CYPD7271-68LQXQ [INFINEON]

EZ-PD™ CCG7DC CYPD7271-68LQXQ is the tray packing type option belonging to the CCG7DC family of highly integrated dual-port USB-C Power Delivery solutions with integrated buck-boost controllers.;
CYPD7271-68LQXQ
型号: CYPD7271-68LQXQ
厂家: Infineon    Infineon
描述:

EZ-PD™ CCG7DC CYPD7271-68LQXQ is the tray packing type option belonging to the CCG7DC family of highly integrated dual-port USB-C Power Delivery solutions with integrated buck-boost controllers.

光电二极管
文件: 总48页 (文件大小:423K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CYPD7271  
EZ-PD™ CCG7DC dual-port USB-C power  
delivery and DC-DC controller  
General description  
EZ-PD™ CCG7DC is Infineon highly integrated dual-port USB Type-C power delivery (PD) solution with integrated  
buck-boost controllers. It complies to the latest USB Type-C and PD specifications, and is targeted for multi-port  
consumer charging applications. Integration offered by CCG7DC not only reduces the BOM but also provides a  
footprint optimized solution to support higher power density designs. CCG7DC has integrated gate drivers for  
VBUS NFET on the provider path. It also includes hardware-controlled protection features on the VBUS. CCG7DC  
supports a wide input voltage range (4 V to 24 V with 40 V tolerance) and programmable switching frequency (150  
kHz to 600 kHz) in an integrated PD solution.  
EZ-PD™ CCG7DC is the most programmable USB-PD solution with on-chip 32-bit Arm® Cortex®-M0 processor,  
128-KB flash, 16-KB RAM and 32-KB ROM that leaves most flash available for user application use. It also includes  
various analog and digital peripherals such as ADC, PWMs and Timers. The inclusion of a fully programmable MCU  
with analog and digital peripherals allows the implementation of custom system management functions such as  
dynamic load sharing and temperature monitoring.  
Applications  
• Cigarette lighter adapter (CLA)  
• Multi-port AC-DC charger and adapter  
Features  
• USB-PD  
- Supports two USB-PD ports  
- Supports latest USB-PD 3.0 version 2.0 including programmable power supply (PPS) mode  
- Extended data messaging (EDM)  
• Type-C  
- Configurable resistors RP and RD  
- VBUS NFET gate driver  
- Integrated 100-mW VCONN power supply and control  
• 2x buck-boost controller  
- 150 kHz to 600 kHz switching frequency  
- 5.5 V to 24 V input, 40 V tolerant  
- 3.3 V to 21.5 V output  
- 20-mV voltage and 50-mA current steps for PPS  
- Supports selectable pulse skipping mode (PSM) and forced continuous conduction mode (FCCM)  
- Supports soft start  
- Programmable spread spectrum frequency modulation for low EMI  
- Programmable phase shift across two ports to further reduce the EMI  
• 2x legacy/proprietary charging blocks  
- Supports QC4+, QC4.0, Samsung AFC, Apple 2.4A, and BC v1.2 charging protocols  
• Integrated voltage (VBUS) regulation and current sense amplifier (CSA)  
- Integrated shunt regulator function for VBUS control  
- Constant current or constant voltage mode  
- Supports current sensing for constant current control  
• System-level fault protection  
- On-chip VBUS, overvoltage protection (OVP), overcurrent protection (OCP), undervoltage protection (UVP)  
- VBUS to CC short protection  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page1  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Features  
- Under-voltage lockout (UVLO)  
- Supports over-temperature protection through integrated ADC circuit and internal temperature sensor  
- Supports connector and board temperature measurement using external thermistors  
• 32-bit MCU subsystem  
- 48-MHz Arm® Cortex®-M0 CPU  
- 128-KB flash  
- 16-KB SRAM  
- 32-KB ROM  
• Peripherals and GPIOs  
- 19 GPIOs  
- Two over-voltage GPIOs  
- 3x 8-bit ADC  
- 4x 16-bit timer/counter/PWMs (TCPWM)  
• Communication interfaces  
- 4x SCBs (I2C/SPI/UART)  
• Clocks and oscillators  
- Integrated oscillator eliminating the need for an external clock  
• Power supply  
- 4 V to 24 V input (40-V tolerant)  
- 3.3 V to 21.5 V output  
- Integrated LDO capable of 5 V @ 150 mA  
• Packages  
- 68-pin QFN (8 mm 8 mm) package with –40 °C to +105 °C extended industrial temperature range  
Datasheet  
2
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Logic block diagram  
Logic block diagram  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
MCU subsystem  
I/O subsystem  
Integrated digital blocks  
CC  
4x TCPWM  
arm®  
Cortex®- M0  
48 MHz  
4x SCB  
VCONN  
(I2C, SPI, UART)  
19x GPIOs  
Flash  
(128 KB)  
SROM  
(32 KB)  
USB PD subsystem x2  
Baseband MAC &  
PHY  
VCONN OCP, UV  
SRAM  
(16 KB)  
VBUS to CC  
short protection  
Hi -Voltage LDO  
(24 V)  
8-bit SAR  
2xVCONN FETs  
V
BUS OVP, OCP, SCP  
protection  
NFET load switch  
gate driver  
System resources  
Buck-boost controller  
Functional block diagram  
EA_OUT_0  
BST1_0 HGT1_0 SW1_0 LGT1_0 BST2_0 HGT2_0 SW2_0 LGT2_0 CSPO_0 CSNO_0  
VBUS_CTRL_0  
CSPI_0  
CSNI_0  
Input sense  
amplifier (CSA),  
slope  
Error  
amplifier  
(CV)  
Error  
amplifier  
(CC)  
GDRV (Buck)  
GDRV (Boost)  
Slew rate control  
NG ATE driver  
High-side  
CSA  
High-side  
Low-side driver  
(LSDR)  
High-side  
Low-side driver  
(LSDR)  
driver (HSDR)  
driver (HSDR)  
compensation  
VBUS_IN  
VBUS_C  
discharge discharge  
Zero crossing  
detect (ZCD)  
Zero crossing  
detect (ZCD)  
Charge control  
Charge control  
CC reference  
CC1_0  
V5V_0  
CC2_0  
HV regulator  
(24-5 V)  
BMC  
Reference  
and IDAC  
VIN  
VDDD  
VCCD  
VCONN  
PHY  
Pulse-width  
modulator  
(PWM)  
MCU subsystem  
Charger  
detect  
DP_0  
DM_0  
3x 8-bit ADC  
19 GPIOs  
4x TCPWM  
Cortex® -M0  
LV regulator  
(5-1.8V)  
4x SCB  
(I2C/SPI/  
UART/LIN)  
Flash  
SROM  
(32KB)  
SRAM  
(16KB)  
DP_1  
DM_1  
Charger  
detect  
(128KB)  
Pulse-width  
modulator  
(PWM)  
CC1_1  
V5V_1  
CC2_1  
Reference  
and IDAC  
BMC  
VCONN  
PHY  
XRES  
POR/RESET  
CC reference  
Zero crossing  
detect (ZCD)  
Zero crossing  
detect (ZCD)  
Charge control  
Charge control  
VBUS_IN  
VBUS_C  
discharge discharge  
High-Side  
Driver (HSDR)  
Low-side driver  
(LSDR)  
High-side  
driver (HSDR)  
Low-side driver  
(LSDR)  
Error  
amplifier  
(CV)  
Error  
amplifier  
(CC)  
CSA, Slope  
Compensation  
High-Side  
CSA  
Slew rate control  
NG ATE driver  
GDRV (Buck)  
GDRV (Boost)  
EA_OUT_1  
BST1_1 HGT1_1 SW1_1 LGT1_1 BST2_1 HGT1_2 SW1_2 LGT1_2 CSPO_1 CSNO_1  
VBUS_CTRL_1  
CSPI_1  
CSNI_1  
Datasheet  
3
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Table of contents  
Table of contents  
General description ...........................................................................................................................1  
Applications......................................................................................................................................1  
Features ...........................................................................................................................................1  
Logic block diagram ..........................................................................................................................3  
Functional block diagram...................................................................................................................3  
Table of contents...............................................................................................................................4  
1 Functional overview .......................................................................................................................5  
1.1 MCU subsystem.......................................................................................................................................................5  
1.2 USB PD subsystem..................................................................................................................................................5  
1.3 Buck-boost subsystem ...........................................................................................................................................7  
1.4 Buck-boost controller operation regions ..............................................................................................................8  
1.5 Analog blocks ........................................................................................................................................................11  
1.6 Integrated digital blocks.......................................................................................................................................11  
1.7 I/O subsystem .......................................................................................................................................................11  
1.8 System resources..................................................................................................................................................12  
2 Power subsystem..........................................................................................................................14  
2.1 VIN undervoltage lockout (UVLO) ........................................................................................................................15  
2.2 Using external VDDD supply.................................................................................................................................15  
2.3 Power modes ........................................................................................................................................................15  
3 Pin information ............................................................................................................................16  
4 EZ-PD™ CCG7DC programming and bootloading ..............................................................................21  
4.1 Programming the device flash over SWD interface.............................................................................................21  
5 Applications .................................................................................................................................22  
6 Electrical specifications.................................................................................................................26  
6.1 Absolute maximum ratings ..................................................................................................................................26  
6.2 Device-level specifications ...................................................................................................................................29  
6.3 Digital peripherals.................................................................................................................................................34  
6.4 System resources..................................................................................................................................................36  
7 Ordering information ....................................................................................................................42  
7.1 Ordering code definitions.....................................................................................................................................42  
8 Packaging ....................................................................................................................................43  
9 Package diagram ..........................................................................................................................44  
10 Acronyms ...................................................................................................................................45  
11 Document conventions................................................................................................................46  
Revision history ..............................................................................................................................47  
Datasheet  
4
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Functional overview  
1
Functional overview  
MCU subsystem  
CPU  
1.1  
1.1.1  
The Cortex®-M0 in EZ-PD™ CCG7DC devices is a 32-bit MCU, which is optimized for low-power operation with  
extensive clock gating. It mostly uses 16-bit instructions and executes a subset of the thumb-2 instruction set. It  
also includes a hardware multiplier, which provides a 32-bit result in one cycle. It includes an interrupt controller  
(the NVIC block) with 32 interrupt inputs and a wakeup interrupt controller (WIC), which can wake the processor  
up from deepsleep mode.  
1.1.2  
Flash ROM and SRAM  
EZ-PD™ CCG7DC devices have 128-KB flash and 32-KB ROM for non-volatile storage. ROM stores libraries for  
