A  
Bank A  
Bank A  
Row Add.  
Col. Add.  
Row Add.  
t
RC  
Figure 11 Activate to Read or Write Command Timing (one bank)  
Clk  
ACT  
Command  
NOP  
ACT  
Bank B  
Bank A  
Addresses  
Row Add.  
Row Add.  
t
RRD  
Figure 12 Activate Bank A to Activate Bank B Timing  
3.5.5  
Precharge Command  
This command is used to precharge or close a bank that has been activated. Precharge is initiated by issuing a  
Precharge command at the rising edge of the clock. The Precharge command can be used to precharge each  
bank respectively or all banks simultaneously. The Bank addresses BA0 and BA1 select the bank to be  
precharged. After a Precharge command, the analog delay tRP has to be met until a new Activate command can  
be initiated to the same bank.  
Data Sheet  
21  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Register Set  
Table 5  
A8/AP  
Precharge Control  
BA1  
BA0  
Precharged  
0
0
0
0
1
0
0
1
1
X
0
1
0
1
X
Bank A Only  
Bank B Only  
Bank C Only  
Bank D Only  
All Banks  
Clk  
ACT  
NOP  
PRE  
NOP  
ACT  
Command  
Bank A  
Bank A  
Bank A  
Addresses  
Row Add  
Row Add  
tRAS  
tRP  
tRC  
Figure 13 Precharge Command Timing  
3.5.6  
Self Refresh  
The self refresh mode can be used to retain the data in the DDR SGRAM if the chip is powered down. To set the  
DDR SGRAM into a self refreshing mode, a Self Refresh command must be issued and CKE held low at the rising  
edge of the clock. Once the self Refresh command is initiated, CKE must stay low to keep the device in Self  
Refresh mode. During the Self refresh mode, all of the external control signals are disabled except CKE. The clock  
is internally disabled during Self Refresh operation to reduce power. An internal timing generator guarantees the  
self refreshing of the memory content. To exit the Self Refresh mode, a stable external clock is needed for the DLL  
before returning CKE high. After the Power Down Exit time(tPDEX), a Deselect or NOP command is issued and CKE  
is held high for longer than tSREX in order to lock the DLL.  
Data Sheet  
22  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Register Set  
Clk  
SELF  
NOP  
NOP  
NOP  
NOP  
Any  
NOP  
Command  
CKE  
REFRESH  
DESEL  
DESEL  
DESEL  
DESEL  
Comm.  
t
SREX  
Figure 14 Self Refresh timing  
3.5.7  
Auto Refresh  
The auto refresh function is initiated by issuing an Auto Refresh command at the rising edge of the clock. All banks  
must be precharged and idle before the Auto Refresh command is applied. No control of the external address pins  
is required once this cycle has started. All necessary addresses are generated in the device itself. When the  
refresh cycle has completed, all banks will be in the idle state. A delay between the Auto Refresh command and  
the next Activate Command or subsequent Auto Refresh Command must be greater than or equal to the tRFC(min).  
Clk  
PRE-  
AUTO  
NOP  
Command  
NOP  
Command  
CKE  
CHARGE  
REFRESH  
Command is  
AUTOREFRESH  
or ACT  
t
t
RFC  
RP  
Figure 15 Autorefresh timing  
3.5.8  
Power Down Mode  
The Power Down Mode is entered when CKE is set low and exited when CKE is set high. The CKE signal is  
sampled at the rising edge of the clock. Once the Power Down Mode is initiated, all of the receiver circuits except  
CLK, CKE and DLL circuits are gated off to reduce power consumption. All banks can be set to idle state or stay  
activate during Power Down Mode, but burst activity may not be performed. After exiting from Power Down Mode,  
at least one clock cycle of command delay must be inserted before starting a new command. During Power Down  
Mode, refresh operations cannot be performed; therefore, the device cannot remain in Power Down Mode longer  
than the refresh period (tREF) of the device.  
Data Sheet  
23  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Register Set  
Clk  
NOP  
Any  
NOP  
PRE  
NOP  
NOP  
Command  
CKE  
DESEL  
Command  
DESEL  
Power Down  
Mode entry  
Power Down  
Mode exit  
t
PDEX  
Figure 16 Power Down Mode timing  
3.5.9  
Burst Mode Operation  
Burst mode operation is used to provide a constant flow of data to the memory (write cycle) or from the memory  
(read cycle). The burst length is programmable and set by address bits A0 - A3 during the Mode Register Setup  
command. The burst length controls the number of words that will be output after a read command or the number  
of words to be input after a write command. One word is 32 bits wide. The sequential burst length can be set to 2,  
4 or 8 data words.  
Table 6  
Burst Mode and Sequence  
Burst Length  
Starting Column Address  
Order of Access within a Burst  
Type = Sequential  
0 - 1  
A2  
A1  
A0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
2
4
1 - 0  
0
0
1
1
0
0
1
1
0
0
1
1
0 - 1 - 2 - 3  
1 - 2 - 3 - 0  
2 - 3 - 0 - 1  
3 - 0 - 1 - 2  
8
0
0
0
0
1
1
1
1
0 - 1 - 2 - 3 - 4 - 5 - 6 - 7  
1 - 2 - 3 - 4 - 5 - 6 - 7 - 0  
2 - 3 - 4 - 5 - 6 - 7 - 0 - 1  
3 - 4 - 5 - 6 - 7 - 0 - 1 - 2  
4 - 5 - 6 - 7 - 0 - 1 - 2 - 3  
5 - 6 - 7 - 0 - 1 - 2 - 3 - 4  
6 - 7 - 0 - 1 - 2 - 3 - 4 - 5  
7 - 0 - 1 - 2 - 3 - 4 - 5 - 6  
3.5.10  
Burst Read Operation: (READ)  
The Burst Read operation is initiated by issuing a READ command at the rising edge of the clock after tRCD from  
the bank activation. The address inputs (A7.. A0) determine the starting address for the burst. The burst length (2,  
4 or 8) must be defined in the Mode Register. The first data after the READ command is available depending on  
the CAS latency. The subsequent data is clocked out on the rising and falling edge of DQSx until the burst is  
completed. The DQSx signal is generated by the DDR SGRAM during Burst Read Operations.  
Data Sheet  
24  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Register Set  
CLK  
Read  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
CL = 2  
Read  
Postamble  
Read  
DQSx  
Preamble  
CAS latency = 2  
DQx  
D-out D-out  
D-out D-out  
2
3
0
1
Burst length = 4  
CL = 3  
Read  
Postamble  
Read  
Preamble  
DQSx  
CAS latency = 3  
DQx  
D-out D-out  
D-out D-out  
2
3
0
1
CL = 4  
