CY8C4248BZS-L489 [INFINEON]

Automotive PSoC™ 4200L;
CY8C4248BZS-L489
型号: CY8C4248BZS-L489
厂家: Infineon    Infineon
描述:

Automotive PSoC™ 4200L

文件: 总56页 (文件大小:770K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY8C4248  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
General description  
PSoC™ 4 is a scalable and reconfigurable platform architecture for a family of programmable embedded system  
controllers with an Arm® Cortex®-M0 CPU. It combines programmable and reconfigurable analog and digital  
blocks with flexible automatic routing. The PSoC™ 4200L product family, based on this platform, is a combination  
of a microcontroller with digital programmable logic, programmable analog, programmable interconnect,  
secure expansion of memory off-chip, high-performance analog-to-digital conversion, opamps with Comparator  
mode, and standard communication and timing peripherals. The PSoC™ 4200L products will be fully compatible  
with members of the PSoC™ 4 platform for new applications and design needs. The programmable analog and  
digital subsystems allow flexibility and in-field tuning of the design.  
Features  
• 32-bit MCU subsystem  
- 48 MHz Arm® Cortex®-M0 CPU with single-cycle multiply  
- Up to 256 kB of flash with read accelerator  
- Up to 32 kB of SRAM  
- DMA engine with 32 channels  
• Programmable analog  
- Four opamps that operate in Deep Sleep mode at very low current levels  
- All opamps have reconfigurable high current pin-drive, high-bandwidth internal drive, ADC input buffering,  
and Comparator modes with flexible connectivity allowing input connections to any pin  
- Four current DACs (IDACs) for general-purpose or capacitive sensing applications on any pin  
- Two low-power comparators that operate in Deep Sleep mode  
• Programmable digital  
- Eight programmable logic blocks, each with 8 Macrocells and an 8-bit data path (called universal digital blocks  
or UDBs)  
- Infineon-provided peripheral component library, user-defined state machines, and Verilog input  
• Low-power 1.71 V to 5.5 V operation  
- 20-nA Stop Mode with GPIO pin wakeup  
- Hibernate and Deep Sleep modes allow wakeup-time versus power trade-offs  
• Capacitive sensing  
- Two capacitive sigma-delta blocks provide best-in-class SNR (>5:1) and water tolerance  
- Infineon-supplied software component makes capacitive sensing design easy  
- Automatic hardware tuning (SmartSense)  
• Segment LCD drive  
- LCD drive supported on any pin with up to a maximum of 64 outputs (common or segment)  
- Operates in Deep Sleep mode with 4 bits per pin memory  
• Serial communication  
- Four independent run-time reconfigurable Serial Communication Blocks (SCBs) with reconfigurable I2C, SPI,  
or UART functionality  
- USB Full-Speed device interface 12 Mbits/sec with Battery Charger Detect capability  
- Two independent CAN blocks for industrial and automotive networking  
• Timing and pulse-width modulation  
- Eight 16-bit timer/counter pulse-width modulator (TCPWM) blocks  
- Center-aligned, Edge, and Pseudo-random modes  
- Comparator-based triggering of Kill signals for motor drive and other high-reliability digital logic applications  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 1 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Features  
• Up to 98 programmable GPIOs  
- 124-ball VFBGA package  
- Any of up to 94 GPIO pins can be CAPSENSE™, analog, or digital  
- Drive modes, strengths, and slew rates are programmable  
• PSoC™ Creator design environment  
- Integrateddevelopment environment (IDE)providesschematicdesign entry andbuild (with analogand digital  
automatic routing)  
- Applications programming interface (API) component for all fixed-function and programmable peripherals  
• Industry-standard tool compatibility  
- After schematic entry, development can be done with Arm®-based industry-standard development tools  
Datasheet  
2 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Table of contents  
Table of contents  
General description ...........................................................................................................................1  
Features ...........................................................................................................................................1  
Table of contents...............................................................................................................................3  
1 More information............................................................................................................................4  
2 PSoC™ Creator................................................................................................................................5  
3 PSoC™ 4200L block diagram ............................................................................................................6  
4 Functional definition.......................................................................................................................7  
4.1 CPU and memory subsystem .................................................................................................................................7  
4.2 System resources....................................................................................................................................................7  
4.3 Analog blocks ..........................................................................................................................................................9  
4.4 Programmable digital...........................................................................................................................................12  
4.5 Fixed function digital ............................................................................................................................................13  
4.6 GPIO.......................................................................................................................................................................13  
4.7 SIO .........................................................................................................................................................................14  
4.8 Special function peripherals ................................................................................................................................14  
5 Pinouts ........................................................................................................................................15  
6 Power ..........................................................................................................................................20  
6.1 Unregulated external supply................................................................................................................................20  
6.2 Regulated external supply....................................................................................................................................20  
7 Electrical specifications.................................................................................................................21  
7.1 Absolute maximum ratings .................................................................................................................................21  
7.2 Device level specifications....................................................................................................................................21  
7.3 Analog peripherals................................................................................................................................................27  
7.4 Digital peripherals.................................................................................................................................................33  
7.5 Memory..................................................................................................................................................................37  
7.6 System resources..................................................................................................................................................38  
8 Ordering information ....................................................................................................................46  
8.1 Part numbering conventions................................................................................................................................47  
9 Packaging ....................................................................................................................................48  
10 Acronyms ...................................................................................................................................50  
11 Document conventions................................................................................................................54  
11.1 Units of measure .................................................................................................................................................54  
Revision history ..............................................................................................................................55  
Datasheet  
3 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
More information  
1
More information  
Infineon provides a wealth of data at www.infineon.com to help you to select the right PSoC™ device for your  
design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list  
of resources, see the knowledge base article KBA86521, How to Design with PSoC™ 3, PSoC™ 4, and PSoC™  
5LP. Following is an abbreviated list for PSoC™ 4:  
• Overview: PSoC™ Portfolio, PSoC™ Roadmap  
• Product Selectors: PSoC™ 1, PSoC™ 3, PSoC™ 4, PSoC™ 5LP  
In addition, PSoC™ Creator includes a device selection tool.  
• Application notes: Infineon offers a large number of PSoC™ application notes covering a broad range of topics,  
from basic to advanced level. Recommended application notes for getting started with PSoC™ 4 are:  
- AN79953: Getting started with PSoC™ 4  
- AN88619: PSoC™ 4 hardware design considerations  
- AN86439: Using PSoC™ 4 GPIO pins  
- AN57821: Mixed signal circuit board layout  
- AN81623: Digital design best practices  
- AN73854: Introduction to bootloaders  
- AN89610: Arm® Cortex® code optimization  
- AN85951: PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide  
• Technical reference manual (TRM) is in two documents:  
- Architecture TRM details each PSoC™ 4 functional block.  
- Registers TRM describes each of the PSoC™ 4 registers.  
• Development kits:  
- CY8CKIT-042, PSoC™ 4 pioneer kit, is an easy-to-use and inexpensive development platform. This kit includes  
connectors for Arduino™ compatible shields and Digilent® Pmod™ daughter cards.  
- CY8CKIT-046, PSoC™ 4 L-Series pioneer kit, is an easy-to-use and inexpensive development platform. This kit  
includes connectors for Arduino™ compatible shields.  
- CY8CKIT-049 is a very low-cost prototyping platform. It is a low-cost alternative to sampling PSoC™ 4 devices.  
- CY8CKIT-001 is a common development platform for any one of the PSoC™ 1, PSoC™ 3, PSoC™ 4, or PSoC™  
5LP families of devices.  
The MiniProg3 device provides an interface for flash programming and debug.  
Datasheet  
4 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
PSoC™ Creator  
2
PSoC™ Creator  
PSoC™ Creator is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware  
and firmware design of PSoC™ 3, PSoC™ 4, and PSoC™ 5LP based systems. Create designs using classic, familiar  
schematic capture supported by over 100 pre-verified, production-ready PSoC™ Components; see the list of  
component datasheets. With PSoC™ Creator, you can:  
1. Drag and drop component icons to build your hardware system design in the main design workspace  
2. Codesign your application firmware with the PSoC™ hardware, using the PSoC™ Creator IDE C compiler  
3. Configure components using the configuration tools  
4. Explore the library of 100+ components  
5. Review component datasheets  
1
2
3
4
5
Figure 1  
Multiple-sensor example project in PSoCCreator contents  
Datasheet  
5 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
PSoC™ 4200L block diagram  
3
PSoC™ 4200L block diagram  
The PSoC™ 4200L devices include extensive support for programming, testing, debugging, and tracing both  
hardware and firmware.  
The Arm® serial wire debug (SWD) interface supports all programming and debug features of the device.  
Complete debug-on-chip functionality enables full-device debugging in the final system using the standard  
production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the  
standard programming connections are required to fully support debug.  
The PSoC™ Creator IDE provides fully integrated programming and debug support for PSoC™ 4200L devices. The  
SWD interface is fully compatible with industry-standard third-party tools. The PSoC™ 4200L family provides a  
level of security not possible with multi-chip application solutions or with microcontrollers. This is due to its  
ability to disable debug features, robust flash protection, and because it allows customer-proprietary function-  
ality to be implemented in on-chip programmable blocks.  
The debug circuits are enabled by default and can only be disabled in firmware. If not enabled, the only way to  
re-enable them is to erase the entire device, clear flash protection, and reprogram the device with new firmware  
that enables debugging.  
Additionally, all device interfaces can be permanently disabled (device security) for applications concerned  
about phishing attacks due to a maliciously reprogrammed device or attempts to defeat security by starting and  
interrupting flash programming sequences. Because all programming, debug, and test interfaces are disabled  
when maximum device security is enabled, PSoC™ 4200L with device security enabled may not be returned for  
failure analysis. This is a trade-off the PSoC™ 4200L allows the customer to make.  
CPU Subsystem  
PSoC 4200L  
Architecture  
SWD/TC  
Cortex  
M0  
48MHz  
FAST MUL  
SPCIF  
FLASH  
256KB  
SRAM  
32KB  
ROM  
8 KB  
DataWire/  
DMA  
32-bit  
AHB- Lite  
Read Accelerator  
SRAM Controller  
ROM Controller  
Initiator/ MMIO  
NVIC, IRQMX  
System Resources  
Power  
Sleep Control  
WIC  
System Interconnect (Multi Layer AHB)  
Peripheral Interconnect (MMIO)  
Peripherals  
POR  
REF  
LVD  
BOD  
PWRSYS  
NVLatches  
PCLK  
Clock  
