GRM188R71H224KAC4D [INFINEON]

12W 5V SMPS evaluation board with ICE3AR4780VJZ;
GRM188R71H224KAC4D
型号: GRM188R71H224KAC4D
厂家: Infineon    Infineon
描述:

12W 5V SMPS evaluation board with ICE3AR4780VJZ

电容器
文件: 总25页 (文件大小:2886K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AN-EVAL-3AR4780VJZ  
12W 5V SMPS evaluation board with  
ICE3AR4780VJZ  
Application Note  
About this document  
Scope and purpose  
This document is a 12W 5.0V, universal input off-line flyback converter evaluation board using Infineon  
CoolSET™ F3R80 family, ICE3AR4780VJZ.  
Intended audience  
This document is intended for users of the ICE3AR4780VJZ who wish to design low cost and high reliable  
system of off-line SMPS for enclosed adapter or open frame auxiliary power supply of white goods, PC,  
server, DVD, TV, Set-top box, etc.  
Table of Contents  
About this document ...................................................................................................................1  
Table of Contents........................................................................................................................1  
1
2
3
4
Abstract .....................................................................................................................3  
Evaluation board ........................................................................................................3  
Evaluation board specifications....................................................................................4  
List of features (ICE3AR4780VJZ) ..................................................................................4  
5
Circuit description.......................................................................................................5  
Introduction...............................................................................................................................................5  
Line input ...................................................................................................................................................5  
Line input over voltage protection..........................................................................................................5  
Start up.......................................................................................................................................................5  
Operation mode ........................................................................................................................................5  
Soft start.....................................................................................................................................................5  
RCD clamper circuit...................................................................................................................................5  
Peak current control of primary current.................................................................................................6  
Output stage ..............................................................................................................................................6  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
1
Revision 1.2, 2015-05-12  
 