Read  
Postamble  
Read  
Preamble  
DQSx  
CAS latency = 4  
DQx  
D-out D-out  
D-out D-out  
2
3
0
1
Figure 17 Burst Read Operation  
3.5.11  
Burst Write Operation (WRITE)  
The Burst Write is initiated by issuing a WRITE command at the rising edge of the clock. The address inputs (A7..  
A0) determine the starting column address. Data for the first burst write cycle must be applied on the DQ pins on  
the first rising edge of DQSx following the WRITE command. The time between the WRITE command and the first  
corresponding edge of the data strobe is tDQSS. The remaining data inputs must be supplied on each subsequent  
rising and falling edge of the data strobe until the burst length is completed. When the burst has been finished,  
any additional data supplied to the DQ pins will be ignored.  
Data Sheet  
25  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Register Set  
CLK  
WRITE  
NOP  
NOP  
NOP  
tDQSS  
tWPST  
DQSx  
DQx  
tWPRES  
tWPREH  
Data-in  
0
Data-in  
1
Data-in  
2
Data-in  
3
Burst length = 4  
Figure 18 Burst Write Operation  
3.5.12  
Burst Stop Command (BST)  
A Burst Stop is initiated by issuing a BURST STOP command at the rising edge of the clock. The Burst Stop  
Command has the fewest restrictions, making it the easiest method to terminate a burst operation before it has  
been completed. When the Burst Stop Command is issued during a burst read cycle, read data and DQSx go to  
a high impedance state after a delay which is equal to the CAS Latency set in the Mode Register. The Burst Stop  
latency is equal to the CAS latency CL.The Burst Stop command is not supported during a write burst operation.  
Burst Stop is also illegal during Read with Auto-Precharge.  
Data Sheet  
26  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Register Set  
CLK  
READ  
BST  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
CL = 2  
Burst Stop Latency = 2  
DQSx  
CAS latency = 2  
DQx  
D-out D-out  
0
1
CL = 3  
Burst Stop Latency = 3  
DQSx  
CAS latency = 3  
DQx  
D-out D-out  
0
1
Burst Stop Latency = 4  
DQSx  
CAS latency = 4  
DQx  
D-out D-out  
0
1
Burst length = 4  
Figure 19 Burst Stop for Read  
3.5.13  
Data Mask (DMx) Function  
The DDR SGRAM has a Data Mask function that can be used only during write cycles. When the Data Mask is  
activated (DMx high) during burst write, the write operation is masked immediately. The DMx to data-mask latency  
is zero. DMx can be issued at the rising or falling edge of Data Strobe.  
Data Sheet  
27  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Register Set  
CLK  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
DQSx  
DQx  
D-in  
D-in  
D-in  
3
D-in  
D-in  
5
D-in  
D-in  
1
D-in  
7
0
2
4
6
DMx  
Burst length = 8  
Data is masked out  
Figure 20 Data Mask Timing  
3.5.14  
Autoprecharge Operation  
The Autoprecharge command is issued by setting column address A8 high when a Read or a Write command is  
asserted to the DDR SGRAM. If A8 is low when Read or Write command is issued, a normal Read or Write burst  
operation is executed and the bank remains active at the end of the burst sequence. When the Auto Precharge  
command is activated, the active bank automatically begins to precharge at the earliest possible moment during  
the Read or Write cycle after tRAS(min.) is satisfied.  
3.5.15  
Read with Autoprecharge (READA)  
If a Read with Auto-precharge command is initiated, the DDR SGRAM automatically enters the precharge  
operation BL/2 clock cycles after the READA command and tRAS(min.) is satisfied. If tRAS(min.) has not been satisfied  
yet, an internal interlock will delay the precharge operation until it is satisfied. Once the precharge operation has  
started, the bank cannot be reactivated and the new command can not be asserted until the Precharge time (tRP)  
has been satisfied.  
Data Sheet  
28  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Register Set  
CLK  
READA  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
ACT  
Command  
CL = 2  
DQSx  
CAS latency = 2  
DQx  
D-out D-out  
D-out D-out  
2
3
0
1
CL = 3  
DQSx  
CAS latency = 3  
DQx  
D-out D-out  
D-out D-out  
2
3
0
1
CL = 4  
DQSx  
CAS latency = 4  
DQx  
D-out D-out  
D-out D-out  
2
3
0
1
t
RP  
BL / 2  
Begin of  
Autoprecharge  
Bank can be activated after  
completion of precharge  
Burst length = 4  
Figure 21 Read Burst with Autoprecharge  
Data Sheet  
29  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Register Set  
Burst length = 4  
CAS latency = 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
BANK A  
READ A  
+ AP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
ACTIVATE  
t RCD(min)  
t RAS(min)  
t RP  
Begin of  
Auto Precharge  
BL / 2  
DQSx  
DQx  
CL = 3  
D-out  
D-out D-out  
D-out  
0
2
3
1
Figure 22 Read Concurrent Auto Precharge  
Table 7  
Concurrent Read Auto Precharge Support  
For same Bank  
Asserted  
For different Bank  
Command  
T4  
T5  
T6  
T4  
T5  
T6  
READ  
NO  
YES  
NO  
NO  
YES  
NO  
YES  
NO  
NO  
NO  
NO  
NO  
NO  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
READ+AP  
ACTIVATE  
PRECHARGE YES  
Note:This table is for the case of Burst Length = 4, CAS Latency =3 and tWR=2 clocks  
When READ with Auto Precharge is asserted, new commands can be asserted at T4,T5 and T6 as shown in  
Table 7.  
An Interrupt of a running READ burst with Auto Precharge i.e. at T4 and T5 to the same bank with another  
READ+AP command is allowed, it will extend the begin of the internal Precharge operation to the last READ+AP  
command.  
Interrupts of a running READ burst with Auto Precharge i.e. at T4 are not allowed when doing concurrent  
command to another active bank. ACTIVATE or PRECHARGE commands to another bank are always possible  
while a READ with Auto Precharge operation is in progress.  
3.5.16  
Write with Autoprecharge (WRITEA)  
If A8 is high when a Write command is issued, the Write with Auto-Precharge function is performed. The internal  
precharge begins after the write recovery time tWR and tRAS(min.) are satisfied.  