authentication and device drivers such as I2C, SPI, and so on. That spares flash for user application. Flash provides  
the flexibility to store code for any customer feature and allows firmware upgrades to meet the latest USB PD  
specifications and application needs.  
The 16-KB RAM is used under software control to store the temporary status of system variables and parameters.  
A supervisory ROM that contains boot and configuration routines is provided.  
1.2  
USB PD subsystem  
This subsystem provides the interface to the Type-C USB port. This subsystem comprises:  
• USB PD physical layer  
• VCONN switches  
• Under voltage (UVP), over voltage (OVP) on VBUS  
• Output high-side CSA (HS CSA) for VBUS  
• VBUS discharge control  
• Gate driver for VBUS provider NFET  
• Charger detection block for legacy charging  
• VBUS to CC short-circuit protection  
1.2.1  
USB PD physical layer  
The USB PD subsystem contains the USB PD physical layer block and supporting circuits. The USB PD physical  
layer consists of a transmitter and receiver that communicate BMC encoded data over the CC channel per the PD  
3.0 standard. All communication is half-duplex. The physical layer or PHY practices collision avoidance to  
minimize communication errors on the channel.  
Also, the USBPD block includes all termination resistors (Rp and Rd) and their switches as required by the USB  
Type-C spec. Rp and Rd resistors are required to implement connection detection, plug orientation detection and  
for the establishment of the USB source/sink roles. The Rp resistor is implemented as a current source.  
CCG7DC device family is fully complaint with revisions 3.0 and 2.0 of the USB PD specification. The device  
supports PPS operation at all valid voltages from 3.3 V to 21 V.  
CCG7DC devices support Rp under HW control in unconnected (standby) state to minimize standby power.  
CCG7DC devices support USB-PD extended messages containing data of up to 260 bytes. The extended messages  
are larger than expected by USB-PD 2.0 hardware. As per the USB-PD protocol specification, USB-PD 3.0  
compliant devices implement a Chunking mechanism; messages are limited to Revision 2.0 sizes unless both  
source and sink confirm and negotiate compatibility with longer message lengths.  
Datasheet  
5
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Functional overview  
1.2.2  
VCONN switches  
EZ-PD™ CCG7DC’s internal LDO voltage regulator is capable of powering a 100mW VCONN supply for electroni-  
cally marked cable assemblies (EMCA), VCONN-powered devices (VPD), and VCONN-powered accessories as  
defined in the USB Type-C specification. All circuitry including VCONN switches and over-current protection is  
integrated in the device. In the event the VCONN current exceeds the VCONN OCP limit, CCG7DC can be  
configured to shut down the Type-C port after a certain number of user configurable retries. The port can be  
re-enabled after a physical disconnect.  
1.2.3  
VBUS UVP and OVP  
VBUS undervoltage and overvoltage faults are monitored using internal resistor dividers. The fault thresholds  
and response times are user configurable. Refer to the EZ-PD™ Configuration Utility for more details. In the  
event of a UVP or OVP, CCG7DC can be configured to shut down the Type-C port after a certain number of user  
configurable retries. The port can be re-enabled after a physical disconnect.  
1.2.4  
VBUS OCP and SCP  
VBUS overcurrent and short-circuit faults are monitored using internal CSAs. Similar to OVP and UVP, the OCP  
and SCP fault thresholds and response times are configurable as well. Refer to the EZ-PD™ Configuration Utility  
for more details. In the event of OCP or SCP, CCG7DC can be configured to shut down the Type-C port after a  
certain number of user configurable retries. The port can be re-enabled after a physical disconnect.  
1.2.5  
HS-CSA for VBUS  
EZ-PD™ CCG7DC device family supports VBUS current measurement and control using an external resistor (5 mΩ)  
in series with the VBUS path. The voltage drop across this resistor is used to measure the average output current.  
The same resistor is also used to sense and precisely control the output current in the PPS current foldback mode  
of operation.  
1.2.6  
VBUS discharge control  
The chip supports high-voltage (21.5 V) VBUS discharge circuitry. Upon the detection of device disconnection,  
faults, or hard resets, the chip will discharge the output VBUS terminals to vSafe5 V and/or vSafe0V within the  
time limits specified in the USB PD specification.  
1.2.7  
Gate driver for VBUS provider NFET  
EZ-PD™ CCG7DC devices have an integrated high-voltage gate driver to drive the gate of an external high-side  
NFET on the VBUS provider path. The gate driver drives the load switch that controls the connection between  
VBUS_IN and VBUS_C. VBUS_CTRL is the output of this gate driver. To turn off the external NFET, the gate driver  
drives VBUS_IN low. To turn on the external NFET, it drives the gate to VBUS_IN + 8 V. There is an optional slow  
turn-on feature which is meant to avoid sudden in-rush current. For a typical gate capacitance of 3-nF, a slow  
turn-on time of 2 ms to 10 ms is configurable using firmware.  
1.2.8  
Legacy charge detection and support  
The chip implements battery charger emulation and detection (source and sink) for USB BC.1.2, legacy Apple  
charging, Qualcomm quick charge 2.0/3.0, Samsung AFC protocols and several upcoming proprietary charging  
protocols.  
1.2.9  
VBUS to CC short protection  
EZ-PD™ CCG7DC’s CC pins have integrated protection from accidental shorts to high-voltage VBUS. CCG7DC  
devices can handle up to 24 V external voltage on its CC pins without damage. In the event an over-voltage is  
detected on the CC pin, CCG7DC can be configured to shut down the Type-C port completely. The port will resume  
normal operation once the CC voltage detected is within normal range.  
Datasheet  
6
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Functional overview  
1.3  
Buck-boost subsystem  
The buck-boost subsystem in EZ-PD™ CCG7DC devices can be configured to operate in buck-boost mode,  
buck-only mode or boost-only mode. While buck-boost mode requires four external switching FETs, buck-only  
and boost-only modes require only two FETs. Buck-only mode is useful when CCG7DC device’s port is used for  
multi-port AC/DC designs. Figure 1 illustrates the buck-boost subsystem’s main external components and  
connections.  
5 m  
5 m  
VIN  
VOUT  
CSR1  
CSR2  
VDDD  
VDDD  
CYPD727x  
Figure 1  
Buck-boost schematic showing external components  
Buck-boost subsystem in EZ-PD™ CCG7DC devices have the following key functional blocks:  
• High-side (cycle-by-cycle) CSA  
• High-side and low-side gate driver  
• Pulse-width modulator (PWM)  
• Error amplifier (EA)  
1.3.1  
High-side (cycle-by-cycle) CSA  
EZ-PD™ CCG7DC device’s buck-boost controller implements peak current control in both boost and buck modes.  
A high-side CSA is used for peak current sensing through an external resistor (5 mΩ; see CSR1 in Figure 1) placed  
in series with the buck control FET. This CSA is high bandwidth and very wide common mode amplifier. This  
current sense resistor is connected to the CSA block through pins CSPI and CSNI as shown in Figure 1. This block  
implements slope compensation to avoid sub-harmonic oscillation for the internal current loop. In addition to  
peak current sensing, it provides a current limit comparator for shutting off the buck-boost converter if the  
current hits an upper threshold which is programmable.  
1.3.2  
High-side gate driver and low-side gate driver (HG/LG)  
EZ-PD™ CCG7DC’s buck-boost controller provides four N-channel MOSFET gate drivers: two floating high-side  
gate drivers at the HG1 and HG2 pins, and two ground referenced low-side drivers at the LG1 and LG2 pin. The  
high-side gate drivers drive the high-side external FET with a nominal VGS of 5 V. The high-side gate driver has a  
programmable drive strength to drive external FET. An external capacitor and Schottky diode form a bootstrap  
network to collect and store the high voltage source (VIN + ~5 V for HG1 and VBUS + ~5 V for HG2) needed to drive  
the high-side FET.  
The low-side gate driver drives the low-side external FET with a nominal VGS of 5 V using energy sourced from  
CCG7DC’s internal LDO regulator and stored in the capacitor between PVDD and PGND. Low-side gate driver has  
programmable drive strength to drive external FET.  
Datasheet  
7
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Functional overview  
In addition to drive strength, the high-side gate driver and the low-side gate driver have programmable options  
for deadtime control and zero-crossing levels. High-side gate driver and low-side gate driver blocks include  
zero-crossing detector (ZCD) to implement discontinuous-conduction mode (DCM) mode with diode emulation.  
The gate drivers for the switching FETs function at their nominal drive voltage levels (5 V) provided the VIN voltage  
is between 5.5 V and 24 V.  
1.3.3  
Error amplifier (EA)  
EZ-PD™ CCG7DC's buck-boost controller contains two error amplifiers for output voltage and current regulation.  
The error amplifier is a trans-conductance type amplifier with single compensation pin (COMP) to ground for both  
the voltage and current loops. In voltage regulation, the output voltage is compared with the internal reference  
voltage and the output of EA is fed to the PWM block. In current regulation, the average current is sensed by VBUS  
high-side CSA through the external resistor. The output of the VBUS CSA is compared with internal reference in  
error amplifier block and EA output is fed to the PWM block. CCG7DC devices negotiate a power delivery contract  
over the Type-C port in compliance to USB-PD specification with the peer sink device and in turn controls the EA  
output through the integrated programmable error amplifier circuit for achieving the required VBUS voltage  
output.  
1.3.4  
Pulse-width modulator (PWM)  
EZ-PD™ CCG7DC device family’s PWM block generates the control signals for the gate drivers driving the external  
FETs in peak current mode control. There are many programmable options for minimum/maximum pulse width,  
minimum/maximum period, frequency and pulse skip levels to optimize the system design.  
CCG7DC devices have two firmware-selectable operating modes to optimize efficiency and reduce losses under  
light load conditions: PSM and FCCM. It is critical in charger applications where the load can vary from a few watts  
to 100 W.  
1.3.5  
Pulse skipping mode (PSM)  
In pulse skipping mode, the controller reduces the total number of switching pulses without reducing the active  
switching frequency by working in “bursts” of normal nominal-frequency switching interspersed with intervals  
without switching. The output voltage thus increases during a switching burst and decreases during a quiet  
interval. This mode results in minimal losses at the cost of higher output voltage ripple. When in this mode,  
EZ-PD™ CCG7DC devices monitor the voltage across the buck or boost sync FET to detect when the inductor  
current reaches zero; when this occurs, the CCG7DC devices switch off the buck or boost sync FET to prevent  
reverse current flow from the output capacitors (i.e. diode emulation mode). Several parameters of this mode  
are programmable through firmware, allowing the user to strike their own balance between light load efficiency  
and output ripple.  
1.3.6  
Forced continuous conduction mode (FCCM)  
In forced continuous conduction mode, the nominal switching frequency is maintained at all times, with the  
inductor current going below zero (i.e. “backwards” or from the output to the input) for a portion of the switching  
cycle as necessary to maintain the output voltage and current. This keeps the output voltage ripple to a minimum  
at the cost of light-load efficiency.  
1.4  
Buck-boost controller operation regions  
The CSA output is compared with the output of the error amplifier to determine the pulse width of the PWM. PWM  
block compares the Input voltage and output voltage to determine the buck, boost, and buck-boost regions. The  
switching time/period of the four gate drivers (HG1, LG1, HG2, LG2) depends upon the region in which the block  
is operating as well as the mode such as DCM or FCCM. The exact VIN vs VOUT thresholds for transitions into and  
out of each region are adjustable in firmware including the hysteresis.  
Datasheet  
8
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Functional overview  
1.4.1  
Buck region operation (VIN >> VBUS)  