Clock Control  
WDT  
Programmable  
Digital  
Programmable  
Analog  
512B  
IMO  
ILO  
ECO 2x PLL  
SAR ADC  
(12-bit)  
UDB  
...  
UDB  
Reset  
Reset Control  
XRES  
x1  
x8  
Test  
DFT Logic  
DFT Analog  
SMX  
CTBm  
x2  
2x OpAmp  
Port Interface & Digital System Interconnect (DSI)  
Power Modes  
Active/ Sleep  
Deep Sleep  
Hibernate  
High Speed I / O Matrix, 1x Programmable I/O  
80 x GPIO, 14 x GPIO_OVT,2x SIO  
I/O Subsystem  
Figure 2  
Block diagram  
Datasheet  
6 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Functional definition  
4
Functional definition  
CPU and memory subsystem  
CPU  
4.1  
4.1.1  
The Cortex®-M0 CPU in the PSoC™ 4200L is part of the 32-bit MCU subsystem, which is optimized for low-power  
operation with extensive clock gating. Most instructions are 16 bits in length and execute a subset of the Thumb-2  
instruction set. This enables fully compatible binary upward migration of the code to higher performance  
processors such as the Cortex®-M3 and M4, thus enabling upward compatibility. The Infineon implementation  
includes a hardware multiplier that provides a 32-bit result in one cycle. It includes a nested vectored interrupt  
controller (NVIC) block with 32 interrupt inputs and also includes a Wakeup Interrupt Controller (WIC), which can  
wake the processor up from the Deep Sleep mode allowing power to be switched off to the main processor when  
the chip is in the Deep Sleep mode. The Cortex®-M0 CPU provides a Non-Maskable Interrupt (NMI) input, which is  
made available to the user when it is not in use for system functions requested by the user.  
The CPU also includes a debug interface, the serial wire debug (SWD) interface, which is a 2-wire form of JTAG;  
the debug configuration used for PSoC™ 4200L has four break-point (address) comparators and two watchpoint  
(data) comparators.  
4.1.2  
Flash  
The PSoC™ 4200L has a flash module with a flash accelerator, tightly coupled to the CPU to improve average  
access times from the flash block. The flash block is designed to deliver 2 wait-state (WS) access time at 48 MHz  
and with 1-WS access time at 24 MHz. The flash accelerator delivers 85% of single-cycle SRAM access performance  
on average. Part of the flash module can be used to emulate EEPROM operation if required.  
4.1.3  
SRAM  
SRAM memory is retained during Hibernate.  
4.1.4  
SROM  
A supervisory ROM that contains boot and configuration routines is provided.  
4.1.5  
DMA  
A DMA engine is provided that can do 32-bit transfers and has chainable ping-pong descriptors.  
4.2  
System resources  
Power system  
4.2.1  
The power system is described in detail in the section “Power” on page 20. It provides assurance that voltage  
levels are as required for each respective mode and either delay mode entry (on power-on reset (POR), for  
example) until voltage levels are as required for proper function or generate resets (brown-out detect (BOD)) or  
interrupts (low voltage detect (LVD)). The PSoC™ 4200L operates with a single external supply over the range of  
1.71 to 5.5 V and has five different power modes, transitions between which are managed by the power system.  
The PSoC™ 4200L provides Sleep, Deep Sleep, Hibernate, and Stop low-power modes.  
Datasheet  
7 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Functional definition  
4.2.2  
Clock system  
The PSoC™ 4200L clock system is responsible for providing clocks to all subsystems that require clocks and for  
switching between different clock sources without glitching. In addition, the clock system ensures that no  
meta-stable conditions occur.  
The clock system for the PSoC™ 4200L consists of a crystal oscillator (4 to 33 MHz), a watch crystal oscillator (32  
kHz), a phase-locked loop (PLL), the IMO and the ILO internal oscillators, and provision for an external clock.  
IMO  
clk_hf  
clk_ext  
PLL #1  
ECO  
(optional )  
PLL #0  
dsi_in[0]  
dsi_in[1]  
dsi_in[2]  
dsi_in[3]  
dsi_out[3:0]  
ILO  
clk_lf  
WCO  
Figure 3  
PSoC™ 4200L MCU clocking architecture  
The clk_hf signal can be divided down to generate synchronous clocks for the UDBs, and the analog and digital  
peripherals. There are a total of 16 clock dividers for the PSoC™ 4200L, each with 16-bit divide capability; this  
allows 12 to be used for the fixed-function blocks and four for the UDBs. The analog clock leads the digital clocks  
to allow analog events to occur before digital clock-related noise is generated. The 16-bit capability allows a lot  
of flexibility in generating fine-grained frequency values and is fully supported in PSoC™ Creator.  
4.2.3  
IMO clock source  
The IMO is the primary source of internal clocking in the PSoC™ 4200L. It is trimmed during testing to achieve the  
specified accuracy. Trim values are stored in nonvolatile latches (NVL). Additional trim settings from flash can be  
used to compensate for changes. The IMO default frequency is 24 MHz and it can be adjusted between 3 to 48 MHz  
in steps of 1 MHz. IMO tolerance with Infineon-provided calibration settings is ±2%.  
4.2.4  
ILO clock source  
The ILO is a very low power oscillator, nominally 32 kHz, which is primarily used to generate clocks for peripheral  
operation in Deep Sleep mode. ILO-driven counters can be calibrated to the IMO to improve accuracy. Infineon  
provides a software component, which does the calibration.  
4.2.5  
Crystal oscillators and PLL  
The PSoC™ 4200L clock subsystem also implements two oscillators: high-frequency (4 to 33 MHz) and  
low-frequency (32-kHz watch crystal) that can be used for precision timing applications. The PLL can generate a  
48-MHz output from the high-frequency oscillator.  
4.2.6  
Watchdog timer  
A watchdog timer is implemented in the clock block running from the ILO; this allows watchdog operation during  
Deep Sleep and generates a watchdog reset if not serviced before the timeout occurs. The watchdog reset is  
recorded in the Reset Cause register.  
Datasheet  
8 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Functional definition  
4.2.7  
Reset  
The PSoC™ 4200L can be reset from a variety of sources including a software reset. Reset events are asynchronous  
and guarantee reversion to a known state. The reset cause is recorded in a register, which is sticky through reset  
and allows software to determine the cause of the reset. An XRES pin is reserved for external reset to avoid  
complications with configuration and multiple pin functions during power-on or reconfiguration.  
4.2.8  
Voltage reference  
The PSoC™ 4200L reference system generates all internally required references. A 1% voltage reference spec is  
provided for the 12-bit ADC. To allow better signal-to-noise ratios (SNR) and better absolute accuracy, it is  
possible to add an external bypass capacitor to the internal reference using a GPIO pin or to use an external  
reference for the SAR.  
4.3  
Analog blocks  
12-bit SAR ADC  
4.3.1  
The 12-bit, 1-Msps SAR ADC can operate at a maximum clock rate of 18 MHz and requires a minimum of 18 clocks  
at that frequency to do a 12-bit conversion.  
The block functionality is augmented for the user by adding a reference buffer to it (trimmable to ±1%) and by  
providing the choice (for the PSoC™ 4200L case) of three internal voltage references: VDD, VDD/2, and VREF  
(nominally 1.024 V) as well as an external reference through a GPIO pin. The Sample-and-Hold (S/H) aperture is  
programmable allowing the gain bandwidth requirements of the amplifier driving the SAR inputs, which  
determine its settling time, to be relaxed if required. The system performance will be 65 dB for true 12-bit  
precision if appropriate references are used and system noise levels permit. To improve performance in noisy  
conditions, it is possible to provide an external bypass (through a fixed pin location) for the internal reference  
amplifier.  
The SAR is connected to a fixed set of pins through an 8-input sequencer (expandable to 16 inputs). The sequencer  
cycles through selected channels autonomously (sequencer scan) and does so with zero switching overhead  
(that is, the aggregate sampling bandwidth is equal to 1 Msps, whether it is for a single channel or distributed  
over several channels). The sequencer switching is effected through a state machine or through firmware-driven  
switching. A feature provided by the sequencer is buffering of each channel to reduce CPU interrupt service  
requirements. To accommodate signals with varying source impedance and frequency, it is possible to have  
different sample times programmable for each channel. In addition, the signal range specification through a pair  
of range registers (low and high range values) is implemented with a corresponding out-of-range interrupt if the  
digitized value exceeds the programmed range; this allows fast detection of out-of-range values without the  
necessity of having to wait for a sequencer scan to be completed and the CPU to read the values and check for  
out-of-range values in software.  
The SAR is able to digitize the output of the on-board temperature sensor for calibration and other  
temperature-dependent functions. The SAR is not available in Deep Sleep and Hibernate modes as it requires a  
high-speed clock (up to 18 MHz). The SAR operating range is 1.71 to 5.5 V.  
Datasheet  
9 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Functional definition  
AHB System Bus and Programmable Logic  
Interconnect  
SARSEQ  
Sequencing  
and Control  
Data and  
Status Flags  
POS  
NEG  
SARADC  
External  
Reference  
and  
Reference  
Selection  
Bypass  
(optional)  
VDDD  
VREF  
VDD/2  
Inputs from other Ports  
Figure 4  
SAR ADC system diagram  
4.3.2  
Analog multiplex bus  
The PSoC™ 4200L has two concentric analog buses (Analog Mux Bus A and Analog Mux Bus B) that circumnavigate  
the periphery of the chip. These buses can transport analog signals from any pin to various analog blocks  
(including the opamps) and to the CAPSENSE™ blocks allowing, for instance, the ADC to monitor any pin on the  
chip. These buses are independent and can also be split into three independent sections. This allows one section  
to be used for CAPSENSE™ purposes, one for general analog signal processing, and the third for general-purpose  
digital peripherals and GPIO.  
4.3.3  
Four opamps (CTBm Blocks)  
The PSoC™ 4200L has four opamps with Comparator modes, which allow most common analog functions to be  
performed on-chip eliminating external components; PGAs, voltage buffers, filters, trans-impedance amplifiers,  
and other functions can be realized with external passives saving power, cost, and space. The on-chip opamps  
are designed with enough bandwidth to drive the Sample-and-Hold circuit of the ADC without requiring external  
buffering. The opamps can operate in the Deep Sleep mode at very low power levels. The following diagram  
shows one of two identical opamp pairs of the opamp subsystem.  
Datasheet  
10 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Functional definition  
OA0  
+
10x  
1x  
-
Internal  
Out0  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
OA1  
-
1x  
+
Internal  
Out1  
10x  
Figure 5  
Identical opamp pairs in opamp subsystem  
The ovals in Figure 5 represent analog switches, which may be controlled via user firmware, the SAR sequencer,  
or user-defined programmable logic. The opamps (OA0 and OA1) are configurable via these switches to perform  
all standard opamp functions with appropriate feedback components.  
The opamps (OA0 and OA1) are programmable and reconfigurable to provide standard opamp functionality via  
switchable feedback components, unity gain functionality for driving pins directly, or for internal use (such as  
buffering SAR ADC inputs as indicated in the diagram), or as true comparators.  
The opamp inputs provide highly flexible connectivity and can connect directly to dedicated pins or, via the  
analog mux buses, to any pin on the chip. Analog switch connectivity is controllable by user firmware as well as  
user-defined programmable digital state machines (implemented via UDBs).  
The opamps operate in Deep Sleep mode at very low currents allowing analog circuits to remain operational  
during Deep Sleep.  
4.3.4  
Temperature sensor  
The PSoC™ 4200L has one on-chip temperature sensor. This consists of a diode, which is biased by a current  
source that can be disabled to save power. The temperature sensor is connected to the ADC, which digitizes the  
reading and produces a temperature value using Infineon-supplied software that includes calibration and linear-  
ization.  
4.3.5  
Low-power comparators  
The PSoC™ 4200L has a pair of low-power comparators, which can also operate in the Deep Sleep and Hibernate  
modes. This allows the analog system blocks to be disabled while retaining the ability to monitor external voltage  
levels during low-power modes. The comparator outputs are normally synchronized to avoid meta-stability  
unless operating in an asynchronous power mode (Hibernate) where the system wake-up circuit is activated by  
a comparator switch event.  
Datasheet  
11 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Functional definition  
4.4  
Programmable digital  
4.4.1  
Universal digital blocks (UDBs) and port interfaces  
The PSoC™ 4200L has eight UDBs; the UDB array also provides a switched Digital System Interconnect (DSI) fabric  
that allows signals from peripherals and ports to be routed to and through the UDBs for communication and  
control. The UDB array is shown in the following figure.  
AHB Bridge CPUSS Dig CLKS  
4to8  
8 to32  
UDBIF  
BUS IF  
CLK IF  
IRQ IF  
Port IF  
F  
DSI  
DSI  
Scalable array of  
UDBs(max 8 )  
=
UDB  
UDB  
Routing  
Channels  
UDB  
UDB  
DSI  
DSI  
Programmable Digital Subsystem  
Figure 6  
UDB array  
UDBs can be clocked from a clock divider block, from a port interface (required for peripherals such as SPI), and  
from the DSI network directly or after synchronization.  
A port interface is defined, which acts as a register that can be clocked with the same source as the PLDs inside  
the UDB array. This allows faster operation because the inputs and outputs can be registered at the port interface  
close to the I/O pins and at the edge of the array. The port interface registers can be clocked by one of the I/Os  
from the same port. This allows interfaces such as SPI to operate at higher clock speeds by eliminating the delay  
for the port input to be routed over DSI and used to register other inputs. The port interface is shown in Figure 7.  
The UDBs can generate interrupts (one UDB at a time) to the interrupt controller. The UDBs retain the ability to  
connect to most of the pins on the chip through the DSI, with the exception of the pins from Port 7, 8, and 9.  
High Speed I/O Matrix  
To Clock  
Tree  
8
8
8
4
Input Registers  
Output Registers  
Enables  
7
6
. . .  
0
7
6
. . .  
0
3
2
1
0
Digital  
GlobalClocks  
9
4
[1]  
[0]  
[1]  
Clock Selector  
Block from  
UDB  
2
2
3 DSI Signals ,  
1 I/O Signal  
4
8
8
[1]  
[0]  
[1]  
Reset Selector  
Block from  
UDB  
From DSI  
To DSI  
From DSI  
Figure 7  
Port interface  
Datasheet  
12 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Functional definition  
4.5  
Fixed function digital  
4.5.1  
Timer/Counter/PWM (TCPWM) block  
The TCPWM block consists of one 16-bit counter with user-programmable period length. There is a Capture  
register to record the count value at the time of an event (which may be an I/O event), a period register which is  
used to either stop or auto-reload the counter when its count is equal to the period register, and compare  
registers to generate compare value signals, which are used as PWM duty cycle outputs. The block also provides  
true and complementary outputs with programmable offset between them to allow use as deadband program-  
mable complementary PWM outputs. It also has a Kill input to force outputs to a predetermined state; for  
example, this is used in motor drive systems when an overcurrent state is indicated and the PWMs driving the  
FETs need to be shut off immediately with no time for software intervention. The PSoC™ 4200L has eight TCPWM  
blocks.  
4.5.2  
Serial Communication Blocks (SCB)  
The PSoC™ 4200L has four SCBs, which can each implement an I2C, UART, or SPI interface.  
I2C Mode: The hardware I2C block implements a full multi-master and slave interface (it is capable of multimaster  
arbitration). This block is capable of operating at speeds of up to 1 Mbps (Fast Mode Plus) and has flexible  
buffering options to reduce interrupt overhead and latency for the CPU. It also supports EzI2C that creates a  
mailbox address range in the memory of the PSoC™ 4200L and effectively reduces I2C communication to reading  
from and writing to an array in memory. In addition, the block supports an 8-deep FIFO for receive and transmit  
which, by increasing the time given for the CPU to read data, greatly reduces the need for clock stretching caused  
by the CPU not having read data on time. The FIFO mode is available in all channels and is very useful in the  
absence of DMA.  
The I2C peripheral is compatible with the I2C Standard-mode, Fast-mode, and Fast-mode Plus devices as defined  
in the NXP I2C-bus specification and user manual (UM10204). The I2C bus I/O is implemented with GPIO in  
open-drain modes.  
UART Mode: This is a full-feature UART operating at up to 1 Mbps. It supports automotive single-wire interface  
(LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic  
UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows addressing of peripherals  
connected over common RX and TX lines. Common UART functions such as parity error, break detect, and frame  
error are supported. An 8-deep FIFO allows much greater CPU service latencies to be tolerated.  
SPI Mode: The SPI mode supports full Motorola SPI, TI SSP (essentially adds a start pulse used to synchronize SPI  
Codecs), and National Microwire (half-duplex form of SPI). The SPI block can use the FIFO.  
4.5.3  
USB device  
A Full-speed USB 2.0 device interface is provided. It has a Control endpoint and eight other endpoints. The  
interface has a USB transceiver and can be operated from the IMO obviating the need for a crystal oscillator.  
4.5.4  
CAN blocks  
There are two independent CAN 2.0B blocks, which are certified CAN conformant.  
4.6  
GPIO  
The PSoC™ 4200L has 96 GPIOs. The GPIO block implements the following:  
• Eight drive strength modes including strong push-pull, resistive pull-up and pull-down, weak (resistive) pull-up  
and pull-down, open drain and open source, input only, and disabled  
• Input threshold select (CMOS or LVTTL)  
• Individual control of input and output disables  
• Hold mode for latching previous state (used for retaining I/O state in Deep Sleep mode and Hibernate modes)  
• Selectable slew rates for dV/dt related noise control to improve EMI  
Datasheet  
13 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Functional definition  
The pins are organized in logical entities called ports, which are 8-bit in width. During power-on and reset, the  
blocks are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A  
multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may  
connect to an I/O pin. Pin locations for fixed-function peripherals are also fixed to reduce internal multiplexing  
complexity (these signals do not go through the DSI network). DSI signals are not affected by this and any pin may  
be routed to any UDB through the DSI network, with the exception of pins from Port 7, 8, and 9.  
Data output and pin state registers store, respectively, the values to be driven on the pins and the states of the  
pins themselves.  
Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt  
service routine (ISR) vector associated with it (13 for PSoC™ 4200L).  
There are 14 GPIO pins that are overvoltage tolerant (VIN can exceed VDD). The overvoltage cells will not sink more  
than 10 µA when their inputs exceed VDDIO in compliance with I2C specifications. Meeting the I2C minimum fall  
time requirement for FM and FM+ may require the slower slew rate setting depending on bus loading (also applies  
to all GPIO and SIO pins).  
4.7  
SIO  
The Special I/O (SIO) pins have the following features in addition to the GPIO features:  
• Overvoltage protection and hot swap capability  
• Programmable switching thresholds  
• Programmable output pull-up voltage capability  
They allow interfacing to buses, such as I2C with full I2C compatibility and interfacing to devices operating at  
different voltage levels. There are two SIO pins on the PSoC™ 4200L.  
4.8  
Special function peripherals  
LCD segment Drive  
4.8.1  
The PSoC™ 4200L has an LCD controller, which can drive up to eight commons and up to 56 segments. Any pin  
can be either a common or a segment pin. It uses full digital methods to drive the LCD segments requiring no  
generation of internal LCD voltages. The two methods used are referred to as digital correlation and PWM.  
Digital correlation pertains to modulating the frequency and levels of the common and segment signals to  
generate the highest RMS voltage across a segment to light it up or to keep the RMS signal zero. This method is  
good for STN displays but may result in reduced contrast with TN (cheaper) displays.  
PWM pertains to driving the panel with PWM signals to effectively use the capacitance of the panel to provide the  
integration of the modulated pulse-width to generate the desired LCD voltage. This method results in higher  
power consumption but can result in better results when driving TN displays.  
4.8.2  
CAPSENSE™  
CAPSENSE™ is supported on all pins in the PSoC™ 4200L through two CAPSENSE™ Sigma-Delta (CSD) blocks that  
can be connected to any pin through an analog mux bus that any GPIO pin can be connected to via an Analog  
switch. CAPSENSE™ function can thus be provided on any pin or group of pins in a system under software control.  
A component is provided for the CAPSENSE™ block to make it easy for the user.  
Shield voltage can be driven on another Mux Bus to provide water tolerance capability. Water tolerance is  
provided by driving the shield electrode in phase with the sense electrode to keep the shield capacitance from  
attenuating the sensed input.  
Each CAPSENSE™ block has two IDACs which can be used for general purposes if CAPSENSE™ is not being  
used.(both IDACs are available in that case) or if CAPSENSE™ is used without water tolerance (one IDAC is  
available). The two CAPSENSE™ blocks can be used independently.  
Datasheet  
14 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Pinouts  
5
Pinouts  
The following is the pin list for the PSoC™ 4200L.  
Table 1 Pinout  
124-BGA  
Name  
124-BGA  
Pin  
Pin  
C3  
C5  
B5  
A5  
A4  
B4  
C4  
A3  
B3  
B1  
C3  
D4  
B2  
C1  
C2  
D1  
D2  
D3  
E1  
E2  
E3  
K4  
A1  
F1  
F2  
F3  
G1  
G2  
G3  
H1  
H2  
K4  
J1  
Name  
VSSA  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
H13  
H12  
G13  
G12  
K10  
G11  
F13  
F12  
F11  
E13  
E12  
E11  
D13  
D12  
C13  
C12  
B12  
C11  
A12  
D10  
B13  
A13  
A11  
B11  
A10  
B10  
C10  
A9  
P0.0  
P0.1  
P0.2  
P0.3  
VSSD  
P0.4  
P0.5  
P0.6  
P0.7  
P8.0  
P8.1  
P8.2  
P8.3  
P8.4  
P8.5  
P8.6  
P8.7  
XRES  
VCCD  
VSSD  
VDDD  
VDDD  
P9.0  
P9.1  
P9.2  
P9.3  
P9.4  
P9.5  
P9.6  
P9.7  
P1.7  
VREF  
VSSA  
VSSA  
VDDA  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
VSSD  
VDDA  
P10.0  
P10.1  
P10.2  
P10.3  
P10.4  
P10.5  
P10.6  
P10.7  
VSSD  
P6.0  
B9  
C9  
C8  
B8  
A8  
A7  
B7  
P5.0  
P5.1  
P5.2  
P5.3  
P5.4  
J2  
J3  
K1  
P6.1  
P6.2  
P6.3  
Datasheet  
15 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Pinouts  
Table 1  
Pin  
Pinout  
124-BGA  
Name  
124-BGA  
Pin  
K2  
L1  
L2  
K3  
L3  
L8  
N9  
Name  
P6.4  
P12.0  
P12.1  
P6.5  
VSSD  
P4.0  
P4.1  
P4.2  
P4.3  
P4.4  
P4.5  
C7  
A6  
B6  
A2  
P5.5  
P5.6  
P5.7  
VDDA  
VDDA  
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
B2  
N2  
M2  
N3  
M3  
N4  
M4  
N5  
M5  
M1  
N1  
N6  
M6  
L6  
N7  
M7  
L7  
N8  
M8  
N12  
N13  
M9  
N10  
M10  
N11  
M11  
M12  
L11  
L12  
L13  
M13  
L9  
P3.5  
P3.6  
P3.7  
P4.6  
P4.7  
VDDIO  
VDDIO  
P11.0  
P11.1  
P11.2  
P11.3  
P11.4  
P11.5  
P11.6  
P11.7  
VDDIO  
VDDIO  
VSSD  
D+/P13.0  
D-/P13.1  
VBUS/P13.2  
P7.0  
L10  
K13  
K12  
K11  
J13  
J12  
J11  
P7.1  
P7.2  
P7.3  
P7.4  
P7.5  
P7.6  
P7.7  
Port 12 (Port pins 12.0 and 12.1) are SIO pins.  
Port 13 (Port pins 13.0 and 13.1) require VBUS (P13.2) to be powered.  
Ports 6 (Port pins P6.0..6.5) and 9 (Port pins 9.0..9.7) are overvoltage tolerant (GPIO_OVT)  
Balls C6, D11, H11, H3, L4, and L5 are No Connects (NC) on the 124-BGA package.  
Datasheet  
16 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Pinouts  
Each of the pins shown in the previous table can have multiple programmable functions as shown in the following  
table.  
Port/pin  
Analog  
USB  
Alt. function 1  
Alt. function 2  
Alt. function 3  
Alt. function 4  
Alt. function 5  
P0.0  
lpcomp.in_p[0]  
can[1].can_rx:0  
usb.vbus_valid  
scb[0].spi_select1:3  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
lpcomp.in_n[0]  
lpcomp.in_p[1]  
lpcomp.in_n[1]  
wco_in  
can[1].can_tx:0  
scb[0].spi_select2:3  
scb[0].spi_select3:3  
scb[1].uart_rx:0  
scb[1].uart_tx:0  
scb[1].uart_cts:0  
scb[1].uart_rts:0  
scb[1].i2c_scl:0  
scb[1].i2c_sda:0  
scb[1].spi_mosi:0  
scb[1].spi_miso:0  
scb[1].spi_clk:0  
wco_out  
srss.ext_clk:0  
can[1].can_tx-  
_enb_n:0  
srss.wakeup  
scb[1].spi_select0:0  
P8.0  
P8.1  
P8.2  
P8.3  
P8.4  
P8.5  
P8.6  
P8.7  
P9.0  
P9.1  
P9.2  
P9.3  
P9.4  
P9.5  
P9.6  
P9.7  
P5.0  
scb[3].uart_rx:0  
scb[3].uart_tx:0  
scb[3].uart_cts:0  
scb[3].uart_rts:0  
scb[3].i2c_scl:0  
scb[3].i2c_sda:0  
lpcomp.comp[0]:0  
lpcomp.comp[1]:0  
scb[3].spi_mosi:0  
scb[3].spi_miso:0  
scb[3].spi_clk:0  
scb[3].spi_select0:0  
scb[3].spi_select1:0  
scb[3].spi_select2:0  
scb[3].spi_select3:0  
tcpwm.line[0]:2  
tcpwm.line_compl[0]:2  
tcpwm.line[1]:2  
scb[0].uart_rx:0  
scb[0].uart_tx:0  
scb[0].uart_cts:0  
scb[0].uart_rts:0  
scb[0].i2c_scl:0  
scb[0].i2c_sda:0  
scb[0].spi_mosi:0  
scb[0].spi_miso:0  
scb[0].spi_clk:0  
tcpwm.line_compl[1]:2  
tcpwm.line[2]:2  
scb[0].spi_select0:0  
scb[0].spi_select1:0  
scb[0].spi_select2:0  
scb[0].spi_select3:0  
tcpwm.line_compl[2]:2  
tcpwm.line[3]:2  
scb[3].i2c_scl:3  
scb[3].i2c_sda:3  
scb[2].i2c_scl:0  
tcpwm.line_compl[3]:2  
tcpwm.line[4]:2  
ctb1_pads[0]  
csd[1].c_mod  
scb[2].uart_rx:0  
scb[2].uart_tx:0  
scb[2].uart_cts:0  
scb[2].uart_rts:0  
scb[2].spi_mosi:0  
scb[2].spi_miso:0  
scb[2].spi_clk:0  
P5.1  
P5.2  
P5.3  
ctb1_pads[1]  
csd[1].c_sh_tank  
tcpwm.line_compl[4]:2  
tcpwm.line[5]:2  
scb[2].i2c_sda:0  
lpcomp.comp[0]:1  
lpcomp.comp[1]:1  
ctb1_pads[2]  
ctb1_oa0_out_10x  
ctb1_pads[3]  
ctb1_oa1_out_10x  
tcpwm.line_compl[5]:2  
scb[2].spi_select0:0  
P5.4  
P5.5  
P5.6  
P5.7  
P1.0  
ctb1_pads[4]  
ctb1_pads[5]  
ctb1_pads[6]  
ctb1_pads[7]  
ctb0_pads[0]  
tcpwm.line[6]:2  
tcpwm.line_compl[6]:2  
tcpwm.line[7]:2  
scb[2].spi_select1:0  
scb[2].spi_select2:0  
scb[2].spi_select3:0  
tcpwm.line_compl[7]:2  
tcpwm.line[2]:1  
scb[0].uart_rx:1  
scb[0].uart_tx:1  
scb[0].uart_cts:1  
scb[0].uart_rts:1  
scb[0].i2c_scl:1  
scb[0].i2c_sda:1  
scb[0].spi_mosi:1  
scb[0].spi_miso:1  
scb[0].spi_clk:1  
P1.1  
P1.2  
P1.3  
ctb0_pads[1]  
tcpwm.line_compl[2]:1  
tcpwm.line[3]:1  
ctb0_pads[2]  
ctb0_oa0_out_10x  
ctb0_pads[3]  
ctb0_oa1_out_10x  
tcpwm.line_compl[3]:1  
scb[0].spi_select0:1  
P1.4  
P1.5  
P1.6  
P1.7  
ctb0_pads[4]  
ctb0_pads[5]  
ctb0_pads[6]  
tcpwm.line[6]:1  
tcpwm.line_compl[6]:1  
tcpwm.line[7]:1  
scb[0].spi_select1:1  
scb[0].spi_select2:1  
scb[0].spi_select3:1  
ctb0_pads[7],  
sar_ext_vref  
tcpwm.line_compl[7]:1  
Datasheet  
17 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Pinouts  
Port/pin  
P2.0  
Analog  
USB  
Alt. function 1  
tcpwm.line[4]:1  
Alt. function 2  
scb[1].uart_rx:1  
scb[1].uart_tx:1  
scb[1].uart_cts:1  
scb[1].uart_rts:1  
Alt. function 3  
Alt. function 4  
scb[1].i2c_scl:1  
scb[1].i2c_sda:1  
Alt. function 5  
scb[1].spi_mosi:1  
scb[1].spi_miso:1  
scb[1].spi_clk:1  
sarmux_pads[0]  
sarmux_pads[1]  
sarmux_pads[2]  
sarmux_pads[3]  
sarmux_pads[4]  
sarmux_pads[5]  
sarmux_pads[6]  
sarmux_pads[7]  
P2.1  
tcpwm.line_compl[4]:1  
tcpwm.line[5]:1  
P2.2  
P2.3  
tcpwm.line_compl[5]:1  
tcpwm.line[0]:1  
scb[1].spi_select0:1  
scb[1].spi_select1:0  
scb[1].spi_select2:0  
scb[1].spi_select3:0  
P2.4  
P2.5  
tcpwm.line_compl[0]:1  
tcpwm.line[1]:1  
P2.6  
P2.7  
tcpwm.line_compl[1]:1  
P10.0  
P10.1  
P10.2  
P10.3  
P10.4  
P10.5  
P10.6  
P10.7  
P6.0  
scb[2].uart_rx:1  
scb[2].uart_tx:1  
scb[2].uart_cts:1  
scb[2].uart_rts:1  
scb[2].i2c_scl:1  
scb[2].i2c_sda:1  
scb[2].spi_mosi:1  
scb[2].spi_miso:1  
scb[2].spi_clk:1  
scb[2].spi_select0:1  
scb[2].spi_select1:1  
scb[2].spi_select2:1  
scb[2].spi_select3:1  
tcpwm.line[4]:0  
scb[3].uart_rx:1  
can[0].can_tx-  
_enb_n:0  
scb[3].i2c_scl:1  
scb[3].spi_mosi:1  
P6.1  
P6.2  
tcpwm.line_compl[4]:0  
tcpwm.line[5]:0  
scb[3].uart_tx:1  
scb[3].uart_cts:1  
scb[3].uart_rts:1  
can[0].can_rx:0  
can[0].can_tx:0  
scb[3].i2c_sda:1  
scb[2].i2c_scl:3  
scb[2].i2c_sda:3  
scb[0].i2c_scl:3  
scb[1].i2c_scl:3  
scb[1].i2c_sda:3  
scb[0].i2c_sda:3  
scb[1].i2c_scl:2  
scb[1].i2c_sda:2  
cpuss.swd_data:0  
cpuss.swd_clk:0  
scb[3].spi_miso:1  
scb[3].spi_clk:1  
P6.3  
tcpwm.line_compl[5]:0  
tcpwm.line[6]:0  
scb[3].spi_select0:1  
scb[3].spi_select1:1  
scb[3].spi_select3:1  
P6.4  
P12.0  
P12.1  
P6.5  
tcpwm.line[7]:0  
tcpwm.line_compl[7]:0  
tcpwm.line_compl[6]:0  
tcpwm.line[0]:0  
scb[3].spi_select2:1  
scb[1].spi_mosi:2  
scb[1].spi_miso:2  
scb[1].spi_clk:2  
P3.0  
scb[1].uart_rx:2  
scb[1].uart_tx:2  
scb[1].uart_cts:2  
scb[1].uart_rts:2  
P3.1  
tcpwm.line_compl[0]:0  
tcpwm.line[1]:0  
P3.2  
P3.3  
tcpwm.line_compl[1]:0  
tcpwm.line[2]:0  
scb[1].spi_select0:2  
scb[1].spi_select1:1  
scb[1].spi_select2:1  
scb[1].spi_select3:1  
P3.4  
P3.5  
tcpwm.line_compl[2]:0  
tcpwm.line[3]:0  
P3.6  
P3.7  
tcpwm.line_compl[3]:0  
tcpwm.line[4]:3  
P11.0  
P11.1  
P11.2  
P11.3  
P11.4  
P11.5  
P11.6  
P11.7  
P4.0  
scb[2].uart_rx:2  
scb[2].uart_tx:2  
scb[2].uart_cts:2  
scb[2].uart_rts:2  
scb[2].i2c_scl:2  
scb[2].i2c_sda:2  
cpuss.swd_data:1  
cpuss.swd_clk:1  
scb[2].spi_mosi:2  
scb[2].spi_miso:2  
scb[2].spi_clk:2  
tcpwm.line_compl[4]:3  
tcpwm.line[5]:3  
tcpwm.line_compl[5]:3  
tcpwm.line[6]:3  
scb[2].spi_select0:2  
scb[2].spi_select1:2  
scb[2].spi_select2:2  
scb[2].spi_select3:2  
tcpwm.line_compl[6]:3  
tcpwm.line[7]:3  
tcpwm.line_compl[7]:3  
scb[0].uart_rx:2  
scb[0].uart_tx:2  
scb[0].uart_cts:2  
can[0].can_rx:1  
can[0].can_tx:1  
scb[0].i2c_scl:2  
scb[0].i2c_sda:2  
lpcomp.comp[0]:2  
scb[0].spi_mosi:2  
scb[0].spi_miso:2  
scb[0].spi_clk:2  
P4.1  
P4.2  
csd[0].c_mod  
can[0].can_tx-  
_enb_n:1  
P4.3  
P4.4  
csd[0].c_sh_tank  
scb[0].uart_rts:2  
lpcomp.comp[1]:2  
scb[0].spi_select0:2  
scb[0].spi_select1:2  
can[1].can_tx-  
_enb_n:1  
P4.5  
P4.6  
can[1].can_rx:1  
can[1].can_tx:1  
scb[0].spi_select2:2  
scb[0].spi_select3:2  
P4.7  
P13.0  
P13.1  
USBDP  
USBDM  
Datasheet  
18 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Pinouts  
Port/pin  
P13.2  
P7.0  
Analog  
USB  
Alt. function 1  
Alt. function 2  
Alt. function 3  
Alt. function 4  
Alt. function 5  
VBUS  
srss.eco_in  
tcpwm.line[0]:3  
tcpwm.line_compl[0]:3  
tcpwm.line[1]:3  
scb[3].uart_rx:2  
scb[3].uart_tx:2  
scb[3].uart_cts:2  
scb[3].uart_rts:2  
scb[3].i2c_scl:2  
scb[3].i2c_sda:2  
scb[3].spi_mosi:2  
scb[3].spi_miso:2  
scb[3].spi_clk:2  
P7.1  
srss.eco_out  
P7.2  
P7.3  
tcpwm.line_compl[1]:3  
tcpwm.line[2]:3  
scb[3].spi_select0:2  
scb[3].spi_select1:2  
scb[3].spi_select2:2  
scb[3].spi_select3:2  
P7.4  
P7.5  
tcpwm.line_compl[2]:3  
tcpwm.line[3]:3  
P7.6  
P7.7  
tcpwm.line_compl[3]:3  
Descriptions of the power pin functions are as follows:  
VDDD: Power supply for both analog and digital sections (where there is no VDDA pin)  
VDDA: Analog VDD pin where package pins allow; should be present before or concurrently with VDDD and the  
value of VDDA should be equal to or higher than VDDD and VDDIO  
VDDIO: I/O pin power domain. It should not be present without VDDD.  
VSSA: Analog ground pin where package pins allow; shorted to VSS otherwise  
VSS: Ground pin  
VCCD: Regulated digital supply (1.8 V ±5%)  
VBUS: USB voltage. There is no constraint on VBUS with respect to VDDD. However, since it comes from USB, it  
is typically assumed to and ideally be 5 V (4.35 to 5.5 V is the range).  
GPIO and GPIO_OVT pins can be used as CSD sense and shield pins (a total of 96). Up to 64 of the pins can be used  
for LCD drive.  
The following package is supported: 124-ball BGA.  
Datasheet  
19 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Power  
6
Power  
The supply voltage range is 1.71 V to 5.5 V with all functions and circuits operating over that range.  
The PSoC™ 4200L family allows two distinct modes of power supply operation: Unregulated external supply and  
regulated external supply modes.  
6.1  
Unregulated external supply  
In this mode, the PSoC™ 4200L is powered by an external power supply that can be anywhere in the range of 1.8 V  
to 5.5 V. This range is also designed for battery-powered operation, for instance, the chip can be powered from a  
battery system that starts at 3.5 V and works down to 1.8 V. In this mode, the internal regulator of the PSoC™  
4200L supplies the internal logic and the VCCD output of the PSoC™ 4200L must be bypassed to ground via an  
external Capacitor (in the range of 1 to 1.6 µF; X5R ceramic or better).  
VDDA and VDDD must be shorted together on the PC board; the grounds, VSSA and VSS must also be shorted  
together. Bypass capacitors must be used from VDDD and VDDA to ground, typical practice for systems in this  
frequency range is to use a capacitor in the 1 µF range in parallel with a smaller capacitor (0.1 µF, for example).  
Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and  
the bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.  
Power supply  
VDDD–VSS and VDDIO-VSS  
VDDA–VSSA  
Bypass capacitors  
0.1 µF ceramic at each pin plus bulk capacitor 1 to 10 µF.  
0.1 µF ceramic at pin. Additional 1 µF to 10 µF bulk capacitor  
1 µF ceramic capacitor at the VCCD pin  
VCCD–VSS  
VREF–VSSA  
(optional)  
The internal bandgap may be bypassed with a 1 µF to 10 µF capacitor for  
better ADC performance.  
6.2  
Regulated external supply  
In this mode, the PSoC™ 4200L is powered by an external power supply that must be within the range of 1.71 V to  
1.89 V (1.8 ±5%); note that this range needs to include power supply ripple. In this mode, the VCCD and VDDD pins  
are shorted together and bypassed. The internal regulator is disabled in firmware.  
Datasheet  
20 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Electrical specifications  
7
Electrical specifications  
7.1  
Table 2  
Absolute maximum ratings  
Absolute maximum ratings[1]  
Details/  
Spec ID# Parameter  
Description  
Min  
Typ  
Max  
Units  
conditions  
SID1  
SID2  
VDD_ABS  
Analog or digital supply relative –0.5  
6
V
Absolute  
to VSS (VSSD = VSSA  
)
maximum  
VCCD_ABS  
VGPIO_ABS  
IGPIO_ABS  
IG-PIO_in-  
Direct digital core voltage input –0.5  
relative to VSSD  
1.95  
V
V
Absolute  
maximum  
Absolute  
maximum  
SID3  
GPIO voltage; VDDD or VDDA  
–0.5  
VDD + 0.5  
SID4  
Current per GPIO  
–25  
25  
0.5  
mA Absolute  
maximum  
mA Absolute  
maximum  
SID5  
GPIO injection current per pin  
–0.5  
2200  
jection  
ESD_HBM  
BID44  
BID45  
BID46  
7.2  
Electrostatic discharge human  
body model  
V
ESD_CDM  
LU  
Electrostatic discharge charged 500  
device model  
V
Pin current for latch-up  
–140  
140  
mA  
Device level specifications  
All specifications are valid for –40°C TA 105°C and TJ 125°C, except where noted. Specifications are valid for  
1.71 V to 5.5 V, except where noted.  
Table 3  
DC specifications  
Details/  
Spec ID# Parameter  
Description  
Min  
Typ  
Max Units  
conditions  
SID53  
VDDD  
VDDD  
Power supply input voltage  
1.8  
5.5  
V
V
With regulator  
enabled  
Internally  
unregulated  
supply  
(VDDA = VDDD = VDD  
)
SID255  
Power supply input voltage  
unregulated  
1.71  
1.8  
1.89  
SID54  
SID55  
VCCD  
CEFC  
Output voltage (for core logic)  
External regulator voltage (VCCD  
bypass  
1
1.8  
1.3  
1.6  
V
)
µF X5R ceramic or  
better  
SID56  
CEXC  
Power supply decoupling  
capacitor  
1
µF X5R ceramic or  
better  
Active mode  
SID6  
SID7  
SID8  
SID9  
IDD1  
Execute from flash; CPU at 6 MHz  
Execute from flash; CPU at 12 MHz  
Execute from flash; CPU at 24 MHz  
Execute from flash; CPU at 48 MHz  
2.2  
3.7  
6.7  
3.1  
4.8  
8.0  
mA  
mA  
mA  
mA  
IDD2  
IDD3  
IDD4  
12.8  
14.5  
Note  
1. Usage above the absolute maximum conditions listed in Table 2 may cause permanent damage to the device. Exposure to absolute  
maximum conditions for extended periods of time may affect device reliability. The maximum storage temperature is 150°C in com-  
pliance with JEDEC Standard JESD22-A103, high temperature storage life. When used below absolute maximum conditions but above  
normal operating conditions, the device may not operate to specification.  
Datasheet  
21 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Electrical specifications  
Table 3  
DC specifications  
Details/  
Spec ID# Parameter  
Sleep Mode  
Description  
Min  
Typ  
Max Units  
conditions  
SID21  
SID22  
SID23  
SID24  
IDD16  
IDD17  
IDD18  
IDD19  
I2C wakeup, WDT, and  
2.9  
2.1  
2.9  
2.8  
mA VDD = 1.71 to  
1.89, 6 MHz  
mA VDD = 1.8 to 5.5,  
6 MHz  
mA VDD = 1.71 to  
1.89, 12 MHz  
mA VDD = 1.8 to 5.5,  
12 MHz  
Comparators on. Regulator Off.  
I2C wakeup, WDT, and  
Comparators on.  
1.7  
2.4  
2.3  
I2C wakeup, WDT, and  
Comparators on. Regulator Off.  
I2C wakeup, WDT, and  
Comparators on.  
Deep Sleep Mode, –40°C to + 60°C  
SID30  
IDD25  
I2C wakeup and WDT on.  
Regulator Off.  
I2C wakeup and WDT on.  
I2C wakeup and WDT on.  
13.5  
µA VDD = 1.71 to  
1.89  
µA VDD = 1.8 to 3.6  
µA VDD = 3.6 to 5.5  
SID31  
SID32  
IDD26  
IDD27  
1.3  
20.0  
20.0  
Deep Sleep Mode, +85°C  
SID33  
IDD28  
I2C wakeup and WDT on.  
Regulator Off.  
I2C wakeup and WDT on.  
I2C wakeup and WDT on.  
45.0  
µA VDD = 1.71 to  
1.89  
SID34  
SID35  
IDD29  
IDD30  
15  
60.0  
45.0  
µA VDD = 1.8 to 3.6  
µA VDD = 3.6 to 5.5  
Hibernate Mode, –40°C to + 60°C  
SID39  
IDD34  
Regulator Off.  
1123  
nA VDD = 1.71 to  
1.89  
SID40  
SID41  
IDD35  
IDD36  
150  
1600  
1600  
nA VDD = 1.8 to 3.6  
nA VDD = 3.6 to 5.5  
Hibernate Mode, +85°C  
SID42  
IDD37  
Regulator Off.  
4142  
nA VDD = 1.71 to  
1.89  
SID43  
SID44  
IDD38  
IDD39  
9700  
10,400  
nA VDD = 1.8 to 3.6  
nA VDD = 3.6 to 5.5  
Stop Mode  
SID304  
IDD43A  
IDD43B  
Stop Mode current; VDD = 3.6 V  
Stop Mode current; VDD = 3.6 V  
20  
659  
nA T = –40°C to  
+60°C  
nA T = +85°C  
SID304A  
1810  
XRES current  
SID307  
IDD_XR  
Supply current while XRES (Active  
Low) asserted  
2
5
mA  
Datasheet  
22 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Electrical specifications  
Table 4  
AC specifications  
Details/  
Spec ID# Parameter  
Description  
CPU frequency  
Wakeup from sleep mode  
Min Typ  
Max Units  
48  
conditions  
SID48  
SID49  
FCPU  
TSLEEP  
DC  
0
MHz 1.71 VDD 5.5  
µs Guaranteed by  
characterization  
SID50  
TDEEPSLEEP  
Wakeup from Deep Sleep mode  
25  
µs 24-MHz IMO.  
Guaranteed by  
characterization  
SID51  
SID51A  
SID52  
THIBERNATE  
TSTOP  
Wakeup from Hibernate mode  
Wakeup from Stop mode  
External reset pulse width  
1
0.7  
1.9  
ms Guaranteed by  
characterization  
ms Guaranteed by  
characterization  
µs Guaranteed by  
characterization  
TRESETWIDTH  
Datasheet  
23 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Electrical specifications  
7.2.1  
GPIO  
Table 5  
GPIO DC specifications  
Details/  
Spec ID# Parameter  
Description  
Min  
Typ  
Max  
Units  
conditions  
[2]  
SID57  
VIH  
IIHS  
VIL  
Input voltage high threshold  
0.7 × VDD  
V
CMOS Input  
D
SID57A  
SID58  
Input current when Pad > VDDIO  
for OVT inputs  
10  
µA Per I2C Spec  
Input voltage low threshold  
LVTTL input, VDDD < 2.7 V  
LVTTL input, VDDD < 2.7 V  
0.3 ×  
VDDD  
V
V
V
CMOS Input  
[2]  
SID241  
SID242  
VIH  
VIL  
0.7 × VDD  
D
0.3 ×  
VDDD  
2.0  
[2]  
SID243  
SID244  
SID59  
VIH  
VIL  
LVTTL input, VDDD 2.7 V  
LVTTL input, VDDD 2.7 V  
Output voltage high level  
0.8  
VDDD – 0.6  
V
V
V
VOH  
IOH = 4 mA,  
VDDD 3 V  
SID60  
SID61  
SID62  
SID62A  
VOH  
Output voltage high level  
Output voltage low level  
Output voltage low level  
Output voltage low level  
Pull-up resistor  
VDDD – 0.5  
V
V
V
V
IOH = 1 mA at 1.8 V  
VDDD  
IOL = 4 mA at 1.8 V  
VDDD  
IOL = 8 mA,  
VDDD 3 V  
VOL  
0.6  
0.6  
0.4  
VOL  
VOL  
IOL = 3 mA,  
VDDD 3 V  
SID63  
SID64  
SID65  
RPULLUP  
RPULLDOWN Pull-down resistor  
IIL  
3.5  
3.5  
5.6  
5.6  
8.5  
8.5  
2
kΩ  
kΩ  
Input leakage current  
(absolute value)  
nA 25°C, VDDD = 3.0 V  
SID65A  
SID66  
IIL_CTBM  
CIN  
Input leakage current  
4
7
nA  
(absolute value) for CTBM pins  
Input capacitance  
pF Not applicable for  
P6.4, P6.5, P12.0,  
P12.1, and for  
USB pins.  
SID67  
SID68  
VHYSTTL  
Input hysteresis LVTTL  
25  
0.05 ×  
VDDD  
40  
mV VDDD 2.7 V  
mV  
VHYSCMOS Input hysteresis CMOS  
SID69  
IDIODE  
Current through protection  
diode to VDD/Vss  
Maximum Total Source or Sink  
Chip Current  
100  
200  
µA Guaranteed by  
characterization  
SID69A  
ITOT_GPIO  
mA Guaranteed by  
characterization  
Note  
2. VIH must not exceed VDDD + 0.2 V.  
Datasheet  
24 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Electrical specifications  
Table 6  
GPIO AC specifications  
(Guaranteed by characterization)[3]  
Details/  
Spec ID# Parameter  
Description  
Min  
Typ  
Max  
Units  
conditions  
SID70  
SID71  
SID72  
SID73  
SID74  
TRISEF  
Rise time in fast strong mode  
Fall time in fast strong mode  
Rise time in slow strong mode  
Fall time in slow strong mode  
2
12  
ns  
3.3 V VDDD  
,
Cload = 25 pF  
TFALLF  
TRISES  
TFALLS  
FGPIOUT1  
2
10  
10  
12  
60  
60  
33  
ns  
ns  
ns  
3.3 V VDDD  
Cload = 25 pF  
3.3 V VDDD  
Cload = 25 pF  
3.3 V VDDD  
Cload = 25 pF  
,
,
,
GPIO Fout;3.3 V VDDD 5.5 V. Fast  
strong mode.  
MHz 90/10%, 25 pF  
load, 60/40 duty  
cycle  
SID75  
FGPIOUT2  
FGPIOUT3  
FGPIOUT4  
FGPIOIN  
GPIO Fout;1.7 VVDDD3.3 V. Fast  
16.7  
7
MHz 90/10%, 25 pF  
load, 60/40 duty  
cycle  
MHz 90/10%, 25 pF  
load, 60/40 duty  
cycle  
MHz 90/10%, 25 pF  
load, 60/40 duty  
cycle  
strong mode.  
SID76  
GPIO Fout;3.3 V VDDD 5.5 V.  
Slow strong mode.  
SID245  
SID246  
GPIO Fout;1.7 V VDDD 3.3 V.  
Slow strong mode.  
3.5  
48  
GPIO input operating frequency;  
1.71 V VDDD 5.5 V  
MHz 90/10% VIO  
Note  
3. Simultaneous switching transitions on many fully-loaded GPIO pins may cause ground perturbations depending on several  
factors including PCB and decoupling capacitor design. For applications that are very sensitive to ground perturbations, the  
slower GPIO slew rate setting may be used.  
Datasheet  
25 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Electrical specifications  
7.2.2  
XRES  
Table 7  
XRES DC specifications  
Details/  
Spec ID# Parameter  
Description  
Min  
Typ  
Max  
Units  
conditions  
SID77  
VIH  
Input voltage high threshold  
0.7 ×  
VDDD  
3.5  
V
CMOS Input  
CMOS Input  
SID78  
SID79  
SID80  
SID81  
VIL  
RPULLUP  
CIN  
Input voltage low threshold  
Pull-up resistor  
Input capacitance  
5.6  
3
0.3 × VDDD  
V
kΩ  
pF  
8.5  
VHYSXRES  
Input voltage hysteresis  
100  
mV Guaranteed by  
characterization  
SID82  
IDIODE  
Current through protection  
diode to VDDD/VSS  
100  
µA Guaranteed by  
characterization  
Table 8  
XRES AC specifications  
Details/  
Spec ID# Parameter  
Description  
Min  
1
Typ  
Max  
Units  
µs  
conditions  
SID83  
TRESETWIDTH Reset pulse width  
Guaranteed by  
characterization  
Datasheet  
26 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Electrical specifications  
7.3  
Analog peripherals  
7.3.1  
Opamp  
Table 9  
Opamp specifications  
(Guaranteed by characterization)  
Spec ID#  
Parameter  
IDD  
Description  
Opamp block current. No  
load.  
Min Typ Max Units Details/conditions  
SID269  
SID270  
SID271  
IDD_HI  
Power = high  
Power = medium  
Power = low  
Load = 20 pF, 0.1 mA. VDDA  
2.7 V  
1100 1850  
µA  
µA  
µA  
IDD_MED  
IDD_LOW  
GBW  
550  
150  
950  
350  
=
SID272  
SID273  
SID274  
GBW_HI  
Power = high  
Power = medium  
Power = low  
VDDA 2.7 V, 500 mV from rail  
Power = high  
Power = medium  
Power = low  
VDDA = 1.71 V, 500 mV from rail  
Power = high  
6
4
1
5
2
MHz  
MHz  
MHz  
mA  
mA  
mA  
mA  
mA  
mA  
V
GBW_MED  
GBW_LO  
IOUT_MAX  
IOUT_MAX_HI  
IOUT_MAX_MID  
IOUT_MAX_LO  
IOUT  
IOUT_MAX_HI  
IOUT_MAX_MID  
IOUT_MAX_LO  
VIN  
10  
10  
4
4
SID275  
SID276  
SID277  
SID278  
SID279  
SID280  
SID281  
Power = medium  
Power = low  
Input voltage range  
–0.05  
VDDA  
– 0.2  
Charge-pump on,  
VDDA 2.7 V  
SID282  
VCM  
Input common mode voltage –0.05  
VDDA  
– 0.2  
V
Charge-pump on,  
VDDA 2.7 V  
VOUT  
VOUT_1  
VDDA 2.7 V  
Power = high, Iload=10 mA  
0.5  
SID283  
SID284  
SID285  
SID286  
VDDA  
– 0.5  
V
V
V
V
VOUT_2  
VOUT_3  
VOUT_4  
Power = high, Iload=1 mA  
0.2  
VDDA  
– 0.2  
VDDA  
– 0.2  
VDDA  
– 0.2  
Power = medium, Iload=1 mA 0.2  
Power = low, Iload=0.1mA  
0.2  
SID288  
SID288A  
SID288B  
SID290  
SID290A  
SID290B  
SID291  
SID292  
VOS_TR  
VOS_TR  
VOS_TR  
VOS_DR_TR  
VOS_DR_TR  
VOS_DR_TR  
CMRR  
Offset voltage, trimmed  
Offset voltage, trimmed  
Offset voltage, trimmed  
1
±0.5  
±1  
±2  
1
10  
mV  
mV  
mV  
High mode  
Medium mode  
Low mode  
Offset voltage drift, trimmed –10  
±3  
µV/°C High mode  
µV/°C Medium mode  
µV/°C Low mode  
dB  
dB  
Offset voltage drift, trimmed  
Offset voltage drift, trimmed  
DC  
60  
70  
±10  
±10  
70  
V
DDD = 3.6 V  
PSRR  
At 1 kHz, 100 mV ripple  
85  
VDDD = 3.6 V  
Datasheet  
27 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Electrical specifications  
Table 9  
Opamp specifications  
(Guaranteed by characterization) (continued)  
Spec ID#  
Parameter  
Noise  
VN1  
Description  
Min Typ Max Units Details/conditions  
94  
SID293  
SID294  
SID295  
SID296  
SID297  
SID298  
SID299  
SID299A  
Input referred, 1 Hz - 1GHz,  
power = high  
Input referred, 1 kHz, power =  
high  
Input referred, 10kHz, power  
= high  
Inputreferred, 100kHz, power  
= high  
Stable up to maximum load.  
Performance specs at 50 pF.  
Cload = 50 pF, Power = High,  
VDDA 2.7 V  
µVrms  
VN2  
6
72  
28  
15  
nV/rtHz  
nV/rtHz  
nV/rtHz  
pF  
VN3  
VN4  
Cload  
Slew_rate  
T_op_wake  
OL_GAIN  
125  
V/µs  
From disable to enable, no  
external RC dominating  
Open Loop Gain  
25  
µs  
90  
dB  
Comp_mode Comparator mode; 50 mV  
drive,  
Trise = Tfall (approx.)  
SID300  
SID301  
TPD1  
TPD2  
Response time; power = high  
Response time; power =  
medium  
150  
400  
ns  
ns  
SID302  
SID303  
TPD3  
Vhyst_op  
Response time; power = low  
Hysteresis  
2000  
10  
ns  
mV  
Deep Sleep Mode  
Mode 2 is lowest current  
range. Mode 1 has higher  
GBW.  
Deep Sleep mode  
VDDA 2.7 V.  
SID_DS_1 IDD_HI_M1  
SID_DS_2 IDD_MED_M1 Mode 1, Medium current  
SID_DS_3 IDD_LOW_M1 Mode 1, Low current  
SID_DS_4 IDD_HI_M2  
SID_DS_5 IDD_MED_M2 Mode 2, Medium current  
SID_DS_6 IDD_LOW_M2 Mode 2, Low current  
Mode 1, High current  
1400  
700  
200  
120  
60  
µA  
µA  
µA  
µA  
µA  
µA  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
Mode 2, High current  
15  
4
SID_DS_7 GBW_HI_M1  
Mode 1, High current  
MHz 20-pF load, no DC  
load  
0.2 V to VDDA – 1.5 V  
SID_DS_8 GBW_MED_M1 Mode 1, Medium current  
SID_DS_9 GBW_LOW_M1 Mode 1, Low current  
2
MHz 20-pF load, no DC  
load  
0.2 V to VDDA – 1.5 V  
0.5  
0.5  
MHz 20-pF load, no DC  
load  
0.2 V to VDDA – 1.5 V  
SID_DS_10 GBW_HI_M2  
Mode 2, High current  
MHz 20-pF load, no DC  
load 0.2 V to VDDA  
1.5 V  
Datasheet  
28 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Electrical specifications  
Table 9  
(Guaranteed by characterization) (continued)  
Spec ID# Parameter Description  
Opamp specifications  
Min Typ Max Units Details/conditions  
SID_DS_11 GBW_MED_M2 Mode 2, Medium current  
0.2  
MHz 20-pF load, no DC  
load 0.2 V to VDDA  
1.5 V  
MHz 20-pF load, no DC  
load 0.2 V to VDDA  
1.5 V  
SID_DS_12 GBW_LOW_M2 Mode 2, Low current  
0.1  
SID_DS_13 VOS_HI_M1  
Mode 1, High current  
5
5
mV  
mV  
mV  
mV  
mV  
mV  
mA  
mA  
mA  
mA  
mA  
mA  
With trim 25°C, 0.2 V  
to VDDA – 1.5 V  
SID_DS_14 VOS_MED_M1 Mode 1, Medium current  
SID_DS_15 VOS_LOW_M1 Mode 1, Low current  
With trim 25°C, 0.2 V  
to VDDA – 1.5 V  
With trim 25°C, 0.2 V  
to VDDA – 1.5 V  
With trim 25°C, 0.2 V  
to VDDA – 1.5 V  
With trim 25°C, 0.2 V  
to VDDA – 1.5 V  
5
SID_DS_16 VOS_HI_M2  
Mode 2, High current  
5
SID_DS_17 VOS_MED_M2 Mode 2, Medium current  
SID_DS_18 VOS_LOW_M2 Mode 2, Low current  
5
5
With trim 25°C, 0.2 V  
to VDDA-1.5 V  
SID_DS_19 IOUT_HI_M1  
Mode 1, High current  
10  
10  
4
Output is 0.5 V to  
VDDA-0.5 V  
SID_DS_20 IOUT_MED_M1 Mode 1, Medium current  
SID_DS_21 IOUT_LOW_M1 Mode 1, Low current  
Output is 0.5 V to  
VDDA-0.5 V  
Output is 0.5 V to  
VDDA-0.5 V  
SID_DS_22 IOUT_HI_M2  
Mode 2, High current  
1
Output is 0.5 V to  
DDA-0.5 V  
V
SID_DS_23 IOUT_MED_M2 Mode 2, Medium current  
SID_DS_24 IOUT_LOW_M2 Mode 2, Low current  
1
Output is 0.5 V to  
VDDA-0.5 V  
0.5  
Output is 0.5 V to  
VDDA-0.5 V  
Datasheet  
29 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Electrical specifications  
7.3.2  
Comparator  
Table 10  
Comparator DC specifications  
Spec ID# Parameter  
Description  
Min Typ  
Max  
Units Details/conditions  
SID85  
SID85A  
SID86  
VOFFSET2  
VOFFSET3  
VHYST  
Input offset voltage. Custom  
trim. Common mode voltage  
range from 0 to VDD-1.  
Input offset voltage. Ultra  
low-power mode.  
±4  
mV  
±12  
10  
mV VDDD 2.2 V for Temp <  
0°C, VDDD 1.8 V for  
Temp > 0°C  
mV Guaranteed by  
characterization  
Hysteresis when enabled.  
Common mode voltage range  
from 0 to VDD -1.  
35  
SID87  
VICM1  
VICM2  
Input common mode voltage  
in normal mode  
Input common mode voltage  
in low power mode  
Input common mode voltage  
in ultra low power mode  
0
0
0
VDDD  
0.2  
VDDD  
V
V
V
Modes 1 and 2.  
SID247  
SID247A VICM2  
VDDD  
1.15  
VDDD 2.2 V for Temp <  
0°C, VDDD 1.8 V for  
Temp > 0°C  
SID88  
CMRR  
CMRR  
Common mode rejection ratio 50  
Common mode rejection ratio 42  
dB VDDD 2.7 V.  
Guaranteed by  
characterization  
SID88A  
dB VDDD < 2.7 V.  
Guaranteed by  
characterization  
SID89  
ICMP1  
ICMP2  
ICMP3  
Block current, normal mode  
Blockcurrent,lowpowermode  
280  
50  
6
400  
100  
28  
µA Guaranteed by  
characterization  
µA Guaranteed by  
characterization  
SID248  
SID259  
Block current, ultra low power  
mode  
µA Guaranteed by  
characterization, VDDD  
2.2 V for Temp < 0°C,  
VDDD 1.8 V for Temp >  
0°C  
SID90  
ZCMP  
DC input impedance of  
comparator  
35  
MΩ Guaranteed by  
characterization  
Table 11  
Comparator AC specifications  
(Guaranteed by characterization)  
Details/  
Spec ID# Parameter  
Description  
Response time, normal mode  
Response time, low power mode  
Response time, ultra low power  
mode  
Min  
Typ  
38  
70  
Max  
110  
200  
15  
Units  
conditions  
ns 50-mV overdrive  
ns 50-mV overdrive  
µs 200-mV  
SID91  
SID258  
SID92  
TRESP1  
TRESP2  
TRESP3  
2.3  
overdrive. VDDD  
2.2 V for Temp <  
0°C, VDDD 1.8 V  
for Temp > 0°C  
Datasheet  
30 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Electrical specifications  
7.3.3  
Temperature sensor  
Table 12  
Temperature sensor specifications  
Details/  
Spec ID# Parameter  
Description  
Min  
Typ  
Max  
Units  
conditions  
SID93  
TSENSACC  
Temperature sensor accuracy  
–5  
±1  
+5  
°C –40 to +85°C  
7.3.4  
SAR ADC  
Table 13  
SAR ADC DC specifications  
Details/  
Spec ID# Parameter  
Description  
Resolution  
Min Typ  
Max  
12  
16  
Units  
bits  
conditions  
SID94  
SID95  
A_RES  
A_CHNIS_S Number of channels - single  
ended  
SID96  
SID97  
SID98  
SID99  
A-CHNKS_D Number of channels - differential  
8
Diff inputs use  
neighboring I/O  
A-MONO  
Monotonicity  
Yes. Based on  
characterization  
With external  
reference.  
A_GAINERR Gain error  
±0.1  
2
%
A_OFFSET Input offset voltage  
mV Measured with 1-V  
VREF.  
SID100  
SID101  
A_ISAR  
A_VINS  
Current consumption  
Input voltage range - single ended VSS  
1
VDDA  
mA  
V
Based on device  
characterization  
SID102  
SID103  
SID104  
A_VIND  
Input voltage range - differential  
Input resistance  
VSS  
VDDA  
2.2  
V
Based on device  
characterization  
A_INRES  
A_INCAP  
kΩ Based on device  
characterization  
Input capacitance  
10  
pF Based on device  
characterization  
Table 14  
SAR ADC AC specifications  
(Guaranteed by characterization)  
Details/  
Spec ID# Parameter  
Description  
Power supply rejection ratio  
Common mode rejection ratio  
Min Typ  
Max  
Units  
dB  
conditions  
SID106  
SID107  
SID108  
A_PSRR  
A_CMRR  
70  
66  
1
dB Measured at 1 V  
Msps  
A_SAMP_1 Sample rate with external  
reference bypass cap  
SID108A A_SAMP_2 Sample rate with no bypass cap.  
Reference = VDD  
SID108B A_SAMP_3 Sample rate with no bypass cap.  
Internal reference  
500  
100  
ksps  
ksps  
SID109  
A_SNDR  
Signal-to-noise and distortion  
ratio (SINAD)  
65  
dB  
FIN = 10 kHz  
Datasheet  
31 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Electrical specifications  
Table 14  
SAR ADC AC specifications  
(Guaranteed by characterization) (continued)  
Details/  
Spec ID# Parameter  
SID111 A_INL  
Description  
Integral non linearity  
Min Typ  
Max  
+2  
Units  
conditions  
–1.7  
–1.5  
–1.5  
–1  
LSB VDD = 1.71 to 5.5,  
1 Msps, VREF = 1 to  
5.5.  
SID111A A_INL  
SID111B A_INL  
Integral non linearity  
+1.7  
+1.7  
+2.2  
+2  
LSB  
LSB  
LSB  
LSB  
LSB  
dB  
V
DDD = 1.71 to 3.6,  
1 Msps, VREF = 1.71  
to VDDD  
.
Integral non linearity  
VDDD = 1.71 to 5.5,  
500 ksps, VREF = 1  
to 5.5.  
VDDD = 1.71 to5.5, 1  
Msps, VREF = 1 to  
5.5.  
SID112  
A_DNL  
Differential non linearity  
Differential non linearity  
Differential non linearity  
Total harmonic distortion  
SID112A A_DNL  
SID112B A_DNL  
–1  
V
DDD = 1.71 to3.6, 1  
Msps,VREF =1.71to  
VDDD  
.
–1  
+2.2  
–65  
VDDD = 1.71 to 5.5,  
500 ksps, VREF = 1  
to 5.5.  
SID113  
A_THD  
F
IN = 10 kHz.  
7.3.5  
CSD  
Table 15  
CSD block specification  
Spec  
ID#  
Details/  
Parameter  
Description  
Min Typ  
Max Units  
conditions  
CSD specification  
SID308 VCSD  
SID309 IDAC1  
SID310 IDAC1  
SID311 IDAC2  
SID312 IDAC2  
SID313 SNR  
Voltage range of operation  
DNL for 8-bit resolution  
INL for 8-bit resolution  
DNL for 7-bit resolution  
INL for 7-bit resolution  
1.71  
–1  
–3  
–1  
–3  
5
5.5  
1
3
1
3
V
LSB  
LSB  
LSB  
LSB  
Ratio of counts of finger to noise.  
Guaranteed by characterization  
Ratio Capacitance range  
of 9 to 35 pF, 0.1 pF  
sensitivity  
SID314 IDAC1_CRT1 Output current of Idac1 (8-bits) in  
high range  
SID314A IDAC1_CRT2 Output current of Idac1(8-bits) in  
low range  
SID315 IDAC2_CRT1 Output current of Idac2 (7-bits) in  
high range  
SID315A IDAC2_CRT2 Output current of Idac2 (7-bits) in  
low range  
612  
306  
µA  
µA  
µA  
µA  
304.8  
152.4  
Datasheet  
32 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Electrical specifications  
7.4  
Digital peripherals  
The following specifications apply to the Timer/Counter/PWM peripheral in timer mode.  
7.4.1  
Timer/counter/PWM  
Table 16  
TCPWM specifications  
(Guaranteed by characterization)  
Details/  
Spec ID# Parameter  
Description  
Min  
Typ Max Units  
conditions  
All modes  
Block current consumption  
at 3 MHz  
SID.TCPWM.1 ITCPWM1  
SID.TCPWM.2 ITCPWM2  
SID.TCPWM.2A ITCPWM3  
45  
µA (Timer/Counter/  
PWM)  
All modes  
µA (Timer/Counter/  
PWM)  
All modes  
µA (Timer/Counter/  
PWM)  
Block current consumption  
at 12 MHz  
155  
Block current consumption  
at 48 MHz  
650  
Fc  
Fc max = Fcpu.  
Maximum = 48 MHz  
SID.TCPWM.3 TCPWMFREQ Operating frequency  
MHz  
Trigger Events can  
be Stop, Start,  
Reload, Count,  
Input Trigger Pulse Width  
SID.TCPWM.4 TPWMENEXT  
2/Fc  
ns Capture, or Kill  
depending on which  
mode of operation is  
selected.  
for all Trigger Events  
Minimum possible  
width of Overflow,  
Underflow, and CC  
ns  
Output Trigger Pulse  
SID.TCPWM.5 TPWMEXT  
widths  
2/Fc  
(Counter equals  
Compare value)  
trigger outputs  
Minimum time  
ns between successive  
counts  
Minimum pulse  
ns width of PWM  
Output  
SID.TCPWM.5A TCRES  
SID.TCPWM.5B PWMRES  
Resolution of Counter  
PWM Resolution  
1/Fc  
1/Fc  
Minimum pulse  
Quadrature inputs  
resolution  
width between  
SID.TCPWM.5C QRES  
1/Fc  
ns  
Quadrature phase  
inputs.  
Datasheet  
33 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Electrical specifications  
7.4.2  
Table 17  
I2C  
Fixed I2C DC specifications  
(Guaranteed by characterization)  
Spec ID# Parameter  
SID149 II2C1  
Description  
Block current consumption  
at 100 kHz  
Min Typ  
Max Units Details/conditions  
10.5  
55  
135  
310  
1.4  
µA  
µA  
µA  
µA  
SID150  
SID151  
SID152  
II2C2  
II2C3  
II2C4  
Block current consumption  
at 400 kHz  
Block current consumption  
at 1 Mbps  
I2C enabled in Deep Sleep  
mode  
Table 18  
Fixed I2C AC specifications  
(Guaranteed by characterization)  
Spec ID#  
SID153  
Parameter  
FI2C1  
Description  
Min  
Typ Max Units Details/conditions  
Mbps  
Bit rate  
1
Datasheet  
34 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Electrical specifications  
7.4.3  
LCD direct drive  
Table 19  
LCD direct drive DC specifications  
(Guaranteed by characterization)  
Details/  
Spec ID# Parameter  
Description  
Min  
Typ Max Units  
conditions  
SID154 ILCDLOW  
Operating current in low power  
mode  
5
µA 16 × 4 small segment  
disp. at 50 Hz  
SID155 CLCDCAP  
LCD capacitance per  
500 5000  
pF Guaranteed by Design  
mV  
segment/common driver  
SID156 LCDOFFSET Long-term segment offset  
SID157 ILCDOP1  
20  
PWM Mode current. 5-V bias.  
24-MHz IMO  
0.6  
mA 32 × 4 segments.  
50 Hz, 25°C  
SID158 ILCDOP2  
PWM Mode current. 3.3-V bias.  
24-MHz IMO.  
0.5  
mA 32 × 4 segments.  
50 Hz, 25°C  
Table 20  
LCD direct drive AC specifications  
(Guaranteed by characterization)  
Spec ID# Parameter  
Description  
LCD frame rate  
Min  
10  
Typ  
50  
Max Units Details/conditions  
SID159  
FLCD  
150  
Hz  
Table 21  
Fixed UART DC specifications  
(Guaranteed by characterization)  
Spec ID# Parameter  
Description  
Min Typ Max Units Details/conditions  
SID160  
IUART1  
Block current consumption at  
100 Kbits/sec  
9
55  
µA  
SID161  
IUART2  
Block current consumption at  
1000 Kbits/sec  
312  
µA  
Table 22  
Fixed UART AC specifications  
(Guaranteed by characterization)  
Spec ID# Parameter  
Description  
Min Typ Max Units Details/conditions  
Mbps  
SID162  
FUART  
Bit rate  
1
Datasheet  
35 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Electrical specifications  
7.4.4  
SPI specifications  
Table 23  
Fixed SPI DC specifications  
(Guaranteed by characterization)  
Spec ID# Parameter  
SID163  
Description  
Block current consumption at  
1 Mbits/sec  
Block current consumption at  
4 Mbits/sec  
Block current consumption at  
8 Mbits/sec  
Min  
Typ  
Max  
360  
Units  
µA  
ISPI1  
ISPI2  
ISPI3  
SID164  
SID165  
560  
600  
µA  
µA  
Table 24  
Fixed SPI AC specifications  
(Guaranteed by characterization)  
Spec ID#  
Parameter  
Description  
Min  
Typ  
Max  
Units  
SID166  
FSPI  
SPI operating frequency (master; 6X  
oversampling)  
8
MHz  
Table 25  
Fixed SPI master mode AC specifications  
(Guaranteed by characterization)  
Spec ID#  
SID167  
SID168  
Parameter  
TDMO  
TDSI  
Description  
MOSI valid after Sclock driving edge  
MISO valid before Sclock capturing  
edge. Full clock, late MISO Sampling  
used  
Min  
20  
Typ  
Max  
15  
Units  
ns  
ns  
SID169  
THMO  
Previous MOSI data hold time with  
respect to capturing edge at Slave  
0
ns  
Table 26  
Fixed SPI slave mode AC specifications  
(Guaranteed by characterization)  
Spec ID#  
Parameter  
Description  
Min  
Typ  
Max  
Units  
SID170  
TDMI  
MOSI valid before Sclock capturing  
edge  
40  
ns  
SID171  
TDSO  
MISO valid after Sclock driving edge  
42+3×  
TSCB  
ns  
ns  
SID171A  
TDSO_ext  
MISO valid after Sclock driving edge  
in Ext. Clock mode  
48  
SID172  
SID172A  
THSO  
TSSELSCK  
Previous MISO data hold time  
SSEL Valid to first SCK Valid edge  
0
100  
ns  
ns  
Datasheet  
36 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Electrical specifications  
7.5  
Memory  
Table 27  
Flash DC specifications  
Details/  
Spec ID# Parameter  
Description  
Min  
Typ  
Max Units  
conditions  
SID173  
VPE  
Erase and program voltage 1.71  
5.5  
V
Table 28  
Flash AC specifications  
Spec ID# Parameter  
Description  
Min  
Typ  
Max  
Units Details/conditions  
SID174  
TROWWRITE  
Row (block) write time  
(erase and program)  
20  
ms  
Row (block) =  
256 bytes  
SID175  
SID176  
TROWERASE  
TROWPROGRAM Row program time after  
erase  
Row erase time  
13  
7
ms  
ms  
SID178  
SID180  
TBULKERASE  
TDEVPROG  
Bulk erase time (128 KB)  
Total device program time  
35  
ms  
15 seconds Guaranteed by  
characterization  
SID181  
SID182  
SID182A  
FEND  
FRET  
Flash endurance  
100 k  
20  
cycles Guaranteed by  
characterization  
years Guaranteed by  
characterization  
years Guaranteed by  
characterization  
years Guaranteed by  
characterization.  
Flash retention. TA 55°C,  
100 k P/E cycles  
Flash retention. TA 85°C,  
10 k P/E cycles  
Flash retention. TA 105°C,  
10 k P/E cycles, three years  
at TA 85°C  
10  
SID182B FRETQ  
10  
20  
Datasheet  
37 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Electrical specifications  
7.6  
System resources  
7.6.1  
Power-on reset (POR) with brown out  
Table 29  
Imprecise power-on reset (PRES)  
Spec ID#  
Parameter  
Description  
Min  
Typ  
Max Units Details/conditions  
SID185  
VRISEIPOR  
Rising trip voltage  
0.80  
1.45  
V
Guaranteed by  
characterization  
SID186  
SID187  
VFALLIPOR  
VIPORHYST  
Falling trip voltage  
Hysteresis  
0.75  
15  
1.4  
V
Guaranteed by  
characterization  
200  
mV Guaranteed by  
characterization  
Table 30  
Precise power-on reset (POR)  
Spec ID# Parameter  
Description  
Min  
Typ  
Max Units Details/conditions  
SID190  
VFALLPPOR  
BOD trip voltage in active  
and sleep modes  
1.64  
V
Guaranteed by  
characterization  
SID192  
VFALLDPSLP  
BOD trip voltage in Deep  
Sleep  
1.4  
V
Guaranteed by  
characterization  
7.6.2  
Voltage monitors  
Table 31  
Voltage monitors DC specifications  
Spec ID# Parameter  
Description  
Min  
1.71  
1.76  
1.85  
1.95  
2.05  
2.15  
2.24  
2.34  
2.44  
2.54  
2.63  
2.73  
2.83  
2.93  
3.12  
4.39  
Typ  
1.75  
1.80  
1.90  
2.00  
2.10  
2.20  
2.30  
2.40  
2.50  
2.60  
2.70  
2.80  
2.90  
3.00  
3.20  
4.50  
Max Units Details/conditions  
SID195  
SID196  
SID197  
SID198  
SID199  
SID200  
SID201  
SID202  
SID203  
SID204  
SID205  
SID206  
SID207  
SID208  
SID209  
SID210  
SID211  
VLVI1  
VLVI2  
VLVI3  
VLVI4  
VLVI5  
VLVI6  
VLVI7  
VLVI8  
LVI_A/D_SEL[3:0] = 0000b  
LVI_A/D_SEL[3:0] = 0001b  
LVI_A/D_SEL[3:0] = 0010b  
LVI_A/D_SEL[3:0] = 0011b  
LVI_A/D_SEL[3:0] = 0100b  
LVI_A/D_SEL[3:0] = 0101b  
LVI_A/D_SEL[3:0] = 0110b  
LVI_A/D_SEL[3:0] = 0111b  
LVI_A/D_SEL[3:0] = 1000b  
LVI_A/D_SEL[3:0] = 1001b  
LVI_A/D_SEL[3:0] = 1010b  
LVI_A/D_SEL[3:0] = 1011b  
LVI_A/D_SEL[3:0] = 1100b  
LVI_A/D_SEL[3:0] = 1101b  
LVI_A/D_SEL[3:0] = 1110b  
LVI_A/D_SEL[3:0] = 1111b  
Block current  
1.79  
1.85  
1.95  
2.05  
2.15  
2.26  
2.36  
2.46  
2.56  
2.67  
2.77  
2.87  
2.97  
3.08  
3.28  
4.61  
100  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
VLVI9  
VLVI10  
VLVI11  
VLVI12  
VLVI13  
VLVI14  
VLVI15  
VLVI16  
LVI_IDD  
µA Guaranteed by  
characterization  
Table 32  
Voltage monitors AC specifications  
Spec ID# Parameter  
Description  
Min  
Typ  
Max  
Units Details/conditions  
SID212 TMONTRIP  
Voltage monitor trip time  
1
µs Guaranteed by  
characterization  
Datasheet  
38 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Electrical specifications  
7.6.3  
SWD interface  
Table 33  
SWD interface specifications  
Spec ID#  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details/conditions  
SID213 F_SWDCLK1  
3.3 V VDD 5.5 V  
14  
MHz SWDCLK 1/3 CPU  
clock frequency  
SID214 F_SWDCLK2  
1.71 V VDD 3.3 V  
7
MHz SWDCLK 1/3 CPU  
clock frequency  
SID215 T_SWDI_SETUP T = 1/f SWDCLK  
SID216 T_SWDI_HOLD T = 1/f SWDCLK  
0.25 * T  
ns  
ns  
ns  
ns  
Guaranteed by  
characterization  
0.25 * T  
0.5 * T  
Guaranteed by  
characterization  
Guaranteed by  
characterization  
Guaranteed by  
characterization  
SID217 T_SWDO_VALID T = 1/f SWDCLK  
SID217A T_SWDO_HOLD T = 1/f SWDCLK  
1
7.6.4  
Internal main oscillator  
Table 34  
IMO DC specifications  
(Guaranteed by design)  
Details/  
Spec ID# Parameter  
SID218 IIMO1  
SID219 IIMO2  
SID220 IIMO3  
SID221 IIMO4  
SID222 IIMO5  
Description  
Min  
Typ  
Max  
1000  
325  
225  
180  
Units  
conditions  
IMO operating current at 48 MHz  
IMO operating current at 24 MHz  
IMO operating current at 12 MHz  
IMO operating current at 6 MHz  
IMO operating current at 3 MHz  
µA  
µA  
µA  
µA  
µA  
150  
Table 35  
IMO AC specifications  
Details/  
Spec ID#  
SID223  
Parameter  
FIMOTOL1  
Description  
Frequency variation from 3 to  
48 MHz  
Min  
Typ  
Max  
±2  
Units  
%
conditions  
SID226  
SID227  
SID228  
SID229  
TSTARTIMO  
IMO startup time  
12  
µs  
ps  
ps  
ps  
TJITRMSIMO1  
TJITRMSIMO2  
TJITRMSIMO3  
RMS Jitter at 3 MHz  
RMS Jitter at 24 MHz  
RMS Jitter at 48 MHz  
156  
145  
139  
Datasheet  
39 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Electrical specifications  
7.6.5  
Internal low-speed oscillator  
Table 36  
ILO DC specifications  
(Guaranteed by design)  
Details/  
Spec ID# Parameter  
Description  
Min  
Typ  
Max  
Units  
conditions  
SID231 IILO1  
ILO operating current at 32  
kHz  
0.3  
1.05  
µA  
Guaranteed by  
characterization  
SID233 IILOLEAK  
ILO leakage current  
2
15  
nA  
Guaranteed by  
design  
Table 37  
ILO AC specifications  
Details/  
Spec ID# Parameter  
Description  
Min  
Typ  
Max  
Units  
conditions  
SID234 TSTARTILO1  
ILO startup time  
2
ms Guaranteed by  
characterization  
SID236 TILODUTY  
SID237 FILOTRIM1  
ILO duty cycle  
40  
15  
50  
32  
60  
50  
%
Guaranteed by  
characterization  
32 kHz trimmed frequency  
kHz ±60% with trim.  
Table 38  
PLL DC specifications  
Details/  
Units  
Spec ID# Parameter  
Description  
Min  
Typ  
Max  
conditions  
SID410 IDD_PLL_48  
SID411 IDD_PLL_24  
In = 3 MHz, Out = 48 MHz  
In = 3 MHz, Out = 24 MHz  
530  
300  
610  
405  
µA  
µA  
Table 39  
PLL AC specifications  
Details/  
Spec ID# Parameter  
Description  
Min  
Typ  
Max Units  
conditions  
SID412 FPLLIN  
SID413 FPLLINT  
PLL input frequency  
PLL intermediate frequency;  
prescaler out  
1
1
48  
3
MHz  
MHz  
SID414 FPLLVCO  
SID415 DIVVCO  
VCO output frequency before 22.5  
post-divide  
104  
8
MHz  
VCO Output post-divider  
range; PLL output frequency  
is FPPLVCO/DIVVCO  
1
SID416 PLLlocktime  
SID417 Jperiod_1  
Lock time at startup  
Period jitter for VCO 67 MHz  
250  
150  
us  
ps Guaranteed By  
design  
SID416A Jperiod_2  
Period jitter for VCO 67 MHz  
200  
ps Guaranteed By  
design  
Datasheet  
40 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Electrical specifications  
Table 40  
External clock specifications  
Details/  
Spec ID# Parameter  
Description  
Min  
Typ  
Max  
Units  
conditions  
SID305 ExtClkFreq  
External clock input  
frequency  
0
48  
MHz Guaranteed by  
characterization  
SID306 ExtClkDuty  
Duty cycle; Measured at VDD/2  
45  
55  
%
Guaranteed by  
characterization  
Table 41  
Watch crystal oscillator (WCO) specifications  
Details /  
Spec ID# Parameter  
Description  
Min  
Typ  
Max Units  
conditions  
IMO WCO-PLL calibrated mode  
SID330 IMOWCO1  
SID331 IMOWCO2  
SID332 IMOWCO3  
SID333 IMOWCO4  
Frequency variation with IMO –0.6  
set to 3 MHz  
Frequency variation with IMO –0.4  
set to 5 MHZ  
Frequency variation with IMO –0.3  
set to 7 or 9 MHZ  
0.6  
0.4  
0.3  
0.2  
%
%
%
%
Does not include  
WCO tolerance  
Does not include  
WCO tolerance  
Does not include  
WCO tolerance  
Does not include  
WCO tolerance  
All other IMO frequency  
settings  
–0.2  
WCO specifications  
SID398 FWCO  
SID399 FTOL  
Crystal frequency  
Frequency tolerance  
32.768  
50  
250  
kHz  
ppm With 20-ppm  
crystal.  
SID400 ESR  
SID401 PD  
SID402 TSTART  
SID403 CL  
SID404 C0  
SID405 IWCO1  
Equivalent series resistance  
Drive Level  
Startup time  
Crystal load capacitance  
Crystal shunt capacitance  
Operating current (high power  
mode)  
6
50  
1.35  
1
500  
12.5  
kΩ  
µW  
ms  
pF  
pF  
uA  
8
Table 42  
External crystal oscillator (ECO) specifications  
Details/  
Spec ID# Parameter  
SID316 IECO1  
SID317 FECO  
Description  
Block operating current  
Crystal frequency range  
Min  
4
Typ  
Max Units  
conditions  
1.5  
33  
mA  
MHz  
Datasheet  
41 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Electrical specifications  
Table 43  
UDB AC specifications  
(Guaranteed by characterization)  
Details/  
Spec ID#  
Parameter  
Description  
Min Typ  
Max  
Units  
conditions  
Datapath performance  
SID249 FMAX-TIMER  
Max frequency of 16-bit timer in  
a UDB pair  
Maxfrequencyof16-bitadderin  
a UDB pair  
Max frequency of 16-bit  
CRC/PRS in a UDB pair  
48  
48  
48  
MHz  
MHz  
MHz  
SID250 FMAX-ADDER  
SID251 FMAX_CRC  
PLD performance in UDB  
SID252 FMAX_PLD  
Max frequency of 2-pass PLD  
function in a UDB pair  
48  
MHz  
Clock to output performance  
SID253 TCLK_OUT_UDB1 Prop. delay for clock in to data  
out at 25°C, Typ.  
SID254 TCLK_OUT_UDB2 Prop. delay for clock in to data  
out, Worst case.  
15  
25  
ns  
ns  
Table 44  
Block specs  
Parameter  
Details/  
Spec ID#  
Description  
Min Typ Max Units  
conditions  
SID256  
TWS48  
Number of wait states at  
48 MHz  
2
CPU execution  
from Flash.  
Guaranteed by  
characterization  
SID257  
SID260  
TWS24  
Number of wait states at  
24 MHz  
1
CPU execution  
from Flash.  
Guaranteed by  
characterization  
Percentage of Vbg  
(1.024 V).  
Guaranteed by  
characterization  
VREFSAR  
Trimmed internal reference to  
SAR  
–1  
+1  
%
SID261  
SID262  
FSARINTREF  
SAR operating speed without  
external reference bypass  
3
500  
4
ksps 12-bit resolution.  
Guaranteed by  
characterization  
TCLKSWITCH  
Clock switching from clk1 to  
clk2 in clk1 periods  
Periods Guaranteed by  
design  
* Tws48 and Tws24 are guaranteed by design  
Datasheet  
42 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Electrical specifications  
Table 45  
(Based on LPC Component Specs; all specs except TLCLKDO are guaranteed by design -10-pF load, 3-V VDDIO and  
VDDD  
UDB port adaptor specifications  
)
Details/  
Spec ID#  
SID263  
Parameter  
TLCLKDO  
Description  
Min  
Typ  
Max Units  
conditions  
LCLK to output delay  
18  
7
ns  
ns  
SID264  
TDINLCLK  
Input setup time to LCLCK  
rising edge  
SID265  
TDINLCLKHLD  
Input hold time from LCLK  
rising edge  
0
ns  
SID266  
SID267  
SID268  
TLCLKHIZ  
TFLCLK  
LCLK to output tristated  
LCLK frequency  
28  
33  
60  
ns  
MHz  
%
TLCLKDUTY  
LCLK duty cycle (percentage  
high)  
40  
Table 46  
USB device block specifications (USB only)  
Details /  
Spec ID# Parameter  
Description  
Min  
Typ  
Max Units  
conditions  
SID321  
SID322  
SID323  
Vusb_5  
Vusb_3.3  
Vusb_3  
Device supply for USB  
operation  
Device supply for USB  
operation  
Device supply for USB  
operation (Functional  
operation only)  
4.5  
5.5  
3.6  
3.6  
V
V
V
USB Configured, USB  
Reg. enabled  
USB Configured, USB  
Reg. bypassed  
USB Configured, USB  
Reg. bypassed  
3.15  
2.85  
SID324  
SID325  
SID326  
SID327  
SID328  
SID329  
Iusb_config  
Iusb_config  
Device supply current in  
10  
8
mA  
mA  
mA  
mA  
mA  
mA  
V
V
V
DDD = 5 V  
Active mode, IMO = 24 MHz  
Device supply current in  
Active mode, IMO = 24 MHz  
DDD = 3.3 V  
Isub_suspend Device supply current in  
Sleep mode  
Isub_suspend Device supply current in  
Sleep mode  
Isub_suspend Device supply current in  
Sleep mode  
Isub_suspend Device supply current in  
Sleep mode  
0.5  
0.3  
0.5  
0.3  
DDD = 5 V, PICU  
wakeup  
DDD = 5 V, Device  
disconnected  
DDD = 3.3 V, PICU  
wakeup  
DDD = 3.3 V, Device  
disconnected  
V
V
V
Datasheet  
43 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Electrical specifications  
Table 47  
SIO specifications  
Spec  
ID#  
Parameter  
Description  
Min  
Typ  
Max  
Units Details / conditions  
SIO DC specifications  
SID330 VIH  
Input voltage high  
threshold  
Input voltage low threshold  
0.7 * VDD  
0.3*VDD  
V
V
V
CMOS input; with  
respect to VDDIO  
CMOS input; with  
respect to VDDIO  
Vr is the SIO reference  
voltage  
SID331 VIL  
SID332 VIH  
Differential input mode  
high voltage; hysteresis  
disabled  
Vr + 0.2  
SID333 VIL  
SID334 VOH  
SID335 VOH  
SID336 VOH  
SID337 VOL  
SID338 VOL  
Differential input mode low  
voltage, hysteresis disabled  
Output high voltage in  
unregulated mode  
Output high voltage in  
regulated mode  
Output high voltage in  
regulated mode  
Output low voltage  
Output low voltage  
Input voltage reference  
Output voltage reference  
(regulated mode)  
Output voltage reference  
(regulated mode)  
VDDIO – 0.4  
Vr – 0.65  
Vr – 0.3  
Vr-0.2  
V
V
V
V
V
V
Vr is the SIO reference  
voltage  
IOH = 4 mA, VDD = 3.3 V  
Vr + 0.2  
Vr + 0.2  
0.8  
IOH = 1 mA  
IOH = 0.1 mA  
VDDIO = 3.3 V, IOL = 25  
mA  
VDDIO = 1.8 V, IOL = 4  
mA  
0.4  
SID339 Vinref  
SID340 Voutref  
0.48  
1
0.52 * VDDIO  
V
V
V
DDIO – 1  
VDDIO > 3.3  
VDDIO < 3.3  
SID341 Voutref  
1
V
DDIO – 0.5  
V
SID342 RPULLUP  
SID343 RPULLDOWN  
SID344 IIL  
Pull-up resistor  
Pull-down resistor  
Input leakage current  
(absolute value)  
3.5  
3.5  
5.6  
5.6  
8.5  
8.5  
14  
kΩ  
kΩ  
nA VIH VDDSIO; 25°C  
SID345 IIL  
Input leakage current  
(absolute value)  
10  
nA VIH > VDDSIO; 25°C  
SID346 CIN  
Input capacitance  
40  
7
pF  
mV  
SID347 VHYST-Single Hysteresis in single-ended  
mode  
SID348 VHYST_Diff  
Hysteresis in differential  
mode  
Current through protection  
diode to VDD/VSS  
35  
mV  
µA  
SID349 IDIODE  
100  
SIO AC specifications (Guaranteed by design)  
SID350 TRISEF  
Rise time in Fast Strong  
mode  
Fall time in Fast Strong  
mode  
12  
12  
ns 3.3-V VDD, Cload = 25  
pF  
ns 3.3-V VDD, Cload = 25  
pF  
SID351 TFALLF  
Datasheet  
44 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Electrical specifications  
Table 47  
SIO specifications (continued)  
Spec  
ID#  
Parameter  
Description  
Min  
Typ  
Max  
Units Details / conditions  
SID352 TRISES  
SID353 TFALLS  
SID354 FSIOUT1  
Rise time in Slow Strong  
mode  
Fall time in Slow Strong  
mode  
SIO Fout; Unregulated, Fast  
Strong mode  
75  
ns 3.3-V VDD, Cload = 25  
pF  
ns 3.3-V VDD, Cload = 25  
pF  
MHz 3.3-V VDD 5.5 V,  
25 pF. Guaranteed by  
design.  
70  
33  
SID355 FSIOUT2  
SID356 FSIOUT3  
SID357 FSIOUT4  
SID358 FSIOUT3  
SID359 FSIOUT4  
SID360 FSIOUT5  
SID361 FGPIOIN  
SIO Fout; Unregulated, Fast  
Strong mode  
SIO Fout; Regulated, Fast  
Strong mode  
SIO Fout; Regulated, Fast  
Strong mode  
SIO Fout; Unregulated,  
Slow Strong mode.  
SIO Fout, Unregulated,  
Slow Strong mode.  
SIO Fout, Regulated, Slow  
Strong mode.  
16  
20  
10  
5
MHz 1.71-V VDD 3.3 V,  
25 pF  
MHz 3.3-V VDD 5.5 V,  
25 pF  
MHz 1.71 V VDD 3.3 V,  
25 pF  
MHz 3.3 V VDD 5.5 V,  
25 pF  
3.5  
2.5  
48  
MHz 1.71 V VDD 3.3 V,  
25 pF  
MHz 1.7 V VDD 5.5 V,  
25 pF  
GPIO input operating  
MHz 1.71 V VDD 5.5 V  
frequency;1.71 V VDD  
5.5 V  
Table 48  
CAN specifications  
Spec  
ID#  
Parameter  
Description  
Min  
Typ  
Max  
Units Details / conditions  
SID420 IDD_CAN  
SID421 CAN_bits  
Block current consumption  
CAN Bit rate (Min 8-MHz  
clock)  
200  
1
uA  
Mbps  
Datasheet  
45 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Ordering information  
8
Ordering information  
The PSoC™ 4200L family part numbers and features are listed in the following table.  
Table 49 PSoC™ 4200L ordering information  
Features  
Package  
MPN  
4248 CY8C4248BZA-L489 48 256 32  
CY8C4248BZS-L489 48 256 32  
8
8
4
4
1
1
Yes 1000 ksps  
Yes 1000 ksps  
2
2
8
8
4
4
Yes Yes 98  
Yes Yes 98  
Yes  
Yes  
The nomenclature used in Table 49 is based on the following part numbering convention:  
Table 50  
MPN nomenclature  
Description  
Infineon prefix  
Architecture  
Family  
Field  
Values  
Meaning  
CY8C  
4
A
B
C
4
2
4
PSoC™ 4  
4200 family  
48 MHz  
CPU speed  
Flash capacity  
6
64 KB  
7
128 KB  
8
256 KB  
DE  
Package code  
AX, AZ  
TQFP  
LT  
Q FN  
BZ  
BGA  
FD  
CSP  
F
S
Temperature range  
Series designator  
A
S
S
L
M
Auto A (-40 to +85°C)  
AUTO S (-40 to +105°C)  
PSoC™ 4 S-Series  
PSoC™ 4 L-Series  
PSoC™ 4 M-Series  
XYZ  
Attributes code  
000-999  
Code of feature set in the specific family  
Datasheet  
46 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Ordering information  
8.1  
Part numbering conventions  
The part number fields are defined as follows.  
CY8C  
4
A
B C D E  
F
-
S
X Y Z  
Infineon prefix  
Architecture  
Family group within architecture  
Speed grade  
Flash capacity  
Package code  
Temperature range  
Series designator  
Attributes code  
Datasheet  
47 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Packaging  
9
Packaging  
Table 51  
Package dimensions  
SPEC ID#  
PKG_1  
Package  
124-ball VFBGA  
Description  
124-ball, 9 mm x 9 mm x 1.0 mm height with  
0.65 mm ball pitch  
Package DWG #  
001-97718  
Table 52  
Parameter  
TA  
Package characteristics  
Description  
Conditions  
Min  
Typ  
Max Units  
Operating ambient  
temperature  
(CY8C4248BZS - L489)  
–40  
25  
105  
°C  
°C  
°C  
Operating ambient  
temperature  
(CY8C4248BZA-L489)  
–40  
–40  
25  
85  
TJ  
Operating junction  
temperature  
125  
TJA  
TJC  
85  
6
°C/Watt  
°C/Watt  
Package θJA (124-ball VFBGA)  
Package θJC (124-ball VFBGA)  
Table 53  
Solder reflow peak temperature  
Maximum peak temperature  
Package  
124-ball VFBGA  
Maximum time at peak temperature  
260°C  
30 seconds  
Table 54  
Package moisture sensitivity level (MSL), IPC/JEDEC J-STD-2  
Package  
MSL  
124-ball VFBGA  
MSL 3  
Datasheet  
48 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Packaging  
001-97718 *B  
Figure 8  
124-ball VFBGA package outline  
Datasheet  
49 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Acronyms  
10  
Acronyms  
Table 55  
Acronyms used in this document  
Acronym  
Description  
abus  
ADC  
AG  
analog local bus  
analog-to-digital converter  
analog global  
AHB  
AMBA (advanced microcontroller bus architecture) high-performance bus, an Arm® data  
transfer bus  
ALU  
arithmetic logic unit  
AMUXBUS  
API  
analog multiplexer bus  
application programming interface  
application program status register  
advanced RISC machine, a CPU architecture  
automatic thump mode  
APSR  
Arm®  
ATM  
BW  
bandwidth  
CAN  
CMRR  
CPU  
CRC  
Controller Area Network, a communications protocol  
common-mode rejection ratio  
central processing unit  
cyclic redundancy check, an error-checking protocol  
digital-to-analog converter, see also IDAC, VDAC  
digital filter block  
DAC  
DFB  
DIO  
digital input/output, GPIO with only digital capabilities, no analog. See GPIO.  
Dhrystone million instructions per second  
direct memory access, see also TD  
differential nonlinearity, see also INL  
do not use  
DMIPS  
DMA  
DNL  
DNU  
DR  
port write data registers  
DSI  
digital system interconnect  
DWT  
ECC  
data watchpoint and trace  
error correcting code  
ECO  
external crystal oscillator  
EEPROM  
EMI  
electrically erasable programmable read-only memory  
electromagnetic interference  
external memory interface  
EMIF  
EOC  
EOF  
end of conversion  
end of frame  
EPSR  
ESD  
execution program status register  
electrostatic discharge  
ETM  
embedded trace macrocell  
Datasheet  
50 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Acronyms  
Table 55  
Acronym  
Acronyms used in this document (continued)  
Description  
FIR  
finite impulse response, see also IIR  
flash patch and breakpoint  
full-speed  
FPB  
FS  
GPIO  
HVI  
general-purpose input/output, applies to a PSoC™ pin  
high-voltage interrupt, see also LVI, LVD  
integrated circuit  
IC  
IDAC  
current DAC, see also DAC, VDAC  
integrated development environment  
Inter-Integrated Circuit, a communications protocol  
infinite impulse response, see also FIR  
internal low-speed oscillator, see also IMO  
internal main oscillator, see also ILO  
integral nonlinearity, see also DNL  
input/output, see also GPIO, DIO, SIO, USBIO  
initial power-on reset  
IDE  
I2C, or IIC  
IIR  
ILO  
IMO  
INL  
I/O  
IPOR  
IPSR  
IRQ  
interrupt program status register  
interrupt request  
ITM  
LCD  
LIN  
instrumentation trace macrocell  
liquid crystal display  
Local Interconnect Network, a communications protocol.  
link register  
LR  
LUT  
LVD  
LVI  
lookup table  
low-voltage detect, see also LVI  
low-voltage interrupt, see also HVI  
low-voltage transistor-transistor logic  
multiply-accumulate  
LVTTL  
MAC  
MCU  
MISO  
NC  
microcontroller unit  
master-in slave-out  
no connect  
NMI  
NRZ  
NVIC  
NVL  
opamp  
PAL  
PC  
nonmaskable interrupt  
non-return-to-zero  
nested vectored interrupt controller  
nonvolatile latch, see also WOL  
operational amplifier  
programmable array logic, see also PLD  
program counter  
PCB  
PGA  
printed circuit board  
programmable gain amplifier  
Datasheet  
51 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Acronyms  
Table 55  
Acronym  
Acronyms used in this document (continued)  
Description  
PHUB  
PHY  
PICU  
PLA  
peripheral hub  
physical layer  
port interrupt control unit  
programmable logic array  
programmable logic device, see also PAL  
phase-locked loop  
PLD  
PLL  
PMDD  
POR  
PRES  
PRS  
PS  
package material declaration data sheet  
power-on reset  
precise power-on reset  
pseudo random sequence  
port read data register  
PSoC™  
PSRR  
PWM  
RAM  
RISC  
RMS  
RTC  
Programmable System-on-Chip™  
power supply rejection ratio  
pulse-width modulator  
random-access memory  
reduced-instruction-set computing  
root-mean-square  
real-time clock  
RTL  
register transfer language  
remote transmission request  
receive  
RTR  
RX  
SAR  
successive approximation register  
switched capacitor/continuous time  
I2C serial clock  
SC/CT  
SCL  
SDA  
S/H  
I2C serial data  
sample and hold  
SINAD  
SIO  
signal to noise and distortion ratio  
special input/output, GPIO with advanced features. See GPIO.  
start of conversion  
SOC  
SOF  
SPI  
start of frame  
Serial Peripheral Interface, a communications protocol  
slew rate  
SR  
SRAM  
SRES  
SWD  
SWV  
TD  
static random access memory  
software reset  
serial wire debug, a test protocol  
single-wire viewer  
transaction descriptor, see also DMA  
total harmonic distortion  
THD  
Datasheet  
52 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Acronyms  
Table 55  
Acronym  
Acronyms used in this document (continued)  
Description  
TIA  
transimpedance amplifier  
technical reference manual  
transistor-transistor logic  
TRM  
TTL  
TX  
transmit  
UART  
UDB  
USB  
USBIO  
VDAC  
WDT  
WOL  
WRES  
XRES  
XTAL  
Universal Asynchronous Transmitter Receiver, a communications protocol  
universal digital block  
Universal Serial Bus  
USB input/output, PSoC™ pins used to connect to a USB port  
voltage DAC, see also DAC, IDAC  
watchdog timer  
write once latch, see also NVL  
watchdog timer reset  
external reset I/O pin  
crystal  
Datasheet  
53 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Document conventions  
11  
Document conventions  
11.1  
Units of measure  
Table 56  
Units of measure  
Symbol  
Unit of measure  
°C  
degrees Celsius  
decibel  
dB  
fF  
femto farad  
hertz  
Hz  
KB  
1024 bytes  
kbps  
Khr  
kHz  
kΩ  
ksps  
LSB  
Mbps  
MHz  
MΩ  
Msps  
µA  
kilobits per second  
kilohour  
kilohertz  
kilo ohm  
kilosamples per second  
least significant bit  
megabits per second  
megahertz  
mega-ohm  
megasamples per second  
microampere  
microfarad  
µF  
µH  
µs  
microhenry  
microsecond  
microvolt  
µV  
µW  
mA  
ms  
mV  
nA  
microwatt  
milliampere  
millisecond  
millivolt  
nanoampere  
nanosecond  
nanovolt  
ns  
nV  
Ω
ohm  
pF  
picofarad  
ppm  
ps  
parts per million  
picosecond  
second  
s
sps  
sqrtHz  
V
samples per second  
square root of hertz  
volt  
Datasheet  
54 of 56  
002-35633 Rev. **  
2022-06-16  
PSoC™ 4 MCU: PSoC™ 4200L Automotive  
Based on Arm® Cortex®-M0  
Revision history  
Revision history  
Document  
Date of release  
version  
Description of changes  
**  
2022-06-16  
New datasheet.  
Datasheet  
55 of 56  
002-35633 Rev. **  
2022-06-16  
Please read the Important Notice and Warnings at the end of this document  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
For further information on the product, technology,  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”).  
Edition 2022-06-16  
Published by  
delivery terms and conditions and prices please  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
Infineon Technologies AG  
81726 Munich, Germany  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement of  
intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2022 Infineon Technologies AG.  
All Rights Reserved.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
In addition, any information given in this document  
is subject to customer’s compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and standards  
concerning customer’s products and any use of the  
product of Infineon Technologies in customer’s  
applications.  
Do you have a question about this  
document?  
Go to www.infineon.com/support  
authorized  
representatives  
of  
Infineon  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of the  
product or any consequences of the use thereof can  
reasonably be expected to result in personal injury.  
Document reference  
002-35633 Rev. **  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

相关型号:

CY8C4248FLI-BL483

Programmable System-on-Chip (PSoC®)
CYPRESS

CY8C4248FLI-BL583

Programmable System-on-Chip (PSoC®)
CYPRESS

CY8C4248FLI-BL583T

32位PSoC™ 4 Arm® Cortex®-M0/M0+
INFINEON

CY8C4248FNI-BL453

Programmable System-on-Chip (PSoC®)
CYPRESS

CY8C4248FNI-BL463

Programmable System-on-Chip (PSoC®)
CYPRESS

CY8C4248FNI-BL473

Programmable System-on-Chip (PSoC®)
CYPRESS

CY8C4248FNI-BL483

Programmable System-on-Chip (PSoC®)
CYPRESS

CY8C4248FNI-BL493

Programmable System-on-Chip (PSoC®)
CYPRESS

CY8C4248FNI-BL543

Programmable System-on-Chip (PSoC®)
CYPRESS

CY8C4248FNI-BL543T

32位PSoC™ 4 Arm® Cortex®-M0/M0+
INFINEON

CY8C4248FNI-BL553

Programmable System-on-Chip (PSoC®)
CYPRESS

CY8C4248FNI-BL553T

32位PSoC™ 4 Arm® Cortex®-M0/M0+
INFINEON