 
12W 5V SMPS evaluation board with ICE3AR4780VJZ  
Abstract  
6
Circuit diagram...........................................................................................................7  
7
7.1  
7.2  
PCB layout .................................................................................................................8  
Top side......................................................................................................................................................8  
Bottom side................................................................................................................................................8  
8
9
Component list ...........................................................................................................9  
Transformer construction.......................................................................................... 10  
10  
Test results .............................................................................................................. 11  
Efficiency ..................................................................................................................................................11  
Standby power ........................................................................................................................................12  
Line regulation.........................................................................................................................................13  
Load regulation .......................................................................................................................................13  
Maximum power......................................................................................................................................14  
ESD immunity (EN61000-4-2).................................................................................................................14  
Surge immunity (EN61000-4-5)..............................................................................................................14  
Conducted emissions (EN55022 class B) ..............................................................................................15  
Thermal measurement...........................................................................................................................17  
10.1  
10.2  
10.3  
10.4  
10.5  
10.6  
10.7  
10.8  
10.9  
11  
Waveforms and scope plots........................................................................................ 18  
Start up at low/high AC line input voltage with maximum load ........................................................18  
Soft start...................................................................................................................................................18  
Frequency jittering..................................................................................................................................19  
Drain voltage and current at maximum load .......................................................................................19  
Load transient response (Dynamic load from 10% to 100%).............................................................20  
Output ripple voltage at maximum load ..............................................................................................20  
Output ripple voltage during burst mode at 1 W load ........................................................................21  
Active Burst mode operation .................................................................................................................21  
Vcc over voltage protection (Odd skip auto restart mode) ................................................................22  
Over load protection (Auto restart mode)............................................................................................22  
VCC under voltage/Short optocoupler protection (Normal auto restart mode)................................23  
AC Line input OVP mode.........................................................................................................................23  
11.1  
11.2  
11.3  
11.4  
11.5  
11.6  
11.7  
11.8  
11.9  
11.10  
11.11  
11.12  
12  
References ............................................................................................................... 24  
Revision History........................................................................................................................ 24  