When the VIN voltage is significantly higher than the required VBUS voltage, EZ-PD™ CCG7DC devices operate in  
the buck region. In this region, the boost side FETs are inactivated, with the boost control FET (connected to LG2)  
turned off and the boost sync FET (connected to HG2) turned on. The buck side FETs are controlled as a buck  
converter with synchronous rectification as shown in Figure 2. Depending on the application and requirement  
the device can be configured to operate in buck mode only at all times using only two FETs.  
ON  
HG1  
(Buck  
control)  
OFF  
ON  
LG1 (Buck  
sync)  
OFF  
ON  
LG2  
(Boost  
control)  
OFF  
ON  
HG2  
(Boost  
sync)  
OFF  
Inductor  
current  
0
t
Figure 2  
Buck operation waveforms  
1.4.2  
Boost region operation (VIN << VBUS)  
When the VIN voltage is significantly lower than the required VBUS voltage, EZ-PD™ CCG7DC devices operate in  
the boost region. In this region, the buck side FETs are inactivated, with the sync FET turned OFF and the buck  
control FET turned ON. The boost side FETs are controlled as a boost converter with synchronous rectification as  
shown in Figure 3.  
ON  
HG1  
(Buck  
control)  
OFF  
ON  
LG1 (Buck  
sync)  
OFF  
ON  
LG2  
(Boost  
control)  
OFF  
ON  
HG2  
(Boost  
sync)  
OFF  
Inductor  
current  
0
t
Figure 3  
Boost operation waveforms  
Datasheet  
9
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Functional overview  
1.4.3  
Buck-boost region 1 operation (VIN ~> VBUS)  
When the VIN voltage is slightly higher than the required VBUS voltage, EZ-PD™ CCG7DC devices operate in the  
buck-boost region 1. In this region, the boost side FET (LG2) works at a fixed 20% duty cycle (programmable) while  
the buck side (LG1 / HG1) duty cycle is modulated to control the output voltage. All four FETs are switching every  
cycle in this operating region as shown in Figure 4.  
ON  
HG1  
(Buck  
control)  
OFF  
ON  
LG1 (Buck  
sync)  
OFF  
ON  
LG2  
(Boost  
control)  
OFF  
ON  
HG2  
(Boost  
sync)  
OFF  
Inductor  
current  
0
t
Figure 4  
Buck-boost region 1 (VIN ~> VBUS) operation waveforms  
1.4.4  
Buck-boost region 2 operation (VIN ~< VBUS)  
When the VIN voltage is slightly lower than the required VBUS voltage, EZ-PD™ CCG7DC devices operate in the  
buck-boost region 2. In this region, the buck side (HG1) works at a fixed 80% duty cycle (programmable) while the  
boost side (LG2) duty cycle is modulated to control the output voltage. All four FETs are switching every cycle in  
this operating region as shown in Figure 5.  
ON  
HG1  
(Buck  
control)  
OFF  
ON  
LG1 (Buck  
sync)  
OFF  
ON  
LG2  
(Boost  
control)  
OFF  
ON  
HG2  
(Boost  
sync)  
OFF  
Inductor  
current  
0
t
Figure 5  
Buck-boost region 2 (VIN ~< VBUS) operation waveforms  
Datasheet  
10  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Functional overview  
1.4.5  
Switching frequency and spread spectrum  
EZ-PD™ CCG7DC devices offer programmable switching frequency between 150 kHz and 600 kHz. The controller  
supports spread spectrum clocking within the operating frequency range in all operating modes. Spread  
spectrum is essential for charging applications to meet EMC/EMI requirements by spreading emissions caused  
by switching over a wide spectrum instead of a fixed frequency, thereby reducing the peak energy at any  
particular frequency. Both the switching frequency and the spread spectrum span are firmware programmable.  
1.5  
Analog blocks  
ADC  
1.5.1  
CCG7DC devices family have three 8-bit SAR ADCs available for general purpose A-D conversion applications in  
the chip. The ADCs can be accessed from the GPIOs through an on-chip analog mux. See Table 27 for detailed  
specs on the ADCs.  
1.6  
Integrated digital blocks  
1.6.1  
Serial communication block (SCB)  
EZ-PD™ CCG7DC devices have four SCB blocks that can be configured for I2C, SPI, or UART. These blocks  
implement full multi-master and slave I2C interfaces capable of multi-master arbitration. I2C is compatible with  
the standard Philips I2C specification v3.0. These blocks operate at speeds of up to 1 Mbps and have flexible  
buffering options to reduce interrupt overhead and latency for the CPU. The SCB blocks support 8-byte deep  
FIFOs for receive and transmit, which, by increasing the time given for the CPU to read data, greatly reduces the  
need for clock stretching caused by the CPU not having read data on time. The I2C port I/Os for SCB0 are  
over-voltage tolerant (OVT). The I2C ports for SCB1-3 are not OVT compliant.  
1.6.2  
Timer, counter, pulse-width modulator (TCPWM)  
The TCPWM block of EZ-PD™ CCG7DC devices support four timers or counters or pulse-width modulators. These  
timers are available for internal timer use by firmware or for providing PWM-based functions on the GPIOs.  
1.7  
I/O subsystem  
The EZ-PD™ CCG7DC devices have 19 GPIOs including the I2C and SWD pins which can also be used as GPIOs. The  
GPIO block implements the following:  
• Eight drive strength modes  
- Input only  
- Weak pull-up with strong pull-down  
- Strong pull-up with weak pull-down  
- Open drain with strong pull-down  
- Open drain with strong pull-up  
- Strong pull-up with strong pull-down  
- Disabled  
- Weak pull-up with weak pull-down  
• Input threshold select (CMOS or LVTTL)  
• Individual control of input and output disables  
• Hold mode for latching previous state (used for retaining I/O state in Deep Sleep mode)  
• Selectable slew rates for dV/dt related noise control.  
• OVT on one pair of GPIOs  
During power-on and reset, the blocks are forced to the disable state so as not to crowbar any inputs and/or cause  
excess turn-on current. A multiplexing network known as a high-speed I/O matrix (HSIOM) is used to multiplex  
Datasheet  
11  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Functional overview  
between various signals that may connect to an I/O pin. Pin locations for fixed-function peripherals such as USB  
Type-C port are also fixed in order to reduce internal multiplexing complexity. Data Output registers and Pin State  
register store, respectively, the values to be driven on the pins and the states of the pins themselves. The config-  
uration of the pins can be done by the programming of registers through software for each digital I/O port.  
Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt  
service routine (ISR) vector associated with it.  
The I/O ports can retain their state during deepsleep mode or remain ON. If the operation is restored using reset,  
then the pins shall go the high-Z state. If operation is restored by an interrupt event, then the pin drivers shall  
retain their state until firmware chooses to change it. The IOs (on data bus) do not draw current on power down.  
1.8  
System resources  
1.8.1  
Watchdog timer (WDT)  
EZ-PD™ CCG7DC devices have a watchdog timer running from the internal low-speed oscillator (ILO). This allows  
watchdog operation during deepsleep and generate a watchdog reset if not serviced before the timeout occurs.  
The watchdog reset is recorded in the Reset Cause register.  
1.8.2  
Reset  
EZ-PD™ CCG7DC devices can be reset from a variety of sources including a software reset. Reset events are  
asynchronous and guarantee reversion to a known state. The Reset cause is recorded in a register, which is sticky  
through reset and allows software to determine the cause of the reset. XRES pin is the dedicated pin for reset to  
apply hardware reset.  
1.8.3  
Clock system  
CCG7DC devices have a fully integrated clock with no external crystal required. CCG7DC device’s clock system is  
responsible for providing clocks to all sub-systems that require clocks (SCB and PD) and for switching between  
different clock sources, without glitches.  
The HFCLK signal can be divided down as shown to generate synchronous clocks for the digital peripherals. The  
clock dividers have 8-bit, 16-bit and 16-bit fractional divide capability. The 16-bit capability allows a lot of flexi-  
bility in generating fine-grained frequency values. The clock dividers generate either enabled clocks (that is, 1 in  
N clocking where N is the divisor) or an approximately 50% duty cycle clock (exactly 50% for even divisors, one  
clock difference in the high and low values for odd divisors).  
In Figure 6, PERXYZCLK represents the clocks for different peripherals.  
IMO  
HFCLK  
Pre-divider  
ILO  
LFCLK  
HFCLK  
Prescaler  
SYSCLK  
HALFSYSCLK  
/2  
Peripheral  
dividers  
PERXYZ_CLK  
Figure 6  
Clocking architecture of EZ-PD™ CCG7DC devices  
Datasheet  
12  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Functional overview  
1.8.4  
Internal main oscillator (IMO) clock source  
The internal main oscillator is the primary source of internal clocking in CCG7DC devices. IMO default frequency  
for CCG7DC devices is 48 MHz 2%.  
1.8.5  
ILO clock source  
The internal low-speed oscillator is a very low power, relatively inaccurate, oscillator, which is primarily used to  
generate clocks for peripheral operation in USB suspend (deepsleep) mode.  
Datasheet  
13  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Power subsystem  
2
Power subsystem  
Figure 7 illustrates an overview of the power subsystem architecture for EZ-PD™ CCG7DC devices. The power  
subsystem of CCG7DC devices operate from VIN supply which can vary from 4 V to 24 V. The VDDD pin, the output  
of 5 V LDO gets input from VIN supply. The VDDD pin can also be used as a power supply for external loads up to  
150 mA. CCG7DC devices have two different power modes: Active and deepsleep, transitions between which are  
managed by the power system. The VCCD pin, the output of the core (1.8 V) regulator, is brought out for  
connecting a 0.1-µF capacitor for the regulator stability only. This pin is not supported as a power supply for  
external load.  
VBUS_IN_0 VBUS_C_0  
VBUS_IN_1 VBUS_C_1  
NGDO  
NGDO  
PVDD  
PVDD  
Buck-boost LS  
Driver_P0  
Buck-boost LS  
Driver_P1  
1 µF  
1 µF  
PGND  
VIN  
PGND  
VDDD  
LDO  
10 µF  
CC1_1  
CC2_1  
CC2_0  
CC1_0  
Core regulator  
VCCD  
GND  
0.1 µF  
2 x CC  
Tx/Rx  
GPIOs  
Core  
Figure 7  
Power system requirement block diagram  
Datasheet  
14  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Power subsystem  
2.1  
VIN undervoltage lockout (UVLO)  
EZ-PD™ CCG7DC supports UVLO to allow the device to shut down when the input voltage is below the reliable  
level. It guarantees predictable behavior when the device is up and running.  
2.2  
Using external VDDD supply  
By default, external VDDD is not supported for CCG7DC devices. However, usage of external VDDD supply can be  
enabled using firmware. The pre-requisite for enabling external forcing of VDDD is to always maintain VIN higher  
than VDDD and the external load on VDDD pin of CCG7DC devices should never be higher than prescribed load  
capability of internal VDDD LDO.  
2.3  
Power modes  
The power modes of the device accessible and observable by the user are shown in Table 1.  
Table 1 Power modes  
Mode  
Description  
Power is valid and XRES is not asserted. An internal reset source is asserted or sleep controller is  
sequencing the system out of reset.  
RESET  
ACTIVE  
SLEEP  
Power is valid and CPU is executing instructions.  
Power is valid and CPU is not executing instructions. All logic that is not operating is clock gated  
to save power.  
Main regulator and most hard-IP are shut off. Deepsleep regulator powers logic, but only  
low-frequency clock is available.  
DEEPSLEEP  
XRES  
Power is valid and XRES is asserted. Core is powered down.  
Datasheet  
15  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Pin information  
3
Pin information  
Table 2  
EZ-PD™ CCG7DC pinout table  
Pin#  
Pin name  
GPIO port  
Description  
Negative power rail of port 0 buck high-side gate driver. This is also  
connected to one input terminal of zero current detection of buck low-side  
gate driver. Connect to the switch node (inductor) on the buck (input) side.  
Use a short and wide trace to minimize the inductance and resistance of  
this connection.  
1
SW1_0  
Buck low-side gate driver output of port 0. Connect to the buck (input) side  
sync (low-side) FET gate. Use a wide trace to minimize inductance of this  
connection.  
2
3
LG1_0  
Ground of low-side gate driver of port 0. This is also connected to one input  
terminal of ZCD of buck low-side gate driver.  
PGND_0  
Connect directly to port 0’s board ground plane.  
4
5
PVDD_0  
LG2_0  
Supply of low-side gate driver of port 0. Connect to VDDD. Use 1-µF and  
0.1-µF bypass capacitors as close to the CCG7DC IC as possible.  
Boost low-side gate driver output of port 0. Connect to the boost (output)  