If a Write with Auto Precharge command is initiated, the DDR SGRAM automatically enters the precharge  
operation at the first rising edge of CLK after the last valid edge of DQS (completion of the burst) plus the write  
recovery time tWR. Once the precharge operation has started, the bank cannot be reactivated and the new  
command can not be asserted until the Precharge time (tRP) has been satisfied. If tRAS(min.) has not been satisfied  
yet, an internal interlock will delay the precharge operation until it is satisfied.  
Data Sheet  
30  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Register Set  
Burst length = 4  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
BANK A  
WRITE A  
+ AP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
ACTIVATE  
t RAS(min)  
t WR  
t RP  
BL / 2  
Begin of  
Auto Precharge  
DQSx  
DQx  
D-in  
0
D-in  
2
D-in  
3
D-in  
1
Figure 23 Write Burst with Auto Precharge  
Note:tWR starts at the first rising edge of clock after the last valid edge of the 4 DQSx.  
Table 8  
Concurrent Write Auto Precharge Support  
For same Bank  
Asserted  
For different Bank  
Command  
T3  
T4  
T5  
T6  
T7  
T8  
T3  
T4  
T5  
T6  
T7  
WRITE  
NO  
YES  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
YES  
YES  
YES  
YES  
NO  
YES  
YES  
NO  
YES  
YES  
NO  
YES  
YES  
YES  
YES  
YES  
YES  
WRITE+AP  
READ  
READ+AP  
ACTIVATE  
NO  
NO  
NO  
YES  
YES  
YES  
YES  
YES  
YES  
PRECHARGE NO  
When Write with Auto Precharge is asserted, new commands can be asserted at T3.. T8 as shown in Table 8.  
An Interrupt of a running WRITE burst with Auto Precharge i.e. at T3 to the same bank with another WRITE+AP  
command is allowed as long as the burst is running, it will extend the begin of the internal Precharge operation to  
the last WRITE+AP command.  
Interrupts of a running WRITE burst with Auto Precharge i.e. at T3 are not allowed when doing concurrent  
WRITE’s to another active bank. Consecutive WRITE or WRITE+AP bursts (T4.. T7) to other open banks are  
possible. ACTIVATE or PRECHARGE commands to another bank are always possible while a WRITE with Auto  
Precharge operation is in progress.  
3.6  
Burst Interruption  
3.6.1  
Read Interrupted by a Read  
A Burst Read can be interrupted before completion of the burst by a new Read command given to any bank. When  
the previous burst is interrupted, the remaining addresses are overridden by the new address with the full burst  
length. The data from the first Read command continues to appear on the outputs until the CAS latency from the  
Data Sheet  
31  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Register Set  
interrupting Read command is satisfied. At this point, the data from the interrupting Read command appears. Read  
to Read interval (CAS#(a) to CAS#(b) Command period, tCCD) is minimum 1 CLK.  
CLK  
READ a  
READ b  
NOP  
NOP  
NOP  
NOP  
Command  
t
CCD  
DQSx  
DQx  
D-out  
b0  
D-out D-out  
a0 a1  
D-out D-out  
D-out  
b3  
b1  
b2  
Burst length = 4  
CL = 2  
Figure 24 Read interrupted by Read  
3.6.2  
Read Interrupted by a Write  
To interrupt a burst read with a write command, a Burst Stop command must be asserted to avoid data contention  
on the I/O bus by placing the DQ's (Output drivers) in a high impedance state at least one clock cycle before the  
Write Command is initiated (Last Output to Write Command Latency). To insure that the DQs are tri-stated one  
cycle before the write operation begins, the Burst Stop command must be applied at least 3 clock cycles for CL =  
2, at least 4 clock cycles for CL = 3 or at least 5 clock cycles for CL = 4 before the Write command.  
CLK  
READ  
BST  
NOP  
NOP  
WRITE  
NOP  
NOP  
NOP  
Command  
Burst Stop latency = CL  
DQSx  
DQx  
D-out D-out  
D-in  
0
D-in  
1
D-in  
2
D-in  
3
0
1
Burst Stop to Write command latency  
Burst length = 4  
CL = 2  
Figure 25 Read interrupted by Write  
Data Sheet  
32  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Register Set  
3.6.3  
Read Interrupted by a Precharge  
A Burst Read operation can be interrupted by a Precharge of the same bank. The Read command to Precharge  
time is minimum 1 clock cycle. The Precharge command disables the data output depending on the CAS latency.  
Once the last data bit has been outputted, the output buffers are tristated. A new Bank Activate command may be  
issued to the same bank after tRP.  
CLK  
READ  
NOP  
PRE  
NOP  
NOP  
ACT  
NOP  
Command  
Precharge latency = CL  
First possible  
ACT command  
DQSx  
DQx  
D-out D-out D-out D-out  
0
1
2
3
Burst length = 8  
CL = 2  
t
RP  
Figure 26 Read interrupted by Precharge  
3.6.4  
Write Interrupted by a Write  
A Burst Write can be interrupted before completion of the burst by a new Write Command. The minimum distance  
between two different Write commands is one clock cycle. When the previous burst is interrupted, the remaining  
addresses are overridden by the new address and data will be written into the device until the programmed burst  
length is satisfied. The Write to Write interval (CAS a to CAS b command period) is defined by the parameter tCCD  
.
CLK  
WRITE a  
WRITE b  
NOP  
NOP  
NOP  
Command  
t
CCD  
DQSx  
DQx  
D-in  
b0  
D-in  
a0  
D-in  
a1  
D-in  
b1  
D-in  
b2  
D-in  
b3  
Burst length = 4  
Figure 27 Write interrupted by Write  
Data Sheet  
33  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Register Set  
3.6.5  
Write Interrupted by a Read  
A Burst Write can be interrupted by a Read command sent to any bank. The DQs must be in the high impedance  
state at least one clock cycle before the data of the interrupting read appears on the outputs to avoid data  
contention. Before the Read Command is registered, any residual data from the burst write cycle must be masked  
by DMx. Data that is presented on the DQ pins before the Read command is initiated, will actually be written to  
the memory.  
CLK  
Write  
NOP  
NOP  
Read  
NOP  
NOP  
NOP  
Command  
tDQSS  
Last valid  
data  
tWTR  
CL = 2  
DQSx  
DQx  
D-in  
D-in  
1
D-in  
D-in  
D-in  
D-in  
5
D-out D-out  
0
2
3
4
0
1
DMx  
Data must be  
masked  
Data is masked  
by Read  
Burst length = 8  
CL = 2  
Figure 28 Write interrupted by Read  
3.6.6  
Write Interrupted by a Precharge  
A Burst Write operation can be interrupted before completion of the burst by a Precharge of the same bank.  
Random column access is allowed. A Write Recovery time (tWR) is required from the last data to Precharge  
command. When Precharge command is asserted, any residual data from the burst write cycle must be masked  
by DMx.  
Data Sheet  
34  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Register Set  
CLK  
Write  
Write  
NOP  
NOP  
NOP  
tWR  
PRE  
NOP  
NOP  
Command  
bank A  
bank B  
tDQSS  
Last valid  
data  
tDQSS  
DQSx  
DQx  
D-in  
D-in  
1
D-in  
D-in  
3
D-in  
D-in  
5
D-in  
D-in  
1
0
2
4
0
DMx  
Data must be  
masked  
Data is masked  
by Precharge  
Burst length = 8  
Figure 29 Write interrupted by Precharge  
3.7  
Operations and Functions  
Table 9  
Command Overview  
Operation  
Code  
CKE CKE CS# RAS# CAS# WE# BA0 BA1 A8  
A0-7  
n-1  
n
X
X
X
X
A9-11  
Device Deselect  
No Operation  
DESEL  
NOP  
H
H
L
L
L
X
H
L
X
H
L
X
H
L
X
X
0
X
X
0
X
X
X
X
H
Mode Register Setup  
MRS  
H
OPCODE  
OPCODE  
Extended Mode Register MRS  
Setup  
H
L
L
L
1
0
Bank Activate  
Read  
ACT  
H
H
H
X
X
X
L
L
L
L
L
H
H
L
H
H
H
BA  
BA  
BA  
BA  
BA  
BA  
Row Address  
READ  
READA  
L
Col.  
Col.  
Read with Auto  
Precharge  
H
H
Write Command  
WRITE  
H
H
X
X
L
L
L
H
L
H
H
BA  
BA  
BA  
BA  
L
Col.  
Col.  
Write Command with  
Auto Precharge  
WRITEA  
H
H
Burst Stop  
BST  
H
H
H
H
H
X
X
X
H
L
L
L
L
L
L
H
L
L
L
L
H
H
H
L
L
X
X
X
L
X
X
X
X
X
Precharge Single Bank PRE  
L
BA  
X
BA  
X
Precharge All Banks  
Auto Refresh  
PREAL  
L
H
X
X
AREF  
H
H
X
X
Self Refresh Entry  
Self Refresh Exit  
SREFEN  
SREFEX  
L
X
X
L
L
H
H
H
L
X
H
X
H
X
H
X
X
X
X
X
X
X
X
Data Sheet  
35  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Register Set  
Table 9  
Command Overview (cont’d)  
Code CKE CKE CS# RAS# CAS# WE# BA0 BA1 A8  
Operation  
A0-7  
n-1  
n
A9-11  
Power Down Mode Entry PWDNEN  
(Note)  
H
H
L
L
H
L
X
H
X
H
X
H
X
X
X
X
X
X
X
X
Power Down Mode Exit PWDNEX  
L
H
H
L
X
X
X
X
X
X
X
valid valid valid  
Note:The Power Down Mode Entry command is illegal during Burst Read or Burst Write operations.  
3.8  
Function Truth Tables  
Table 10 lists all abbreviations used in Table 11 and Table 12.  
Table 10  
Abbreviations  
High Level  
H
L
Low Level  
X
Don’t Care  
V
Valid Data Input  
Row Address  
Bank Address  
Precharge All  
No Operation  
Column Address  
Address Line x  
RA  
BA  
PA  
NOP  
CA  
Ax  
Table 11  
Function Truth Table I  
Current State Command  
Address  
X
Action  
Notes  
3)1)3)  
IDLE  
DESEL  
NOP  
NOP  
X
NOP  
3)2)3)  
3)  
BST  
X
NOP  
READ / READA  
WRITE / WRITEA  
ACT  
BA,CA,A8  
BA,CA,A8  
BA, RA  
BA, A8  
X
ILLEGAL  
1)4)1)  
1)1)  
ILLEGAL  
Bank Active  
PRE / PREAL  
AREF / SREF  
MRS / EMRS  
NOP  
AUTO-Refresh or Self-Refresh  
4)5)4)  
Op-Code  
Mode Register Set or Extended Mode  
Register Set  
Data Sheet  
36  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Register Set  
Table 11  
Function Truth Table I (cont’d)  
Current State Command  
Address  
Action  
NOP  
Notes  
ROW ACTIVE DESEL  
X
NOP  
BST  
X
NOP  
X
NOP  
READ / READA  
BA, CA, A8  
Begin Read, Determine Auto Precharge 9)6)9)  
WRITE / WRITEA  
ACT  
BA, CA, A8  
Begin Write, Determine Auto Precharge  
ILLEGAL  
9)9)  
1), 5)1), 5)  
6)7)6)  
BA, RA  
PRE / PREAL  
AREF / SREF  
MRS / EMRS  
DESEL  
BA, A8  
Precharge / Precharge All  
ILLEGAL  
X
OP-Code  
ILLEGAL  
READ  
X
Continue burst to end  
Continue burst to end  
Terminate Burst  
NOP  
X
BST  
X
READ / READA  
BA, CA, A8  
Terminate burst, Begin New Read,  
Determine Auto-Prechgarge  
7)8)7)  
WRITE / WRITEA  
ACT  
BA, CA, A8  
ILLEGAL  
2), 7)9)2), 7)  
1)1)  
BA, RA  
ILLEGAL  
PRE / PREAL  
AREF / SREF  
MRS / EMRS  
DESEL  
BA ,A8  
Terminate Burst / Precharge  
ILLEGAL  
X
Op-Code  
ILLEGAL  
READ with  
Auto Precharge  
X
Continue burst to end, Precharge  
Continue burst to end, Precharge  
ILLEGAL  
NOP  
X
BST  
BA  
READ / READA  
WRITE / WRITEA  
ACT  
BA, CA, A8  
ILLEGAL  
BA, CA, A8  
ILLEGAL  
BA, RA  
ILLEGAL  
1)1)  
1)1)  
PRE / PREAL  
AREF / SREF  
MRS / EMRS  
DESEL  
BA ,A8  
ILLEGAL  
X
ILLEGAL  
Op-Code  
ILLEGAL  
WRITE  
X
Continue burst to end  
Continue burst to end  
ILLEGAL  
NOP  
X
BST  
X
READ / READA  
BA, CA, A8  
Terminate Burst, Begin Read, Determine 7), 8)7), 8)  
Auto-Precharge.  
WRITE / WRITEA  
BA, CA, A8  
Terminate Burst, Begin new Write,  
Determine Auto-Precharge  
2), 7)2), 7)  
ACT  
BA, RA  
BA ,A8  
X
ILLEGAL  
1)1)  
8)8)  
PRE / PREAL  
AREF / SREF  
MRS / EMRS  
Terminate Burst , Precharge  
ILLEGAL  
OP-Code  
ILLEGAL  
Data Sheet  
37  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Register Set  
Table 11  
Function Truth Table I (cont’d)  
Current State Command  
Address  
Action  
Notes  
WRITE with  
DESEL  
X
Continue burst to end, Precharge  
Autoprecharge  
NOP  
X
Continue burst to end, Precharge  
BST  
X
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
READ / READA  
WRITE / WRITEA  
ACT  
BA, CA, A8  
BA, CA, A8  
BA, RA  
1)1)  
1)1)  
PRE / PREAL  
AREF / SREF  
MRS / EMRS  
DESEL  
BA ,A8  
X
OP-Code  
ROW  
ACTIVATING  
X
NOP ( Row Active after tRCD  
NOP ( Row Active after tRCD  
NOP ( Row Active after tRCD  
ILLEGAL  
)
)
)
NOP  
X
BST  
X
READ / READA  
WRITE / WRITEA  
ACT  
BA, CA, A8  
BA, CA, A8  
BA, RA  
BA ,A8  
X
1), 9)1), 9)  
1), 9)1), 9)  
1), 5)1), 5)  
1), 6)1), 6)  
ILLEGAL  
ILLEGAL  
PRE / PREAL  
AREF / SREF  
MRS / EMRS  
ILLEGAL  
ILLEGAL  
OP-Code  
X
ILLEGAL  
PRECHARGE DESEL  
NOP ( Row Idle after tRP)  
NOP ( Row Idle after tRP)  
NOP ( Row Idle after tRP)  
ILLEGAL  
NOP  
BST  
X
X
READ / READA  
BA, CA, A8  
BA, CA, A8  
BA, RA  
BA ,A8  
X
1)1)  
1)1)  
1)1)  
1)1)  
WRITE / WRITEA  
ACT  
ILLEGAL  
ILLEGAL  
PRE / PREAL  
AREF / SREF  
MRS / EMRS  
DESEL  
NOP ( Row Idle after tRP)  
ILLEGAL  
OP-Code  
X
ILLEGAL  
WRITE  
RECOVERING  
NOP (Row Active after tWR  
NOP (Row Active after tWR  
NOP (Row Active after tWR  
)
)
)
NOP  
X
BST  
X
READ / READA  
WRITE / WRITEA  
ACT  
BA, CA, A8  
BA, CA, A8  
BA, RA  
BA ,A8  
X
Begin Read, Determine Auto-Prechgarge 2)2)  
Begin Write, Determine Auto-Prechgarge  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
2)2)  
1),10)  
PRE / PREAL  
AREF / SREF  
MRS / EMRS  
OP-Code  
Data Sheet  
38  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Register Set  
Table 11  
Function Truth Table I (cont’d)  
Current State Command  
Address  
Action  
Notes  
WRITE  
DESEL  
X
NOP (Precharge after tWR  
NOP (Precharge after tWR  
NOP (Precharge after tWR  
ILLEGAL  
)
)
)
RECOVERING  
with Auto-  
precharge  
NOP  
X
BST  
X
1), 2)  
1)  
READ / READA  
WRITE / WRITEA  
ACT  
BA, CA, A8  
BA, CA, A8  
BA, RA  
BA ,A8  
X
ILLEGAL  
1)  
ILLEGAL  
1)  
PRE / PREAL  
AREF / SREF  
MRS / EMRS  
DESEL  
ILLEGAL  
ILLEGAL  
OP-Code  
X
ILLEGAL  
REFRESH  
NOP (Idle after tRC)  
NOP (Idle after tRC)  
NOP (Idle after tRC)  
ILLEGAL  
NOP  
X
BST  
X
READ / READA  
WRITE / WRITEA  
ACT  
BA, CA, A8  
BA, CA, A8  
BA, RA  
BA ,A8  
X
ILLEGAL  
11)  
ILLEGAL  
PRE / PREAL  
AREF / SREF  
MRS / EMRS  
DESEL  
ILLEGAL  
ILLEGAL  
OP-Code  
X
ILLEGAL  
(EXTENDED  
MODE  
NOP (Idle after two clocks)  
REGISTER  
SET)  
NOP  
X
NOP (Idle after two clocks)  
NOP (Idle after two clocks)  
ILLEGAL  
BST  
X
READ / READA  
WRITE / WRITEA  
ACT  
BA, CA, A8  
BA, CA, A8  
BA, RA  
BA ,A8  
X
ILLEGAL  
ILLEGAL  
PRE / PREAL  
AREF / SREF  
MRS / EMRS  
ILLEGAL  
ILLEGAL  
OP-Code  
ILLEGAL  
1) Illegal to bank specified states; function may be legal in the bank indicated by BAx, depending on the state of that bank  
2) Must satisfy bus contention, bus turn around, write recovery requirements.  
3) If both banks are idle, and CKE is inactive, the device will enter Power Down Mode. All input buffers except CKE, CLK and  
CLK# will be disabled.  
4) If both banks are idle, and CKE is deactivated coincidentally with an AutoRefresh command, the device will enter  
SelfRefresh Mode. All input buffers except CKE will be disabled.  
5) Illegal, if tRRD is not satisfied.  
6) Illegal, if tRAS is not satisfied.  
7) Must satisfy burst interrupt condition.  
8) Must mask two preceding data bits with the DM pin.  
9) Illegal, if tRCD is not satisfied.  
10) Illegal, if tWR is not satisfied.  
11) Illegal, if tRC is not satisfied.  
Note:All entries assume the CKE was High during the preceding clock cycle  
Data Sheet  
39  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Register Set  
Table 12  
Function Truth Table for CKE  
CKE CKE CS# RAS CAS WE# Address Action  
Current  
State  
Notes  
n-1  
H
L
n
X
H
H
H
H
H
L
#
#
1)  
1)  
1)  
1)  
1)  
1)  
1)  
SELF  
REFRESH  
X
H
L
X
X
H
H
H
L
X
X
H
H
H
L
X
X
H
X
X
X
X
X
X
X
X
H
X
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
INVALID  
Exit Self-Refresh ( Idle after tSRX  
Exit Self-Refresh ( Idle after tSRX  
ILLEGAL  
)
)
L
L
L
L
L
ILLEGAL  
L
L
ILLEGAL  
L
X
X
X
X
X
L
X
X
X
X
X
L
X
X
X
X
X
L
NOP ( Maintain Self Refresh)  
INVALID  
POWER  
DOWN  
H
L
X
H
L
Exit Power Down ( Idle after tPDEX  
NOP ( Maintain Power Down)  
Refer to Function Truth Table  
Enter Self Refresh  
Enter Power-Down  
Enter Power-Down  
ILLEGAL  
)
L
2)  
3)  
2)  
2)  
2)  
2)  
2)  
ALL  
BANKS  
IDLE  
H
H
H
H
H
H
H
L
H
L
L
H
L
X
H
H
H
L
X
H
H
L
L
L
L
L
L
X
X
X
X
ILLEGAL  
L
L
X
X
X
ILLEGAL  
X
H
X
X
X
X
Refer to Power Down in this table  
Refer to Funtion Truth Table  
All other  
states  
H
1) CKE low-to-high transition re-enables inputs asynchronously. A minimum setup time to CLK must be satisfied before any  
commands other than EXIT are executed.  
2) Power Down can be entered when all banks are idle (banks can be active or precharged)  
3) Self Refresh can be entered only from the Precharge / Idle state.  
Data Sheet  
40  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Register Set  
3.9  
DDR SGRAM Simplified State Diagram  
SELF  
REFRESH  
SREFEN  
SREFEX  
MODE  
REGISTER  
SET  
MRS  
AUTO  
REFRESH  
AREF  
IDLE  
CKEL  
CKEH  
ACT  
POWER  
CKEH  
DOWN  
CKEL  
ROW  
ACTIVE  
WRITE  
BST  
READ  
WRITEA  
READA  
WRITE  
READ  
READ  
WRITEA  
READA  
READA  
PRE  
READA  
WRITEA  
PRE  
PRE  
PRE  
POWER  
ON  
PRE  
CHARGE  
Automatic Sequence  
Command Sequence  
Figure 30 DDR SGRAM Simplified State Diagram  
Data Sheet  
41  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Electrical Characteristics  
4
Electrical Characteristics  
Table 13  
Absolute Maximum Ratings  
Symbol  
Parameter  
Values  
typ.  
Unit  
Note/  
Test Condition  
min.  
max.  
Voltage on I/O pins relative to VSS  
VIN, VOUT  
–0.5  
VDDQ  
+
V
0.5  
Voltage on Inputs relative to VSS  
Voltage on VDD supply relative to VSS  
Voltage on VDDQ supply relative to VSS  
Operating Temperature (Ambient)  
Storage Temperature (Plastic)  
Power Dissipation  
VIN  
–0.5  
–0.5  
–0.5  
0
+3.6  
+3.6  
+3.6  
+70  
+150  
V
VDD  
VDDQ  
TA  
V
V
° C  
° C  
W
mA  
TSTG  
PD  
–55  
1.4  
50  
Short Circuit Output Current  
IOUT  
Attention: Stresses above those listed here may cause permanent damage to the device. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
Maximum ratings are absolute ratings; exceeding only one of these values may cause  
irreversible damage to the integrated circuit.  
Table 14  
Power & DC Operation Conditions  
Parameter  
Symbol  
Values  
Unit Notes 1)  
min.  
2.38  
2.38  
2.5  
typ. max.  
2.5 2.63  
2.5 2.63  
Power Supply Voltage  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VREF  
V
V
V
V
V
V
L3.6, L4.52)  
–3.6, –4.5, –5 2)  
–3.6, L3.6 2)3)  
–3, –3.3 2)  
2) 4)  
2.9  
2.9  
2.5  
Power Supply Voltage for I/O Buffer  
Reference Voltage  
2.38  
2.5 2.63  
5) 6)  
0.49 ×  
VDDQ  
1.25 0.51 ×  
VDDQ  
7)  
Termination Voltage  
VT  
V
REF - 0.04 VREF  
V
5
5
5
V
V
REF + 0.04 V  
t
Input leakage current  
IIL  
–5  
–5  
–5  
µA  
CLK Input leakage current  
Output leakage current  
Input logic high voltage, DC  
Input logic low voltage, DC  
IILC  
IOL  
VIH  
VIL  
µA  
µA  
V
8)  
V
V
REF + 0.15 —  
DDQ + 0.3  
REF - 0.15  
9)  
SSQ - 0.3  
V
Output Levels: Matched Impedance Mode 2.5V  
High Current at VOUT = VDDQ-0,373V  
Low Current at VOUT = 0.373V  
IOH  
IOL  
–5  
5
mA  
mA  
Output Levels: SSTL2 Weak Mode 2.5V  
High Current at VOUT = VDDQ – 0,373V  
Low Current at VOUT = 0.373V  
IOH  
IOL  
–5  
5
mA  
mA  
Data Sheet  
42  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Electrical Characteristics  
1) TA = 0 to 70 °C; VSS = 0 V  
2) Under all conditions, VDDQ must be less than or equal to VDD  
3) The speed sorts L3.6 and –3.6 support both VDD modes: 2.5V ±5% and 2.5V – 2.9V  
4) VDDQ = 2.5 V -/+5%  
5) Typically the value of VREF is expected to be 0.5 * VDDQ of the transmitting device. VREF is expected to track variations in  
VDDQ  
6) Peak to peak AC noise on VREF may not exceed 2% VREF (DC)  
7) VTT of the transmitting device must track VREF of the receiving device  
8) Overshoots of VIH must be limited to a voltage < (VDDQ + 1.5 V) and a pulse width < 0.33 of the clock pulse  
9) Undershoots of VIL must be limited to a voltage > -1.5 V and a pulse width < 0.33 of the clock pulse  
Table 15  
AC Operation Conditions  
Parameter  
Symbol  
Values  
Unit Notes  
min.  
typ. max.  
Input logic high voltage  
Input logic low voltage  
VIH  
V
V
V
V
V
V
1.2  
1.0  
1.2  
1.0  
REF + 0.50  
VREF  
V
V
V
V
V
V
V
V
V
V
V
DDQ + 0.3  
DDQ + 0.3  
DDQ + 0.3  
REF - 0.50  
REF - 0.60  
REF - 0.50  
DDQ + 0.6  
DDQ + 0.6  
DDQ + 0.6  
DDQ + 0.6  
REF + 0.2  
V
V
V
V
V
V
V
V
V
V
V
V
L3.6, L4.5  
REF + 0.60  
REF + 0.50  
SSQ - 0.3  
SSQ - 0.3  
SSQ - 0.3  
–5.0  
–3, –3.3, –3.6, –4.5  
VIL  
VID  
L3.6, L4.5  
–5.0  
–3, –3.3, –3.6, –4.5  
Clock Differential Input Voltage  
(CLK/CLK)  
L4.5  
L3.6  
–4.5, –5.0  
–3, –3.3, –3.6, –4.5  
Clock Input Crossing Point (CLK/CLK) VIX  
I/O Reference Voltage  
V
REF - 0.2  
VREF  
rI  
0.49 × VDDQ  
1.0  
0.51 × VDDQ  
Input Slew Rate  
V/ns —  
+ Vtt = 0.5xVDDQ  
50 Ohm  
Test point  
15 pF  
DQ, DQS  
Figure 31 Output Test Circuit  
Table 16  
Pin  
Pin Capacitances  
min.  
max.  
2.5  
Unit  
pF  
A11.. A0, BA1, BA0, CKE, CS, CAS, RAS, WE  
CLK, CLK  
1.0  
1.0  
2.5  
pF  
Data Sheet  
43  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Electrical Characteristics  
Table 16  
Pin  
Pin Capacitances  
min.  
1.0  
max.  
3.0  
Unit  
pF  
DQ0.. DQ31, DQS0 .. DQS3  
DM0.. DM3  
1.0  
3.0  
pF  
Table 17  
Timing Parameters for speed sorts –3, –3.3, –3.6, –4.5, and –5  
Part Number Extension  
Interface  
–3  
–3.3  
MIM  
–3.6  
MIM  
–4.5  
–5  
WM/MIM  
Unit Note1)  
2)  
MIM  
WM/MIM  
Parameter  
Symbol min. max. min. max. min. max. min. max. min. max. —  
Clock and Clock Enable  
Clock Cycle Time  
System frequency  
tCK  
tCK  
fCK  
fCK  
tCH  
3.0 5.0  
4.0 5.0  
3.3 5.0  
4.0 5.0  
3.6  
4.2  
5.0  
5.0  
4.5 5.5  
4.5 5.5  
183 222  
183 222  
5.0 5.5  
5.0 5.5  
ns  
ns  
CL = 4  
CL = 3  
200 333 200 300 200 278  
200 250 200 250 200 238  
183 200 MHz CL = 4  
183 200 MHz CL = 3  
Clock high level  
width  
0.45 0.55 0.45 0.55 0.45 0.55 0.45 0.55 0.45 0.55 tCK  
Clock low level width tCL  
0.45 0.55 0.45 0.55 0.45 0.55 0.45 0.55 0.45 0.55 tCK  
Minimum clock half tHP  
tCH,  
tCH,  
tCH,  
tCH,  
tCH,  
tCK  
period  
tCL  
tCL  
tCL  
tCL  
tCL  
Command and Address Setup and Hold Times  
Address and  
Command input  
setup time  
tIS  
0.65 —  
0.65 —  
0.75 —  
0.75 —  
1.0  
1.0  
1.0  
1.0  
ns  
ns  
Address and  
Commandinputhold  
time  
tIH  
0.65 —  
0.65 —  
Common Parameters  
Row Cycle Time  
tRC  
39  
45  
42.9 —  
49.5 —  
46.8 —  
54  
63  
60  
70  
ns  
ns  
Row Cycle Time in tRFC  
54  
Auto Refresh  
Row Active Time  
tRAS  
tRAP  
27  
15.7k 29.7 15.7k 32.4 15.7k 36  
15.7k 40  
15.7k ns  
ns  
ACTIVE to READ  
with Auto precharge  
command  
tRAS (min.)- (burst length * tCK /2)  
Row Precharge  
Time  
tRP  
12  
13.2 —  
14.4 —  
18  
20  
ns  
ns  
Activate(a) to  
Activate(b)  
tRRD  
9.0  
9.0  
9.0  
9.0  
9.0  
Command period  
CAS(a) to CAS(b)  
Command period  
tCCD  
1
6
1
6
1
6
1
6
1
6
tCK  
tCK  
Last data in to Active tDAL  
(tWR + tRP)  
Data Sheet  
44  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Electrical Characteristics  
Table 17  
Timing Parameters for speed sorts –3, –3.3, –3.6, –4.5, and –5 (cont’d)  
Part Number Extension  
Interface  
–3  
–3.3  
MIM  
–3.6  
MIM  
–4.5  
–5  
Unit Note1)  
2)  
MIM  
WM/MIM  
WM/MIM  
Parameter  
Symbol min. max. min. max. min. max. min. max. min. max. —  
Read Cycle Timing Parameters for Data and Data Strobe  
Data Access Time  
from Clock  
tAC  
-0.5 +0.5 -0.5 +0.5 -0.55 +0.55 -0.7 +0.7 -0.7 +0.7 ns  
-0.5 +0.5 -0.5 +0.5 -0.55 +0.55 -0.7 +0.7 -0.7 +0.7 ns  
DQS edge to Clock tDQSCK  
edge skew  
DQS Read  
Preamble  
tRPRE  
tRPST  
0.7 0.9  
0.8 1.1  
0.7 0.9  
0.8 1.1  
0.7  
0.8  
4
0.9  
1.1  
0.7 0.9  
0.8 1.1  
0.7 0.9  
0.8 1.1  
tCK  
tCK  
tCK  
DQS Read  
Postamble  
Row to Column  
Delay Time for  
Reads  
tRCDDC  
4
4
4
4
DQS edge to output tDQSQ  
data edge skew  
+0.3  
0.33  
+0.3  
0.33  
+0.33 —  
+0.45 —  
0.45  
tHP-tQHS  
+0.5 ns  
Data hold skew  
factor  
tQHS  
tQH  
0.36  
0.5  
ns  
ns  
Data Output Hold  
time from DQS  
tHP-tQHS  
tHP-tQHS  
tHP-tQHS  
tHP-tQHS  
Write Cycle Timing Parameters for Data and Data Strobe  
Row to Column  
Delay Time for  
Writes  
tRCDWR  
2
2
2
2
2
tCK  
Clock to rising Edge tDQSS  
DQS (Write Latency)  
0.75 1.1  
0.75 1.1  
0.40 —  
0.40 —  
0.40 —  
0.40 —  
0.75 1.1  
0.40 —  
0.40 —  
0.40 —  
0.40 —  
0.75 1.25 0.75 1.25 tCK  
Data-in to DQS  
Setup Time  
tQDQSS 0.40 —  
0.6  
0.6  
0.6  
0.6  
0
0.6  
0.6  
0.6  
0.6  
0
ns  
ns  
ns  
ns  
tCK  
tCK  
tCK  
Data-in to DQS Hold tQDQSH  
Time  
0.40 —  
Data Mask to DQS tDMDQSS 0.40 —  
Setup Time  
Data Mask to DQS tDMDQSH 0.40 —  
Hold Time  
Clock to DQS Write tWPRES  
Preamb. Setup Time  
0
0
0
Clock to DQS Write tWPREH 0.25 —  
Preamble Hold Time  
0.25 —  
0.25 —  
0.25 —  
0.25 —  
DQS Write  
Postamble Hold  
Time  
tWPST  
0.4 0.6  
0.4 0.6  
0.4  
2
0.6  
0.4 0.6  
0.4 0.6  
3)  
Write Recovery  
Time  
tWR  
2
2
2
2
tCK  
Data Sheet  
45  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Electrical Characteristics  
Table 17  
Timing Parameters for speed sorts –3, –3.3, –3.6, –4.5, and –5 (cont’d)  
Part Number Extension  
Interface  
–3  
–3.3  
MIM  
–3.6  
MIM  
–4.5  
–5  
Unit Note1)  
2)  
MIM  
WM/MIM  
WM/MIM  
Parameter  
Symbol min. max. min. max. min. max. min. max. min. max. —  
Internal WRITE to  
READ command  
delay  
tWTR  
1
1
1
1
1
tCK  
Write DQS High  
level Width  
tDQSH  
0.35 0.65 0.35 0.65 0.35 0.65 0.35 0.65 0.35 0.65 tCK  
0.35 0.65 0.35 0.65 0.35 0.65 0.35 0.65 0.35 0.65 tCK  
Write DQS Low level tDQSL  
Width  
Refresh Cycle  
Refresh Period  
(4096 cycles)  
tREF  
32  
32  
32  
32  
32  
ms  
us  
Average periodic  
refresh interval  
tREFC  
7.8  
15.7  
7.8  
15.7  
7.8  
15.7  
7.8  
15.7  
7.8  
Refresh to Refresh tREFC  
15.7 µs  
command interval  
Mode Setup, Power Down & Self Refresh  
Mode Register Set tMRD  
cycle time  
2
2
2
2
2
tCK  
tCK  
ns  
Self Refresh Exit  
time  
tSREX  
tPDEX  
200  
200  
200  
200  
200  
Power Down Exit  
time  
2*tCK  
+ tIS  
2*tCK  
+ tIS  
2*tCK  
+ tIS  
1*tCK  
+ tIS  
1*tCK  
+ tIS  
1) All parameters only valid for: TA = 0 to 70 °C; VSS = 0 V; 2.5 V < VDD < 2.9 V for –3 and –3.3; 2.375 V < VDD < 2.9 V for  
–3.6; VDD = 2.5 V ±0.125 V for –4.5 and –5; VDDQ = 2.5 V ±0.125 V  
2) Maximum clock rate is only guaranteed with the specified interface. The SSTL2-Weak Mode interface is limited to a  
maximum speed of 250MHz.  
3) The Write Recovery Time starts at the first rising edge of clock after the last valid (falling) DQS edge of the slowest DQS  
signal.  
Table 18  
Timing Parameters for speed sorts L3.6 and L4.5  
Part Number Extension  
Interface  
L3.6  
MIM  
L4.5  
Unit Note 1)  
2)  
WM/MIM  
Parameter  
Symbol min.  
max. min.  
max.  
Clock and Clock Enable  
Clock Cycle Time  
3.6  
6.0  
10  
4.5  
6.0  
10  
ns  
ns  
CL = 4  
CL = 3  
tCK  
fCK  
fCK  
tCH  
4.2  
4.5  
166  
100  
System frequency  
166  
100  
0.45  
278  
238  
222  
222  
MHz CL = 4  
MHz CL = 3  
Clock high level width  
0.55 0.45  
0.55 tCK  
Data Sheet  
46  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Electrical Characteristics  
Table 18  
Timing Parameters for speed sorts L3.6 and L4.5 (cont’d)  
Part Number Extension  
Interface  
L3.6  
MIM  
L4.5  
Unit Note 1)  
2)  
WM/MIM  
Parameter  
Symbol min.  
max. min.  
max.  
Clock low level width  
tCL  
tHP  
0.45  
0.55 0.45  
0.55 tCK  
Minimum clock half period  
tCH, tCL  
tCH, tCL  
tCK  
Command and Address Setup and Hold Times  
Address and Command input setup time  
Address and Command input hold time  
tIS  
tIH  
0.75  
0.75  
1.0  
1.0  
ns  
ns  
Common Parameters  
Row Cycle Time  
tRC  
46.8  
54  
54  
63  
ns  
ns  
Row Cycle Time in Auto Refresh  
Row Active Time  
tRFC  
tRAS  
32.4  
15.7k 36  
15.7k ns  
ACTIVE to READ with Auto precharge command tRAP  
tRAS (min.)- (burst length * tCK /2) ns  
Row Precharge Time  
tRP  
14.4  
9.0  
1
18  
9.0  
1
ns  
ns  
tCK  
tCK  
Activate(a) to Activate(b) Command period  
CAS(a) to CAS(b) Command period  
Last data in to Active (tWR + tRP)  
tRRD  
tCCD  
tDAL  
6
6
Read Cycle Timing Parameters for Data and Data Strobe  
Data Access Time from Clock  
DQS edge to Clock edge skew  
DQS Read Preamble  
tAC  
-0.55  
-0.55  
0.7  
0.8  
4
+0.55 -0.7  
+0.55 -0.7  
+0.7 ns  
+0.7 ns  
tDQSCK  
tRPRE  
tRPST  
tRCDDC  
tDQSQ  
tQHS  
0.9  
1.1  
0.7  
0.8  
4
0.9  
1.1  
tCK  
tCK  
tCK  
DQS Read Postamble  
Row to Column Delay Time for Reads  
DQS edge to output data edge skew  
Data hold skew factor  
+0.33 —  
+0.45 ns  
0.45 ns  
HP tQHS ns  
0.36  
Data Output Hold time from DQS  
tQH  
t
HP tQHS  
t
Write Cycle Timing Parameters for Data and Data Strobe  
Row to Column Delay Time for Writes  
Clock to rising Edge DQS (Write Latency)  
Data-in to DQS Setup Time  
tRCDWR  
tDQSS  
tQDQSS  
tQDQSH  
2
1.1  
0.6  
2
tCK  
0.75  
0.40  
0.40  
0.75  
0.6  
0.6  
0.6  
0.6  
0
1.25 tCK  
0.6  
ns  
ns  
ns  
ns  
tCK  
tCK  
tCK  
tCK  
Data-in to DQS Hold Time  
Data Mask to DQS Setup Time  
Data Mask to DQS Hold Time  
tDMDQSS 0.40  
tDMDQSH 0.40  
Clock to DQS Write Preamb. Setup Time  
Clock to DQS Write Preamble Hold Time  
DQS Write Postamble Hold Time  
Write Recovery Time  
tWPRES  
tWPREH  
tWPST  
tWR  
0
0.25  
0.4  
2
0.25  
0.4  
2
3)  
Data Sheet  
47  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Electrical Characteristics  
Table 18  
Timing Parameters for speed sorts L3.6 and L4.5 (cont’d)  
Part Number Extension  
Interface  
L3.6  
MIM  
L4.5  
Unit Note 1)  
2)  
WM/MIM  
Parameter  
Symbol min.  
max. min.  
max.  
Internal WRITE to READ command delay  
Write DQS High level Width  
Write DQS Low level Width  
tWTR  
1
1
tCK  
tDQSH  
tDQSL  
0.35  
0.35  
0.65 0.35  
0.65 0.35  
0.65 tCK  
0.65 tCK  
Refresh Cycle  
Refresh Period (4096 cycles)  
tREF  
32  
32  
ms  
us  
Average periodic refresh interval  
Refresh to Refresh command interval  
tREFC  
tREFC  
7.8  
15.7  
7.8  
15.7 us  
Mode Setup, Power Down & Self Refresh  
Mode Register Set cycle time  
Self Refresh Exit time  
tMRD  
2
2
tCK  
tCK  
ns  
tSREX  
tPDEX  
200  
200  
Power Down Exit time  
2*tCK+tIS  
1*tCK+tIS  
1) All parameters only valid for: TA = 0 to 70 °C; VSS = 0 V; 2.375 V < VDD < 2.9 V for L3.6; VDD = 2.5 V ± 0.125 V for L4.5;  
DDQ = 2.5 V ±0.125 V  
V
2) Maximum clock rate is only guaranteed with the specified interface. The SSTL2-Weak Mode interface is limited to a  
maximum speed of 250MHz.  
3) The Write Recovery Time starts at the first rising edge of clock after the last valid (falling) DQS edge of the slowest DQS  
signal.  
Table 19  
HYB25D128323C–3  
Frequency / tCK  
CAS latency  
tRC tRFC tRAS tRP tWR tRRD tDAL tRCDRD tRCDWR  
Units  
333 MHz / 3.0 ns  
4
13 15  
13 15  
13 15  
12 14  
10 12  
9
9
9
8
7
6
4
4
4
4
3
3
2
2
2
2
2
2
3
3
3
3
2
2
6
6
6
6
5
5
4
4
4
3
3
3
2
2
2
2
2
2
tCK  
300 MHz / 3.3 ns  
278 MHz / 3.6 ns  
250 MHz / 4.0 ns  
222 MHz / 4.5 ns  
200 MHz / 5.0 ns  
4
4
3
3
3
tCK  
tCK  
tCK  
tCK  
tCK  
9
11  
Data Sheet  
48  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Electrical Characteristics  
Table 20  
HYB25D128323C–3.3  
Frequency / tCK  
CAS latency  
tRC tRFC tRAS tRP tWR tRRD tDAL tRCDRD tRCDWR  
Units  
300 MHz / 3.3 ns  
4
13 15  
13 15  
12 14  
10 12  
9
9
8
7
6
4
4
4
3
3
2
2
2
2
2
3
3
3
2
2
6
6
6
5
5
4
4
3
3
3
2
2
2
2
2
tCK  
278 MHz / 3.6 ns  
250 MHz / 4.0 ns  
222 MHz / 4.5 ns  
200 MHz / 5.0 ns  
4
3
3
3
tCK  
tCK  
tCK  
tCK  
9
11  
Table 21  
HYB25D128323C–3.6  
Frequency / tCK  
CAS latency  
tRC tRFC tRAS tRP tWR tRRD tDAL tRCDRD tRCDWR Units  
278 MHz / 3.6 ns  
4
13 15  
13 15  
12 14  
10 12  
9
9
8
7
4
4
4
3
2
2
2
2
3
3
2
2
6
6
6
5
4
4
4
3
2
2
2
2
tCK  
tCK  
tCK  
tCK  
250 MHz / 4.0 ns  
222 MHz / 4.5 ns  
200 MHz / 5.0 ns  
4
3
3
Table 22  
HYB25D128323C–4.5  
Frequency / tCK  
CAS latency  
tRC tRFC tRAS tRP tWR tRRD tDAL tRCDRD tRCDWR Units  
222 MHz / 4.5 ns  
3
12 14  
12 14  
12 14  
8
8
8
4
4
4
2
2
2
2
2
2
6
6
6
4
4
4
2
2
2
tCK  
tCK  
tCK  
200 MHz / 5.0 ns  
183 MHz / 5.5 ns  
3
3
Table 23  
HYB25D128323C–5  
Frequency / tCK  
CAS latency  
tRC tRFC tRAS tRP tWR tRRD tDAL tRCDRD tRCDWR Units  
200 MHz / 5.0 ns  
3
12 14  
8
4
2
2
6
4
2
tCK  
183 MHz / 5.5 ns  
3
12 14  
8
4
2
2
6
4
2
tCK  
Data Sheet  
49  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Electrical Characteristics  
Table 24  
HYB25D128323CL3.6  
Frequency / tCK  
CAS latency  
tRC tRFC tRAS tRP tWR tRRD tDAL tRCDRD tRCDWR Units  
278 MHz / 3.6 ns  
4
13 15  
13 15  
12 14  
10 12  
9
9
8
7
6
4
4
4
3
3
2
2
2
2
2
3
3
2
2
2
6
6
6
5
5
4
4
4
3
3
2
2
2
2
2
tCK  
tCK  
tCK  
tCK  
tCK  
250 MHz / 4.0 ns  
222 MHz / 4.5 ns  
200 MHz / 5.0 ns  
166 MHz / 6.0 ns  
4
3
3
3
9
11  
Table 25  
HYB25D128323CL4.5  
Frequency / tCK  
CAS latency  
tRC tRFC tRAS tRP tWR tRRD tDAL tRCDRD tRCDWR Units  
222 MHz / 4.5 ns  
3
12 14  
12 14  
12 14  
10 12  
8
8
8
7
6
4
4
4
3
3
2
2
2
2
2
2
2
2
2
2
6
6
6
5
5
4
4
4
3
3
2
2
2
2
2
tCK  
tCK  
tCK  
tCK  
tCK  
200 MHz / 5.0 ns  
183 MHz / 5.5 ns  
166 MHz / 6.0 ns  
143 MHz / 7.0 ns  
3
3
3
3
9
11  
Table 26  
Operating Currents  
Parameter & Test Condition  
Symbol –3  
max.  
200 190 180 160 150  
–3.3 –3.6 –4.5 –5.0 L3.6 L4.5 Unit Notes  
typ. typ.  
1)  
OPERATING CURRENT: One bank; IDD0  
mA  
mA  
mA  
Active-Precharge; tRC = tRC(min.)  
CK = tCK(min.); DQ, DM and DQS inputs  
changing once per clock cycle;  
;
t
Address and control inputs changing  
once every two clock cycles  
OPERATING CURRENT: One bank; IDD1  
Active-Read-Precharge; BL=4; CL=4;  
230 220 110 190 180  
t
t
RCDDC = 4*tCK; tRC = tRC(min.)  
CK = tCK(min.); IOUT = 0mA; Address and  
;
control inputs changing once per clock  
cycle  
PRECHARGE POWER-DOWN  
IDD2P  
26  
22  
22  
14  
14  
10  
7
STANDBY CURRENT: All banks idle;  
power-down mode; tCK = tCK(min.)  
;
CKE=LOW  
Data Sheet  
50  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Electrical Characteristics  
Table 26  
Operating Currents (cont’d)  
Parameter & Test Condition  
Symbol –3  
max.  
–3.3 –3.6 –4.5 –5.0 L3.6 L4.5 Unit Notes  
typ. typ.  
IDLE STANDBY CURRENT:  
CKE=HIGH; CS#=HIGH  
IDD2F  
130 120 110 100 100  
mA  
(DESELECT); All banks idle;  
t
CK = tCK(min.); Address and control  
inputs changing once per clock cycle;  
VIN = VREF for DQ, DQS and DM  
ACTIVE POWER-DOWN STANDBY IDD3P  
CURRENT: one bank active; power-  
65  
60  
55  
50  
50  
mA  
mA  
down mode; CKE=LOW; tCK = tCK(min.)  
;
ACTIVE STANDBY CURRENT:  
CS#=HIGH; CKE=HIGH; one bank  
IDD3N  
130 120 110 100 100  
active; tRC = tRC(max.); tCK = tCK(min.)  
;
Address and control inputs changing  
once per clock cycle; DQ, DQS, and  
DM inputs changing twice per clock  
cycle  
OPERATING CURRENT BURST  
READ: BL=2; READS; Continuous  
burst; one bank active; Address and  
IDD4R  
370 350 330 290 280 190 160 mA  
control inputs changing once per clock  
cycle; tCK = tCK(min.); Iout=0mA; 50% of  
data changing on every transfer  
OPERATING CURRENT BURST  
WRITE: BL=2; WRITES; Continuous  
burst; one bank active; Address and  
control inputs changing once per clock  
cycle; tCK = tCK(min.); DQ, DQS, and DM  
changing twice per clock cycle; 50% of  
data changing on every transfer  
IDD4W  
370 350 330 290 280 200 175 mA  
AUTO REFRESH CURRENT:  
IDD5  
IDD6  
320 300 280 240 230  
20 16 16 10 10  
mA  
mA  
t
RC = tRFC(min.); tCK = tCK(min.)  
SELF REFRESH CURRENT: Self  
Refresh Mode; CKE<=0.2V;  
4
3
t
CK = tCK(min.)  
1)  
BURST OPERATING CURRENT 4  
bank operation:  
IDD7  
430 400 370 320 300  
mA  
Four bank interleaving READs; BL=4;  
with Auto Precharge; tRC = tRC(min.)  
;
t
CK = tCK(min.); Address and control  
inputs change only during Active,  
READ, or WRITE commands  
1) Measured with output open.  
Data Sheet  
51  
V1.7, 2003-07  
HYB25D128323C[-3/-3.3/-3.6/-4.5/-5.0/L3.6/L4.5]  
128 Mbit DDR SGRAM [4M x 32]  
Package Outlines  
5
Package Outlines  
Module Package  
The package is conforming with JEDEC MO-205 Variation BD  
General Tolerances according to ISO 8015  
The inner matrix of 4 × 4 balls is reserved for thermal contacts  
11.1  
10.9  
0.10  
11.1  
10.9  
1.50  
1.44  
1.36  
8.8  
8.8  
0.8  
--  
0.8  
--  
- -  
0.85  
8.8  
8.8  
MAX  
MAX  
MIN  
All dimensions in mm. Notation is TYP or  
MIN  
or TYP  
Figure 32 Package Outlines  
Data Sheet  
52  
V1.7, 2003-07  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

HYB25D128323CL-3.6

128 Mbit DDR SGRAM
INFINEON

HYB25D128323CL-4.5

128 Mbit DDR SGRAM
INFINEON

HYB25D128323CL3.6

128 Mbit DDR SGRAM
INFINEON

HYB25D128323CL4.5

128 Mbit DDR SGRAM
INFINEON

HYB25D128400AT

128 Mbit Double Data Rate SDRAM
INFINEON

HYB25D128400AT-6

128 Mbit Double Data Rate SDRAM
INFINEON

HYB25D128400AT-7

128 Mbit Double Data Rate SDRAM
INFINEON

HYB25D128400AT-8

128 Mbit Double Data Rate SDRAM
INFINEON

HYB25D128400ATL-6

128 Mbit Double Data Rate SDRAM
INFINEON

HYB25D128400ATL-7

128 Mbit Double Data Rate SDRAM
INFINEON

HYB25D128400ATL-8

128 Mbit Double Data Rate SDRAM
INFINEON

HYB25D128400C

128-Mbit Double-Data-Rate SDRAM
QIMONDA