Application Note  
2
Revision 1.2, 2015-05-12  
12W 5V SMPS evaluation board with ICE3AR4780VJZ  
Abstract  
1
Abstract  
This document is an engineering report of a universal input 12W 5V off-line flyback converter power supply  
utilizing F3R80 CoolSETICE3AR4780VJZ. The application evaluation board is operated in Discontinuous  
Conduction Mode (DCM) and is running at 100 kHz switching frequency. It has a single output voltage with  
secondary side control regulation. It is especially suitable for small power supply such as DVD player, set-top  
box, game console, charger and auxiliary power of white goods, server, PC and high power system, etc. The  
ICE3AR4780VJZ is the latest version of the CoolSET™. Besides having the basic features of the F3R CoolSET™  
such as Active Burst Mode, propagation delay compensation, soft gate drive, auto restart protection for  
major fault (Vcc over voltage, Vcc under voltage, adjustable input OVP, over temperature, over-load, open  
loop and short opto-coupler), it also has the BiCMOS technology design, selectable entry and exit burst  
mode level, adjustable AC line input over voltage protection feature, built-in soft start time, built-in and  
extendable blanking time and frequency jitter feature, etc. The particular features are the best-in-class low  
standby power and the good EMI performance.  
2
Evaluation board  
This document contains the list of features, the power supply specification, schematic, bill of material and  
the transformer construction documentation. Typical operating characteristics such as performance curve  
and scope waveforms are showed at the rear of the report.  
Figure 1  
EVAL-3AR4780VJZ [Dimensions L x W x H: 95mm x 41mm x 24mm (3.74" x 1.61" x 0.94")]  
Application Note  
3
Revision 1.2, 2015-05-12  
12W 5V SMPS evaluation board with ICE3AR4780VJZ  
Evaluation board specifications  
3
Evaluation board specifications  
Input voltage  
85VAC~265VAC  
Input frequency  
50~60Hz  
5V  
Output voltage  
Output current  
Output power  
2.4A  
12W  
Steady state output ripple voltage  
(±1% of norminal output voltage)  
Vripple_P_P< 50mV  
Dynamic load response undershoot & overshoot  
(±3% of norminal output voltage)  
Vripple_P_P< 250mV  
Active mode four point average efficiency  
(25%,50%,75% & 100%load) (EU CoC Version 5, Tier 1)  
>80% at 115Vac and >79% at 230Vac  
Active mode at 10% load efficiency (EU CoC Version 5,  
Tier 1)  
>73%  
No-load power consumption  
(EU CoC Version 5, Tier 2)  
< 75mW  
Maximum input power(Peak Power) for universal input  
range (<±5% of average maximum input power)  
<±3% of average maximum input power  
Form factor case size (L x W x H)  
95mm x 41mm x 24mm (3.74" x 1.61" x 0.94")  
4
List of features (ICE3AR4780VJZ)  
800V avalanche rugged CoolSETwith Startup Cell  
Active Burst Mode for lowest Standby Power  
Selectable entry and exit burst mode level  
100kHz internally fixed switching frequency with jittering feature  
Auto Restart Protection for Over load, Open Loop, VCC Under voltage & Over voltage and Over  
temperature  
Over temperature protection with 50°C hysteresis  
Built-in 10ms Soft Start  
Built-in 20ms and extendable blanking time for short duration peak power  
Propagation delay compensation for both maximum load and burst mode  
Adjustable input OVP  
Overall tolerance of Current Limiting < ±5%  
BiCMOS technology for low power consumption and wide VCC voltage range  
Soft gate drive with 50Ωturn on resistor  
Application Note  
4
Revision 1.2, 2015-05-12  
12W 5V SMPS evaluation board with ICE3AR4780VJZ  
Circuit description  
5
Circuit description  
5.1  
Introduction  
The EVAL-3AR4780VJZ evaluation board is a low cost off-line flyback switch mode power supply (SMPS)  
using the ICE3AR4780VJZ integrated power IC from the CoolSET™-F3R80 family. The circuit shown in Figure  
3, details a 5V, 12W power supply that operates from an AC line input voltage range of 85Vac to 265Vac and  
line input OVP detect/reset voltage is 300/282Vac, suitable for applications in enclosed adapter or open  
frame auxiliary power supply for different system such as white goods, PC, server, DVD, LED TV, Set-top box,  
etc.  
5.2  
Line input  
The AC line input side comprises the input fuse F1 as over-current protection. The choke L11, X-capacitors  
C11, C14 and Y-capacitor C12 act as EMI suppressors. Optional spark gap device SG1, SG2 and varistor VAR  