side control (low-side) FET gate. Use a wide trace to minimize inductance  
of this connection.  
Output of the buck-boost converter of port 0. This is also connected to one  
input terminal of reverse current protection of boost high-side gate driver.  
Connect to the boost sync (high-side) FET’s drain. Use a dedicated (Kelvin)  
trace for this connection.  
6
7
VOUT_0  
SW2_0  
Negative power rail of port 0 boost high-side gate driver. This is also  
connected to one input terminal of reverse current protection of boost  
high-side gate driver. Connect to the switch node (inductor) on the boost  
(output) side. Use a short and wide trace to minimize the inductance and  
resistance of this connection.  
Boost high-side gate driver output of port 0. Connect to the boost (output)  
side sync (high-side) FET gate. Use a wide trace to minimize inductance of  
this connection.  
8
9
HG2_0  
BST2_0  
Boosted power supply of port 0 boost high-side gate driver. Bootstrap  
capacitor node. Connect Schottky diode from VDDD to BST2_0. Also,  
connect a bootstrap capacitor from this pin to SW2_0.  
10  
COMP_0  
EA output pin of port 0. Connect a compensation network to GND. Contact  
Infineon for assistance in designing the compensation network.  
Positive input of output CSA of port 0. Connect to positive terminal of the  
output current sense resistor.  
11  
12  
13  
CSPO_0  
CSNO_0  
Negative input of output CSA of port 0 Connect to negative terminal of the  
output current sense resistor.  
VBUS_IN_0  
Input of feedback voltage of EA of port 0. Connect to the VBUS node  
between the output current sense resistor and the VBUS Provider NFET.  
Type-C connector VBUS voltage of port 0. Connect to the Type-C  
connector’s VBUS pin.  
14  
15  
VBUS_C_0  
CC1_0  
Type-C connector configuration channel 1 of port 0. Connect directly to the  
CC1 pin on the port’s Type-C connector. Also connect a 390-pF capacitor to  
ground.  
Type-C connector configuration channel 2 of port 0. Connect directly to the  
CC2 pin on the port’s Type-C connector. Also connect a 390-pF capacitor to  
ground.  
16  
17  
CC2_0  
VBUS NFET gate driver output of port 0. Connect to the provider NFET’s  
gate.  
VBUS_CTRL_0  
Datasheet  
16  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Pin information  
Table 2  
EZ-PD™ CCG7DC pinout table (continued)  
Pin#  
18  
Pin name  
CSN_0_GPIO0  
CSP_0_GPIO1  
GPIO2  
GPIO port  
P0.0  
Description  
P0.1  
19  
20  
P0.2  
GPIO  
P0.3  
21  
GPIO3  
P0.4  
22  
GPIO4  
USB D+ of port 0/GPIO: D+ for implementing BC 1.2, AFC, QC or Apple  
Charging.  
23  
DP_0_GPIO5  
P1.0  
P1.1  
CCG7DC does not support USB data transmission on this pin.  
USB D- of port 0/GPIO: D- for implementing BC 1.2, AFC, QC or Apple  
Charging.  
24  
DM_0_GPIO6  
CCG7DC does not support USB data transmission on this pin.  
5-V LDO output. Connect a 1-µF ceramic bypass capacitor to this pin. Also,  
connect this pin directly to pin 63.  
25  
26  
27  
VDDD  
USB D- of port 1/GPIO: D- for implementing BC 1.2, AFC, QC or Apple  
Charging. CCG7DC does not support USB data transmission on this pin.  
DM_1_GPIO7  
DP_1_GPIO8  
P1.2  
P1.3  
USB D+ of port 1/ GPIO: D+ for implementing BC 1.2, AFC, QC or Apple  
Charging. CCG7DC does not support USB data transmission on this pin.  
External reset – active low. Contains a 3.5 kto 8.5 kinternal pull-up.  
28  
29  
30  
31  
32  
33  
XRES  
GPIO9  
P2.0  
P2.1  
P1.4  
P1.5  
P1.6  
GPIO10  
GPIO  
GPIO11  
CSP_1_GPIO12  
CSN_1_GPIO13  
Datasheet  
17  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Pin information  
Table 2  
EZ-PD™ CCG7DC pinout table (continued)  
Pin#  
34  
Pin name  
GND  
GPIO port  
Description  
Chip ground. Connect directly to the exposed pad (EPAD) and to pin 64.  
VBUS NFET gate driver output of port 1. Connect to the provider NFET’s  
gate.  
35  
VBUS_CTRL_1  
Type-C connector configuration channel 2 of port 1. Connect directly to the  
CC2 pin on the port’s Type-C connector. Also connect a 390-pF capacitor to  
ground.  
36  
37  
CC2_1  
CC1_1  
Type-C connector configuration channel 1 of port 1. Connect directly to the  
CC1 pin on the port’s Type-C connector. Also connect a 390-pF capacitor to  
ground.  
Type-C connector BUS voltage of port 1. Connect to the Type-C connector’s  
VBUS pin.  
38  
39  
VBUS_C_1  
VBUS_IN_1  
Input of feedback voltage of EA of port 1. Connect to the VBUS node  
between the output current sense resistor and the VBUS provider NFET.  
Negative input of output CSA of port 1. Connect to negative terminal of the  
output current sense resistor.  
40  
41  
42  
CSNO_1  
CSPO_1  
COMP_1  
Positive input of output CSA of port 1. Connect to positive terminal of the  
output current sense resistor.  
EA output pin of port 1. Connect a compensation network to GND. Contact  
Infineon for assistance in designing the compensation network.  
Boosted power supply of port 1 boost high-side gate driver. Connect  
Schottky diode from VDDD to BST2_1. Bootstrap capacitor node. Also,  
connect a bootstrap capacitor from this pin to SW2_1.  
43  
44  
BST2_1  
HG2_1  
Boost high-side gate driver output of port 1. Connect to the boost (output)  
side sync (high-side) FET gate. Use a wide trace to minimize inductance of  
this connection.  
Datasheet  
18  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Pin information  
Table 2  
EZ-PD™ CCG7DC pinout table (continued)  
Pin#  
Pin name  
GPIO port  
Description  
Negative power rail of port 1 boost high-side gate driver. This is also  
connected to one input terminal of reverse current protection of boost  
high-side gate driver. Connect to the switch node (inductor) on the boost  
(output) side. Use a short and wide trace to minimize the inductance and  
resistance of this connection.  
45  
SW2_1  
Output of the buck-boost converter of port 1. This is also connected to one  
input terminal of reverse current protection of boost high-side gate driver.  
Connect to the boost sync (high-side) FET’s drain. Use a dedicated (Kelvin)  
trace for this connection.  
46  
47  
VOUT_1  
LG2_1  
Boost low-side gate driver output of port 1. Connect to the boost (output)  
side control (low-side) FET gate. Use a wide trace to minimize inductance  
of this connection.  
48  
49  
PVDD_1  
PGND_1  
Supply of low-side gate driver of port 1. Connect to VDDD. Use a 1 µF and  
0.1 µF bypass capacitors as close to the CCG7DC device as possible.  
Ground of low-side gate driver of port 1. This is also connected to one input  
terminal of zero current detection of buck low-side gate driver.  
Connect directly to Port 0’s board ground plane.  
Buck low-side gate driver output of port 1. Connect to the buck (input) side  
sync (low-side) FET gate. Use a wide trace to minimize inductance of this  
connection.  
50  
51  
LG1_1  
SW1_1  
Negative power rail of port 1 buck high-side gate driver. This is also  
connected to one input terminal of zero current detection of buck low-side  
gate driver. Connect to the switch node (inductor) on the buck (input) side.  
Use a short and wide trace to minimize the inductance and resistance of  
this connection.  
Buck high-side gate driver output of port 1. Connect to the buck (input) side  
control (high-side) FET gate. Use a wide trace to minimize inductance of  
this connection.  
52  
HG1_1  
Boosted power supply of port 1 buck high-side gate driver. Connect  
Schottky diode from VDDD to BST1_1. Bootstrap capacitor node.  
53  
54  
BST1_1  
CSNI_1  
Negative input of input CSA of port 1. Connect to the negative terminal of  
the input current sense resistor. Use a dedicated (Kelvin) connection.  
55  
CSPI_1  
Positive input of input CSA of port 1. Connect to the positive terminal of the  
input current sense resistor. Use a dedicated (Kelvin) connection.  
56  
57  
GPIO14/SWD_DA  
T
P3.0  
P3.1  
GPIO/SWD programming and debug data signal  
GPIO/SWD programming and debug clock signal  
GPIO15/SWD_CL  
K
P3.2  
P3.3  
P3.4  
58  
59  
60  
GPIO16  
GPIO17  
GPIO18  
GPIO  
Datasheet  
19  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Pin information  
Table 2  
EZ-PD™ CCG7DC pinout table (continued)  
Pin#  
Pin name  
GPIO port  
Description  
4 V–24 V input supply. Connect a ceramic bypass capacitor to GND close to  
this pin.  
61  
VIN  
1.8-V core LDO output. Connect a 0.1-µF bypass capacitor to ground. Do not  
connect anything else to this pin.  
62  
63  
VCCD  
VDDD  
5-V LDO output. Connect to pin 25. Also connect a 10-µF bypass capacitor  
to this pin.  
Chip ground. Connect to the EPAD and to pin 34.  
64  
65  
GND  
CSPI_0  
Positive input of input CSA of port 0. Connect to the positive terminal of the  
input current sense resistor. Use a dedicated (Kelvin) connection.  
66  
67  
CSNI_0  
BST1_0  
Negative input of input CSA of port 0. Connect to the negative terminal of  
the input current sense resistor. Use a dedicated (Kelvin) connection.  
Boosted power supply of port 0 buck high-side gate driver. Bootstrap  
capacitor node.  
Connect Schottky diode from VDDD to BST1_0. Also, connect a bootstrap  
capacitor from this pin to SW1_0.  
Buck high-side gate driver output of port 0. Connect to the buck (input) side  
control (high-side) FET gate. Use a wide trace to minimize inductance of  
this connection.  
68  
HG1_0  
EPAD  
Exposed ground pad. Connect directly to pins 34 and 64.  
1
2
3
4
5
6
7
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
SW1_1  
LG 1 _1  
PGND_1  
PVDD_1  
LG 2 _1  
VOUT_1  
SW2_1  
HG2_1  
BST2_1  
COMP_1  
CSPO_1  
CSNO_1  
VBUS_IN_1  
VBUS_C_1  
CC1_1  
CC2_1  
SW1_0  
LG 1 _0  
PGND_0  
PVDD_0  
LG 2 _0  
VOUT_0  
SW2_0  
8
9
HG2_0  
EPAD  
BST2_0  
COMP_0  
CSPO_0  
CSNO_0  
VBUS_IN_0  
VBUS_C_0  
CC1_0  
10  
11  
12  
13  
14  
15  
16  
CC2_0  
17  
35  
VBUS_CTRL_1  
VBUS_CTRL_0  
Figure 8  
CCG7DC 68-QFN pinout  
Datasheet  
20  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
EZ-PD™ CCG7DC programming and bootload-  
ing  
4
EZ-PD™ CCG7DC programming and bootloading  
There are two ways to program application firmware into a CCG7DC device:  
1. Programming the device flash over SWD interface  
2. Application firmware update over specific interfaces (CC, I2C)  
Generally, the CCG7DC devices are programmed over SWD interface only during development or during the  
manufacturing process of the end-product. Once the end-product is manufactured, the CCG7DC device's appli-  
cation firmware can be updated via the appropriate bootloader interface. Infineon strongly recommends  
customers to use the EZ-PD™ Configuration Utility to turn off the application FW Update over CC or I2C interface  
in the firmware that is updated into CCG7DC's flash before mass production. This prevents unauthorized  
firmware from being updated over CC interface in the field. If you desire to retain the application firmware update  
over CC/I2C interfaces feature post-production for on-field firmware updates, contact Infineon Sales for further  
guidelines.  
4.1  
Programming the device flash over SWD interface  
The CCG7DC family of devices can be programmed using the SWD interface. Infineon provides programming kits  
(CY8CKIT-002 MiniProg3 Kit) called MiniProg3 and (CY8CKIT-005 MiniProg4 Kit) MiniProg4 which can be used  
to program the flash as well as debug firmware. The flash is programmed by downloading the information from  
a hex file. This hex file is a binary file generated as an output of building the firmware project in PSoC Creator  
Software. Click here for more information on how to use the MiniProg3 programmer. Click here for more infor-  
mation on how to use the MiniProg4 programmer. There are many third-party programmers that support mass  
programming in a manufacturing environment.  
As shown in Figure 9, the SWD_DAT and SWD_CLK pins are connected to the host programmer’s SWDIO (data)  
and SWDCLK (clock) pins respectively. During SWD programming, the device can be powered by the host  
programmer by connecting its VTARG (power supply to the target device) to VDDD pins of CCG7DC device. If the  
CCG7DC device is powered using an on-board power supply, it can be programmed using the “reset  
programming” option. More details will be provided in the CCG7XXX programming specifications once it is  
available.  
3.3 V  
VDD  
Host programmer  
VTARG  
CYPD7XXX  
VDDD  
VDDD  
10 µF  
1 µF  
0.1 µF  
0.1 µF  
SWDCLK  
SWDIO  
XRES  
SWD_CLK  
SWD_DAT  
XRES  
VCCD  
0.1 µF  
GND  
GND  
GND  
Figure 9  
Connecting the programmer to CYPD7XXX device  
Datasheet  
21  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Applications  
5
Applications  
Figure 10 illustrates a multi-port cigarette lighter adapter (CLA) application block diagram using EZ-PD™  
CCG7DC. CLA is powered by the car battery and is used for charging the mobile/tablet/notebook. In this appli-  
cation, CCG7DC will always be in DFP role supporting the charging of the device. It negotiates the power with the  
connected device and uses the integrated buck-boost controller to supply the required voltage and current.  
The DP/DM lines of the Type-C receptacles are connected to CCG7DC to support legacy charging protocols such  
as QC3.0, Samsung AFC, Apple 2.4A charging, BC v1.2, and so on. When no load is connected to the USB Type-C  
port, CCG7DC remains in Standby mode without switching on the buck-boost controller.  
(USB PD, 3.3-21 V, 5A)  
5 m  
5 m  
VIN  
VBUS  
Battery input  
(9 V-24 V)  
VDDD  
VDDD  
0.1 μF  
0.1 μF  
VDDD  
68  
67  
1
2
5
9
7
8
6
11  
12  
13  
17  
14  
1μF  
4
3
PVDD_0  
PGND_0  
66  
CSNI_0  
CSPI_0  
65  
61  
62  
18  
CSN_0_GPIO0  
GPIO0  
VIN  
19  
20  
GPIO1  
GPIO2  
CSP_0_GPIO1  
GPIO2  
VCCD  
0.1 μF  
10  
COMP_0  
15  
16  
CC1  
CC1_0  
CC2_0  
390pF  
69  
64  
34  
GND (EPAD)  
GND  
GND  
CC2  
390pF  
AGND  
29  
30  
21  
22  
DP  
GPIO9  
23  
24  
DP_0_GPIO5  
DM_0_GPIO6  
GPIO10  
GPIO3  
GPIO4  
DM  
VDDD  
63  
25  
VDDD  
VDDD  
VDDD  
CYPD727x-68LQXQ  
0.1 μF  
10 μF  
1μF  
48  
49  
1
2
3
VDDD  
AGND  
PVDD_1  
PGND_1  
0.1 μF 1 μF  
33  
28  
57  
56  
XRES  
CSN_1_GPIO13  
GPIO13  
XRES  
SWD_CLK  
4
5
32  
31  
GPIO15  
GPIO14  
CSP_1_GPIO12  
GPIO11  
GPIO12  
GPIO11  
SWD_DAT  
Programming header –  
not needed for final  
production  
58  
GPIO16  
CC1  
CC2  
37  
36  
P1_NTC[0]  
P0_NTC[0]  
59  
60  
CC1_1  
CC2_1  
GPIO17  
GPIO18  
390-pF  
390-pF  
42  
COMP_1  
27  
26  
DP  
DP_1_GPIO8  
DM_1_GPIO7  
DM  
55  
54  
CSPI_1  
CSNI_1  
52  
39  
35  
38  
53 51 50  
47 43  
45 44  
46 41 40  
VDDD  
VDDD  
0.1μF  
0.1μF  
VBUS  
VIN  
5 m  
5 m  
(USB PD, 3.3-21 V, 5A)  
Figure 10  
EZ-PD™ CCG7DC CLA application diagram  
Datasheet  
22  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Applications  
Table 3  
Pin #  
18  
19  
20  
CLA GPIO pin mapping for application diagram in Figure 10  
Pin name  
Function  
GPIO  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P1.0  
P1.1  
P1.2  
P1.3  
P2.0  
P2.1  
P1.4  
P1.5  
P1.6  
P3.0  
CLA  
GPIO  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
General purpose IO, available for system level function  
21  
22  
23  
24  
26  
27  
29  
30  
31  
32  
DP_0_GPIO5 Port 0: USB DP of Type-C port. Supports BC 1.2, QC,  
P0_DP  
P0_DM  
P1_DM  
P1_DP  
GPIO  
Apple Charging and AFC.  
DM_0_GPIO6  
DM_1_GPIO7 Port 1: USB DM of Type-C port. Supports BC 1.2, QC,  
Apple Charging and AFC.  
DP_1_GPIO8  
GPIO9  
General purpose IO, available for system level function  
GPIO10  
GPIO11  
GPIO12  
GPIO13  
GPIO14  
33  
56  
Connect to the host programmer’s SWDIO (data) for  
programming the CCG7DC device  
57  
GPIO15  
Connect to the host programmer’s SWDCLK (clock) for  
programming the CCG7DC chip enable pin  
P3.1  
CHIP_EN  
58  
59  
60  
GPIO16  
GPIO17  
GPIO18  
GPIO, available for system level function  
Port 1: Thermistor  
Port 0: Thermistor  
P3.2  
P3.3  
P3.4  
GPIO  
P1_NTC[0]  
P0_NTC[0]  
Figure 11 illustrates a two Type-C port AC/DC power adapter application block diagram using CCG7DC. In this  
application, CCG7DC will always be in DFP role supporting the charging of the device. It negotiates the power with  
the connected device and uses the integrated buck controller to supply the required voltage and current. The  
efficiency can be optimized by dynamically controlling the opto-coupler feedback and thereby regulate the buck  
input voltage to the closest output voltage. This application can be configured to support the legacy charging  
protocols - BC1.2 DCP, Qualcomm QC2.0/3.0, Apple Charging, and Samsung AFC.  
Datasheet  
23  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Applications  
(USB PD, 3.3-21 V, 5A)  
VBUS  
5
m  
5
m  
VIN  
VDDD  
VDDD  
0.1 μF  
0.1 μF  
VDDD  
68  
67  
1
2
5
9
7
8
6
11  
12  
13  
17  
14  
1 μF  
4
3
PVDD_0  
PGND_0  
66  
CSNI_0  
CSPI_0  
65  
61  
62  
VIN  
19  
20  
GPIO1  
GPIO2  
GND  
CC1  
CSP_0_GPIO1  
GPIO2  
VCCD  
0.1 μF  
10  
COMP_0  
15  
16  
CC1_0  
CC2_0  
390-pF  
69  
64  
34  
GND (EPAD)  
GND  
GND  
CC2  
390-pF  
AGND  
GPIO13  
33  
CSN_1_GPIO13  
GPIO9  
GPIO9  
29  
30  
DP  
23  
24  
DP_0_GPIO5  
DM_0_GPIO6  
GPIO10  
GPIO10  
DM  
GPIO3  
GPIO4  
21  
22  
GPIO3  
GPIO4  
18  
GPIO0  
VDDD  
CSN_0_GPIO0  
63  
25  
VDDD  
10 μF  
VDDD  
VDDD  
CYPD727x-68LQXQ  
0.1 μF  
VDDD  
1
2
3
0.1 μF 1 μF  
1μF  
AGND  
48  
49  
PVDD_1  
PGND_1  
XRES  
28  
57  
56  
XRES  
SWD_CLK  
4
5
32  
GND  
GPIO15  
GPIO14  
GPIO12  
CSP_1_GPIO12  
GPIO11  
SWD_DAT  
31 GPIO11  
PWM  
P1_NTC[0]  
P0_NTC[0]  
58  
GPIO16  
CC1  
CC2  
37  
36  
59  
60  
CC1_1  
CC2_1  
GPIO17  
GPIO18  
390-pF  
390-pF  
42  
COMP_1  
27  
26  
DP  
DP_1_GPIO8  
DM_1_GPIO7  
DM  
55  
54  
CSPI_1  
CSNI_1  
52  
39  
35  
38  
53 51 50  
47 43  
45 44 46  
41 40  
VDDD  
VDDD  
0.1 μF  
0.1 μF  
VBUS  
VIN  
5
m  
5
m  
(USB PD, 3.3-21V, 5A)  
Figure 11  
EZ-PD™ CCG7DC multi-port AC-DC adapter application diagram  
Multi-port AC-DC adapter GPIO pin mapping for application diagram in Figure 11  
Table 4  
Pin #  
Pin Name  
Function  
GPIO  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
AC-DC  
18 GPIO0  
19 GPIO1  
20 GPIO2  
21 GPIO3  
22 GPIO4  
General purpose IO, available for system level function  
GPIO  
Port 0: USB DP of Type-C port.  
23 DP_0_GPIO5  
24 DM_0_GPIO6  
26 DM_1_GPIO7  
27 DP_1_GPIO8  
P1.0  
P1.1  
P1.2  
P1.3  
P0_DP  
P0_DM  
P1_DM  
P1_DP  
Supports BC 1.2, QC, Apple Charging and AFC.  
Port 0: USB DM of Type-C port.  
Supports BC 1.2, QC, Apple Charging and AFC.  
Port 1: USB DM of Type-C port.  
Supports BC 1.2, QC, Apple Charging and AFC.  
Port 1: USB DP of Type-C port.  
Supports BC 1.2, QC, Apple Charging and AFC.  
Datasheet  
24  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Applications  
Table 4  
Pin #  
Multi-port AC-DC adapter GPIO pin mapping for application diagram in Figure 11 (continued)  
Pin Name  
Function  
GPIO  
P2.0  
P2.1  
P1.4  
P1.5  
P1.6  
AC-DC  
29 GPIO9  
30 GPIO10  
31 GPIO11  
32 GPIO12  
33 GPIO13  
General purpose IO, available for system level function  
GPIO  
Connect to the host programmer’s SWDIO (data) for  
programming the EZ-PD™ CCG7DC device  
Connect to the host programmer’s SWDCLK (clock) for  
programming the EZ-PD™ CCG7DC chip enable pin  
56 GPIO14  
57 GPIO15  
P3.0  
P3.1  
CHIP_EN  
58 GPIO16  
59 GPIO17  
60 GPIO18  
PWM output to dynamically control the opto-coupler feedback  
Port 1: Thermistor  
Port 0: Thermistor  
P3.2  
P3.3  
P3.4  
GPIO  
P1_NTC[0]  
P0_NTC[0]  
Datasheet  
25  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Electrical specifications  
6
Electrical specifications  
6.1  
Absolute maximum ratings  
Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.  
Table 5  
Parameter  
Absolute maximum ratings[1]  
Description  
Min  
Typ  
Max  
Unit  
Description  
Maximum input supply  
voltage  
VIN_MAJ  
40  
Maximum supply voltage  
relative to VSS  
Maximum supply voltage  
relative to VSS  
VDDD_MAJ  
V5V_MAJ  
6
V
Max VBUS_C (P0/P1) voltage  
relative to Vss  
Max voltage on CC1 and  
CC2 pins  
VBUS_C_MAJ  
24  
VCC_PIN_ABS  
VGPIO_ABS  
Inputs to GPIO  
–0.5  
–0.5  
VDDD + 0.5  
VGPIO_OVT_ABS OVT GPIO Voltage  
6
25  
IGPIO_ABS  
Maximum current per GPIO –25  
GPIO injectioncurrent, max  
IGPIO_INJECTION for VIH > VDDD, and Min for –0.5  
VIL < VSS  
mA  
V
Absolute max, current  
injected per pin  
0.5  
Electrostatic discharge  
human body model  
(ESD HBM)  
Electrostatic discharge  
charged device model  
(ESD CDM)  
ESD_HBM  
ESD_CDM  
2000  
500  
All pins  
Charged device model  
ESD  
LU  
TJ  
Pin current for latch-up  
Junction temperature  
–100  
–40  
100  
125  
mA  
°C  
Note  
1. Usage above the absolute maximum conditions listed in Table 5 may cause permanent damage to the device.  
Exposure to absolute maximum conditions for extended periods of time may affect device reliability. The  
maximum storage temperature is 150°C in compliance with JEDEC Standard JESD22-A103, High Temperature  
Storage Life. When used below absolute maximum conditions but above normal operating conditions, the  
device may not operate to specification.  
Datasheet  
26  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Electrical specifications  
Table 6  
Pin#  
Pin based absolute maximum ratings  
Pin name  
Absolute minimum (V) Absolute maximum (V)  
1
2
3
SW1_0  
-0.7  
-0.5  
-0.3  
35  
LG1_0[2]  
PVDD+0.5  
0.3  
PGND_0  
4
5
PVDD_0  
VDDD  
PVDD+0.5  
24  
LG2_0[2]  
-0.5  
-0.3  
6
VOUT_0  
7
8
9
SW2_0  
24  
HG2_0 (wrt SW2_0)[2]  
BST2_0 (wrt SW2_0)[2]  
COMP_0[2]  
-0.5  
PVDD+0.5  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
-0.5  
-0.3  
CSPO_0  
CSNO_0  
VBUS_IN_0  
VBUS_C_0  
CC1_0  
24  
-0.5  
CC2_0  
VBUS_CTRL_0  
CSN_0_GPIO0[2]  
CSP_0_GPIO1[2]  
GPIO2[2]  
GPIO3[2]  
GPIO4[2]  
DP_0_GPIO5[2]  
DM_0_GPIO6[2]  
VDDD  
32  
PVDD+0.5  
-0.5  
6
DM_1_GPIO7[2]  
DP_1_GPIO8[2]  
XRES[2]  
PVDD+0.5  
GPIO9[2]  
GPIO10[2]  
GPIO11[2]  
CSP_1_GPIO12[2]  
CSN_1_GPIO13[2]  
GND  
Notes  
2. Max voltage cannot exceed 6 V  
3. Max absolute voltage wrt GND must not exceed 40 V  
Datasheet  
27  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Electrical specifications  
Table 6  
Pin#  
Pin based absolute maximum ratings (continued)  
Pin name  
Absolute minimum (V) Absolute maximum (V)  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
VBUS_CTRL_1  
CC2_1  
CC1_1  
VBUS_C_1  
VBUS_IN_1  
CSNO_1  
-0.5  
32  
24  
-0.3  
CSPO_1  
COMP_1[2]  
BST2_1[2] (wrt SW2_1)  
HG2_1[2] (wrt SW2_1)  
SW2_1  
-0.5  
PVDD+0.5  
-0.5  
-0.3  
-0.3  
-0.5  
24  
24  
VOUT_1  
LG2_1[2]  
PVDD_1  
PGND_1  
LG1_1[2]  
SW1_1  
HG1_1[2,3](wrt SW1_1)  
BST1_1[2,3] (wrt SW1_1)  
CSNI_1  
PVDD+0.5  
VDDD  
0.3  
PVDD+0.5  
35  
-0.3  
-0.5  
-0.7  
-0.5  
PVDD+0.5  
-0.3  
-0.5  
40  
40  
CSPI_1  
GPIO14/SWD_DAT[2]  
GPIO15/SWD_CLK[2]  
GPIO16[2]  
PVDD+0.5  
GPIO17[2]  
GPIO18[2]  
VIN  
VCCD  
VDDD  
GND  
CSPI_0  
CSNI_0  
-0.3  
40  
6
40  
-0.3  
BST1_0[2,3] (wrt SW1_0)  
HG1_0[2,3] (wrt SW1_0)  
EPAD  
-0.5  
PVDD+0.5  
Notes  
2. Max voltage cannot exceed 6 V  
3. Max absolute voltage wrt GND must not exceed 40 V  
Datasheet  
28  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Electrical specifications  
6.2  
Device-level specifications  
All specifications are valid for –40 °C TA 105 °C and TJ 125 °C, except where noted. Specifications are valid  
for 3.0 V to 5.5 V except where noted.  
6.2.1  
DC specifications  
Table 7  
DC specifications (operating conditions)  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Details/conditions  
SID.PWR#1 VIN  
Input supply voltage  
4.0  
24  
Buck Boost Operating  
input supply voltage  
SID.PWR#1A VIN_BB  
5.5  
24  
VDDD output with VIN  
SID.PWR#2 VDDD_REG 5.5 V to 24 V,  
4.6  
5.5  
Max load = 150 mA  
V
VDDD output with VIN 4 V VIN  
-
SID.PWR#3 VDDD_MIN  
SID.PWR#20 VBUS  
SID.PWR#5 VCCD  
21.5  
to 5.5 V, Max load = 20mA 0.2  
VBUS_C_0/1 valid range  
3.3  
Regulated output voltage  
(for Core Logic)  
1.8  
100  
10  
External regulator  
voltage bypass for VCCD  
SID.PWR#16 CEFC_VCCD  
SID.PWR#17 CEXC_VDDD  
80  
120  
nF  
µF  
PowerSupplydecoupling  
capacitor for VDDD  
X5R ceramic  
Bootstrap supply  
capacitor (BST1_0,  
BST1_1, BST2_0, BST2_1)  
SID.PWR#18 CEXV  
0.1  
TA = 25°C, VIN = 12 V. CC  
IOintransmit or receive,  
no I/O sourcing current,  
no VCONN load current,  
Supply current at 0.4 MHz  
switching frequency  
SID.PWR#24 IDD_ACT  
85  
mA CPU at 24 MHz,  
two PD ports active.  
Buck-boost converter  
ON, 3-nF gate driver  
capacitance.  
Deepsleep mode  
Type-C not attached, CC  
enabled for wakeup.  
Rp connection should  
be enabled for both PD  
VIN = 12 V. CC wakeup on,  
Type-C not connected  
SID_DS1  
SID_DS2  
IDD_DS1  
IDD_DS2  
110  
50  
ports. TA = 25 °C.  
All faults disabled.  
µA  
USB-PD disabled.  
Wake-up from GPIO.  
TA = 25 °C.  
VIN = 12 V  
Datasheet  
29  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Electrical specifications  
Table 7  
Spec ID  
DC specifications (operating conditions) (continued)  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Details/conditions  
Type-C not attached, CC  
enabled for wakeup. Rp  
connection should be  
VIN = 12 V. CC wakeup on,  
Type-C not connected  
SID_DS3  
IDD_DS3  
450  
µA enabled for both PD  
ports. TA = 25 °C.  
All faults disabled  
except VBAT-GND.  
6.2.2  
Table 8  
Spec ID  
CPU  
CPU specifications  
Parameter  
Description  
Min  
Typ Max Unit  
Details/conditions  
–40 °C TA +105 °C,  
SID.CLK#4  
FCPU  
CPU input frequency  
35  
48  
MHz  
All VDDD  
Wakeup from deepsleep  
mode  
External reset pulse  
width  
SID.PWR#19 TDEEPSLEEP  
SYS.XRES#5 TXRES  
µs  
5
Power-up to “ready to  
SYS.FES#1 T_PWR_RDY  
5
25  
ms  
accept I2C/CC command”  
6.2.3  
GPIO  
Table 9  
GPIO DC specifications  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Unit Details/conditions  
Input voltage HIGH  
threshold  
Input voltage LOW  
threshold  
Output voltage HIGH  
level  
SID.GIO#9  
VIH_CMOS  
0.7 × VDDD  
CMOS input  
SID.GIO#10 VIL_CMOS  
VDDD – 0.6  
0.3 × VDDD  
V
IOH = –4 mA,  
–40 °C TA +105 °C  
IOL = 10 mA,  
–40°C TA +105 °C  
SID.GIO#7  
SID.GIO#8  
SID.GIO#2  
SID.GIO#3  
SID.GIO#4  
VOH_3V  
VOL_3V  
Rpu  
Output voltage LOW  
level  
0.6  
Pull-up resistor when  
enabled  
Pull-down resistor  
when enabled  
Input leakage current  
(absolute value)  
3.5  
5.6  
8.5  
k–40 °C TA +105 °C  
Rpd  
IIL  
2
nA +25 °C TA, 3-V VDDD  
–40 °C TA +105 °C,  
SID.GIO#5  
SID.GIO#6  
CPIN_A  
22  
Capacitance on DP,  
DM pins  
Max pin capacitance  
LVTTL input  
pF  
–40 °C TA +105 °C,  
ALL VDDD, All other  
I/Os  
CPIN  
3
7
SID.GIO#11 VIH_TTL  
SID.GIO#12 VIL_TTL  
2.0  
0.8  
V
–40 °C to +105 °C TA  
Datasheet  
30  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Electrical specifications  
Table 9  
Spec ID  
GPIO DC specifications (continued)  
Parameter  
Description  
Min  
Typ  
Max  
Unit Details/conditions  
Input hysteresis,  
SID.GIO#13 VHYSTTL  
SID.GIO#14 VHYSCMOS  
100  
VDDD > 2.7 V  
mV  
LVTTL, VDDD > 2.7 V  
Input hysteresis  
CMOS  
0.1 × VDDD  
Table 10  
Spec ID  
GPIO AC specifications  
Parameter  
Description  
Min Typ Max Unit Details/conditions  
SID.GIO#16 TRISEF  
SID.GIO#17 TFALLF  
SID.GIO#18 TRISES  
SID.GIO#19 TFALLS  
Rise time in fast strong mode  
Fall time in fast strong mode  
Rise time in slow strong mode  
Fall time in slow strong mode  
GPIO FOUT; 3.0 V VDDD 5.5 V,  
fast strong mode  
GPIO FOUT; 3.0 V VDDD 5.5 V,  
slow strong mode.  
GPIO input operating  
frequency; 3.0 V VDDD 5.5 V.  
2
12  
60  
ns  
10  
C
load = 25 pF,  
–40 °C TA +105 °C  
SID.GIO#20 FGPIO_OUT1  
SID.GIO#21 FGPIO_OUT2  
SID.GIO#22 FGPIO_IN  
16  
7
MHz  
16  
–40 °C TA +105 °C  
Datasheet  
31  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Electrical specifications  
Table 11  
GPIO OVT DC specifications  
Parameter  
Details/  
Spec ID  
Description  
Min Typ Max Unit  
conditions  
Max / Min current in  
to any input or  
output, pin-to-pin,  
pin-to-supply  
GPIO_20VT  
SID.GPIO_20VT_GIO#4 GPIO_20VT_I_LU latch up current –140  
limits  
140 mA  
GPIO_20VT  
SID.GPIO_20VT_GIO#5 GPIO_20VT_RPU Pull-up resistor  
value  
GPIO_20VT  
–40 °C TA +105 °C,  
3.5  
8.5  
2
kΩ  
All VDDD  
SID.GPIO_20VT_GIO#6 GPIO_20VT_RPD Pull-down  
resistor value  
GPIO_20VT  
Input leakage  
SID.GPIO_20VT_GIO#16 GPIO_20VT_IIL  
current  
nA +25 °C TA, 3-V VDDD  
(absolute value)  
GPIO_20VT pin  
SID.GPIO_20VT_GIO#17 GPIO_20VT_CPIN  
capacitance  
-40 °C TA +105 °C,  
10  
pF  
All VDDD  
GPIO_20VT  
VDDD  
- 0.6  
SID.GPIO_20VT_GIO#33 GPIO_20VT_Voh Output voltage  
IOH = -4 mA  
high level.  
GPIO_20VT  
Output Voltage  
low level.  
SID.GPIO_20VT_GIO#36 GPIO_20VT_Vol  
0.6  
IOL = 8 mA  
V
GPIO_20VT_Vih_ GPIO_20VT  
–40 °C TA +105 °C,  
SID.GPIO_20VT_GIO#41  
SID.GPIO_20VT_GIO#42  
2
LVTTL  
LVTTL input  
All VDDD  
GPIO_20VT_Vil_ GPIO_20VT  
0.8  
LVTTL  
LVTTL input  
GPIO_20VT  
Input hysteresis 100  
LVTTL  
GPIO_20VT_Vhyst  
tl  
–40 °C TA +105 °C,  
All VDDD  
SID.GPIO_20VT_GIO#43  
mV  
mA  
GPIO_20VT  
GPIO_20VT_ITOT  
SID.GPIO_20VT_GIO#45 _  
GPIO  
Maximum total  
V (GPIO_20VT pin)  
> VDDD  
95  
sink pin current  
to ground  
Datasheet  
32  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Electrical specifications  
Table 12  
GPIO OVT AC specifications  
Details/  
Spec ID  
Parameter  
Description  
Min Typ Max Unit  
conditions  
GPIO_20VT rise time in  
fast strong mode  
GPIO_20VT fall time in  
fast strong mode  
GPIO_20VT rise time in  
slow strong mode  
GPIO_20VT fall time in  
slow strong mode  
GPIO_20VT GPIO Fout;  
3 V VDDD 5.5 V.  
Fast strong mode.  
GPIO_20VT GPIO Fout;  
3 V VDDD 5.5V. Slow  
strong mode.  
SID.GPIO_20VT_70  
SID.GPIO_20VT_71  
GPIO_20VT_TriseF  
GPIO_20VT_TfallF  
1
15  
70  
ns  
SID.GPIO_20VT_GIO#46 GPIO_20VT_TriseS  
SID.GPIO_20VT_GIO#47 GPIO_20VT_TfallS  
10  
All VDDD  
,
Cload = 25 pF  
GPIO_20VT_FGPIO  
SID.GPIO_20VT_GIO#48  
_OUT1  
33  
7
GPIO_20VT_FGPIO  
SID.GPIO_20VT_GIO#50  
_OUT3  
MHz  
GPIO_20VT GPIO input  
operating frequency;  
3 V VDDD 5.5 V  
GPIO_20VT_FGPIO  
SID.GPIO_20VT_GIO#52  
_IN  
8
All VDDD  
6.2.4  
XRES  
Table 13  
XRES DC specifications  
Details/  
Spec ID  
Parameter  
Description  
Input voltage HIGH  
Min  
Typ  
Max  
Unit  
conditions  
SID.XRES#1  
VIH_XRES  
threshold on XRES 0.7 × VDDD  
pin  
V
CMOS input  
Input voltage LOW  
threshold on XRES  
pin  
SID.XRES#2  
SID.XRES#3  
SID.XRES#4  
VIL_XRES  
CIN_XRES  
VHYSXRES  
0.3 × VDDD  
Input capacitance  
on XRES pin  
7
pF  
Input voltage  
hysteresis on XRES  
pin  
0.05 × VDDD  
mV  
Datasheet  
33  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Electrical specifications  
6.3  
Digital peripherals  
The following specifications apply to the Timer/Counter/PWM peripherals in the Timer mode.  
6.3.1  
Pulse-width modulation (PWM) for GPIO pins  
Table 14  
PWM AC specifications  
Spec ID  
Parameter  
Description  
Min Typ Max Unit  
Details/conditions  
SID.TCPWM.1 TCPWMFREQ Operating frequency  
Fc  
MHz Fc max = CLK_SYS  
Minimum possible width of  
overflow, underflow, and  
CC (counter equals  
Output trigger pulse  
SID.TCPWM.3 TPWMEXT  
width  
2/Fc  
compare value) outputs  
ns  
Minimum time between  
successive counts  
Minimum pulse width of  
PWM output  
SID.TCPWM.4 TCRES  
Resolution of counter  
PWM resolution  
1/Fc  
SID.TCPWM.5 PWMRES  
6.3.2  
Table 15  
I2C  
Fixed I2C AC specifications  
Spec ID  
Parameter  
Description  
Bit rate  
Min Typ Max  
Unit  
Details/conditions  
SID153  
FI2C1  
1
Mbps  
6.3.3  
UART  
Table 16  
Fixed UART AC specifications  
Spec ID  
Parameter  
Description  
Bit rate  
Min Typ Max  
Unit  
Details/conditions  
SID162  
FUART  
1
Mbps  
6.3.4  
SPI  
Table 17  
Fixed SPI AC specifications  
Spec ID  
Parameter  
Description  
Min Typ Max Unit  
Details/conditions  
SPI operating frequency  
(Master; 6X oversampling)  
SID166  
FSPI  
8
MHz  
Table 18  
Fixed SPI slave mode AC specifications  
Spec ID  
Parameter  
Description  
Min Typ  
Max  
Unit  
Details/conditions  
MOSI valid before Sclock  
capturing edge  
SID170  
SID171  
TDMI  
40  
MISO valid after Sclock  
driving edge  
48 +  
(3 × TCPU  
TDSO  
TCPU = 1/FCPU  
)
MISO valid after Sclock  
driving edge in Ext Clk  
mode  
SID171A  
TDSO_EXT  
48  
ns  
Previous MISO data hold  
time  
SID172  
THSO  
0
SSEL valid to first SCK  
valid edge  
SID172A  
TSSELSCK  
100  
Datasheet  
34  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Electrical specifications  
Table 19  
Spec ID  
Fixed SPI master mode AC specifications  
Parameter  
Description  
Min Typ Max Unit  
Details/conditions  
MOSI valid after SClock  
driving edge  
SID167  
SID168  
SID169  
TDMO  
20  
0
15  
MISO valid before SClock  
capturing edge  
Full clock,  
TDSI  
ns  
late MISO sampling  
Previous MOSI data hold  
time  
Referred to slave  
capturing edge  
THMO  
6.3.5  
Memory  
Table 20  
Flash AC specifications  
Spec ID  
Parameter Description  
Min Typ Max Unit  
Details/conditions  
Row (block) write time  
(erase and program)  
SID.MEM#2 FLASH_WRITE  
20  
–40 °C TA +85 °C,  
All VDDD  
SID.MEM#1 FLASH_ERASE Row erase time  
15.5  
ms  
7
FLASH_ROW_ Row program time after  
SID.MEM#5  
PGM  
erase  
SID178  
SID180  
TBULKERASE  
TDEVPROG  
Bulk erase time (32 KB)  
Total device program time  
35  
7.5  
s
25 °C TA 55 °C,  
SID.MEM#6 FLASH_ENPB Flash write endurance  
100k  
20  
cycles  
All VDDD  
Flash retention, TA 55 °C,  
SID182  
FRET1  
FRET2  
100K P/E cycles  
years  
Flash retention, TA 85 °C,  
10K P/E cycles  
SID182A  
10  
Datasheet  
35  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Electrical specifications  
6.4  
System resources  
6.4.1  
Power-on-reset (POR) with brown-out  
Table 21  
Imprecise power-on reset (IPOR)  
Spec ID  
Parameter  
VRISEIPOR  
Description  
Min Typ Max Unit  
Details/conditions  
SID185  
SID186  
POR Rising trip voltage 0.80  
POR Falling trip voltage 0.70  
1.50  
1.4  
–40 °C TA +105 °C,  
V
All VDDD  
.
VFALLIPOR  
Table 22  
Precise POR  
Parameter  
Spec ID  
Description  
Min Typ Max Unit  
Details/conditions  
Brown-out detect (BOD)  
trip voltage in  
SID190  
SID192  
VFALLPPOR  
VFALLDPSLP  
1.48  
1.1  
1.62  
1.5  
–40 °C TA +105 °C,  
Active/Sleep modes  
V
All VDDD  
.
BOD trip voltage in  
deepsleep mode  
6.4.2  
SWD interface  
Table 23  
SWD interface specifications  
Spec ID  
Parameter  
F_SWDCLK1  
Description  
Min  
Typ  
Max  
Unit Details/conditions  
SID.SWD#1  
SID.SWD#2  
SID.SWD#3  
SID.SWD#4  
SID.SWD#5  
3.0 V VDDIO 5.5 V  
14  
MHz  
T_SWDI_SETUP  
T_SWDI_HOLD  
T_SWDO_VALID  
T_SWDO_HOLD  
0.25 × T  
T = 1/f SWDCLK  
ns  
1
0.50 × T  
6.4.3  
Internal main oscillator  
Table 24  
IMO AC specifications  
Spec ID  
Parameter  
FIMOTOL  
TSTARTIMO  
FIMO  
Description  
Min  
Typ Max Unit  
Details/conditions  
Frequency variation at  
48 MHz (trimmed)  
3.0 V VDDD < 5.5 V.  
–40 °C TA 105 °C.  
SID.CLK#13  
±2  
%
SID226  
IMO start-up time  
IMO frequency  
7
µs  
–40 °C TA +105 °C,  
All VDDD  
.
SID.CLK#1  
24  
48  
MHz  
6.4.4  
Internal low-speed oscillator  
Table 25  
Spec ID  
SID234  
SID238  
SID.CLK#5  
ILO AC specifications  
Parameter  
TSTARTILO1  
TILODUTY  
FILO  
Description  
ILO start-up time  
ILO duty cycle  
Min  
40  
20  
Typ Max Unit  
Details/conditions  
50  
40  
2
60  
80  
ms  
%
–40 °C TA +105 °C,  
All VDDD  
.
ILO frequency  
kHz  
Datasheet  
36  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Electrical specifications  
6.4.5  
PD  
Table 26  
PD DC specifications  
Details/  
Spec ID  
Parameter  
Description  
Min Typ Max Unit  
conditions  
Transmitter output high  
voltage  
SID.DC.cc_shvt.1 vSwing  
1.05  
1.2  
V
Transmitter output low  
voltage  
SID.DC.cc_shvt.2 vSwing_low  
0.075  
Transmitter output  
impedance  
SID.DC.cc_shvt.3 zDriver  
SID.DC.cc_shvt.4 zBmcRx  
SID.DC.cc_shvt.5 Idac_std  
33  
10  
64  
75  
Receiver input impedance  
M  
Source current for USB  
standard advertisement  
96  
Source current for 1.5 A at 5 V  
advertisement  
SID.DC.cc_shvt.6 Idac_1p5a  
SID.DC.cc_shvt.7 Idac_3a  
166  
304  
194  
356  
µA  
Source current for 3 A at 5 V  
advertisement  
Pull down termination  
resistance when acting as  
UFP (upstream facing port)  
SID.DC.cc_shvt.8 Rd  
4.59  
5.61  
k  
CC impedance to ground  
when disabled  
SID.DC.cc_shvt.10 zOPEN  
108  
CC voltages on DFP  
side-standard USB  
SID.DC.cc_shvt.11 DFP_default_0p2  
0.15  
0.25  
V
V
SID.DC.cc_shvt.12 DFP_1.5A_0p4  
SID.DC.cc_shvt.13 DFP_3A_0p8  
SID.DC.cc_shvt.14 DFP_3A_2p6  
CC voltages on DFP side-1.5 A 0.35  
CC voltages on DFP side-3 A 0.75  
CC voltages on DFP side-3 A 2.45  
0.45  
0.85  
2.75  
CC voltages on UFP  
0.61  
SID.DC.cc_shvt.15 UFP_default_0p66  
0.7  
side-standard USB  
SID.DC.cc_shvt.16 UFP_1.5A_1p23  
SID.DC.cc_shvt.17 Vattach_ds  
SID.DC.cc_shvt.18 Rattach_ds  
SID.DC.cc_shvt.19 VTX_step  
CC voltages on UFP side-1.5 A 1.16  
1.31  
0.6  
Deepsleep attach threshold  
Deepsleep pull-up resistor  
TX Drive voltage step size  
0.3  
10  
80  
%
50  
k  
mV  
120  
Datasheet  
37  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Electrical specifications  
6.4.6  
Analog-to-digital converter  
Table 27  
ADC DC specifications  
Spec ID  
SID.ADC.1 Resolution  
Parameter  
Description  
ADC resolution  
Min  
Typ  
8
Max  
Unit  
Bits  
Details/conditions  
Reference voltage  
generated from  
bandgap  
Reference voltage  
generated from VDDD  
Reference voltage  
generated from  
bandgap  
SID.ADC.2 INL  
Integral non-linearity  
–1.5  
1.5  
2.5  
SID.ADC.3 DNL  
Differential non-linearity –2.5  
Gain error –1.5  
LSB  
SID.ADC.4 Gain Error  
1.5  
Reference voltage  
SID.ADC.5 VREF_ADC1 Reference voltage of ADC VDDDmin  
SID.ADC.6 VREF_ADC2 Reference voltage of ADC 1.96  
VDDDmax  
2.04  
generated from VDDD  
V
Reference voltage  
generated from  
deepsleep reference  
2.0  
6.4.7  
HS CSA  
Table 28  
HS CSA DC specifications  
Spec ID  
Parameter  
Description  
Min Typ Max Unit Details/conditions  
CSA accuracy 5 mV < Vsense  
< 10 mV  
CSA accuracy 10 mV < Vsense  
< 15 mV  
SID.HSCSA.1 Csa_Acc1  
SID.HSCSA.2 Csa_Acc2  
-15  
-10  
15  
10  
CSA accuracy 15 mV < Vsense  
< 25 mV  
CSA accuracy 25 mV < Vsense  
CSA SCP at 6A with 5-mΩ sense  
resistor  
CSASCP at 10A with 5-mΩsense  
resistor  
CSA OCP at 1A with 5-mΩ sense  
resistor  
SID.HSCSA.3 Csa_Acc3  
SID.HSCSA.4 Csa_Acc4  
SID.HSCSA.7 Csa_SCP_Acc1  
-5  
-3  
5
3
%
Active mode  
-10  
10  
SID.HSCSA.8 Csa_SCP_Acc2  
SID.HSCSA.9 Csa_OCP_1A  
SID.HSCSA.10 Csa_OCP_5A  
104 130 156  
123 130 137  
CSA OCP for 5A with 5-mΩsense  
resistor  
Table 29  
Spec ID  
HS CSA AC specifications  
Parameter  
Description  
Min Typ Max Unit Details/conditions  
Delay from SCP threshold trip to  
external NFET power gate turn  
off  
SID.HSCSA.AC.1 TSCP_GATE  
3.5  
8
1-nF NFET gate  
3-nF NFET gate  
µs  
Delay from SCP threshold trip to  
SID.HSCSA.AC.2 TSCP_GATE_1 external NFET power gate turn  
off  
Datasheet  
38  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Electrical specifications  
6.4.8  
UV/OV  
Table 30  
UV/OV specifications  
Spec ID  
Parameter  
Description  
Min Typ Max Unit Details/conditions  
Overvoltage threshold  
Accuracy, 4 V to 11 V  
Overvoltage threshold  
Accuracy, 11 V to 21.5 V  
Undervoltage threshold  
Accuracy, 3 V to 3.3 V  
Undervoltage threshold  
Accuracy, 3.3 V to 4.0 V  
SID.UVOV.1  
SID.UVOV.2  
SID.UVOV.3  
SID.UVOV.4  
SID.UVOV.5  
VTHOV1  
VTHOV2  
VTHUV1  
VTHUV2  
VTHUV3  
–3  
–3.2  
–4  
3
3.2  
4
%
Active mode  
–3.5  
–3  
3.5  
3
Undervoltage threshold  
Accuracy, 4.0 V to 21.5 V  
6.4.9  
VCONN switch  
Table 31  
VCONN switch DC specifications  
Spec ID  
Parameter  
Description  
Min Typ Max Unit Details/conditions  
VCONN output voltage with  
20 mA load current  
Connector side pin leakage  
current  
DC.VCONN.1 VCONN_OUT  
DC.VCONN.2 ILEAK  
4.5  
5.5  
10  
V
µA  
VCONN over-current  
protection threshold  
DC.VCONN.3 IOCP  
22.5  
30 37.5 mA  
Table 32  
Spec ID  
VCONN switch AC specifications  
Parameter  
Description  
Min Typ Max Unit Details/conditions  
AC.VCONN.1 TON  
AC.VCONN.2 TOFF  
VCONN switch turn-on time  
VCONN switch turn-off time  
600  
10  
µs  
6.4.10  
VBUS  
Table 33  
VBUS discharge specifications  
Spec ID  
Parameter  
Description  
Min Typ Max Unit Details/conditions  
20-V NMOS ON resistance for  
DS = 1  
20-V NMOS ON resistance for  
DS = 2  
20-V NMOS ON resistance for  
DS = 4  
20-V NMOS ON resistance for  
DS = 8  
SID.VBUS.DISC.1 R1  
SID.VBUS.DISC.2 R2  
SID.VBUS.DISC.3 R4  
SID.VBUS.DISC.4 R8  
SID.VBUS.DISC.5 R16  
500  
250  
125  
62.5  
31.25  
2000  
1000  
500  
250  
125  
10  
Measured at 0.5 V  
20-V NMOS ON resistance for  
DS = 16  
Vbus_stop_ Error percentage of final  
When VBUS is  
discharged to 5 V  
SID.VBUS.DISC.6  
%
error  
VBUS value from setting  
Datasheet  
39  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Electrical specifications  
6.4.11  
Voltage regulation  
Table 34  
Voltage regulation DC specifications  
Spec ID  
Parameter  
Description  
Min Typ Max Unit Details/conditions  
SID.DC.VR.1 VOUT  
VBUS_IN output voltage range 3.3  
21.5  
V
VBUS_IN voltage regulation  
accuracy  
SID.DC.VR.2 VR  
±3  
±5  
%
VIN Supply below which chip  
will get reset  
SID.DC.VR.3 VIN_UVLO  
1.7  
3.0  
V
Table 35  
Spec ID  
SID.VREG.1 TSTART  
Voltage regulator specifications  
Parameter  
Description  
Min Typ Max Unit Details/conditions  
200 µs  
Total startup time for the  
regulator supply outputs  
6.4.12  
VBUS gate driver  
Table 36  
VBUS gate driver DC specifications  
Spec ID  
Parameter  
Description  
Min Typ Max Unit Details/conditions  
Gate to source overdrive during  
ON condition  
SID.GD.1  
SID.GD.2  
SID.GD.5  
GD_VGS  
4.5  
5
10  
V
NFET driver is ON  
Applicable on  
Resistance when pull-down  
enabled  
GD_RPD  
GD_drv  
2
kVBUS_CTRL to turn  
off external NFET  
Programmable typical gate  
current  
0.3  
9.75 µA  
Table 37  
Spec ID  
VBUS gate driver AC Specifications  
Parameter  
Description  
Min Typ Max Unit Details/conditions  
VBUS_CTRL LOW to HIGH (1V to  
VBUS + 1 V) with 3-nF external  
capacitance  
VBUS_CTRL HIGH to LOW (90% to  
10%) with 3-nF external  
capacitance  
SID.GD.3  
SID.GD.4  
TON  
2
5
7
10 ms VBUS_IN = 5 V  
TOFF  
µs VBUS_IN = 21.5 V  
6.4.12.1  
Table 38  
Spec ID  
PWM.1  
PWM controller  
Buck-boost PWM controller specifications  
Parameter  
FSW  
Description  
Min Typ Max Unit Details/conditions  
Switching frequency  
150  
600 kHz  
Spread spectrum frequency  
dithering span  
PWM.2  
PWM.3  
PWM.4  
FSS  
10  
%
Ratio_Buck_  
BB  
Ratio_Boost_  
BB  
Buck to buck boost ratio  
Boost to buck boost ratio  
1.16  
0.84  
Datasheet  
40  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Electrical specifications  
6.4.12.2  
Table 39  
Spec ID  
NFET gate driver  
Buck-boost NFET gate driver specifications  
Parameter  
Description  
Min Typ Max Unit Details/conditions  
Top-side gate driver  
DR.1  
DR.2  
DR.3  
DR.4  
DR.5  
DR.6  
R_HS_PU  
2
on-resistance - Gate pull-up  
Top-side gate driver  
on-resistance - Gate pull-down  
Bottom-side gate driver  
on-resistance - Gate pull-up  
Bottom-side gate driver  
on-resistance - Gate pull-down  
Dead time before high-side rising  
edge  
Dead time before low-side rising  
edge  
R_HS_PD  
R_LS_PU  
R_LS_PD  
Dead_HS  
Dead_LS  
1.5  
Ω
2
1.5  
30  
ns  
DR.7  
DR.8  
DR.9  
DR.10  
Tr_HS  
Tf_HS  
Tr_LS  
Tf_LS  
Top-side gate driver rise time  
Top-side gate driver fall time  
Bottom-side gate driver rise time  
Bottom-side gate driver fall time  
25  
20  
25  
20  
6.4.12.3  
LS-SCP  
Table 40  
LS-SCP DC specifications  
Spec ID  
Parameter Description  
Min Typ Max Unit  
Details/conditions  
Using differential inputs  
(CSN_1_GPIO12,  
CSP_1_GPIO13 or  
CSP_0_GPIO0,  
Short circuit current  
detect @ 6A  
SID.LSSCP.DC.1 SCP_6A  
SID.LSSCP.DC.1A SCP_6A_SE  
SID.LSSCP.DC.2 SCP_10A  
SID.LSSCP.DC.2A SCP_10A_SE  
5.4  
4.5  
9
6
6
6.6  
7.5  
11  
CSN_0_GPIO1)  
Using single ended inputs  
(CSP_1_GPIO13 or  
CSP_0_GPIO0)andinternal  
ground  
Short circuit current  
detect @ 6A  
A
Using differential inputs  
(CSN_1_GPIO12,  
CSP_1_GPIO13 or  
CSP_0_GPIO0,  
Short circuit current  
detect @10A  
10  
CSN_0_GPIO1)  
Using single ended inputs  
(CSP_1_GPIO13 or  
CSP_0_GPIO0)andinternal  
ground  
Short circuit current  
detect @10A  
7.5 10 12.5  
6.4.12.4  
Table 41  
Spec ID  
Thermal specifications  
Thermal specifications  
Parameter  
OTP  
Description  
Thermal shutdown  
Min Typ Max Unit  
120 125 130 °C  
Details/conditions  
SID.OTP.1  
Datasheet  
41  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC control-  
ler  
Ordering information  
7
Ordering information  
Table 42 lists the EZ-PD™ CCG7DC part numbers and features.  
Table 42  
EZ-PD™ CCG7DC ordering information  
Termination  
Application  
Switching  
frequency  
Package  
type  
MPN  
Role  
resistor  
CYPD7271-68LQXQ Dual-port USB-C RP  
PD AC-DC power  
DFP  
(Power source  
only)  
150 kHz - 600 kHz 68-pin QFN  
adapter/cigarette  
lighter adapter  
(CLA)  
7.1  
Ordering code definitions  
CY  
X
X
X
PD  
XX XX  
X
XX  
X
T: Tape and reel (optional)  
Grade/ temperature range: Q = Extended industrial grade (–40 °C to + 105 °C)  
Lead: X = Pb-free  
Package type: LQ = QFN  
Number of pins in the package  
Application and feature combination designation  
Number of Type-C ports: 1 = 1 port, 2 = 2 port  
Product type: 7 = Seventh-generation product family  
Marketing code: PD = Power delivery product family  
Company ID: CY = CYPRESS (An Infineon company)  
Datasheet  
42  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Packaging  
8
Packaging  
Table 43  
Parameter  
TJ  
TJA  
TJB  
Package characteristics  
Description  
Operating junction temperature  
Package JA  
Conditions  
Min  
–40  
Typ  
Max  
125  
14.8  
4.3  
Unit  
°C  
°C/W  
25  
Package JB  
TJC  
Package JC  
12.9  
Table 44  
Solder reflow peak temperature  
Maximum time within 5°C of  
peak temperature  
30 seconds  
Package  
Maximum peak temperature  
260°C  
68-pin QFN  
Table 45  
Package moisture sensitivity level (MSL), IPC/JEDEC J-STD-2  
Package  
MSL  
68-pin QFN  
MSL 3  
Datasheet  
43  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Package diagram  
9
Package diagram  
NOTES:  
DIMENSIONS  
SYMBOL  
e
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. N IS THE TOTAL NUMBER OF TERMINALS.  
MIN.  
0.30  
NOM.  
0.40 BSC  
68  
17  
0.40  
MAX.  
0.50  
3
DIMENSION "b" APPLIES TO METALLIZED TERMINAL AND IS MEASURED  
BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP. IF THE TERMINAL HAS  
THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE  
DIMENSION "b" SHOULD NOT BE MEASURED IN THAT RADIUS AREA.  
ND REFERS TO THE NUMBER OF TERMINALS ON D SIDE.  
N
ND  
L
b
D2  
E2  
D
0.15  
5.60  
5.60  
0.20  
5.70  
0.25  
5.80  
5.80  
4
5
6
PIN #1 ID ON TOP WILL BE LOCATED WITHIN THE INDICATED ZONE.  
COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK  
SLUG AS WELL AS THE TERMINALS.  
5.70  
8.00 BSC  
E
A
8.00 BSC  
7. JEDEC SPECIFICATION NO. REF. : N/A.  
8. INDEX FEATURE CAN EITHER BE AN OPTION 1 : "MOUSE BITE" OR  
OPTION 2 : CHAMFER.  
-
-
-
0.65  
0.05  
A1  
A3 (Option 1)  
A3 (Option 2)  
R
0.00  
0.203 REF  
0.152 REF  
0.20 TYP  
0.75 MIN  
K
002-31802 *C  
Figure 12  
68-QFN package drawing (8 x 8 mm)  
Datasheet  
44  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Acronyms  
10  
Acronyms  
Table 46  
Acronyms used in this document  
Acronym  
Description  
ADC  
analog-to-digital converter  
AFC  
Samsung adaptive fast charging  
Arm  
advanced RISC machine, a CPU architecture  
central processing unit  
CPU  
CSA  
current sense amplifier  
DAC  
digital-to-analog converter  
forced continuous current/conduction mode  
general-purpose input/output  
high-side driver  
FCCM  
GPIO  
HSDR  
I2C, or IIC  
IDAC  
I/O  
inter-integrated circuit, a communications protocol  
current DAC  
input/output, see also GPIO  
low-side driver  
LSDR  
MCU  
OCP  
microcontroller unit  
overcurrent protection  
OVP  
overvoltage protection  
PD  
power delivery  
POR  
power-on reset  
PSoC™  
PSM  
Programmable system-on-chip  
pulse skipping mode  
PWM  
RAM  
pulse-width modulator  
random-access memory  
serial peripheral interface, a communications protocol  
static random access memory  
timer/counter/PWM  
SPI  
SRAM  
TCPWM  
a new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to  
100 W of power  
Type-C  
UART  
UFP  
universal asynchronous transmitter receiver, a communications protocol  
upstream facing port  
UVP  
undervoltage protection  
USB  
UVLO  
ZCD  
universal Serial Bus  
under-voltage lockout  
zero crossing detector  
Datasheet  
45  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Document conventions  
11  
Document conventions  
11.1  
Units of measure  
Table 47  
Units of measure  
Symbol  
Unit of measure  
°C  
degrees Celsius  
hertz  
Hz  
KB  
1024 bytes  
kHz  
k  
Mbps  
MHz  
M  
Msps  
µA  
kilohertz  
kilo ohm  
megabits per second  
megahertz  
mega-ohm  
megasamples per second  
microampere  
microfarad  
microsecond  
microvolt  
µF  
µs  
µV  
µW  
mA  
m  
ms  
mV  
nA  
microwatt  
milliampere  
milliohm  
millisecond  
millivolt  
nanoampere  
nanosecond  
ohm  
ns  
pF  
picofarad  
ppm  
ps  
parts per million  
picosecond  
second  
s
sps  
samples per second  
Datasheet  
46  
002-32352 Rev. *C  
2022-10-19  
EZ-PD™ CCG7DC dual-port USB-C power delivery and DC-DC controller  
Revision history  
Revision history  
Document  
Date  
Description of changes  
version  
*C  
2022-10-19  
Publish to web.  
Datasheet  
47  
002-32352 Rev. *C  
2022-10-19  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
For further information on the product, technology,  
delivery terms and conditions and prices please  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”).  
Edition 2022-10-19  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement of  
intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2022 Infineon Technologies AG.  
All Rights Reserved.  
Except as otherwise explicitly approved by Infineon  
In addition, any information given in this document  
is subject to customer’s compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and standards  
concerning customer’s products and any use of the  
product of Infineon Technologies in customer’s  
applications.  
Technologies in  
authorized  
a written document signed by  
Do you have a question about this  
document?  
Go to www.infineon.com/support  
representatives  
of  
Infineon  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of the  
product or any consequences of the use thereof can  
reasonably be expected to result in personal injury.  
Document reference  
002-32352 Rev. *C  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

相关型号:

CYPD7271-68LQXQT

EZ-PD™ CCG7DC CYPD7271-68LQXQT is the tape and reel packing type option belonging to the CCG7DC family of highly integrated dual-port USB-C Power Delivery solutions with integrated buck-boost controllers.
INFINEON

CYPD7291-68LDXS

EZ-PD™ CCG7D CYPD7291-68LDXS is the tray packing type option belonging to EZ-PD™ CCG7D family of Infineon’s highly integrated dual-port USB-C Power Delivery (PD) with integrated buck-boost controller for automotive in-cabin charger applications.
INFINEON

CYPD7291-68LDXST

EZ-PD™ CCG7D CYPD7291-68LDXST is the tape and reel packing type option belonging to EZ-PD™ CCG7D family of Infineon’s highly integrated dual-port USB-C Power Delivery (PD) with integrated buck-boost controller for automotive in-cabin charger applications.
INFINEON

CYPD7299-68LDXS

EZ-PD™ CCG7D CYPD7299-68LDXS is the tray packing type option belonging to EZ-PD™ CCG7D family of Infineon’s highly integrated dual-port USB-C Power Delivery (PD) with integrated buck-boost controller for automotive in-cabin charger and video applications.
INFINEON

CYPD7299-68LDXST

EZ-PD™ CCG7D CYPD7299-68LDXST is the tape and reel packing type option belonging to EZ-PD™ CCG7D family of Infineon’s highly integrated dual-port USB-C Power Delivery (PD) with integrated buck-boost controller for automotive in-cabin charger and video applications.
INFINEON

CYPM1115-48LQXI

EZ-PD™ PMG1-B1 CYPM1115-48LQXI因其Rp 和Rd 终端电阻和托盘包装而与众不同。它是EZ-PD™ PMG1-B1系列高度集成的单端口USB-C电力传输(PD)解决方案的一部分,集成了降压-升压控制器。
INFINEON

CYPM1115-48LQXIT

EZ-PD™ PMG1-B1 CYPM1115-48LQXIT因其Rp 和Rd 终端电阻和卷带包装而与众不同。它是EZ-PD™ PMG1-B1系列高度集成的单端口USB-C电力传输(PD)解决方案的一部分,集成了降压-升压控制器。
INFINEON

CYPM1116-48LQXI

EZ-PD™ PMG1-B1 CYPM1116-48LQXI因其Rp 和Rd 终端电阻和托盘包装而与众不同。它是EZ-PD™ PMG1-B1系列高度集成的单端口USB-C电力传输(PD)解决方案的一部分,集成了降压-升压控制器。
INFINEON

CYPM1116-48LQXIT

EZ-PD™ PMG1-B1 CYPM1116-48LQXIT因其Rp 和Rd 终端电阻和卷带封装而与众不同。它是EZ-PD™ PMG1-B1系列高度集成的单端口USB-C电力传输(PD)解决方案的一部分,集成了降压-升压控制器。
INFINEON

CYPM1211-40LQXI

EZ-PD™ PMG1-S2 CYPM1211-40LQXI是PMG1-S2的托盘包装类型选项,它支持双角色端口(DRP)USB-C PD应用并集成了一个USB全速设备控制器。
INFINEON

CYPM1211-40LQXIT

EZ-PD™ PMG1-S2 CYPM1211-40LQXIT是PMG1-S2的卷带封装类型选项,它支持双角色端口(DRP)USB-C PD应用并集成了一个USB全速设备控制器。
INFINEON

CYPM1211-42FNXI

EZ-PD™ PMG1-S2 CYPM1211-42NFXI is the tray packing type option of the PMG1-S2, it supports Dual Role Port (DRP) USB-C PD applications and integrates a USB full-speed device controller.
INFINEON