can absorb high voltage stress during lightning surge test. After the bridge rectifier BR1 and the input bulk  
capacitor C13, a voltage of 90 to 424 VDC is present which depends on input line voltage.  
5.3  
Line input over voltage protection  
The AC line input OVP mode is detected by sensing the voltage level at BV pin through the resistors divider  
from the bulk capacitor. Once the voltage level at BV pin hits above 1.98V, the controller stops switching and  
enters into input OVP mode. When the BV voltage drops to 1.91V and the Vcc hits 17V, the input OVP mode is  
released.  
5.4  
Start up  
Since there is a built-in startup cell in the ICE3AR4780VJZ, no external start up resistor is required. The  
startup cell is connecting the drain pin of the IC. Once the voltage is built up at the Drain pin of the  
ICE3AR4780VJZ, the startup cell will charge up the Vcc capacitor C16 and C17. When the Vcc voltage exceeds  
the UVLO at 17V, the IC starts up. Then the Vcc voltage is bootstrapped by the auxiliary winding to sustain  
the operation.  
5.5  
Operation mode  
During operation, the Vcc pin is supplied via a separate transformer winding with associated rectification  
D12 and buffering C16, C17. In order not to exceed the maximum voltage at Vcc pin due to poor coupling of  
transformer winding, an external zener diode ZD11 and resistor R13 can be added.  
5.6  
Soft start  
The Soft-Start is a built-in function and is set at 10ms.  
5.7  
RCD clamper circuit  
While turns off the CoolMOS™, the clamper circuit R11, C15 and D11 absorbs the current caused by  
transformer leakage inductance once the voltage exceeds clamp capacitor voltage. Finally drain to source  
voltage of CoolMOS™ is lower than maximum break down voltage (V(BR)DSS = 800V) of CoolMOS™.  
Application Note  
5
Revision 1.2, 2015-05-12  
12W 5V SMPS evaluation board with ICE3AR4780VJZ  
Circuit description  
5.8  
Peak current control of primary current  
The CoolMOS™ drain source current is sensed via external shunt resistors R14 and R14A which determine the  
tolerance of the current limit control. Since ICE3AR4780VJZ is a current mode controller, it would have a  
cycle-by-cycle primary current and feedback voltage control which can make sure the maximum power of  
the converter is controlled in every switching cycle. Besides, the patented propagation delay compensation  
is implemented to ensure the maximum input power can be controlled in an even tighter manner. The  
evaluation board shows approximately ±2.2% of average maximum input power (refer to Figure 11).  
5.9  
Output stage  
On the secondary side the power is coupled out by a schottky diode D21. The capacitor C22 & C23 provides  
energy buffering following with the LC filter L21 and C24 to reduce the output voltage ripple considerably.  
Storage capacitors C22 & C23 are selected to have a very small internal resistance (ESR) to minimize the  
output voltage ripple.  
Application Note  
6
Revision 1.2, 2015-05-12  
12W 5V SMPS evaluation board with ICE3AR4780VJZ  
Circuit diagram  
6
Circuit diagram  
Figure 2  
Schematic of EVAL-3AR4780VJZ  
Application Note  
7
Revision 1.2, 2015-05-12  
12W 5V SMPS evaluation board with ICE3AR4780VJZ  
PCB layout  
N.B. : In order to get the optimized performance of the CoolSET™, the grounding of the PCB layout must be  
connected very carefully. From the circuit diagram above, it indicates that the grounding for the CoolSET™  
can be split into several groups; signal ground, Vcc ground, Current sense resistor ground and EMI return  
ground. All the split grounds should be connected to the bulk capacitor ground separately.  
Signal ground includes all small signal grounds connecting to the CoolSET™ GND pin such as filter capacitor  
ground, C17, C18, C19 and opto-coupler ground.  
Vcc ground includes the Vcc capacitor ground, C16 and the auxiliary winding ground, pin 2 of the power  
transformer.  
Current Sense resistor ground includes current sense resistor R14 and R14A.  
EMI return ground includes Y capacitor, C12.  
7
PCB layout  
7.1  
Top side  
Figure 3  
Top side component legend  
7.2  
Bottom side  
Figure 4  
Bottom side copper and component legend  
Application Note  
8
Revision 1.2, 2015-05-12  
12W 5V SMPS evaluation board with ICE3AR4780VJZ  
Component list  
8
Component list  
No.  
Designator  
Component Description  
12V Test Point  
600V/1A  
Footprint  
Part Number  
Manufacturer  
Wurth Electronics  
SHINDENGEN  
EPCOS  
Quantity  
1 +5V Com, L N  
2 BR1  
Connector  
1V  
691102710002  
S1VBA60  
B329221C3104K  
2
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
5
1
1
1
1
2
1
2
1
1
1
1
1
1
3 C11  
4 C12  
5 C13  
6 C15  
100nF/305V  
2.2nF/250V  
33uF/450V  
1nF/630V  
MKT5/18/15  
MKT2/13/10  
RB16X25  
1206  
DE1E3KX222MA4BN01F MURATA  
450BXC33MEFC16X25 RUBYCON  
GRM31A7U2J102JW31D MURATA  
50PX22MEFC5X11 RUBYCON  
GRM188R71H104KA93D MURATA  
GRM1885C1H331GA01D MURATA  
10ZLH1000MEFC10X12.5 RUBYCON  
10ZLH680MEFC8X11.5  
GRM188R71H224KAC4D MURATA  
GRM188R71H272KA01D MURATA  
7 C16  
22uF/50V  
RB5.5  
8 C17,C19  
9 C18  
100nF/50V  
330pF/50V  
1000uF/10V  
680uF/10V  
220nF/50V  
2.7nF/50V  
0603  
0603  
RB10  
RB8  
0603  
0603  
10 C22  
11 C24  
12 C25  
13 C26  
14 D11  
15 D12  
16 D21  
17 F1  
18 HS1  
19 IC11  
20 IC12  
21 IC21  
22 J1,J2,J3,J4,R15C Jumper  
23 L11  
24 L21  
25 R11  
26 R12  
27 R14,R14A  
28 R15  
29 R15A,R15B  
30 R16  
31 R22  
RUBYCON  
600V/0.8A  
200V/0.5A  
DIODE0.4  
1206D  
D1NK60  
SHINDENGEN  
GL34D  
45V/30A  
300V/1.6A  
TO220 heat sink  
ICE3AR4780VJZ  
SFH617 A3  
TL431  
TO-220FPAB  
MKT4.3/8.4/5  
HS TO220  
DIP7  
STPS30L45CFP  
36911600000  
577202B00000G  
ICE3AR4780VJZ  
INFINEON  
DIP4  
TO92-TL431-  
Axial 0.4  
EMI_C_U21  
CH6 2.5  
AXIAL0.4_V 4mm  
0603  
39mH/0.6A  
B82731M2601A030  
7447462022  
EPCOS  
Wurth Electronics  
2.2µH/4.3A  
150k/2W  
18R  
2R7/0.33W/1%  
3M/1%  
3M/1%  
43.2k/1%  
130R  
1206  
AXIAL0.4_15  
1206  
0603  
0603  
ERJ8BQF2R7V  
32 R23  
33 R24  
34 R25  
35 R26  
1.2k  
0603  
150k  
0603  
20k  
20k  
AXIAL0.3  
0603  
36 TR1  
37 VAR  
571µH(54:4:13)  
275V/0.25W  
TR_EF20_H  
750342411  
Wurth Electronics Midcom  
EPCOS  
1
1
MKT3.5/7.5/5  
B72207S2271K101  
Application Note  
9
Revision 1.2, 2015-05-12  
12W 5V SMPS evaluation board with ICE3AR4780VJZ  
Transformer construction  
9
Transformer construction  
Core and material: EE20/10/6(EF20), TP4A (TDG)  
Bobbin: 070-4989(10-Pins, TH-H, Horizontal version)  
Primary Inductance, Lp=571μH (±10%), measured between pin 4 and pin 5  
Manufacturer and part number: Wurth Electronics Midcom (750342411)  
Figure 5  
Transformer structure  
Application Note  
10  
Revision 1.2, 2015-05-12  
12W 5V SMPS evaluation board with ICE3AR4780VJZ  
Test results  
10  
Test results  
VOut_ripple_pk_pk  
(mV)  
η
(%)  
Average η OLP Pin  
OLP Iout  
(A)  
Vin(Vac) Pin(W) Vo(Vdc)  
Io(A)  
Po(W)  
(%)  
(W)  
0.0288  
1.6200  
3.8500  
7.6200  
11.5600  
15.6200  
0.0306  
1.6300  
3.8300  
7.5700  
11.3700  
15.2500  
0.0425  
1.6800  
4.0000  
7.6800  
11.3700  
15.0700  
0.0494  
1.7100  
4.1000  
7.7500  
11.4300  
15.1000  
5.23  
5.21  
5.19  
5.15  
5.11  
5.06  
5.23  
5.21  
5.19  
5.15  
5.11  
5.06  
5.23  
5.21  
5.19  
5.15  
5.11  
5.06  
5.23  
5.21  
5.19  
5.15  
5.11  
5.06  
0.00  
0.24  
14.10  
25.70  
10.70  
13.80  
15.50  
18.40  
14.40  
26.50  
10.70  
13.40  
15.60  
17.10  
15.40  
24.40  
10.60  
13.70  
16.10  
17.20  
15.10  
24.90  
10.00  
13.20  
16.00  
17.30  
1.25  
3.11  
6.18  
9.20  
12.14  
77.19  
80.88  
81.10  
79.57  
77.75  
0.600  
1.200  
1.800  
2.400  
0.00  
85  
17.85  
2.72  
2.75  
2.85  
2.89  
79.82  
0.24  
1.25  
3.11  
6.18  
9.20  
12.14  
76.71  
81.31  
81.64  
80.90  
79.63  
0.600  
1.200  
1.800  
2.400  
0.00  
115  
230  
265  
17.54  
17.92  
18.33  
80.87  
0.24  
1.25  
3.11  
6.18  
9.20  
12.14  
74.43  
77.85  
80.47  
80.90  
80.58  
0.600  
1.200  
1.800  
2.400  
0.00  
79.95  
79.15  
0.24  
1.25  
3.11  
6.18  
9.20  
12.14  
73.12  
75.95  
79.74  
80.47  
80.42  
0.600  
1.200  
1.800  
2.400  
10.1  
Efficiency  
Figure 6  
Efficiency vs AC line input voltage  
Application Note  
11  
Revision 1.2, 2015-05-12  
12W 5V SMPS evaluation board with ICE3AR4780VJZ  
Test results  
Figure 7  
Efficiency vs output power @ 115Vac and 230V line  
10.2  
Standby power  
Figure 8  
Standby power @ no load vs AC line input voltage (measured by Yokogawa WT210 power  
meter - integration mode)  
Application Note  
12  
Revision 1.2, 2015-05-12  
12W 5V SMPS evaluation board with ICE3AR4780VJZ  
Test results  
10.3  
Line regulation  
Figure 9  
Line regulation Vo @ full load vs AC line input voltage  
10.4  
Load regulation  
Figure 10 Load regulation Vo vs output power  
Application Note  
13  
Revision 1.2, 2015-05-12  
12W 5V SMPS evaluation board with ICE3AR4780VJZ  
Test results  
10.5  
Maximum power  
Figure 11 Maximum input power (before over-load protection) vs AC line input voltage  
10.6  
ESD immunity (EN61000-4-2)  
Pass [special level (±18kV) for contact discharge].  
10.7  
Surge immunity (EN61000-4-5)  
Pass [Installation class 3, 2kV (line to earth) and 1kV (line to line)].  
Application Note  
14  
Revision 1.2, 2015-05-12  
12W 5V SMPS evaluation board with ICE3AR4780VJZ  
Test results  
10.8  
Conducted emissions (EN55022 class B)  
The conducted EMI was measured by Schaffner (SMR25503) and followed the test standard of EN55022  
(CISPR 22) class B. The evaluation board was set up at maximum load (12W) with input voltage of 115Vac  
and 230Vac.  
Figure 12 Conducted emissions(Line) at 115Vac and maximum Load  
Figure 13 Conducted emissions(Neutral) at 115Vac and maximum Load  
Application Note 15  
Revision 1.2, 2015-05-12  
12W 5V SMPS evaluation board with ICE3AR4780VJZ  
Test results  
Figure 14 Conducted emissions(line) at 230Vac and maximum Load  
Figure 15 Conducted emissions(Neutral) at 230Vac and maximum Load  
Pass conducted EMI EN55022 (CISPR 22) class B with > 7dB margin for QP.  
Application Note  
16  
Revision 1.2, 2015-05-12  
12W 5V SMPS evaluation board with ICE3AR4780VJZ  
Test results  
10.9  
Thermal measurement  
The thermal test of open frame evaluation board was done using an infrared thermography camera (TVS-  
500EX) at ambient temperature 25⁰C. The measurements were taken after two hours running at full load  
(12W).  
No. Major component  
85Vac (°C) 115Vac (°C) 230Vac (°C) 265Vac (°C)  
1
2
3
4
5
IC11 (ICE3AR4780VJZ) 57.5  
50.7  
40.2  
39.1  
51.4  
54  
49.9  
33.6  
32.3  
53.3  
54.5  
50.7  
33.1  
31.6  
53.9  
54.9  
BR1  
L11  
TR1  
D21  
46.9  
44.0  
51.5  
54.2  
85Vac, 12W load, 25C ambient  
115Vac, 12W load, 25C ambient  
230Vac, 12W load, 25C ambient  
265Vac, 12W load, 25C ambient  
Figure 16 Infrared thermal image of EVAL-ICE3AR4780VJZ  
Application Note  
17  
Revision 1.2, 2015-05-12  
12W 5V SMPS evaluation board with ICE3AR4780VJZ  
Waveforms and scope plots  
11  
Waveforms and scope plots  
All waveforms and scope plots were recorded with a LeCroy 6050 oscilloscope  
11.1  
Start up at low/high AC line input voltage with maximum load  
377ms  
377ms  
Entry/exit  
burst  
selection  
Entry/exit  
burst  
selection  
Channel 1; C1 : Drain voltage (VDrain  
)
Channel 1; C1 : Drain voltage (VDrain)  
Channel 2; C2 : Supply voltage (VCC)  
Channel 3; C3 : Feedback voltage (VFBB  
Channel 4; C4 : BV voltage (VBV)  
Channel 2; C2 : Supply voltage (VCC)  
Channel 3; C3 : Feedback voltage (VFBB  
Channel 4; C4 : BV voltage (VBV)  
)
)
Startup time = 377ms  
Startup time = 377ms  
Figure 17 Startup @ 85Vac & max. load  
Figure 18 Startup @ 265Vac & max. load  
11.2  
Soft start  
9.8ms  
Channel 1; C1 : Current sense voltage (VCS)  
Channel 2; C2 : Supply voltage (VCC)  
Channel 3; C3 : Feedback voltage (VFBB  
Channel 4; C4 : BV voltage (VBV)  
)
Soft Star time = 9.8ms  
Figure 19 Soft start @ 85Vac & max. load  
Application Note  
18  
Revision 1.2, 2015-05-12  
12W 5V SMPS evaluation board with ICE3AR4780VJZ  
Waveforms and scope plots  
11.3  
Frequency jittering  
Channel 2; C2 : Drain voltage (VDrain  
)
Channel F2 : Frequency track of C2  
Frequency jittering from 92 kHz ~ 100 kHz, Jitter  
period is set at 4ms internally  
Figure 20 Frequency jittering@ 85Vac and  
max. load  
11.4  
Drain voltage and current at maximum load  
Channel 1; C1 : Drain voltage (VDrain  
)
Channel 1; C1 : Drain voltage (VDrain)  
Channel 2; C2 : Current sense voltage (VCS)  
Channel 2; C2 : Current sense voltage (VCS)  
VDrain_peak = 284V  
VDrain_peak = 573V  
Figure 21 Operation @ 85Vac and max. load  
Figure 22 Operation @ 265Vac and max. load  
Application Note  
19  
Revision 1.2, 2015-05-12  
12W 5V SMPS evaluation board with ICE3AR4780VJZ  
Waveforms and scope plots  
11.5  
Load transient response (Dynamic load from 10% to 100%)  
Channel 1; C1 : Output ripple voltage (Vo)  
Channel 2; C2 : Output current (Io)  
Channel 1; C1 : Output ripple voltage (Vo)  
Channel 2; C2 : Output current (Io)  
Vripple_pk_pk=220mV (Load change from10% to  
Vripple_pk_pk=220mV (Load change from10% to  
100%,100Hz,0.4A/μS slew rate)  
100%,100Hz,0.4A/μS slew rate)  
Probe terminal end with decoupling capacitor of  
Probe terminal end with decoupling capacitor of  
0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter  
0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter  
Figure 23 Load transient response @ 85Vac Figure 24 Load transient response @ 265Vac  
11.6  
Output ripple voltage at maximum load  
Channel 1; C1 : Output ripple voltage (Vo)  
Channel 2; C2 : Output current (Io)  
Channel 1; C1 : Output ripple voltage (Vo)  
Channel 2; C2 : Output current (Io)  
Vripple_pk_pk=16mV  
Vripple_pk_pk = 16mV  
Probe terminal end with decoupling capacitor of  
Probe terminal end with decoupling capacitor of  
0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter  
0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter  
Figure 25 AC output ripple @ 85Vac and max. Figure 26 AC output ripple @ 265Vac and  
load max. load  
Application Note  
20  
Revision 1.2, 2015-05-12  
12W 5V SMPS evaluation board with ICE3AR4780VJZ  
Waveforms and scope plots  
11.7  
Output ripple voltage during burst mode at 1 W load  
Channel 1; C1 : Output ripple voltage (Vo)  
Channel 2; C2 : Output current (Io)  
Channel 1; C1 : Output ripple voltage (Vo)  
Channel 2; C2 : Output current (Io)  
Vripple_pk_pk=25mV  
Vripple_pk_pk = 18mV  
Probe terminal end with decoupling capacitor of  
0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter  
Probe terminal end with decoupling capacitor of  
0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter  
Figure 27 AC output ripple @ 85Vac and 1W  
load  
Figure 28 AC output ripple @ 265Vac and 1W  
load  
11.8  
Active Burst mode operation  
Channel 1; C1 : Current sense voltage (VCS)  
Channel 2; C2 : Supply voltage (VCC)  
Channel 1; C1 : Current sense voltage (VCS)  
Channel 2; C2 : Supply voltage (VCC)  
Channel 3; C3 : Feedback voltage (VFBB  
Channel 4; C4 : BV voltage (VBV)  
Condition: VFB<1.27V & last for 20ms  
)
Channel 3; C3 : Feedback voltage (VFBB  
Channel 4; C4 : BV voltage (VBV)  
Condition: VFB>4.5V  
)
(load change form full load to 0.5W load)  
Figure 29 Entering active burst mode @  
85Vac  
(load change form 0.5W load to full load)  
Figure 30 Leaving active burst mode @ 85Vac  
Application Note  
21  
Revision 1.2, 2015-05-12  
12W 5V SMPS evaluation board with ICE3AR4780VJZ  
Waveforms and scope plots  
11.9  
Vcc over voltage protection (Odd skip auto restart mode)  
VCC OVP2  
VCC OVP1  
Channel 1; C1 : Current sense voltage (VCS)  
Channel 2; C2 : Supply voltage (VCC)  
Channel 3; C3 : Feedback voltage (VFBB  
)
Channel 4; C4 : BV voltage (VBV)  
Condition: VCC>20.5 & last for 150µs  
VCC>20.5 & VFB>4.5V & during soft start  
& last for 30µs  
(J4 disconnected during system operating at no load)  
Figure 31 Vcc overvoltage protection @ 85Vac  
11.10  
Over load protection (Auto restart mode)  
built-in 20ms blanking  
extended blanking  
Channel 1; C1 : Current sense voltage (VCS)  
Channel 2; C2 : Supply voltage (VCC)  
Channel 3; C3 : Feedback voltage (VFBB  
)
Channel 4; C4 : BV voltage (VBV)  
Condition: VFB>4.5V & last for 20ms & VBV>4.5V &  
last for 30µs  
(output load change from 2.4 to 3A)  
Figure 32 Over load protection with built-  
in+extended blanking time  
@85Vac  
Application Note  
22  
Revision 1.2, 2015-05-12  
12W 5V SMPS evaluation board with ICE3AR4780VJZ  
Waveforms and scope plots  
11.11  
VCC under voltage/Short optocoupler protection (Normal auto restart  
mode)  
Exit autorestart  
Enter autorestart  
Channel 1; C1 : Current sense voltage (VCS)  
Channel 2; C2 : Supply voltage (VCC)  
Channel 3; C3 : Feedback voltage (VFBB  
Channel 4; C4 : BV voltage (VBV)  
Condition: VCC<10.5V  
)
(short the transistor of optocoupler during system  
operating @ full load and release)  
Figure 33 Vcc under voltage/short  
optocoupler protection @ 85Vac  
11.12  
AC Line input OVP mode  
421Vdc(298Vac)  
Enter input OVP  
403Vdc(285Vac)  
Exit input OVP  
401Vdc(283Vac)  
Exit input OVP  
421Vdc(298Vac)  
Enter input OVP  
Channel 1; C1 : Bulk voltage(Vbulk  
)
Channel 1; C1 : Bulk voltage(Vbulk)  
Channel 2; C2 : Supply voltage (VCC)  
Channel 3; C3 : Current sense voltage (VCS)  
Channel 4; C4 : BV voltage (VBV)  
Channel 2; C2 : Supply voltage (VCC)  
Channel 3; C3 : Current sense voltage (VCS)  
Channel 4; C4 : BV voltage (VBV)  
Condition: VBV>1.98V & last for 400µs (OVP detect)  
VBV<1.91V & last for 5µs (OVP reset)  
Condition: VBV>1.98V & last for 400µs (OVP detect)  
VBV<1.91V & last for 5µs (OVP reset)  
(gradually increase AC line voltage until OVP detect  
and decrease AC line until OVP reset)  
(gradually increase AC line voltage until OVP detect  
and decrease AC line until OVP reset)  
Figure 34 Input OVP mode at max. load  
Figure 35 Input OVP mode at no load  
condition  
condition  
Application Note  
23  
Revision 1.2, 2015-05-12  
12W 5V SMPS evaluation board with ICE3AR4780VJZ  
References  
12  
References  
[1] Infineon Technologies, Datasheet “CoolSET™-F3R80 ICE3AR4780VJZ Off-Line SMPS Current Mode  
Controller with integrated 800V CoolMOS™and Startup cell( input OVP & Frequency Jitter) in DIP-7”  
[2] Infineon Technologies, AN-PS0044-CoolSET F3R80 DIP-7 brownout/input OVP & frequency jitter version  
design guide-V1.5  
Revision History  
Major changes since the last revision  
Page or Reference Description of change  
5
Add section 5.3 under circuit description  
Application Note  
24  
Revision 1.2, 2015-05-12  
Trademarks of Infineon Technologies AG  
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™,  
EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™,  
my-d™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™,  
SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.  
Other Trademarks  
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM  
Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,  
FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is  
licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared  
Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim  
Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA.  
muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc.  
Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun  
Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc.  
TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cade nce Design  
Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.  
Last Trademarks Update 2011-11-11  
www.infineon.com  
Legal Disclaimer  
Information  
Edition 2015-05-12  
Published by  
THE INFORMATION GIVEN IN THIS APPLICATION For further information on technology, delivery terms  
NOTE (INCLUDING BUT NOT LIMITED TO and conditions and prices, please contact the nearest  
CONTENTS OF REFERENCED WEBSITES) IS GIVEN Infineon Technologies Office (www.infineon.com).  
Infineon Technologies AG  
81726 Munich, Germany  
AS A HINT FOR THE IMPLEMENTATION OF THE  
Warnings  
INFINEON TECHNOLOGIES COMPONENT ONLY  
Due to technical requirements, components may  
contain dangerous substances. For information on  
the types in question, please contact the nearest  
Infineon Technologies Office. Infineon Technologies  
components may be used in life-support devices or  
systems only with the express written approval of  
Infineon Technologies, if a failure of such components  
can reasonably be expected to cause the failure of  
that life-support device or system or to affect the  
safety or effectiveness of that device or system. Life  
support devices or systems are intended to be  
implanted in the human body or to support and/or  
maintain and sustain and/or protect human life. If  
they fail, it is reasonable to assume that the health of  
the user or other persons may be endangered.  
AND SHALL NOT BE REGARDED AS ANY  
DESCRIPTION OR WARRANTY OF  
A CERTAIN  
© 2015 Infineon Technologies AG.  
All Rights Reserved.  
FUNCTIONALITY, CONDITION OR QUALITY OF THE  
INFINEON TECHNOLOGIES COMPONENT. THE  
RECIPIENT OF THIS APPLICATION NOTE MUST  
VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE  
REAL APPLICATION. INFINEON TECHNOLOGIES  
HEREBY DISCLAIMS ANY AND ALL WARRANTIES  
AND LIABILITIES OF ANY KIND (INCLUDING  
WITHOUT LIMITATION WARRANTIES OF NON-  
INFRINGEMENT OF INTELLECTUAL PROPERTY  
RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO  
ANY AND ALL INFORMATION GIVEN IN THIS  
APPLICATION NOTE.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Document reference  
AN_201406_PL21_004  

相关型号:

GRM188R71H224MAC4#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

GRM188R71H241JA01#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

GRM188R71H241KA01#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

GRM188R71H241MA01#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

GRM188R71H242JA01#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

GRM188R71H242KA01#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

GRM188R71H242MA01#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

GRM188R71H271JA01#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

GRM188R71H271KA01

Chip Monolithic Ceramic Capacitor for General
MURATA

GRM188R71H271KA01#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

GRM188R71H271MA01#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

GRM188R71H272JA01#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA