CY8C24x94 [INFINEON]

The CAPSENSE™ Plus CY8C24x94 family supports up to fifty-six general purpose I/Os for buttons, multi-segment sliders, proximity detection, touchpads, LEDs, and other general purpose functions.;
CY8C24x94
型号: CY8C24x94
厂家: Infineon    Infineon
描述:

The CAPSENSE™ Plus CY8C24x94 family supports up to fifty-six general purpose I/Os for buttons, multi-segment sliders, proximity detection, touchpads, LEDs, and other general purpose functions.

文件: 总65页 (文件大小:2094K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
请注意赛拉斯已正式并入英飞凌科技公司。  
此封页之后的文件标注拉斯文件即该产为此公司最初开发的注  
意作为英飞凌产组合的部分飞凌将继续为新的及现有客户提供该产。  
文件内容的连续性  
事实英飞凌提供如下产作为英飞凌产组合的部分不会带来对于此文件的任何  
变更来的变更将在恰当的时候发生任何变更将在历史页记录。  
订购零件编号的连续性  
英飞凌继续支持现有零件编号的使用单时请继续使用数据表中的订购零件编号。  
www.infineon.com  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
PSoC® Programmable System-on-Chip™  
(可编程片上系统)  
oPSoC® 可编程片上系统  
1. 特性  
XRES 引脚,支持 CY8C24894 中的系统内串行编程 (ISSP)  
和外部复位控制  
高精度、可编程时钟  
内部 ±4% 24- / 48 MHz 主振荡器  
内部振荡器,能够实现看门狗和睡眠功能  
有连接 USB 时精度为 0.25%,无需外部组件  
强大的 Harvard 架构处理器  
M8C 处理器的速度最高可达 24 MHz  
两个 8 × 8 乘法、 32 位累加器  
能在高速度条件下实现低功耗操作  
工作电压范围:3 V ~ 5.25 V  
其它系统资源  
I2C 从设备、主设备和多主设备的频率可达 400 kHz  
看门狗和睡眠定时器  
用户可配置的低压检测 (LVD)功能  
工业温度范围:– 40 °C ~ +85 °C  
USB 温度范围:–10 °C ~ +85 °C  
高级外设 (PSoC® 模块)  
6 个轨至轨模拟 PSoC 模块提供了:  
高达 14 位的模数转换器 (ADC)  
高达 9 位的数模转换器 (DAC)  
可编程增益放大器 (PGA)  
2. 逻辑框图  
模拟  
驱动器  
端口 5 端口 4 端口 3 2 端口 1 端口 0  
7
端口  
可编程滤波器和比较器  
4 个数字 PSoC 模块提供了:  
• 8 32 位定时器、计数器和脉冲宽度调制器 (PWM)  
循环冗余校验 (CRC)和伪随机序列 (PRS)模块  
全双工通用异步收发器 (UART)  
多个串行外设接口 (SPI)主设备或从设备  
可连接到所有通用 I/O GPIO)引脚  
通过多个模块的组合,能够构建复杂外设  
电容式感应应用 (CSA)功能  
全局数字互连  
全局模拟互连  
PSoC内核  
SROM Flash16 KB  
SRAM  
1K  
睡眠定时器和  
看门狗定时器  
全速 USB 12 Mbps)  
4 个单向端点  
CPU内核  
M8C)  
中断  
控制器  
一个双向控制端点  
符合 USB 2.0 标准  
专用的 256 字节缓冲器  
无需使用外部晶体  
时钟源  
(包括IMOILO)  
数字系统  
模拟系统  
模拟  
参考  
灵活的片上存储器  
16 KB 闪速程序存储器, 50,000 次擦 / 写周期  
1 KB 静态随机存取存储器 (SRAM)数据存储器  
ISSP  
数字  
模拟  
模块  
阵列  
模块  
阵列  
局部闪存更新  
灵活的保护模式  
在闪存内模拟电擦除可编程只读存储器 (EEPROM)  
可编程引脚配置  
所有 GPIO 均支持 25 mA 的灌电流和 10 mA 的拉电流  
所有 GPIO 均可选择上拉、下拉、高阻 、强驱动或开漏驱动  
等模式  
模拟  
输入  
复用器  
内部  
电压  
数字  
时钟  
2
抽取滤波器  
PORLVD  
系统复位  
I2C  
USB  
MACs  
2
类型  
.
参考  
GPIO 上最多可有 48 个模拟输入  
GPIO 上有两个 33 mA 的模拟输出  
所有 GPIO 都能生成可配置中断  
系统资源  
勘误表:有关芯片勘误表的信息,请查看59 页上的勘误表。具体内容包括触发条件、受影响器件以及推荐的解决方案。  
赛普拉斯半导体公司  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
文档编号:001-47288 版本 *E  
修订日October 21, 2015  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
3. 更多有关的信息  
赛普拉斯的 www.cypress.com 网站上提供了大量资料,这些资料有助于选择符合您设计的 PSoC 器件,并能够加快将该器件集成到  
您的设计中的速度。有关使用资源的完整列表,请参考知识库文章 KBA92181 — CapSense® 控制器的资源。下面是 CapSense 器件  
的简要列表:  
概述:CapSense 系列CapSense 蓝图。  
开发套件:  
CY3280-24x94 通用的 CapSense 控制器电路板使用了预定  
义的控制电路和插入硬件,从而简化了原型化设计和系统调  
试。另外,它还包含了用于进行调校和数据采集的编程硬件  
I2C-USB 间的桥接器。  
产品选择器:CapSenseCapSense PlusCapSense  
Express采用 CapSense 技术的 PSoC3采用 CapSense  
技术的 PSoC5PSoC4。此外,在创建新项目时 PSoC  
Designer 还提供器件选型工具。  
CY3280-BMM 阵列按键模块8 CapSense 传感器组成  
(以 4x4 阵列格式组织构成 16 个物理按键和 8 LED。  
该模块可连接至任意 CY3280 通用的 CapSense 控制器电  
路板 (包含 CY3280-20x66 通用的 CapSense 控制器。  
CY3280-BSM 简单按键模块由十个 CapSense 按键和十个  
LED 组成。该模块可连接至任意 CY3280 通用 CapSense  
控制器电路板 (包含 CY3280-20x66 通用 CapSense 控制  
。  
应用笔记:赛普拉斯提供了大量 CapSense 应用笔记,包括从  
基本到高级的广泛主题。下面列出的是 CapSense 入门的应  
用笔记:  
AN64846CapSense 入门  
AN2397CapSense® 数据查看工具  
技术参考手册 (TRM:  
CY8CPLC20CY8CLED16P01CY8C29x66、  
CY8C27x43CY8C24x94CY8C24x23CY8C24x23A、  
CY8C22x13CY8C21x34CY8C21x34BCY8C21x23、  
CY7C64215CY7C603xxCY8CNP1xx CY-  
WUSB6953 PSoC® 可编程片上系统技术参考手册  
CY3217-MiniProg1 CY8CKIT-002 PSoC® MiniProg3 器件提  
供了一个用于闪存编程的接口。  
3.1 PSoC Designer  
PSoC Designer 是基于 Windows 的免费的集成设计环境 (IDE通过它可以同时在基于 CapSense 的系统中设计硬件和固件 (请  
参见1通过 PSoC Designer,您可以:  
1. 将用户模块图标施放到主要设计工作区中,以进行您的硬件  
系统设计。  
3. 配置用户模块  
4. 了解用户模块库  
5. 查看用户模块数据手册  
2. 使用 PSoC Designer 集成开发环境 C 编译器对您的应用固件  
PSoC 硬件进行协同设计  
1. PSoC Designer 的功能  
1
2
3
4
5
文档编号:001-47288 版本 *E  
2/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
4. 目录  
PSoC 功能概述 .....................................................................4  
PSoC 内核 .....................................................................4  
数字系统 ........................................................................4  
模拟系统 ........................................................................5  
其它系统资源 .................................................................6  
PSoC 器件特性 ..............................................................6  
入门 ......................................................................................7  
应用笔记 ........................................................................7  
开发套件 ........................................................................7  
培训 ...............................................................................7  
CYPros 顾问 ..................................................................7  
解决方案库 ....................................................................7  
技术支持 ........................................................................7  
开发工具 ...............................................................................7  
PSoC Designer 软件子系统 ...........................................7  
使用 PSoC Designer 进行设计 ............................................8  
选择用户模块 .................................................................8  
配置用户模块 .................................................................8  
组织和连接 ....................................................................8  
生成、验证和调试 ..........................................................8  
引脚信息 ...............................................................................9  
56 引脚部件的引脚分布 ................................................9  
56 引脚器件的引脚分布 (带有 XRES.....................10  
68 引脚器件的引脚分布 ...............................................11  
68 引脚器件的引脚分布 (片上调试) .........................12  
100 球形焊盘 VFBGA 器件的引脚分布 ........................13  
100 球形焊盘 VFBGA 器件的引脚分布 (片上调试) ..15  
100 引脚器件的引脚分布 (片上调试) .......................17  
寄存器参考 ..........................................................................19  
寄存器规定 ..................................................................19  
寄存器映射表 ...............................................................19  
寄存器映射组 0 表:用户空间 ....................................20  
寄存器映射组 1 表:配置空间 ....................................21  
电气规范 .............................................................................22  
最大绝对额定值 ...........................................................22  
工作温度 ......................................................................23  
直流电气特性 ...............................................................23  
交流电气特性 ...............................................................37  
热阻 .............................................................................45  
回流焊峰值规范 ...........................................................45  
开发工具选择 ......................................................................46  
软件 .............................................................................46  
开发套件 ......................................................................46  
评估工具 ......................................................................46  
器件编程器 ..................................................................46  
附件 (仿真和编程....................................................47  
订购信息 .............................................................................48  
订购代码定义 ...............................................................48  
封装尺寸 .............................................................................49  
缩略语 .................................................................................54  
使用的缩略语 ...............................................................54  
文档规范 .............................................................................55  
测量单位 ......................................................................55  
数字规范 ......................................................................55  
术语表 .................................................................................55  
勘误表 .................................................................................59  
受影响的器件型号 ......................................................59  
CY8C24x94 勘误表摘要 ............................................59  
文档修订记录 ......................................................................63  
销售、解决方案和法律信息 ................................................64  
全球销售和设计支持 ..................................................64  
产品 ...........................................................................64  
PSoC® 解决方案 .......................................................64  
赛普拉斯开发者社区 ..................................................64  
技术支持 ....................................................................64  
文档编号:001-47288 版本 *E  
3/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
5. PSoC 功能概述  
PSoC 系列包含许多带片上控制器的器件。这些器件旨在使用一  
个低成本的单芯片可编程元件来代替多个基于 MCU 的传统系统  
元件。 PSoC 器件包含多个可配置的模拟和数字逻辑模块,以及  
各模块间的可编程连接。这种结构可帮助您根据每个应用的要求  
来创建可定制的外设配置。此外,在一系列方便易用的引脚布局  
中还包含了快速 CPU存程序存储器SRAM 数据存储器以及  
可配置 I/O。  
5.2 数字系统  
数字系统包括 4 个数字 PSoC 模块个模块都是一个 8 位的资  
可以单独使用可以与其他模块一起组成 81624 和  
32 位外设 (这些模块被称为用户模块数字外设配置包括:  
PWM 8 32 位)  
带死区的 PWM 8 32 位)  
计数器 (8 32 位)  
定时器 (8 32 位)  
带可选奇偶校验位的 8 UART  
SPI / 从接口  
1 页上的逻辑框图所示,PSoC 架构由以下 4 个主要部分组  
成:内核、系统资源、数字系统和模拟系统。利用可配置的全局  
总线资源,可将所有器件资源整合到一个完全定制的系统中。每  
CY8C24x94 PSoC器件都包括 4个数字模块和 6个模拟模块。  
根据 PSoC 封装多还可包括 56 GPIOGPIO 能够提供对  
全局数字和模拟互连的访问。  
5.1 PSoC 内核  
I2C 从设备和多主设备  
CRC/ 发生器 (8 位)  
IrDA  
PSoC 内核是一个强大的引擎,支持丰富的指令集。它包含用于  
数据存储的 SRAM、中断控制器、睡眠和看门狗定时器, IMO  
(内部主振荡器ILO(内部低速振荡器M8C CPU 内核是  
一个速度可高达 24 MHz 的强大处理器。M8C 是一个 4 MIPS 的  
Harvard 架构 8 位微处理器。  
PRS 生成器 (8 32 位)  
通过一系列能够将任意信号路由至任意引脚的全局总线,数字模  
块可被连接到任意 GPIO。此外,通过总线还可以实现信号复用  
和执行逻辑运算。由于具有这种可配置性,因此设计不再受固定  
外设控制器的限制。  
系统资源能够提供下述附加功能:  
用于提高灵活性的数字时钟。  
实现 I2C 主设备和从设备的 I2C 功能  
数字模块采用了四个一行的排列方式,具体的模块数量因 PSoC  
器件系列不同而异。这样有助于根据应用选择最佳的系统资源。  
关于此产品系列的资源,请参见6 页上的表 1。  
内部电压参考主控模式能够为众多 PSoC 子系统提供 1.3V  
的绝对值参考电位。  
开关电压泵 (SMP能够利用单个电池生成正常工作电压  
M8C 支持的众多系统复位功能。  
2. 数字系统框图  
Port 7  
Port 5  
Port 3  
Port 1  
Port 4  
Port 2  
Port 0  
数字系统包括一个数字 PSoC 模块阵列够将这些模块配置为  
各种数字外设通过一系列全局总线将数字模块连接到GPIO。  
这些能够将任意信号布线至任意引脚,这样一来,设计将不再受  
固定外设控制器的限制。  
To System Bus  
Digital Clocks  
From Core  
To Analog  
System  
模拟系统包括六个模拟 PSoC 模块持电压比较器以及精度高  
10 位的模数转换。  
DIGITAL SYSTEM  
Digital PSoC Block Array  
Row 0  
8
4
8
8
8
DBB00  
DBB01  
DCB02 DCB03  
4
GIE[7:0]  
GIO[7:0]  
GOE[7:0]  
GOO[7:0]  
Global Digital  
Interconnect  
文档编号:001-47288 版本 *E  
4/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
5.3 模拟系统  
模拟系统由 6 个可配置的模块组成,其中每个模块都包含一个能  
够创建复杂模拟信号流的运算放大器电路。模拟外设非常灵活,  
并能够根据具体的应用要求进行定制些更常用的 PSoC 模拟  
功能 (几乎都以用户模块的方式提供)包括:  
3. 模拟系统框图  
A ll IO  
(E x c e p t P o rt 7 )  
P 0 [7 ]  
P 0 [5 ]  
P 0 [6 ]  
P 0 [4 ]  
ADC (最多两个, 6 14 位分辨率,可选择增量、 Delta  
Sigma 和逐次逼近寄存器 (SAR)  
P 0 [3 ]  
P 0 [1 ]  
P 0 [2 ]  
P 0 [0 ]  
滤波器 (2 极和 4 极带通、低通和陷波滤波器)  
放大器 (最多 2 个,可选增益达 48x)  
仪表放大器 (1 个,可选增益达 93x)  
比较器 (最多 2 个,有 16 个可选阈值)  
DAC (多达 2 个, 6 9 位分辨率)  
乘法 DAC (最多两个, 6 9 位分辨率)  
P 2 [6 ]  
P 2 [4 ]  
P 2 [3 ]  
P 2 [1 ]  
P 2 [2 ]  
P 2 [0 ]  
大电流输出驱动器(两个动能力为 30 mAPSoC 内  
核资源)  
1.3 V 参考 (属于系统资源)  
DTMF 拨号器  
调制器  
A C I0 [1 :0 ]  
A rra y In p u t  
A C I1 [1 :0 ]  
C o n fig u ra tio n  
相关器  
B lo c k  
A rray  
A C B 0 0  
A S C 1 0  
A S D 2 0  
A C B 0 1  
峰值检测器  
A S D 1 1  
A S C 2 1  
可以使用许多其他拓扑  
3 所示,模拟模块都采用三个一列的排列方式,其中包括  
一个连续时间 (CT)和两个开关电容 (SC)模块。  
A n a lo g R e fe re n c e  
In te rfa c e to  
D ig ita l S y s te m  
R e fe re n c e  
G e n e ra to rs  
R e fH i  
R e fL o  
A G N D  
A G N D In  
R e fIn  
B a n d g a p  
M 8 C In te rfa c e (A d d re s s B u s , D a ta B u s , E tc .)  
5.3.1 模拟复用器系统  
模拟复用器总线可以连接至端口 0–5 中的每个 GPIO 引脚脚  
可以单独连接至总线,也可以采用任意组合方式连接至总线。该  
总线还可连接到模拟系统,以便使用比较器和模数转换器进行分  
析。它可以拆分成两个部分,以同时进行双通道处理。一个额外  
8:1 模拟输入复用器提供了将端口 0 引脚连接至模拟阵列的另  
一个通路。  
借助于开关控制逻辑,可以在硬件控制下对选定的引脚进行连续  
预充电。从而能够对触摸感应等应用进行电容式测量。其他复用  
器应用包括:  
触控板、手指感应。  
可以从多达 48 I/O 引脚进行模拟输入的芯片级复用。  
任意 I/O 引脚组合之间的交叉点连接  
文档编号:001-47288 版本 *E  
5/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
5.4 其它系统资源  
系统资源能够提供对整个系统非常有用的附加功能。除此之外还  
包括乘法器、抽取滤波器、低压检测和上电复位 (POR以  
下简要介绍了每种资源的优点:  
抽取滤波器能够针对数字信号处理应用 (包括创建 Delta  
Sigma ADC)提供定制硬件滤波器。  
I2C模块能够通过两条线提供 100kHz400kHz 的通信持  
从设备、主设备和多主设备。  
全速 USB12Mbps,带 5个可配置端点和 256字节的 RAM。  
除了两个串联电阻外,不需要任何外部元件。比商业级温度范  
围更宽的 USB 工作温度范围 (-10°C +85°C。  
低压检测中断可以在电压下降时向应用程序发出信号,而高级  
POR 电路则消除了系统监控方面的需要。  
数字时钟分频器能够提供三个可定制的时钟频率,以便在应用  
中使用。这些时钟既可以路由到数字系统,又能路由到模拟系  
统。通过将数字 PSoC 模块用作时钟分频器,可以生成更多时  
钟。  
内部 1.3V 电压参考为 ADCDAC 等模拟系统提供了一个绝对  
电压参考。  
通用模拟复用器系统。  
两个乘累加 (MAC)单元能够提供具有 32 位累加运算能力的  
8 位快速乘法器,以便协助通用数学和数字滤波器。  
5.5 PSoC 器件特性  
根据 PSoC 器件的特性,数字和模拟系统可以有 168 4 个数字模块和 126 4 个模拟模块。下表列出了特定 PSoC 器件系列  
所提供的资源。本数据手册介绍的器件是表中加亮显示的器件。  
1. PSoC 器件特性  
PSoC  
器件型号  
SRAM  
大小  
数字  
模块  
模拟  
输入  
模拟  
输出  
模拟  
模块  
闪存  
大小  
数字 I/O  
数字行  
模拟列  
CY8C29x66  
CY8C28xxx  
CY8C27x43  
CY8C24x94  
CY8C24x23A  
CY8C23x33  
CY8C22x45  
CY8C21x45  
CY8C21x34  
CY8C21x23  
CY8C20x34  
CY8C20xx6  
4
16  
4
4
12  
2K  
1K  
32K  
16 K  
16K  
16K  
4K  
多达 64 个  
多达 12 个  
[1]  
多达 44 个 多达 3 个 多达 12 个 多达 44 个 多达 4 个 多达 6 个 多达 12 + 4  
2
1
1
1
2
1
1
1
0
0
8
4
4
4
8
4
4
4
0
0
4
2
2
2
0
0
0
0
0
0
4
2
2
2
4
4
2
2
0
0
12  
6
256  
1K  
多达 44 个  
多达 56 个  
多达 24 个  
多达 26 个  
多达 38 个  
多达 24 个  
多达 28 个  
多达 16 个  
多达 28 个  
多达 36 个  
多达 12 个  
多达 48 个  
多达 12 个  
多达 12 个  
多达 38 个  
多达 24 个  
多达 28 个  
多达 8 个  
6
256  
256  
1K  
4
8K  
[1]  
6
16K  
8 K  
[1]  
[1]  
[1]  
6
4
4
512  
512  
256  
512  
多达 2 K  
8K  
4 K  
[12]  
8 K  
多达 28 个  
多达 36 个  
3
3
[12]  
多达 32 K  
注释:  
1. 有限的模拟功能。  
2. 两个模拟模块和一个 CapSense 。  
®
文档编号:001-47288 版本 *E  
6/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
6. 入门  
有关深入的信息及详细的编程信息参考本 PSoC 器件的《技  
术参考手册。  
6.4 CYPros 顾问  
从技术协助到完成 PSoC 设计到认证的 PSoC 顾问能够提供  
一切支持联系或成为 PSoC 顾问访问 CYPros顾问网站。  
有关最新的订购、封装和电气规范信息,请参考  
http://www.cypress.com 网站上最新的 PSoC 器件。  
6.5 解决方案库  
6.1 应用笔记  
访问我们 以解决方案为中心且内容不断增加的设计库。在这里,  
您可以找到各种应用设计,包括可使您快速完成设计的固件和硬  
件设计文件。  
赛普拉斯应用笔记是对各种各样的 PSoC 设计方案提供的完美介  
绍。  
6.2 开发套件  
6.6 技术支持  
可在线获得 PSoC 开发套件可以从不断增加的地区和全球分  
包括 ArrowAvnetDigi-KeyFarnellFuture Electronics  
Newark)那里获得。  
可以在线获取技术支持 (包括可搜索的知识库文章和技术论  
果找不到问题的解决方案致电 1-800-541-4736 联系  
技术支持。  
6.3 培训  
网址 www.cypress.com 下所在的在线免费 PSoC 技术培训 (按  
需提供的培训、在线研讨会和专题讨论会)涵盖了有助于您进行  
设计的大量主题和技能。  
7. 开发工具  
PSoC Designer™ 是革新的集成设计环境 (IDE您可以用来  
自定义 PSoC 以满足特定的应用需求PSoC Designer 软件可加  
快系统的设计和上市进程。在拖放式设计环境中使用预先设定的  
模拟和数字外设也称为用户模块)来开发您的应用程序。然  
后,利用动态生成的应用编程接口 (API)代码库来自定义您的  
设计。最后,使用集成调试环包括在线仿真和标准的软件调  
试功能)来调试并测试您的设计。 PSoC Designer 包括:  
7.1.2 代码生成工具  
这些代码生成工具能够在 PSoC Designer 界面内无缝工作已  
采用一整套调试工具进行测试可以使用 C 语言编语言或  
两者进行开发设计。  
汇编器编器可使汇编代码与 C 语言代码无缝合并接库会  
自动使用绝对寻址,或在相对模式下进行编译,然后与其他软件  
模块链接,以实现绝对寻址。  
应用编辑器图形用户界面 (GUI),用于器件和用户模块配置  
和动态重配置  
C 语言编译器C 语言编译器支持 PSoC 系列器件些产品可  
让您为 PSoC 系列器件创建完整的 C 语言程序。优化的 C 语言  
编译器能够对 PSoC 架构提供 C 语言的所有功能提供  
了各个嵌入式库。这些库能够提供端口和总线操作、标准键盘和  
显示器支持,以及扩展的数学功能。  
内容丰富的用户模块目录  
集成的源码编辑器 (C 语言和汇编语言)  
免费的 C 语言编译器 (无大小限制或时间限制)  
内置调试器  
7.1.3 调试器  
在线仿真  
PSoC Designer 提供的调试环境具有硬件在线仿真功能仅可  
以提供 PSoC 器件的内部视图且可让您在物理系统中测试程  
序。借助调试器命令,可对数据存储器进行读 / 编程及读 / 写操  
作,对 I/O 寄存器进行读 / 写操作。可对 CPU 寄存器进行读 / 写  
操作、设置和清除断点,以及提供程序运行、暂停和步进控制。  
调试器还可让您创建相关寄存器和存储器位置的跟踪缓冲区。  
通信接口内置支持:  
硬件和软件 I2C 从设备和主设备  
全速 USB 2.0  
最多四个全双工通用异步收发器(UARTSPI 主设备和从  
设备及无线  
7.1.4 在线帮助系统  
PSoC Designer 支持 PSoC 1 器件的整个库,并可在 Windows  
XPWindows Vista Windows 7 操作系统上运行。  
在线帮助系统可提供上下文关联的在线帮助。每个功能子系统都  
有与上下文关联的帮助,以便提供程式化的快速参考。在线帮助  
系统还提供相关教程以及指向常见问题和在线支持论坛的链接,  
以帮助设计人员。  
7.1 PSoC Designer 软件子系统  
7.1.1 设计入口  
在芯片级视图中,选择需要使用的基本器件。然后选择不同的板  
上模拟和数字组件 (又称用户模块这些组件采用了 PSoC 模  
块。例 如,用 户 模 块 有 模 数 转 换 器 (ADC) 、数 模 转 换 器  
DAC放大器和滤波器。为所选应用配置用户模块,且将它  
们互连并连接至适当的引脚。然后生成项目。这样会在项目中加  
API 和库,您可以使用它们来对应用进行编程。  
7.1.5 在线仿真器  
功能强大的低成本在线仿真器 (ICE)可用于提供开发支持。该  
硬件可编程单个器件。  
仿真器包含一个通过 USB 端口连接到 PC 的基本装置。该基本  
装置是通用的,能够用于所有 PSoC 器件。您可以单独购买任  
意器件系列的仿真转接板 (Emulation Pod仿真转接板  
Emulation Pod)取代了目标电路板中的 PSoC 器件并执行全  
速 (24 MHz)操作。  
通过此工具,用户还可以轻松开发多个配置和动态重新配置。利  
用动态重新配置,可在运行时更改配置。实质上,通过动态重新  
配置,你可对某个应用使用超过 100% PSoC 资源。  
文档编号:001-47288 版本 *E  
7/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
8. 使用 PSoC Designer 进行设计  
PSoC®器件的开发过程与传统的固定功能微处理器不同配置  
的模拟和数字硬件模块赋予 PSoC 架构独特的灵活性助于在  
开发期间管理规范变更,并降低库存成本。这些可配置的资源  
(称为 PSoC 模块)能够实现众多可供用户选择的功能。 PSoC  
开发过程可概括为以下四个步骤:  
8.3 组织和连接  
你可以通过用户模块互连及与 I/O 引脚相连来构建芯片级的信号  
链。通过进行选择、配置和布线操作,可完全控制所有片上资源  
的使用。  
8.4 生成、验证和调试  
1. 选择用户模块  
2. 配置用户模块  
3. 组织和连接  
当您准备测试硬件配置或需要开发项目代码时成配  
置文件 ” 这一步骤。这会使 PSoC Designer 生成源代码,而该  
源代码会自动按照您的规范配置器件,并为系统提供软件。生成  
的代码提供具有高级功能的应用编程接口 (API以便在运行  
时控制与响应硬件事件,并中断可根据需要调整的服务例程。  
4. 生成、验证和调试  
8.1 选择用户模块  
完善的代码开发环境可让你使用 C 语言和 / 或汇编语言来开发和  
定制应用程序。  
PSoC Designer 提供了一个预建且预测试的硬件外设组件库被  
称为 “ 用户模块 ”使用用户模块可使选择和实现外设器包  
括模拟和数字器件)变得非常简单。  
开发过程的最后一步是在 PSoC Designer 调试器 击  
Connect连接)图标访问)中完成的PSoC Designer 会  
HEX 图像下载到 ICE 中并全速运行。 PSoC Designer 的调试  
功能可以与较其成本高出数倍的系统相媲美。除了传统的单步执  
行、运行到断点和监视变量功能外,调试接口还提供大型跟踪缓  
冲器,并允许您定义复杂断点事件。这些事件包括监控地址和数  
据总线值、存储器位置和外部信号。  
8.2 配置用户模块  
所选择的每个用户模块都能够建立基本寄存器设置用于实现所选  
功能。此外,它们还提供了各个参数和属性,使您能够针对特定  
应用自定义精确配置。例如, PWM 用户模块能够配置一个或多  
个数字 PSoC 每个模块的分辨率均为 8 借助用户模  
块参数,您可以确定脉冲宽度和占空比。请根据所选应用配置参  
数和属性。您可以直接输入某个值或从下拉菜单中选择。所有用  
户模块都记录在数据手册内PSoC Designer 中或赛普拉斯  
网站上直接查看。这些用户模块数据手册介绍了用户模块的内部  
操作并提供了性能规范。每个数据手册都介绍了每个用户模块参  
数的使用,以及成功实现设计可能需要的其他信息。  
文档编号:001-47288 版本 *E  
8/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
9. 引脚信息  
本节说明、列出并展示了 CY8C24x94 PSoC 器件的引脚和引脚分布配置。  
CY8C24x94 PSoC 器件有下列封装可供选择,具体如以下页面中所示。每个端口引脚 (标有 “P”)均能用作数字 I/O。然而,  
SSVDD XRES 不能用作数字 I/O。  
V
9.1 56 引脚部件的引脚分布  
2. 56 引脚器件的引脚分布 (QFN[6]请参见10 页上的表 3 中的图标详细信息和脚注。  
4. CY8C24794 56 引脚 PSoC 器件 [3]  
引脚  
类型  
模拟  
名称  
说明  
数字  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
编号  
1
P2[3]  
P2[1]  
P4[7]  
P4[5]  
P4[3]  
P4[1]  
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P5[7]  
P5[5]  
P5[3]  
P5[1]  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
IM  
IM  
M
直接开关电容模块输入  
直接开关电容模块输入  
2
3
4
M
5
M
A,I, M,P2[3]  
6
M
1
2
P2[2], A, I,M  
P2[0], A, I,M  
P4[6],M  
P4[4],M  
P4[2],M  
P4[0],M  
P3[6],M  
P3[4],M  
P3[2],M  
P3[0],M  
P5[6],M  
P5[4],M  
P5[2],M  
P5[0],M  
42  
41  
A,I, M,P2[1]  
M,P4[7]  
M,P4[5]  
M,P4[3]  
M,P4[1]  
M,P3[7]  
7
M
3
4
5
6
40  
39  
8
M
9
M
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
M
7
8
9
10  
11  
12  
13  
14  
QFN  
(Top View )  
M
M,P3[5]  
M,P3[3]  
M
M
M,P3[1]  
M,P5[7]  
M,P5[5]  
M,P5[3]  
M,P5[1]  
M
2
M
I C 串行时钟 (SCL)  
2
M
I C 串行数据 (SDA)  
M
2
[4]  
M
I C SCLISSP SCLK  
[5]  
V
电源  
接地  
SS  
USB  
USB  
电源  
D+  
D–  
V
供电电压  
DD  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P7[7]  
P7[0]  
P1[0]  
P1[2]  
P1[4]  
P1[6]  
P5[0]  
2
[4]  
M
M
M
M
M
I C SDAISSP SDATA  
可选的外部时钟输入 (EXTCLK)  
类型  
引脚  
编号  
44  
名称  
说明  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
M
M
M
M
M
M
M
M
M
M
M
P5[2]  
P5[4]  
P5[6]  
P3[0]  
P3[2]  
P3[4]  
P3[6]  
P4[0]  
P4[2]  
P4[4]  
P4[6]  
P2[0]  
P2[2]  
P2[4]  
数字  
模拟  
I/O  
I/O  
I/O  
I/O  
I/O  
M
P2[6]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
外部参考电压 (VREF)输入  
模拟列复用器输入  
模拟列复用器输入  
模拟列复用器输入 VREF  
模拟列复用器输入  
供电电压  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
IM  
IM  
IM  
IM  
V
电源  
电源  
DD  
[5]  
V
接地  
SS  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P0[7]  
P0[5]  
P0[3]  
P0[1]  
P2[7]  
P2[5]  
IM  
模拟列复用器输入  
I/OM  
I/OM  
IM  
M
模拟列复用器输入和列输出  
模拟列复用器输入和列输出  
模拟列复用器输入  
IM  
IM  
M
直接开关电容模块输入  
直接开关电容模块输入  
外部模拟地 (AGND)输入  
M
注释:  
3. 使用复位模式无法编程此器件;编程时使用电源循环模式。  
4. 这些是 ISSP 引脚,在 POR 时不处于高阻态。有关详细信息,请参考 PSoC 技术参考手册。  
5. 应将所有 V 引脚接地 (GND。  
SS  
文档编号:001-47288 版本 *E  
9/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
9.2 56 引脚器件的引脚分布 (带有 XRES)  
3. 56 引脚器件的引脚分布 (QFN[6])  
引脚  
类型  
模拟  
5. CY8C24894 56 引脚 PSoC 器件  
名称  
说明  
数字  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
编号  
1
P2[3]  
P2[1]  
P4[7]  
P4[5]  
P4[3]  
P4[1]  
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P5[7]  
P5[5]  
P5[3]  
P5[1]  
IM  
IM  
M
直接开关电容模块输入  
直接开关电容模块输入  
2
3
4
M
5
M
6
M
A, I, M, P2[3]  
A, I, M, P2[1]  
1
2
P2[2], A, I, M  
P2[0], A, I, M  
42  
41  
40  
39  
38  
37  
7
M
8
M
M, P4[7]  
M, P4[5]  
M, P4[3]  
M, P4[1]  
M, P3[7]  
3
4
5
6
P4[6], M  
P4[4], M  
P4[2], M  
P4[0], M  
XRES  
9
M
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
M
M
7
8
QFN  
(Top View)  
36  
35  
34  
33  
M
M, P3[5]  
M, P3[3]  
M, P3[1]  
P3[4], M  
P3[2], M  
P3[0], M  
9
M
10  
M
M, P5[7]  
M, P5[5]  
M, P5[3]  
M, P5[1]  
11  
12  
13  
14  
P5[6], M  
P5[4], M  
P5[2], M  
P5[0], M  
32  
31  
30  
29  
2
M
P1[7] I C SCL  
2
M
P1[5] I C SDA  
M
P1[3]  
2
[7]  
M
P1[1]  
I C SCLISSP SCLK  
[8]  
V
电源  
接地  
SS  
USB  
USB  
电源  
D+  
D–  
V
供电电压  
DD  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P7[7]  
P7[0]  
P1[0]  
P1[2]  
P1[4]  
P1[6]  
P5[0]  
2
[7]  
M
M
M
M
M
I C SDAISSP SDATA  
可选的 EXTCLK  
类型  
引脚  
编号  
44  
名称  
说明  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
M
M
M
M
M
M
P5[2]  
P5[4]  
P5[6]  
P3[0]  
P3[2]  
P3[4]  
XRES  
P4[0]  
P4[2]  
P4[4]  
P4[6]  
P2[0]  
P2[2]  
P2[4]  
数字  
模拟  
I/O  
M
P2[6]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
外部 VREF 输入  
模拟列复用器输入  
模拟列复用器输入  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
I/O  
I/O  
I/O  
I/O  
IM  
IM  
IM  
IM  
模拟列复用器输入 VREF  
模拟列复用器输入  
供电电压  
V
输入  
采用内部下拉电阻的高电平有效外部复位  
电源  
电源  
DD  
[8]  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
M
M
M
M
V
接地  
SS  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P0[7]  
P0[5]  
P0[3]  
P0[1]  
P2[7]  
P2[5]  
IM  
模拟列复用器输入  
I/OM  
I/OM  
IM  
M
模拟列复用器输入和列输出  
模拟列复用器输入和列输出  
模拟列复用器输入  
IM  
IM  
M
直接开关电容模块输入  
直接开关电容模块输入  
外部 AGND 输入  
M
图标A = 模拟, I = 输入, O = 输出和 M = 模拟复用器输入。  
注释:  
6. 应将 QFN 封装上的中心焊盘接地 (V 以获得最佳机械、热学和电气性能。如果未接地,则应处于电气悬空状态,而不能连接到任何其他信号。  
SS  
7. 这些是 ISSP 引脚,在 POR 时不处于高阻态。有关详细信息,请参考 PSoC 技术参考手册。  
8. 应将所有 V 引脚连接地 (GND。  
SS  
文档编号:001-47288 版本 *E  
10/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
9.3 68 引脚器件的引脚分布  
下列 68 引脚 QFN 器件表和绘图适用于 CY8C24994 PSoC 器件。  
4. 68 引脚器件的引脚分布 (QFN[9])  
引脚  
类型  
6. CY8C24994 68 引脚 PSoC 器件  
名称  
说明  
数字  
I/O  
模拟  
编号  
1
M
M
M
M
P4[7]  
P4[5]  
P4[3]  
P4[1]  
NC  
2
I/O  
I/O  
I/O  
3
4
5
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
6
NC  
[10]  
7
V
电源  
I/O  
接地  
SS  
M, P4[7]  
M, P4[5]  
M, P4[3]  
P2[0], M, AI  
P4[6], M  
1
2
51  
50  
8
M
M
M
M
M
M
M
M
M
M
M
M
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P5[7]  
P5[5]  
P5[3]  
P5[1]  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
3
4
P4[4], M  
9
I/O  
49  
48  
47  
46  
M, P4[1]  
NC  
P4[2], M  
10 I/O  
11 I/O  
5
6
P4[0], M  
XRES  
NC  
NC  
P3[6], M  
P3[4], M  
NC  
12 I/O  
13 I/O  
14 I/O  
15 I/O  
16 I/O  
17 I/O  
18 I/O  
19 I/O  
20  
Vss  
M, P3[7]  
M, P3[5]  
45  
7
8
9
44  
43  
42  
QFN  
(Top View)  
10  
M, P3[3]  
M, P3[1]  
M, P5[7]  
P3[2], M  
P3[0], M  
11  
12  
13  
14  
15  
41  
2
I C SCL  
40  
39  
2
M, P5[5]  
P5[6], M  
P5[4], M  
I C SDA  
M, P5[3]  
M, P5[1]  
I2C SCL, M, P1[7]  
I2C SDA, M, P1[5]  
38  
37  
36  
35  
P5[2], M  
P5[0], M  
[11]  
I2C SCL ISSP SCLK  
16  
17  
[10]  
V
P1[6], M  
电源  
接地  
SS  
21 USB  
22 USB  
D+  
D–  
23  
V
电源  
供电电压  
DD  
24 I/O  
25 I/O  
26 I/O  
27 I/O  
28 I/O  
29 I/O  
30 I/O  
31 I/O  
32 I/O  
33 I/O  
34 I/O  
35 I/O  
36 I/O  
37 I/O  
38 I/O  
39 I/O  
40 I/O  
41 I/O  
42 I/O  
43 I/O  
44  
P7[7]  
P7[6]  
P7[5]  
P7[4]  
P7[3]  
P7[2]  
P7[1]  
P7[0]  
P1[0]  
P1[2]  
P1[4]  
P1[6]  
P5[0]  
P5[2]  
P5[4]  
P5[6]  
P3[0]  
P3[2]  
P3[4]  
P3[6]  
NC  
引脚  
编号  
50  
类型  
名称  
说明  
数字  
I/O  
模拟  
M
P4[6]  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
2
[11]  
M
M
M
M
M
M
M
M
M
M
M
M
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I C SDAISSP SDATA  
IM  
直接开关电容模块输入  
直接开关电容模块输入  
外部 AGND 输入  
IM  
M
可选的 EXTCLK  
M
外部 VREF 输入  
IM  
IM  
IM  
IM  
模拟列复用器输入  
模拟列复用器输入和列输出  
模拟列复用器输入和列输出  
模拟列复用器输入  
V
电源  
电源  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
供电电压  
DD  
[10]  
V
接地  
SS  
P0[7]  
P0[5]  
P0[3]  
P0[1]  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
IM  
模拟列复用器输入,积分输入 #1  
I/OM  
I/OM  
IM  
M
模拟列复用器和列输出,积分输入 #2  
模拟列复用器输入和列输出  
模拟列复用器输入  
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
采用内部下拉电阻的高电平有效引脚复位  
45  
NC  
46  
XRES  
P4[0]  
P4[2]  
P4[4]  
输入  
47 I/O  
48 I/O  
49 I/O  
M
M
M
M
IM  
IM  
直接开关电容模块输入  
直接开关电容模块输入  
图标A = 模拟, I = 输入, O = 输出, NC = 无连接。引脚必须处于悬空状态, M = 模拟复用器输入。  
注释:  
9. QFN 封装上的中心焊盘应连接到接地 (V 以获得最佳机械、热学和电气性能。如果未接地,则应处于电气悬空状态,而不能连接到任何其他信号。  
SS  
10. 应将所有 V 引脚接地 (GND。  
SS  
11. 这些是 ISSP 引脚,上电复位时不处于 High Z 模式。有关详细信息,请参考 《PSoC 技术参考手册。  
文档编号:001-47288 版本 *E  
11/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
9.4 68 引脚器件的引脚分布 (片上调试)  
下列 68 引脚 QFN 器件表和绘图适用于 CY8C24094 OCD PSoC 器件。  
注意:此器件仅用于在线调试。它不能用于生产。  
5. 68 引脚器件的引脚分布 (QFN[12]  
引脚  
类型  
7. CY8C24094 68 引脚 OCD PSoC 器件  
名称  
说明  
编号 数字  
模拟  
1
I/O  
I/O  
I/O  
I/O  
M
M
M
M
P4[7]  
P4[5]  
P4[3]  
P4[1]  
OCDE  
OCDO  
2
3
4
5
OCD 偶数据 I/O  
6
OCD 奇数据输出  
[13]  
M, P4[7]  
M, P4[5]  
M, P4[3]  
P2[0], M, AI  
P4[6], M  
P4[4], M  
1
2
3
4
5
6
7
8
9
51  
50  
7
V
电源  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
接地  
SS  
8
M
M
M
M
M
M
M
M
M
M
M
M
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P5[7]  
P5[5]  
P5[3]  
P5[1]  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
49  
48  
47  
9
M, P4[1]  
OCDE  
OCDO  
P4[2], M  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
P4[0], M  
XRES  
CCLK  
HCLK  
P3[6], M  
P3[4], M  
P3[2], M  
P3[0], M  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
Vss  
M, P3[7]  
M, P3[5]  
QFN  
(Top View)  
10  
M, P3[3]  
M, P3[1]  
M, P5[7]  
M, P5[5]  
11  
12  
13  
14  
15  
16  
17  
2
I C SCL  
P5[6], M  
P5[4], M  
2
I C SDA  
M, P5[3]  
M, P5[1]  
I2C SCL, M, P1[7]  
I2C SDA, M, P1[5]  
P5[2], M  
P5[0], M  
P1[6], M  
2
[14]  
I C SCLISSP SCLK  
[13]  
V
电源  
USB  
USB  
接地  
SS  
D+  
D–  
V
电源  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
供电电压  
DD  
P7[7]  
P7[6]  
P7[5]  
P7[4]  
P7[3]  
P7[2]  
P7[1]  
P7[0]  
P1[0]  
P1[2]  
P1[4]  
P1[6]  
P5[0]  
P5[2]  
P5[4]  
P5[6]  
P3[0]  
P3[2]  
P3[4]  
P3[6]  
HCLK  
CCLK  
XRES  
P4[0]  
P4[2]  
P4[4]  
引脚  
编号  
50  
类型  
名称  
说明  
数字  
I/O  
模拟  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
M
P4[6]  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
2
[14]  
M
M
M
M
M
M
M
M
M
M
M
M
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I C SDAISSP SDATA  
IM  
直接开关电容模块输入  
直接开关电容模块输入  
外部 AGND 输入  
IM  
M
可选的 EXTCLK  
M
外部 VREF 输入  
IM  
IM  
IM  
IM  
模拟列复用器输入  
模拟列复用器输入和列输出  
模拟列复用器输入和列输出  
模拟列复用器输入  
V
电源  
电源  
I/O  
供电电压  
DD  
[13]  
V
接地  
SS  
P0[7]  
P0[5]  
P0[3]  
P0[1]  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
IM  
模拟列复用器输入,积分输入 #1  
模拟列复用器和列输出,积分输入 #2  
模拟列复用器输入和列输出  
模拟列复用器输入  
I/O  
I/OM  
I/OM  
IM  
M
I/O  
OCD 高速时钟输出  
OCD CPU 时钟输出  
I/O  
I/O  
输入  
I/O  
采用内部下拉电阻的高电平有效引脚复位  
M
M
M
I/O  
M
I/O  
I/O  
IM  
IM  
直接开关电容模块输入  
直接开关电容模块输入  
I/O  
I/O  
图标:A = 模拟, I = 输入, O = 输出, M = 模拟复用器输入, OCD = 片上调试器。  
注释:  
12. 应将 QFN 封装上的中心焊盘接地 (V 以获得最佳机械、热学和电气性能。如果未接地,则应处于电气悬空状态,而不能连接到任何其他信号。  
SS  
13. 应将所有 V 引脚接地 (GND。  
SS  
14. 这些是 ISSP 引脚,上电复位时不处于 High Z 模式。有关详细信息,请参考 《PSoC 技术参考手册。  
文档编号:001-47288 版本 *E  
12/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
9.5 100 球形焊盘 VFBGA 器件的引脚分布  
100 球形焊盘 VFBGA 器件适用于 CY8C24994 PSoC 器件。  
6. 100 球形焊盘器件的引脚分布 (VFBGA[15]  
引脚  
引脚  
名称  
说明  
名称  
NC  
说明  
编号  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
B10  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
E10  
编号  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
V
V
电源  
电源  
接地  
接地  
无连接。引脚必须处于悬空状态  
SS  
SS  
I/O  
I/O  
I/O  
M
M
M
P5[7]  
P3[5]  
P5[1]  
NC  
NC  
NC  
V
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
供电电压  
V
电源  
电源  
I/O  
接地  
接地  
SS  
V
电源  
DD  
SS  
NC  
NC  
V
M
M
P5[0]  
P3[0]  
XRES  
P7[1]  
NC  
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
接地  
I/O  
电源  
电源  
电源  
电源  
I/O  
采用内部下拉电阻的高电平有效引脚复位  
无连接。引脚必须处于悬空状态  
SS  
V
V
V
F10 I/O  
G1  
接地  
SS  
SS  
SS  
接地  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
M
M
M
M
M
M
M
M
P5[5]  
P3[3]  
P1[7]  
P1[1]  
P1[0]  
P1[6]  
P3[4]  
P5[6]  
P7[2]  
NC  
接地  
P2[1]  
P0[1]  
P0[7]  
IM  
IM  
IM  
直接开关电容模块输入  
模拟列复用器输入  
模拟列复用器输入  
供电电压  
2
I/O  
I C SCL  
2
[16]  
I/O  
I C SCLISSP SCLK  
2
[16]  
V
电源  
I/O  
I C SDAISSP SDATA  
DD  
P0[2]  
P2[2]  
IM  
IM  
模拟列复用器输入  
直接开关电容模块输入  
接地  
I/O  
V
电源  
电源  
SS  
V
G10 I/O  
H1  
接地  
SS  
NC  
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
M
M
M
P4[1]  
P4[7]  
P2[7]  
P0[5]  
P0[6]  
P0[0]  
P2[0]  
P4[2]  
NC  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
M
M
M
M
M
M
M
M
P5[3]  
P3[1]  
P1[5]  
P1[3]  
P1[2]  
P1[4]  
P3[2]  
P5[4]  
P7[3]  
2
I C SDA  
I/OM  
IM  
IM  
IM  
M
模拟列复用器输入和列输出  
模拟列复用器输入  
模拟列复用器输入  
可选的 EXTCLK  
直接开关电容模块输入  
H10 I/O  
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
NC  
J1  
V
电源  
电源  
USB  
USB  
接地  
接地  
SS  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
M
M
M
P3[7]  
P4[5]  
P2[5]  
P0[3]  
P0[4]  
P2[6]  
P4[6]  
P4[0]  
NC  
J2  
V
SS  
J3  
D+  
D–  
J4  
J5  
V
I/OM  
IM  
M
模拟列复用器输入和列输出  
模拟列复用器输入  
电源  
I/O  
供电电压  
DD  
J6  
P7[7]  
P7[0]  
P5[2]  
J7  
I/O  
外部 VREF 输入  
M
J8  
I/O  
M
M
J9  
V
电源  
电源  
电源  
电源  
接地  
SS  
J10  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
V
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
接地  
SS  
NC  
V
接地  
SS  
NC  
V
接地  
SS  
I/O  
I/O  
M
P4[3]  
P2[3]  
NC  
NC  
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
供电电压  
IM  
直接开关电容模块输入  
V
V
电源  
电源  
I/O  
接地  
电源  
I/O  
SS  
DD  
V
P7[6]  
P7[5]  
P7[4]  
接地  
SS  
M
M
M
P2[4]  
P4[4]  
P3[6]  
NC  
I/O  
外部 AGND 输入  
I/O  
I/O  
I/O  
V
电源  
电源  
接地  
接地  
SS  
V
无连接。引脚必须处于悬空状态  
SS  
图标A = 模拟, I = 输入, O = 输出, M = 模拟复用器输入, NC = 无连接。引脚必须处于悬空状态。  
注释:  
15. 应将所有 V 引脚连接地 (GND。  
SS  
16. 这些是 ISSP 引脚,上电复位时不处于 High Z 模式。有关详细信息,请参考 PSoC 技术参考手册。  
文档编号:001-47288 版本 *E  
13/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
8. CY8C24094 OCD (不用于生产)  
1
2
3
4
5
6
7
8
9
10  
Vss  
Vss  
NC  
NC  
NC  
NC  
NC  
NC  
Vss  
Vss  
Vss  
NC  
NC  
NC  
Vdd  
NC  
NC  
Vss  
Vss  
Vss  
NC  
NC  
NC  
A
B
C
D
E
F
Vss P2[1] P0[1] P0[7] Vdd P0[2] P2[2] Vss  
P4[1] P4[7] P2[7] P0[5] P0[6] P0[0] P2[0] P4[2]  
P3[7] P4[5] P2[5] P0[3] P0[4] P2[6] P4[6] P4[0]  
NC P4[3] P2[3] Vss  
P5[7] P3[5] P5[1] Vss  
Vss P2[4] P4[4] P3[6]  
Vss P5[0] P3[0] XRES P7[1]  
P5[5] P3[3] P1[7] P1[1] P1[0] P1[6] P3[4] P5[6] P7[2]  
P5[3] P3[1] P1[5] P1[3] P1[2] P1[4] P3[2] P5[4] P7[3]  
G
H
J
Vss  
Vss  
D +  
NC  
D -  
Vdd P7[7] P7[0] P5[2] Vss  
Vdd P7[6] P7[5] P7[4] Vss  
Vss  
Vss  
NC  
K
BGA (Top View)  
文档编号:001-47288 版本 *E  
14/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
9.6 100 球形焊盘 VFBGA 器件的引脚分布 (片上调试)  
下列 100 引脚 VFBGA 器件表和绘图适用于 CY8C24094 OCD PSoC 器件。  
注意:此器件仅用于在线调试。它不能用于生产。  
7. 100 球形焊盘器件的引脚分布 (VFBGA[17]  
引脚  
引脚  
名称  
说明  
名称  
说明  
编号  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
B10  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
E10  
编号  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
V
V
OCDE  
P5[7]  
P3[5]  
P5[1]  
电源  
电源  
接地  
接地  
OCD 偶数据 I/O  
SS  
I/O  
I/O  
I/O  
M
M
M
SS  
NC  
NC  
NC  
V
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
供电电压。  
V
电源  
电源  
I/O  
接地  
接地  
SS  
V
电源  
DD  
SS  
NC  
NC  
V
M
M
P5[0]  
P3[0]  
XRES  
P7[1]  
OCDO  
P5[5]  
P3[3]  
P1[7]  
P1[1]  
P1[0]  
P1[6]  
P3[4]  
P5[6]  
P7[2]  
NC  
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
接地  
I/O  
电源  
电源  
电源  
电源  
I/O  
采用内部下拉电阻的高电平有效引脚复位  
SS  
V
V
V
F10 I/O  
G1  
接地  
SS  
SS  
SS  
接地  
OCD 奇数据输出  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
M
M
M
M
M
M
M
M
接地  
P2[1]  
P0[1]  
P0[7]  
IM  
IM  
IM  
直接开关电容模块输入  
模拟列复用器输入  
模拟列复用器输入  
供电电压  
2
I/O  
I C SCL  
2
[18]  
I/O  
I C SCLISSP SCLK  
2
[18]  
V
电源  
I/O  
I C SDAISSP SDATA  
DD  
P0[2]  
P2[2]  
IM  
IM  
模拟列复用器输入  
直接开关电容模块输入  
接地  
I/O  
V
电源  
电源  
SS  
V
G10 I/O  
H1  
接地  
SS  
NC  
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
M
M
M
P4[1]  
P4[7]  
P2[7]  
P0[5]  
P0[6]  
P0[0]  
P2[0]  
P4[2]  
NC  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
M
M
M
M
M
M
M
M
P5[3]  
P3[1]  
P1[5]  
P1[3]  
P1[2]  
P1[4]  
P3[2]  
P5[4]  
P7[3]  
2
I C SDA  
I/OM  
IM  
IM  
IM  
M
模拟列复用器输入和列输出  
模拟列复用器输入  
模拟列复用器输入  
可选的 EXTCLK  
直接开关电容模块输入  
H10 I/O  
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
NC  
J1  
V
电源  
电源  
USB  
USB  
接地  
接地  
SS  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
M
M
M
P3[7]  
P4[5]  
P2[5]  
P0[3]  
P0[4]  
P2[6]  
P4[6]  
P4[0]  
CCLK  
NC  
J2  
V
SS  
J3  
D+  
D-  
J4  
J5  
V
I/OM  
IM  
M
模拟列复用器输入和列输出  
模拟列复用器输入  
电源  
I/O  
供电电压  
DD  
J6  
P7[7]  
P7[0]  
P5[2]  
J7  
I/O  
外部 VREF 输入  
M
J8  
I/O  
M
M
J9  
V
电源  
电源  
电源  
电源  
接地  
SS  
J10  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
V
OCD CPU 时钟输出  
接地  
SS  
V
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
接地  
SS  
NC  
V
接地  
SS  
I/O  
I/O  
M
P4[3]  
P2[3]  
NC  
NC  
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
供电电压  
IM  
直接开关电容模块输入  
接地  
V
V
电源  
电源  
I/O  
电源  
I/O  
SS  
DD  
V
P7[6]  
P7[5]  
P7[4]  
接地  
SS  
M
M
M
P2[4]  
P4[4]  
P3[6]  
HCLK  
I/O  
外部 AGND 输入  
I/O  
I/O  
I/O  
V
电源  
电源  
接地  
接地  
SS  
V
OCD 高速时钟输出  
SS  
图标A = 模拟, I = 输入, O = 输出, M = 模拟复用器输入, NC = 无连接。引脚必须处于悬空状态OCD = 片上调试器。  
注释:  
17. 应将所有 V 引脚连接地 (GND。  
SS  
18. 这些是 ISSP 引脚,上电复位时不处于 HIGH Z 模式。有关详细信息,请参考 PSOC 技术参考手册。  
文档编号:001-47288 版本 *E  
15/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
9. CY8C24094 OCD (不用于量产)  
1
2
3
4
5
6
7
8
9
10  
Vss  
Vss  
NC  
NC  
NC  
Vss  
NC  
NC  
NC  
Vdd  
NC  
NC  
Vss  
Vss  
Vss  
NC  
A
B
C
D
E
F
Vss P2[1] P0[1] P0[7] Vdd P0[2] P2[2] Vss  
P4[1] P4[7] P2[7] P0[5] P0[6] P0[0] P2[0] P4[2]  
P3[7] P4[5] P2[5] P0[3] P0[4] P2[6] P4[6] P4[0] CClk  
NC P4[3] P2[3] Vss  
Vss P2[4] P4[4] P3[6] HClk  
Vss P5[0] P3[0] XRES P7[1]  
ocde P5[7] P3[5] P5[1] Vss  
ocdo P5[5] P3[3] P1[7] P1[1] P1[0] P1[6] P3[4] P5[6] P7[2]  
G
H
J
NC  
Vss  
Vss  
P5[3] P3[1] P1[5] P1[3] P1[2] P1[4] P3[2] P5[4] P7[3]  
Vss  
Vss  
D +  
NC  
D -  
Vdd P7[7] P7[0] P5[2] Vss  
Vdd P7[6] P7[5] P7[4] Vss  
Vss  
Vss  
NC  
K
BGA (Top View)  
文档编号:001-47288 版本 *E  
16/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
9.7 100 引脚器件的引脚分布 (片上调试)  
100 引脚 TQFP 器件适用于 CY8C24094 OCD PSoC 器件。  
注意:此器件仅用于在线调试。它不能用于生产。  
8. 100 引脚器件的引脚分布 (TQFP[19]  
引脚  
名称  
编号  
引脚  
说明  
名称  
P1[6]  
说明  
编号  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
1
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
M
M
M
M
M
M
M
M
M
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
模拟列复用器输入  
2
NC  
P5[0]  
P5[2]  
P5[4]  
P5[6]  
P3[0]  
P3[2]  
P3[4]  
P3[6]  
HCLK  
CCLK  
XRES  
P4[0]  
P4[2]  
3
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P0[1]  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
P4[7]  
P4[5]  
P4[3]  
P4[1]  
OCDE  
OCDO  
NC  
IM  
M
4
5
M
6
IM  
IM  
M
直接开关电容模块输入  
直接开关电容模块输入  
7
8
9
M
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
M
OCD 高速时钟输出  
M
OCD CPU 时钟输出  
OCD 偶数据 I/O  
OCD 奇数据输出  
无连接。引脚必须处于悬空状态  
接地  
输入  
I/O  
采用内部下拉电阻的高电平有效引脚复位  
M
M
I/O  
V
V
电源  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
电源  
I/O  
I/O  
I/O  
I/O  
I/O  
接地  
SS  
SS  
M
M
M
M
M
M
M
M
M
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P5[7]  
P5[5]  
P5[3]  
P5[1]  
P1[7]  
NC  
M
P4[4]  
P4[6]  
P2[0]  
P2[2]  
P2[4]  
NC  
M
IM  
IM  
直接开关电容模块输入  
直接开关电容模块输入  
外部 AGND 输入  
无连接。引脚必须处于悬空状态  
外部 VREF 输入  
I/O  
I/O  
P2[6]  
NC  
无连接。引脚必须处于悬空状态  
模拟列复用器输入  
2
I C SCL  
I
P0[0]  
NC  
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
模拟列复用器输入和列输出  
无连接。引脚必须处于悬空状态  
模拟列复用器输入和列输出  
无连接。引脚必须处于悬空状态  
模拟列复用器输入  
NC  
NC  
NC  
I/O  
I/O  
P0[2]  
NC  
IM  
IM  
IM  
2
I/O  
I/O  
I/O  
P1[5]  
P1[3]  
P1[1]  
NC  
I C SDA  
P0[4]  
NC  
2
[20]  
晶体输入 (XTALinI C SCLISSP SCLK  
I/O  
P0[6]  
无连接。引脚必须处于悬空状态  
接地  
V
V
电源  
USB  
USB  
电源  
供电电压  
SS  
DD  
D+  
D-  
NC  
无连接。引脚必须处于悬空状态  
接地  
V
电源  
SS  
V
NC  
电源  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
供电电压  
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
模拟列复用器输入  
DD  
P7[7]  
P7[6]  
P7[5]  
P7[4]  
P7[3]  
P7[2]  
P7[1]  
P7[0]  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
无连接。引脚必须处于悬空状态  
NC  
I/O  
I/O  
I/O  
P0[7]  
NC  
IM  
NC  
无连接。引脚必须处于悬空状态  
模拟列复用器输入和列输出  
无连接。引脚必须处于悬空状态  
模拟列复用器输入和列输出  
无连接。引脚必须处于悬空状态  
NC  
P0[5]  
NC  
I/OM  
I/OM  
[20]  
I/O  
I/O  
I/O  
P1[0]  
P1[2]  
P1[4]  
晶体输XTALoutI2C SDAISSP SDATA  
P0[3]  
NC  
可选的 EXTCLK  
图标A = 模拟, I = 输入, O = 输出, NC = 无连接。引脚必须处于悬空状态, M = 模拟复用器输入, OCD = 片上调试器。  
注释:  
19. 应将所有 V 引脚连接地 (GND。  
SS  
20. 这些是 ISSP 引脚,上电复位时不处于 High Z 模式。有关详细信息,请参考 PSoC 技术参考手册。  
文档编号:001-47288 版本 *E  
17/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
10. CY8C24094 OCD (不用于生产)  
NC  
NC  
NC  
75  
1
2
3
4
74  
P0[0],M,AI  
AI, M,P0[1]  
M,P2[7]  
M,P2[5]  
AI, M,P2[3]  
AI, M,P2[1]  
M,P4[7]  
M,P4[5]  
M,P4[3]  
M,P4[1]  
OCDE  
NC  
73  
72  
71  
P2[6],M,External VREF  
NC  
5
6
70  
69  
P2[4],M,External AGND  
7
8
9
P2[2],M,AI  
P2[0],M,AI  
P4[6],M  
68  
67  
P4[4],M  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
66  
65  
64  
63  
62  
61  
60  
59  
Vss  
P4[2],M  
OCDO  
TQFP  
P4[0],M  
XRES  
NC  
Vss  
M,P3[7]  
M,P3[5]  
CCLK  
HCLK  
P3[6],M  
P3[4],M  
P3[2],M  
P3[0],M  
P5[6],M  
M,P3[3]  
58  
57  
56  
55  
M,P3[1]  
M,P5[7]  
M,P5[5]  
P5[4],M  
P5[2],M  
P5[0],M  
M,P5[3]  
M,P5[1]  
54  
53  
52  
51  
23  
24  
25  
I2C SCL,P1[7]  
NC  
P1[6],M  
文档编号:001-47288 版本 *E  
18/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
10. 寄存器参考  
本节列出了 CY8C24x94 PSoC 器件系列的寄存器。有关寄存器的详细信息,请参见 《PSoC 技术参考手册。  
10.1 寄存器规定  
10.2 寄存器映射表  
下表列出了针对本节的寄存器规范。  
PSoC 器件共有 512 个字节的寄存器地址空间。该寄存器空间  
也被称为 I/O 空间,并分为两组,分别为组 0 和组 1。标记寄存  
器 (CPU_F)中的 XOI 位用于确定用户当前位所在的组。将  
XOI 位置 1 时,用户位于组 1 中。  
规范  
说明  
R
W
L
读取寄存器或位  
写入寄存器或位  
逻辑寄存器或位  
注意:在以下寄存器映射表中,空白字段为保留字段,请勿访  
问。  
C
#
可清除的寄存器或位  
根据位决定访问类型  
文档编号:001-47288 版本 *E  
19/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
10.3 寄存器映射组 0 表:用户空间  
名称  
PRT0DR  
地址 (0、十六进制) 访问  
00  
名称  
PMA0_DR  
地址 (0、十六进制) 访问  
名称  
地址 (0、十六进制) 访问  
名称  
地址 (0、十六进制) 访问  
C0  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
RW ASC10CR0 80  
RW ASC10CR1 81  
RW ASC10CR2 82  
RW ASC10CR3 83  
RW ASD11CR0 84  
RW ASD11CR1 85  
RW ASD11CR2 86  
RW ASD11CR3 87  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
PRT0IE  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
PMA1_DR  
PMA2_DR  
PMA3_DR  
PMA4_DR  
PMA5_DR  
PMA6_DR  
PMA7_DR  
USB_SOF0  
USB_SOF1  
USB_CR0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
PRT0GS  
PRT0DM2  
PRT1DR  
PRT1IE  
PRT1GS  
PRT1DM2  
PRT2DR  
PRT2IE  
R
88  
R
89  
PRT2GS  
PRT2DM2  
PRT3DR  
PRT3IE  
RW  
#
8A  
USBI/O_CR0 4B  
USBI/O_CR1 4C  
4D  
8B  
RW  
8C  
8D  
PRT3GS  
PRT3DM2  
PRT4DR  
PRT4IE  
EP1_CNT1  
EP1_CNT  
EP2_CNT1  
EP2_CNT  
EP3_CNT1  
EP3_CNT  
EP4_CNT1  
EP4_CNT  
EP0_CR  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
#
8E  
8F  
RW  
#
ASD20CR0 90  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
CUR_PP  
STK_PP  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
RW  
RW  
RW ASD20CR1 91  
ASD20CR2 92  
RW ASD20CR3 93  
ASC21CR0 94  
RW ASC21CR1 95  
PRT4GS  
PRT4DM2  
PRT5DR  
PRT5IE  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
#
IDX_PP  
RW  
RW  
RW  
RW  
#
#
MVR_PP  
MVW_PP  
I2C_CFG  
I2C_SCR  
I2C_DR  
PRT5GS  
PRT5DM2  
#
ASC21CR2 96  
EP0_CNT  
EP0_DR0  
EP0_DR1  
EP0_DR2  
EP0_DR3  
EP0_DR4  
EP0_DR5  
EP0_DR6  
EP0_DR7  
AMX_IN  
#
ASC21CR3 97  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
RW  
#
I2C_MSCR D9  
INT_CLR0  
INT_CLR1  
INT_CLR2  
INT_CLR3  
DA  
DB  
DC  
DD  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RC  
W
PRT7DR  
RW  
RW  
RW  
RW  
#
PRT7IE  
PRT7GS  
INT_MSK3 DE  
INT_MSK2 DF  
INT_MSK0 E0  
INT_MSK1 E1  
PRT7DM2  
DBB00DR0  
DBB00DR1  
DBB00DR2  
DBB00CR0  
DBB01DR0  
DBB01DR1  
DBB01DR2  
DBB01CR0  
DCB02DR0  
DCB02DR1  
DCB02DR2  
DCB02CR0  
DCB03DR0  
DCB03DR1  
DCB03DR2  
DCB03CR0  
W
AMUXCFG  
RW  
#
INT_VC  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
ARF_CR  
CMP_CR0  
ASY_CR  
CMP_CR1  
RW  
#
RES_WDT  
DEC_DH  
DEC_DL  
DEC_CR0  
DEC_CR1  
MUL0_X  
#
RC  
RC  
RW  
RW  
W
W
#
RW  
#
RW  
#
MUL1_X  
MUL1_Y  
MUL1_DH  
MUL1_DL  
A8  
A9  
AA  
AB  
W
W
W
MUL0_Y  
W
RW  
#
R
MUL0_DH  
MUL0_DL  
R
R
R
#
TMP_DR0  
TMP_DR1  
TMP_DR2  
TMP_DR3  
ACB00CR3  
ACB00CR0  
ACB00CR1  
ACB00CR2  
ACB01CR3  
ACB01CR0  
ACB01CR1  
ACB01CR2  
RW ACC1_DR1 AC  
RW ACC1_DR0 AD  
RW ACC1_DR3 AE  
RW ACC1_DR2 AF  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
ACC0_DR1 EC  
RW  
RW  
RW  
RW  
W
ACC0_DR0 ED  
RW  
#
ACC0_DR3 EE  
ACC0_DR2 EF  
RW RDI0RI  
RW RDI0SYN  
RW RDI0IS  
RW RDI0LT0  
RW RDI0LT1  
RW RDI0RO0  
RW RDI0RO1  
RW  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
CPU_F  
DAC_D  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
RL  
RW  
#
CPU_SCR1 FE  
CPU_SCR0 FF  
#
空白字段为保留字段,请勿访问。  
# 表示由位决定的访问。  
文档编号:001-47288 版本 *E  
20/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
10.4 寄存器映射组 1 表:配置空间  
名称  
地址 (1、十六进制) 访问  
名称  
PMA0_WA  
地址 (1、十六进制) 访问  
名称  
ASC10CR0  
地址 (1、十六进制) 访问  
名称  
USBI/O_CR2  
地址 (1、十六进制) 访问  
PRT0DM0 00  
PRT0DM1 01  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
C0  
RW  
PMA1_WA  
PMA2_WA  
PMA3_WA  
PMA4_WA  
PMA5_WA  
PMA6_WA  
PMA7_WA  
ASC10CR1  
ASC10CR2  
ASC10CR3  
ASD11CR0  
ASD11CR1  
ASD11CR2  
ASD11CR3  
USB_CR1  
C1  
#
PRT0IC0  
PRT0IC1  
02  
03  
PRT1DM0 04  
PRT1DM1 05  
EP1_CR0  
EP2_CR0  
EP3_CR0  
EP4_CR0  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
#
#
#
#
PRT1IC0  
PRT1IC1  
06  
07  
PRT2DM0 08  
PRT2DM1 09  
PRT2IC0  
PRT2IC1  
0A  
0B  
PRT3DM0 0C  
PRT3DM1 0D  
PRT3IC0  
PRT3IC1  
0E  
0F  
PRT4DM0 10  
PRT4DM1 11  
PMA0_RA  
PMA1_RA  
PMA2_RA  
PMA3_RA  
PMA4_RA  
PMA5_RA  
PMA6_RA  
PMA7_RA  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
GDI_O_IN  
GDI_E_IN  
GDI_O_OU  
GDI_E_OU  
RW  
RW  
RW  
RW  
ASD20CR1  
ASD20CR2  
ASD20CR3  
ASC21CR0  
ASC21CR1  
ASC21CR2  
ASC21CR3  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
PRT4IC0  
PRT4IC1  
12  
13  
PRT5DM0 14  
PRT5DM1 15  
PRT5IC0  
PRT5IC1  
16  
17  
18  
19  
1A  
1B  
MUX_CR0  
MUX_CR1  
MUX_CR2  
MUX_CR3  
RW  
RW  
RW  
RW  
PRT7DM0 1C  
PRT7DM1 1D  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
OSC_GO_EN DD  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
PRT7IC0  
PRT7IC1  
1E  
1F  
OSC_CR4  
OSC_CR3  
OSC_CR0  
OSC_CR1  
OSC_CR2  
VLT_CR  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
DBB00FN 20  
DBB00IN 21  
CLK_CR0  
CLK_CR1  
ABF_CR0  
AMD_CR0  
RW  
RW  
RW  
RW  
RW  
DBB00OU 22  
23  
DBB01FN 24  
RW  
RW  
RW  
CMP_GO_EN 64  
65  
VLT_CMP  
DBB01IN  
25  
DBB01OU 26  
27  
AMD_CR1  
ALT_CR0  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
RW  
RW  
DCB02FN 28  
RW  
RW  
RW  
IMO_TR  
W
DCB02IN  
29  
ILO_TR  
W
DCB02OU 2A  
2B  
BDG_TR  
ECO_TR  
MUX_CR4  
MUX_CR5  
RW  
W
DCB03FN 2C  
RW  
RW  
RW  
TMP_DR0  
TMP_DR1  
TMP_DR2  
TMP_DR3  
ACB00CR3  
ACB00CR0  
ACB00CR1  
ACB00CR2  
ACB01CR3  
ACB01CR0  
ACB01CR1  
ACB01CR2  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
DCB03IN  
2D  
DCB03OU 2E  
2F  
30  
RDI0RI  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
31  
RDI0SYN  
RDI0IS  
32  
33  
RDI0LT0  
RDI0LT1  
RDI0RO0  
RDI0RO1  
34  
35  
36  
37  
CPU_F  
RL  
38  
39  
3A  
3B  
3C  
3D  
DAC_CR  
RW  
#
3E  
CPU_SCR1  
CPU_SCR0  
3F  
#
空白字段为保留字段,请勿访问。  
# 表示由位决定的访问。  
文档编号:001-47288 版本 *E  
21/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
11. 电气规范  
本节提供 CY8C24x94 PSoC 器件系列的直流和交流电气规范。若需要最新的电气规范,请访问 http://www.cypress.com 网站,以确  
保您有最新的数据手册。  
除非另有说明,否则这些规范的适用条件是:–40 °C T 85 °C T 100 °C。对于运行频率超过 12 MHz 的器件,此规范为 :  
A
J
–40 °C T 70 °C T 82 °C。  
A
J
11. 电压与 CPU 频率  
5.25  
4.75  
3.00  
93 kHz  
12 MHz  
24 MHz  
CPU Frequency  
11.1 最大绝对额定值  
9. 绝对最大额定值  
符号  
说明  
最小值  
典型值  
最大值  
单位  
注意  
T
–55  
25  
+100  
°C  
存储温度  
存储温度越高,数据保留时间就  
越短。推荐的存储温度为 +25 °C  
± 25 °C。存储温度长期保持在  
65°C 以上会降低可靠性。  
STG  
T
t
125  
°C  
烘烤温度  
烘烤时间  
请参见  
封装标签  
72  
BAKETEMP  
请参见  
封装标签  
–40  
小时  
BAKETIME  
T
+85  
°C  
V
加电时的环境温度  
A
V
–0.5  
+6.0  
相对于 V V 供电电压  
DD  
I/O  
SS  
DD  
V
V
I
V
V
– 0.5  
– 0.5  
V
+ 0.5  
+ 0.5  
V
直流输入电压  
SS  
SS  
DD  
DD  
V
V
适用于三态的直流电压  
I/O2  
–25  
+50  
mA  
mA  
任意端口引脚的最大输入电流  
MI/O  
I
–50  
+50  
被配置为模拟驱动器的任意端口引脚的最大  
输入电流  
MAI/O  
ESD  
LU  
2000  
V
静电放电电压  
栓锁电流  
人体模型 ESD  
200  
mA  
文档编号:001-47288 版本 *E  
22/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
11.2 工作温度  
10. 工作温度  
符号  
说明  
最小值  
–40  
典型值  
最大值  
+85  
单位  
°C  
注意  
T
环境温度  
A
T
–10  
+85  
°C  
使用 USB 的环境温度  
AUSB  
T
–40  
+100  
°C  
结温  
从环境温度到结温的升温情况  
会因封装不同而存在变化。请  
参见 45 页上的热阻。用户必  
须限制功耗,以满足此要求。  
J
11.3 直流电气特性  
11.3.1 直流芯片级规范  
下表分别列出了以下电压和温度范围内许可的最大和最小规范 :4.75 V 5.25 V –40 °C TA 85 °C,或 3.0 V 3.6 V 和  
–40 °C TA 85 °C。典型参数的测量条件为 25 °C 下且电压为 5 V 3.3 V,这些参数仅供设计指导使用。  
11. 直流芯片级规范  
符号  
说明  
最小值 典型值 最大值 单位  
注释  
V
I
3.0  
5.25  
V
供电电压  
请参见35 页上的表 22 中的直流 POR  
LVD 规范。  
DD  
14  
27  
mA  
供电电流, IMO = 24 MHz 5 V)  
供电电流, IMO = 24 MHz 3.3 V)  
条件为 V = 5.0 VT = 25 °C,  
DD5  
DD  
A
CPU = 3 MHzSYSCLK 倍频器处于禁用  
状态VC1 = 1.5 MHzVC2 = 93.75 kHz,  
VC3 = 93.75 kHz,模拟电源 = 关闭。  
I
8
14  
mA  
条件为 V = 3.3 VT = 25 °C,  
DD3  
DD  
A
CPU = 3 MHzSYSCLK 倍频器处于禁用  
状态VC1 = 1.5 MHzVC2 = 93.75 kHz,  
VC3 = 0.367 kHz,模拟电源 = 关闭。  
[22]  
I
I
3
4
6.5  
25  
µA  
µA  
使用 PORLVD、睡眠定时器和 WDT  
时的  
条件为使用内部低速振荡器,  
V
SB  
[21]  
睡眠  
(模式)电流。  
= 3.3 V–40 °C T 55 °C,  
DD A  
模拟电源 = 关闭。  
在高温度情况下使用 PORLVD、睡眠定时器  
条件为内部低速振荡器, V = 3.3 V,  
SBH  
DD  
[22]  
WDT  
时的睡眠 (模式)电流。  
55 °C < T 85 °C,模拟电源 = 关闭。  
A
注释:  
21. 勘误表:当器件的工作电压位于 4.75 V 5.25 V 的范围内,且使能了 3.3 V 电压调节器时,在器件被唤醒期间, DP 信号线上将出现短路低脉冲信号。主机计算机会  
DP 线的 15-20 µs 低脉冲翻译为分离或唤醒过程的开始。更多信息,请参见59 页上的勘误表。  
22. 待机电流包括实现可靠系统操作所需的所有功能 (PORLVDWDT、睡眠定时器必须将该电流与拥有类似功能的器件的待机电流进行比较。  
文档编号:001-47288 版本 *E  
23/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
11.3.2 直流 GPIO 规范  
下表分别列出了以下电压和温度范围内许可的最大和最小规范 :4.75 V 5.25 V –40 °C TA 85 °C,或 3.0 V 3.6 V 和  
–40 °C TA 85 °C。典型参数的测量条件为 25 °C 下且电压为 5 V 3.3 V,这些参数仅供设计指导使用。  
12. 直流 GPIO 规范  
符号  
PU  
说明  
最小值  
典型值 最大值  
单位  
k  
kꢀ  
V
注意  
R
R
V
4
4
5.6  
5.6  
8
8
上拉电阻  
下拉电阻  
输出高电平  
PD  
V
– 1.0  
DD  
I
= 10 mAV = 4.75 V ~ 5.25 V 和  
OH  
OH  
DD  
–40 °C T 85 °C V = 3.0 V ~ 3.6 V  
A
DD  
–40 °C T 85 °C  
A
(共 8 个负载,其中 4 个在偶数端口引脚  
上 (如 P0[2]P1[4], 另 外 4 个在奇数  
端口引 脚上 (如 P0[3]P1[5])。  
最大总计为 80 mA I 预算。  
OH  
V
0.75  
V
输出低电压  
I
= 25 mA  
= 4.75 V ~ 5.25 V 和  
DD  
OL  
OL  
–40 °C T 85 °C V = 3.0 V ~ 3.6 V  
A
DD  
–40 °C T 85 °C  
A
(共 8 个负载,其中 4 个在偶数端口引脚  
上 (如 P0[2]P1[4], 另 外 4 个 在奇数  
端口引脚上 (如 P0[3]P1[5])。  
最大总计为 200 mA I 预算。  
OL  
I
10  
25  
mA  
mA  
高电平拉电流  
低电平灌电流  
V
= V – 1.0 V,请参见 V 注释中的  
OH DD OH  
总电流限制  
OH  
I
V
限制  
= 0.75 V请 参 见 V 注释中的总电流  
OL  
OL  
OL  
V
V
V
I
2.1  
0.8  
V
V
输入低电平  
输入高电平  
输入迟滞  
V
= 3.0 ~ 5.25 V。  
= 3.0 ~ 5.25 V。  
IL  
IH  
H
DD  
V
DD  
60  
1
mV  
nA  
pF  
输入漏电流 (绝对值)  
输入引脚上的电容负载  
粗略测试结果至 1 µA。  
IL  
C
3.5  
10  
取决于封装和引脚。  
温度 = 25 °C。  
IN  
C
3.5  
10  
pF  
输出引脚上的电容负载  
取决于封装和引脚。  
温度 = 25 °C。  
OUT  
文档编号:001-47288 版本 *E  
24/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
11.3.3 直流全速 USB 规范  
下表分别列出了以下电压和温度范围内许可的最大和最小规范:4.75 V 5.25 V –10 °C TA 85 °C 3.0 V 3.6 V 和  
–10 °C TA 85 °C。典型参数的测量条件为 25 °C 下且电压为 5 V 3.3 V,这些参数仅供设计指导使用。  
13. 直流全速 (12 MbpsUSB 规范  
符号  
说明  
最小值  
典型值 最大值  
单位  
注意  
USB 接口  
V
0.2  
0.8  
0.8  
V
V
| (D+) – (D–) |  
差分输入灵敏度  
差分输入共模范围  
单端接收器阈值  
收发器电容  
DI  
V
2.5  
2.0  
20  
CM  
V
V
SE  
C
pF  
µA  
V
IN  
I
–10  
23  
10  
高阻状态数据线漏电  
外部 USB 串联电阻  
静态输出高电平,驱动  
静态输出高电平,闲置  
静态输出低电平  
0 V < V < 3.3 V。  
I/O  
IN  
R
25  
与每个 USB 引脚串联。  
EXT  
V
2.8  
2.7  
3.6  
3.6  
0.3  
44  
15 k± 5% 接地。使能内部上拉电阻。  
15 k± 5% 接地。使能内部上拉电阻。  
15 k± 5% 接地。使能内部上拉电阻。  
UOH  
V
V
UOHI  
V
V
UOL  
Z
28  
V
USB 驱动器输出阻抗  
D+/D– 交变电压  
包含 R  
电阻。  
EXT  
O
V
1.3  
2.0  
CRS  
文档编号:001-47288 版本 *E  
25/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
11.3.4 直流运算放大器规范  
下表分别列出了以下电压和温度范围内许可的最大和最小规范:4.75 V 5.25 V –40 °C TA 85 °C,或 3.0 V 3.6 V 和  
–40 °C TA 85 °C。典型参数的测量条件为 25 °C 下且电压为 5 V 3.3 V,这些参数仅供设计指导使用。  
运算放大器既是模拟连续时间 PSoC 模块的组件,也是模拟开关电容 PSoC 模块的组件。许可的规范是在模拟连续时间 PSoC 模块  
中测得的。  
14. 5 V 直流运算放大器规范  
符号  
说明  
最小值  
典型值  
最大值  
单位  
注意  
V
输入偏移电压 (绝对值)  
OSOA  
1.6  
1.3  
1.2  
10  
8
7.5  
mV  
mV  
mV  
功耗 = 低,运算放大器偏压 = 高  
功耗 = 中,运算放大器偏压 = 高  
功耗 = 高,运算放大器偏压 = 高  
TCV  
I
7.0  
20  
35.0  
µV/°C  
pA  
平均输入偏移电压漂移  
OSOA  
输入漏电流 (端口 0 模拟引脚)  
输入电容 (端口 0 模拟引脚)  
粗略测试结果为 1 µA。  
EBOA  
C
4.5  
9.5  
pF  
取决于封装和引脚。  
温度 = 25 °C。  
INOA  
V
0.0  
0.5  
V
V
V
共模电压范围  
共模电压范围  
(高功耗或高运算放大器偏压)  
共模输入电压范围是通过模拟输出  
缓冲器测得的。该规范包含了模拟  
输出缓冲器特性所造成的限制。  
CMOA  
DD  
– 0.5  
V
DD  
G
开环增益  
OLOA  
60  
60  
80  
dB  
dB  
dB  
功耗 = 低,运算放大器偏压 = 高  
功耗 = 中,运算放大器偏压 = 高  
功耗 = 高,运算放大器偏压 = 高  
V
输出高电压摆幅 (内部信号)  
功耗 = 低,运算放大器偏压 = 高  
功耗 = 中,运算放大器偏压 = 高  
功耗 = 高,运算放大器偏压 = 高  
OHIGHOA  
OLOWOA  
V
V
V
– 0.2  
– 0.2  
– 0.5  
V
V
V
DD  
DD  
DD  
V
I
输出低电压摆幅 (内部信号)  
功耗 = 低,运算放大器偏压 = 高  
功耗 = 中,运算放大器偏压 = 高  
功耗 = 高,运算放大器偏压 = 高  
0.2  
0.2  
0.5  
V
V
V
供电电流 (含相关的 AGND 缓冲器)  
功耗 = 低,运算放大器偏压 = 低  
功耗 = 低,运算放大器偏压 = 高  
功耗 = 中,运算放大器偏压 = 低  
功耗 = 中,运算放大器偏压 = 高  
功耗 = 高,运算放大器偏压 = 低  
功耗 = 高,运算放大器偏压 = 高  
SOA  
400  
500  
800  
1200  
2400  
4600  
800  
900  
1000  
1600  
3200  
6400  
µA  
µA  
µA  
µA  
µA  
µA  
PSRR  
65  
80  
dB  
供电电压抑制比  
VSS VIN V – 2.25)或  
DD  
OA  
V – 1.25 VVIN V  
DD  
DD  
文档编号:001-47288 版本 *E  
26/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
15. 3.3 V 直流运算放大器规范  
符号  
说明  
最小值  
典型值  
最大值  
单位  
注意  
V
输入偏移电压 (绝对值)  
对于 V = 3.3 V 时进行的操作,  
OSOA  
DD  
1.65  
1.32  
10  
8
mV  
mV  
mV  
功耗 = 低,运算放大器偏压 = 高  
功耗 = 中,运算放大器偏压 = 高  
功耗 = 高,运算放大器偏压 = 高  
不允许功耗 = 高、  
运算放大器偏压 = 高的设置  
TCV  
I
7.0  
20  
35.0  
µV/°C  
pA  
平均输入偏移电压漂移  
OSOA  
输入漏电流 (端口 0 模拟引脚)  
输入电容 (端口 0 模拟引脚)  
粗略测试结果为 1 µA。  
EBOA  
C
4.5  
9.5  
pF  
取决于封装和引脚。  
INOA  
温度 = 25 °C。  
V
0.2  
V
– 0.2  
DD  
V
共模电压范围  
共模输入电压范围是通过模拟输出  
缓冲器测得的。该规范包含了模拟  
输出缓冲器特性所造成的限制。  
CMOA  
G
开环增益  
该规范适用于低运算放大器偏压。  
对于高运算放大器偏压模式 (高功  
耗、高运算放大器偏压除外,  
最小值为 60 dB。  
OLOA  
60  
60  
80  
dB  
dB  
dB  
功耗 = 低,运算放大器偏压 = 低  
功耗 = 中,运算放大器偏压 = 低  
功耗 = 高,运算放大器偏压 = 低  
V
高输出电压摆幅 (内部信号)  
功耗 = 低,运算放大器偏压 = 低  
功耗 = 中,运算放大器偏压 = 低  
功耗 = 高,运算放大器偏压 = 低  
对于 V = 3.3 V 时进行的操作,  
不允许功耗 = 高,  
运算放大器偏压 = 高的设置  
OHIGHOA  
OLOWOA  
DD  
V
V
V
– 0.2  
– 0.2  
– 0.2  
V
V
V
DD  
DD  
DD  
V
I
输出低电压摆幅 (内部信号)  
功耗 = 低,运算放大器偏压 = 低  
功耗 = 中,运算放大器偏压 = 低  
功耗 = 高,运算放大器偏压 = 低  
对于 V = 3.3 V 时进行的操作,  
DD  
0.2  
0.2  
0.2  
V
V
V
不允许功耗 = 高,  
运算放大器偏压 = 高的设置  
供电电流 (含相关的 AGND 缓冲器)  
功耗 = 低,运算放大器偏压 = 低  
功耗 = 低,运算放大器偏压 = 高  
功耗 = 中,运算放大器偏压 = 低  
功耗 = 中,运算放大器偏压 = 高  
功耗 = 高,运算放大器偏压 = 低  
功耗 = 高,运算放大器偏压 = 高  
对于 V = 3.3 V 时进行的操作,  
SOA  
DD  
不允许功耗 = 高、  
运算放大器偏压 = 高的设置  
400  
500  
800  
1200  
2400  
800  
900  
1000  
1600  
3200  
µA  
µA  
µA  
µA  
µA  
µA  
PSRR  
65  
80  
dB  
供电电压抑制比  
VSS VIN V – 2.25)或  
DD  
OA  
V – 1.25 VVIN V  
DD  
DD  
11.3.5 直流低功耗电压比较器规范  
分别列出了以下电压和温度范围内允许的最大和最小规范4.75 V 5.25 V –40 °C TA 85 °C 3.0 V 3.6 V –40 °C TA  
85 °C。典型参数的测量条件为 25 °C 下且电压为 5 V 3.3 V,这些参数仅供设计指导使用。  
16. 直流低功耗电压比较器规范  
符号  
说明  
低功耗比较器 (LPC)的参考电压范围  
LPC 供电电流  
最小值  
典型值  
最大值  
V – 1  
DD  
单位  
V
注意  
V
I
0.2  
REFLPC  
10  
40  
30  
µA  
mV  
SLPC  
V
2.5  
LPC 电压偏移  
OSLPC  
文档编号:001-47288 版本 *E  
27/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
11.3.6 直流模拟输出缓冲器规范  
下表分别列出了以下电压和温度范围内许可的最大和最小规范:4.75 V 5.25 V –40 °C TA 85 °C,或 3.0 V 3.6 V 和  
–40 °C TA 85 °C。典型参数的测量条件为 25 °C 下且电压为 5 V 3.3 V,这些参数仅供设计指导使用。  
17. 5 V 模拟输出缓冲器的直流规范  
符号  
说明  
最小值  
典型值  
最大值  
单位  
注释  
C
V
200  
pF  
负载电容  
本规范适用于由模拟输出缓冲器  
驱动的外部电路。  
L
3
+6  
12  
mV  
µV/°C  
V
输入偏移电压 (绝对值)  
平均输入偏移电压漂移  
共模输入电压范围  
OSOB  
TCV  
OSOB  
CMOB  
V
0.5  
V
– 1.0  
DD  
R
输出电阻  
功耗 = 低  
功耗 = 高  
OUTOB  
0.6  
0.6  
V
输出高电压摆幅  
(负载 = 32 V /2)  
功耗 = 低  
功耗 = 高  
OHIGHOB  
OLOWOB  
DD  
0.5 × V + 1.1  
V
V
DD  
0.5 × V + 1.1  
DD  
V
I
输出低电压摆幅  
(负载 = 32 V /2)  
DD  
0.5 × V – 1.3  
V
V
功耗 = 低  
功耗 = 高  
DD  
0.5 × V – 1.3  
DD  
供电电流,包含运算放大器偏压单元  
SOB  
(无负载)  
功耗 = 低  
功耗 = 高  
1.1  
2.6  
5.1  
8.8  
mA  
mA  
PSRR  
53  
64  
dB  
供电电压抑制比  
0.5 × V – 1.3VOUT   
OB  
DD  
V – 2.3。  
DD  
文档编号:001-47288 版本 *E  
28/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
18. 3.3 V 直流模拟输出缓冲器规范  
符号 说明  
最小值  
典型值  
最大值  
单位  
注释  
C
200  
pF  
负载电容  
本规范适用于由模拟输出缓冲器  
驱动的外部电路。  
L
V
3
+6  
12  
mV  
µV/°C  
V
输入偏移电压 (绝对值)  
平均输入偏移电压漂移  
共模输入电压范围  
OSOB  
TCV  
OSOB  
CMOB  
V
0.5  
V
– 1.0  
DD  
R
输出电阻  
功耗 = 低  
功耗 = 高  
OUTOB  
1
1
V
输出高电压摆幅  
(负载 = 1 KV /2)  
功耗 = 低  
功耗 = 高  
OHIGHOB  
OLOWOB  
DD  
0.5 × V + 1.0  
V
V
DD  
0.5 × V + 1.0  
DD  
V
I
输出低电压摆幅  
(负载 = 1 KV /2)  
功耗 = 低  
功耗 = 高  
DD  
0.5 × V – 1.0  
V
V
DD  
0.5 × V – 1.0  
DD  
供电电流,包含运算放大器偏压单元  
SOB  
(无负载)  
功耗 = 低  
功耗 = 高  
0.8  
2.0  
2.0  
4.3  
mA  
mA  
PSRR  
34  
64  
dB  
供电电压抑制比  
0.5 × V – 1.0VOUT   
OB  
DD  
0.5 × V + 0.9。  
DD  
文档编号:001-47288 版本 *E  
29/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
11.3.7 直流模拟参考规范  
下表分别列出了以下电压和温度范围内许可的最大和最小规范 :4.75 V 5.25 V –40 °C TA 85 °C,或 3.0 V 3.6 V 和  
–40 °C TA 85 °C。典型参数的测量条件为 25 °C 下且电压为 5 V 3.3 V,这些参数仅供设计指导使用。  
RefHI RefLO 许可的规范是通过模拟连续时间 PSoC 模块测得的。RefHi RefLo 的功耗级别是指模拟参考控制寄存器的功耗在  
AGND 旁路模式下,在 P2[4] 测量 AGND。每个模拟连接时间 PSoC 模块将最大值为 10 mV 的额外偏移误差添加到本地 AGND 缓冲  
器所许可的 AGND 规范。除非另行规定,否则参考控制功耗可以设置为中或高。  
注意:当使用由模拟参考决定的模拟源时,避免将 P2[4] 作为数字信号使用。 AGND 上可能出现数字信号的某些耦合。  
19. 5 V 直流模拟参考规范  
参考电压  
参考电压  
ARF_CR  
[5:3]  
符号  
参考电压  
说明  
最小值  
典型值  
最大值  
单位  
功耗设置  
0b000  
V
V
V
V
V
V
V
V
V
V
V
V
V
/2 + 1.229  
V
/2 + 1.290  
V
V
V
V
V
V
V
V
V
V
V
V
/2 + 1.346  
V
V
V
V
V
V
V
V
V
V
V
V
V
参考功耗 = 高  
运算放大器偏压 = 高  
参考电压为高  
V
V
/2 + 带隙  
REFHI  
DD  
DD  
DD  
DD  
V
AGND  
/2  
/2 – 0.038  
/2 – 1.356  
/2 + 1.220  
/2 – 0.036  
/2 – 1.357  
/2 + 1.221  
/2 – 0.036  
/2 – 1.357  
/2 + 1.219  
/2 – 0.037  
/2 – 1.359  
V
/2  
/2 + 0.040  
/2 – 1.218  
/2 + 1.348  
/2 + 0.036  
/2 – 1.225  
/2 + 1.351  
/2 + 0.036  
/2 – 1.228  
/2 + 1.353  
/2 + 0.036  
/2 – 1.229  
AGND  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
V
V
V
/2 – 1.295  
/2 + 1.292  
参考电压为低  
参考电压为高  
AGND  
V
V
V
/2 – 带隙  
/2 + 带隙  
/2  
REFLO  
REFHI  
DD  
DD  
DD  
V
参考功耗 = 高  
运算放大器偏压 = 低  
DD  
DD  
V
V
/2  
AGND  
DD  
V
V
V
/2 – 1.297  
/2 + 1.293  
参考电压为低  
参考电压为高  
AGND  
V
V
V
/2 – 带隙  
/2 + 带隙  
/2  
REFLO  
REFHI  
DD  
DD  
DD  
V
参考功耗 = 中  
运算放大器偏压 = 高  
DD  
DD  
V
V
/2  
AGND  
DD  
V
V
V
V
V
/2 – 1.298  
/2 + 1.293  
/2 – 0.001  
/2 – 1.299  
参考电压为低  
参考电压为高  
AGND  
V
V
V
/2 – 带隙  
/2 + 带隙  
/2  
REFLO  
REFHI  
DD  
DD  
DD  
DD  
DD  
V
参考功耗 = 中  
运算放大器偏压 = 低  
DD  
DD  
V
AGND  
V
参考电压为低  
V
/2 – 带隙  
REFLO  
REFHI  
DD  
0b001  
V
P2[4] + P2[6] – P2[4] + P2[6] – P2[4] + P2[6] +  
参考功耗 = 高  
运算放大器偏压 = 高  
参考电压为高 P2[4]+P2[6] P2[4] =  
/2P2[6] = 1.3 V)  
0.092  
0.011  
0.064  
V
DD  
V
AGND  
参考电压为低 P2[4]–P2[6] P2[4] =  
/2P2[6] = 1.3 V)  
P2[4]  
P2[4]  
P2[4]  
P2[4]  
AGND  
V
P2[4] – P2[6] – P2[4] – P2[6] + P2[4] – P2[6] +  
0.031 0.007 0.056  
P2[4] + P2[6] – P2[4] + P2[6] – P2[4] + P2[6] +  
V
REFLO  
V
DD  
V
V
参考功耗 = 高  
运算放大器偏压 = 低  
参考电压为高 P2[4]+P2[6] P2[4] =  
/2P2[6] = 1.3 V)  
REFHI  
0.078  
0.008  
0.063  
V
DD  
V
AGND  
参考电压为低 P2[4]–P2[6] P2[4] =  
/2P2[6] = 1.3 V)  
P2[4]  
P2[4]  
P2[4]  
P2[4]  
AGND  
V
P2[4] – P2[6] – P2[4] – P2[6] + P2[4] – P2[6] +  
0.031 0.004 0.043  
P2[4] + P2[6] – P2[4] + P2[6] – P2[4] + P2[6] +  
V
REFLO  
V
DD  
V
V
参考功耗 = 中  
运算放大器偏压 = 高  
参考电压为高 P2[4]+P2[6] P2[4] =  
/2P2[6] = 1.3 V)  
REFHI  
0.073  
0.006  
0.062  
V
DD  
V
AGND  
参考电压为低 P2[4]–P2[6] P2[4] =  
/2P2[6] = 1.3 V)  
P2[4]  
P2[4]  
P2[4]  
P2[4]  
AGND  
V
P2[4] – P2[6] – P2[4] – P2[6] + P2[4] – P2[6] +  
0.032 0.003 0.038  
P2[4] + P2[6] – P2[4] + P2[6] – P2[4] + P2[6] +  
V
REFLO  
V
DD  
V
V
参考功耗 = 中  
运算放大器偏压 = 低  
参考电压为高 P2[4]+P2[6] P2[4] =  
/2P2[6] = 1.3 V)  
REFHI  
0.073  
0.006  
0.062  
V
DD  
V
AGND  
参考电压为低 P2[4]–P2[6] P2[4] =  
/2P2[6] = 1.3 V)  
P2[4]  
P2[4]  
P2[4]  
P2[4]  
AGND  
V
P2[4] – P2[6] – P2[4] – P2[6] + P2[4] – P2[6] +  
0.034 0.002 0.037  
V
REFLO  
V
DD  
文档编号:001-47288 版本 *E  
30/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
19. 5 V 直流模拟参考规范 (续)  
参考电压  
参考电压  
ARF_CR  
[5:3]  
符号  
参考电压  
说明  
最小值  
– 0.037  
典型值  
– 0.007  
最大值  
单位  
功耗设置  
0b010  
0b011  
0b100  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
参考功耗 = 高  
运算放大器偏压 = 高  
参考电压为高  
REFHI  
DD  
DD  
SS  
DD  
DD  
SS  
DD  
DD  
SS  
DD  
DD  
SS  
DD  
DD  
DD  
V
AGND  
/2  
/2  
/2  
/2  
V
/2 – 0.036  
V
/2 – 0.001  
+ 0.005  
V
/2 + 0.036  
+ 0.029  
AGND  
DD  
DD  
DD  
DD  
DD  
DD  
V
V
V
V
V
参考电压为低  
参考电压为高  
AGND  
REFLO  
REFHI  
SS  
SS  
SS  
V
V
– 0.034  
– 0.006  
V
DD  
参考功耗 = 高  
运算放大器偏压 = 低  
DD  
DD  
V
V
/2 – 0.036  
V
DD  
/2 – 0.001  
+ 0.004  
V
/2 + 0.035  
+ 0.024  
AGND  
DD  
V
V
V
V
V
参考电压为低  
参考电压为高  
AGND  
REFLO  
REFHI  
SS  
SS  
SS  
V
V
– 0.032  
– 0.005  
V
DD  
参考功耗 = 中  
运算放大器偏压 = 高  
DD  
DD  
V
V
/2 – 0.036  
V
DD  
/2 – 0.001  
+ 0.003  
V
/2 + 0.035  
+ 0.022  
AGND  
DD  
V
V
V
V
V
参考电压为低  
参考电压为高  
AGND  
REFLO  
REFHI  
SS  
SS  
SS  
V
V
– 0.031  
– 0.005  
V
DD  
参考功耗 = 中  
运算放大器偏压 = 低  
DD  
DD  
V
V
/2 – 0.037  
V
DD  
/2 – 0.001  
+ 0.003  
V
/2 + 0.035  
+ 0.020  
AGND  
DD  
V
V
V
V
参考电压为低  
REFLO  
REFHI  
SS  
SS  
SS  
V
V
3.760  
2.522  
1.252  
3.766  
2.523  
1.252  
3.769  
2.523  
1.251  
3.769  
2.523  
1.251  
3.884  
2.593  
1.299  
3.887  
2.594  
1.297  
3.888  
2.594  
1.296  
3.889  
2.595  
1.296  
4.006  
2.669  
1.342  
4.010  
2.670  
1.342  
4.013  
2.671  
1.343  
4.015  
2.671  
1.344  
参考功耗 = 高  
运算放大器偏压 = 高  
参考电压为高 3 × 带隙  
AGND  
2 × 带隙  
AGND  
V
参考电压为低 带隙  
REFLO  
REFHI  
V
V
参考功耗 = 高  
运算放大器偏压 = 低  
参考电压为高 3 × 带隙  
AGND  
2 × 带隙  
AGND  
V
参考电压为低 带隙  
REFLO  
REFHI  
V
V
参考功耗 = 中  
运算放大器偏压 = 高  
参考电压为高 3 × 带隙  
AGND  
2 × 带隙  
AGND  
V
参考电压为低 带隙  
REFLO  
REFHI  
V
V
参考功耗 = 中  
运算放大器偏压 = 低  
参考电压为高 3 × 带隙  
AGND  
参考电压为低 带隙  
2 × 带隙  
AGND  
V
REFLO  
REFHI  
V
2.483 + P2[6] 2.582 + P2[6] 2.674 + P2[6]  
参考功耗 = 高  
参考电压为高 2 × 带隙 + P2[6]  
P2[6] = 1.3 V)  
运算放大器偏压 = 高  
V
AGND  
2.522 2.593 2.669  
V
V
2 × 带隙  
AGND  
V
2.524 – P2[6] 2.600 – P2[6] 2.676 – P2[6]  
2.490 + P2[6] 2.586 + P2[6] 2.679 + P2[6]  
参考电压为低 2 × 带隙 – P2[6]  
P2[6] = 1.3 V)  
REFLO  
V
V
参考功耗 = 高  
运算放大器偏压 = 低  
参考电压为高 2 × 带隙 + P2[6]  
P2[6] = 1.3 V)  
REFHI  
V
AGND  
2.523  
2.594  
2.669  
V
V
2 × 带隙  
AGND  
V
2.523 – P2[6] 2.598 – P2[6] 2.675 – P2[6]  
参考电压为低 2 × 带隙 – P2[6]  
P2[6] = 1.3 V)  
REFLO  
V
2.493 + P2[6] 2.588 + P2[6] 2.682 +P2[6]  
V
参考功耗 = 中  
运算放大器偏压 = 高  
参考电压为高 2 × 带隙 + P2[6]  
P2[6] = 1.3 V)  
REFHI  
V
AGND  
2.523  
2.594  
2.670  
V
V
2 × 带隙  
AGND  
V
2.523 – P2[6] 2.597 – P2[6] 2.675 – P2[6]  
参考电压为低 2 × 带隙 – P2[6]  
P2[6] = 1.3 V)  
REFLO  
V
2.494 + P2[6] 2.589 + P2[6] 2.685 + P2[6]  
V
参考功耗 = 中  
运算放大器偏压 = 低  
参考电压为高 2 × 带隙 + P2[6]  
P2[6] = 1.3 V)  
REFHI  
V
AGND  
2.523  
2.595  
2.671  
V
V
2 × 带隙  
AGND  
V
2.522 – P2[6] 2.596 – P2[6] 2.676 – P2[6]  
参考电压为低 2 × 带隙 – P2[6]  
P2[6] = 1.3 V)  
REFLO  
文档编号:001-47288 版本 *E  
31/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
19. 5 V 直流模拟参考规范 (续)  
参考电压  
参考电压  
ARF_CR  
[5:3]  
符号  
参考电压  
说明  
最小值  
P2[4] + 1.218 P2[4] + 1.291 P2[4] + 1.354  
P2[4] P2[4] P2[4]  
典型值  
最大值  
单位  
功耗设置  
0b101  
V
V
参考功耗 = 高  
参考电压为高 P2[4] + 带隙  
P2[4] = V /2)  
REFHI  
运算放大器偏压 = 高  
DD  
V
AGND  
参考电压为低 P2[4] – 带隙  
P2[4] = V /2)  
P2[4]  
AGND  
V
P2[4] – 1.335 P2[4] – 1.294 P2[4] – 1.237  
V
REFLO  
DD  
V
P2[4] + 1.221 P2[4] + 1.293 P2[4] + 1.358  
V
参考功耗 = 高  
参考电压为高 P2[4] + 带隙  
REFHI  
运算放大器偏压 = 低  
P2[4] = V /2)  
DD  
V
AGND  
P2[4]  
P2[4]  
P2[4]  
P2[4]  
AGND  
V
P2[4] – 1.337 P2[4] – 1.297 P2[4] – 1.243  
V
参考电压为低 P2[4] – 带隙  
P2[4] = V /2)  
REFLO  
DD  
V
P2[4] + 1.222 P2[4] + 1.294 P2[4] + 1.360  
V
参考功耗 = 中  
参考电压为高 P2[4] + 带隙  
REFHI  
运算放大器偏压 = 高  
P2[4] = V /2)  
DD  
V
AGND  
P2[4]  
P2[4]  
P2[4]  
P2[4]  
AGND  
V
P2[4] – 1.338 P2[4] – 1.298 P2[4] – 1.245  
V
参考电压为低 P2[4] – 带隙  
P2[4] = V /2)  
REFLO  
DD  
V
P2[4] + 1.221 P2[4] + 1.294 P2[4] + 1.362  
V
参考功耗 = 中  
参考电压为高 P2[4] + 带隙  
REFHI  
运算放大器偏压 = 低  
P2[4] = V /2)  
DD  
V
AGND  
P2[4]  
P2[4]  
P2[4]  
P2[4]  
AGND  
V
P2[4] – 1.340 P2[4] – 1.298 P2[4] – 1.245  
V
参考电压为低 P2[4] – 带隙  
P2[4] = V /2)  
REFLO  
DD  
0b110  
V
V
2.513  
1.264  
2.593  
2.672  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
参考功耗 = 高  
运算放大器偏压 = 高  
参考电压为高 2 × 带隙  
REFHI  
AGND  
1.302  
1.340  
带隙  
AGND  
V
V
V
V
V
V
V
V
V
V
V
+ 0.008  
V
V
V
V
V
V
V
V
+ 0.038  
参考电压为低  
REFLO  
REFHI  
SS  
SS  
SS  
SS  
V
V
2.514  
1.264  
2.593  
2.674  
参考功耗 = 高  
运算放大器偏压 = 低  
参考电压为高 2 × 带隙  
AGND  
1.301  
1.340  
带隙  
AGND  
V
V
V
+ 0.005  
+ 0.028  
SS  
参考电压为低  
REFLO  
REFHI  
SS  
SS  
SS  
V
V
2.514  
1.264  
2.593  
2.676  
参考功耗 = 中  
运算放大器偏压 = 高  
参考电压为高 2 × 带隙  
AGND  
1.301  
1.340  
带隙  
AGND  
V
V
V
+ 0.004  
+ 0.024  
SS  
参考电压为低  
REFLO  
REFHI  
SS  
SS  
SS  
V
V
2.514  
1.264  
2.593  
2.677  
参考功耗 = 中  
运算放大器偏压 = 低  
参考电压为高 2 × 带隙  
AGND  
1.300  
1.340  
带隙  
AGND  
V
V
V
+ 0.003  
+ 0.021  
SS  
参考电压为低  
REFLO  
REFHI  
SS  
SS  
SS  
0b111  
V
V
4.028  
2.028  
4.144  
4.242  
参考功耗 = 高  
运算放大器偏压 = 高  
参考电压为高 3.2 × 带隙  
AGND  
2.076  
2.125  
1.6 × 带隙  
AGND  
V
V
V
+ 0.008  
+ 0.034  
SS  
参考电压为低  
REFLO  
REFHI  
SS  
SS  
SS  
V
V
4.032  
2.029  
4.142  
4.245  
参考功耗 = 高  
运算放大器偏压 = 低  
参考电压为高 3.2 × 带隙  
AGND  
2.076  
2.126  
1.6 × 带隙  
AGND  
V
V
V
+ 0.005  
+ 0.025  
SS  
参考电压为低  
REFLO  
REFHI  
SS  
SS  
SS  
V
V
4.034  
2.029  
4.143  
4.247  
参考功耗 = 中  
运算放大器偏压 = 高  
参考电压为高 3.2 × 带隙  
AGND  
2.076  
2.126  
1.6 × 带隙  
AGND  
V
V
V
+ 0.004  
+ 0.021  
SS  
参考电压为低  
REFLO  
REFHI  
SS  
SS  
SS  
V
V
4.036  
2.029  
4.144  
4.249  
参考功耗 = 中  
运算放大器偏压 = 低  
参考电压为高 3.2 × 带隙  
AGND  
2.076  
2.126  
1.6 × 带隙  
AGND  
V
V
V
+ 0.003  
+ 0.019  
SS  
参考电压为低  
REFLO  
SS  
SS  
SS  
文档编号:001-47288 版本 *E  
32/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
20. 3.3 V 直流模拟参考规范  
参考电压  
参考电压  
ARF_CR  
[5:3]  
符号  
参考电压  
说明  
最小值  
典型值  
最大值  
单位  
功耗 设置  
0b000  
V
V
V
V
V
V
V
V
V
V
V
V
V
/2 + 1.200  
V
/2 + 1.290  
V
V
V
V
V
V
V
V
V
V
V
V
/2 + 1.365  
V
V
V
V
V
V
V
V
V
V
V
V
V
参考功耗 = 高  
运算放大器偏压 = 高  
参考电压为高 V /2 + 带隙  
REFHI  
DD  
DD  
DD  
DD  
V
AGND  
V
/2  
/2 – 0.030  
/2 – 1.346  
/2 + 1.196  
/2 – 0.029  
/2 – 1.349  
/2 + 1.204  
/2 – 0.030  
/2 – 1.351  
/2 + 1.189  
/2 – 0.032  
/2 – 1.353  
V
/2  
/2 + 0.034  
/2 – 1.208  
/2 + 1.374  
/2 + 0.031  
/2 – 1.227  
/2 + 1.369  
/2 + 0.030  
/2 – 1.229  
/2 + 1.384  
/2 + 0.029  
/2 – 1.230  
AGND  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
V
V
V
/2 – 1.292  
/2 + 1.292  
参考电压为低 V /2 带隙  
REFLO  
REFHI  
DD  
DD  
DD  
V
参考功耗 = 高  
运算放大器偏压 = 低  
参考电压为高 V /2 + 带隙  
DD  
V
AGND  
V
/2  
V
/2  
DD  
AGND  
DD  
V
V
V
/2 – 1.295  
/2 + 1.293  
参考电压为低 V /2 带隙  
REFLO  
REFHI  
DD  
DD  
DD  
V
参考功耗 = 中  
运算放大器偏压 = 高  
参考电压为高 V /2 + 带隙  
DD  
V
AGND  
V
/2  
V
/2  
DD  
AGND  
DD  
V
V
V
/2 – 1.297  
/2 + 1.294  
参考电压为低 V /2 带隙  
REFLO  
REFHI  
DD  
DD  
DD  
V
参考功耗 = 中  
运算放大器偏压 = 低  
参考电压为高 V /2 + 带隙  
DD  
V
AGND  
V
/2  
V
/2  
DD  
AGND  
DD  
V
V
/2 – 1.297  
DD  
参考电压为低 V /2 带隙  
REFLO  
REFHI  
DD  
0b001  
V
P2[4] + P2[6] – P2[4] + P2[6] – P2[4] + P2[6] +  
参考电压为高 P2[4] + P2[6]P2[4] =  
参考功耗 = 高  
0.105  
0.008  
0.095  
运算放大器偏压 = 高  
V
/2P2[6] = 0.5 V)  
DD  
V
AGND  
P2[4]  
P2[4]  
P2[4]  
P2[4]  
AGND  
V
P2[4] – P2[6] – P2[4] – P2[6] + P2[4] – P2[6] +  
0.035 0.006 0.053  
P2[4] + P2[6] – P2[4] + P2[6] – P2[4] + P2[6] +  
V
参考电压为低 P2[4] – P2[6]P2[4] =  
REFLO  
V
/2P2[6] = 0.5 V)  
DD  
V
V
参考功耗 = 高  
运算放大器偏压 = 低  
参考电压为高 P2[4] + P2[6]P2[4] =  
/2P2[6] = 0.5 V)  
REFHI  
0.094  
0.005  
0.073  
V
DD  
V
AGND  
P2[4]  
P2[4]  
P2[4]  
P2[4]  
AGND  
V
P2[4] – P2[6] – P2[4] – P2[6] + P2[4] – P2[6] +  
0.033 0.002 0.042  
P2[4] + P2[6] – P2[4] + P2[6] – P2[4] + P2[6] +  
V
参考电压为低 P2[4] – P2[6]P2[4] =  
REFLO  
V
/2P2[6] = 0.5 V)  
DD  
V
V
参考功耗 = 中  
运算放大器偏压 = 高  
参考电压为高 P2[4] + P2[6]P2[4] =  
/2P2[6] = 0.5 V)  
REFHI  
0.094  
0.003  
0.075  
V
DD  
V
AGND  
P2[4]  
P2[4]  
P2[4]  
P2[4]  
AGND  
V
P2[4] – P2[6] – P2[4] – P2[6] P2[4]P2[6]+  
0.035 0.038  
P2[4] + P2[6] – P2[4] + P2[6] – P2[4] + P2[6] +  
V
参考电压为低 P2[4] – P2[6]P2[4] =  
REFLO  
V
/2P2[6] = 0.5 V)  
DD  
V
V
参考功耗 = 中  
运算放大器偏压 = 低  
参考电压为高 P2[4] + P2[6]P2[4] =  
/2P2[6] = 0.5 V)  
REFHI  
0.095  
0.003  
0.080  
V
DD  
V
AGND  
P2[4]  
P2[4]  
P2[4]  
P2[4]  
AGND  
V
P2[4] – P2[6] – P2[4] – P2[6] P2[4] – P2[6] +  
V
参考电压为低 P2[4] – P2[6]P2[4] =  
REFLO  
0.038  
0.038  
V
V
V
V
V
V
V
V
V
V
V
V
V
/2P2[6] = 0.5 V)  
DD  
DD  
0b010  
V
V
– 0.119  
V
– 0.005  
V
V
V
V
V
V
V
V
V
V
V
V
V
参考功耗 = 高  
运算放大器偏压 = 高  
参考电压为高  
REFHI  
DD  
DD  
DD  
V
AGND  
/2  
V
/2 – 0.028  
V
/2  
V
/2 + 0.029  
+ 0.022  
AGND  
DD  
SS  
DD  
DD  
SS  
DD  
DD  
SS  
DD  
DD  
SS  
DD  
DD  
DD  
DD  
DD  
DD  
V
V
V
V
+ 0.004  
– 0.004  
V
参考电压为低  
参考电压为高  
AGND  
REFLO  
REFHI  
SS  
SS  
DD  
SS  
V
V
– 0.131  
V
DD  
参考功耗 = 高  
运算放大器偏压 = 低  
DD  
V
/2  
/2  
/2  
V
/2 – 0.028  
V /2  
DD  
V
/2 + 0.028  
+ 0.021  
AGND  
DD  
V
V
V
V
+ 0.003  
– 0.003  
V
参考电压为低  
参考电压为高  
AGND  
REFLO  
REFHI  
SS  
SS  
DD  
SS  
V
V
– 0.111  
V
DD  
参考功耗 = 中  
运算放大器偏压 = 高  
DD  
V
V
/2 – 0.029  
V /2  
DD  
V
/2 + 0.028  
+ 0.017  
AGND  
DD  
V
V
V
V
+ 0.002  
– 0.003  
V
参考电压为低  
参考电压为高  
AGND  
REFLO  
REFHI  
SS  
SS  
DD  
SS  
V
V
– 0.128  
V
DD  
参考功耗 = 中  
运算放大器偏压 = 低  
DD  
V
V
/2 – 0.029  
V /2  
DD  
V
/2 + 0.029  
+ 0.019  
AGND  
DD  
V
V
V
+ 0.002  
V
参考电压为低  
REFLO  
SS  
SS  
SS  
文档编号:001-47288 版本 *E  
33/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
20. 3.3 V 直流模拟参考规范 (续)  
参考电压  
参考电压  
ARF_CR  
[5:3]  
符号  
参考电压  
说明  
最小值  
典型值  
最大值  
单位  
功耗 设置  
0b011  
0b100  
0b101  
V
所有功耗设置。  
不适用于 3.3 V。  
所有功耗设置。  
不适用于 3.3 V。  
P2[4] + 1.214 P2[4] + 1.291 P2[4] + 1.359  
V
参考功耗 = 高  
运算放大器偏压 = 高  
参考电压为高 P2[4] + 带隙  
P2[4] = V /2)  
REFHI  
DD  
V
AGND  
P2[4]  
P2[4] P2[4] P2[4]  
AGND  
V
P2[4] – 1.335 P2[4] – 1.292 P2[4] – 1.200  
P2[4] + 1.219 P2[4] + 1.293 P2[4] + 1.357  
V
参考电压为低 P2[4] – 带隙  
REFLO  
P2[4] = V /2)  
DD  
V
V
参考功耗 = 高  
参考电压为高 P2[4] + 带隙  
REFHI  
运算放大器偏压 = 低  
P2[4] = V /2)  
DD  
V
AGND  
P2[4]  
P2[4]  
P2[4]  
P2[4]  
AGND  
V
P2[4] – 1.335 P2[4] – 1.295 P2[4] – 1.243  
V
参考电压为低 P2[4] – 带隙  
REFLO  
P2[4] = V /2)  
DD  
V
P2[4] + 1.222 P2[4] + 1.294 P2[4] + 1.356  
V
参考功耗 = 中  
参考电压为高 P2[4] + 带隙  
REFHI  
运算放大器偏压 = 高  
P2[4] = V /2)  
DD  
V
AGND  
P2[4]  
P2[4]  
P2[4]  
P2[4]  
AGND  
V
P2[4] – 1.337 P2[4] – 1.296 P2[4] – 1.244  
V
参考电压为低 P2[4] – 带隙  
REFLO  
P2[4] = V /2)  
DD  
V
P2[4] + 1.224 P2[4] + 1.295 P2[4] + 1.355  
V
参考功耗 = 中  
参考电压为高 P2[4] + 带隙  
REFHI  
运算放大器偏压 = 低  
P2[4] = V /2)  
DD  
V
AGND  
P2[4]  
P2[4]  
P2[4]  
P2[4]  
AGND  
V
P2[4] – 1.339 P2[4] – 1.297 P2[4] – 1.244  
V
参考电压为低 P2[4] – 带隙  
REFLO  
P2[4] = V /2)  
DD  
0b110  
V
V
2.510  
1.276  
2.595  
2.655  
V
V
V
V
V
V
V
V
V
V
V
V
参考功耗 = 高  
运算放大器偏压 = 高  
参考电压为高 2 × 带隙  
REFHI  
AGND  
1.301  
1.332  
带隙  
AGND  
V
V
V
V
V
V
V
+ 0.006  
V
V
V
V
+ 0.031  
SS  
参考电压为低  
REFLO  
REFHI  
SS  
SS  
SS  
V
V
2.513  
1.275  
2.594  
2.656  
参考功耗 = 高  
运算放大器偏压 = 低  
参考电压为高 2 × 带隙  
AGND  
1.301  
1.331  
带隙  
AGND  
V
V
V
+ 0.004  
+ 0.021  
SS  
参考电压为低  
REFLO  
REFHI  
SS  
SS  
SS  
V
V
2.516  
1.275  
2.595  
2.657  
参考功耗 = 中  
运算放大器偏压 = 高  
参考电压为高 2 × 带隙  
AGND  
1.301  
1.331  
带隙  
AGND  
V
V
V
+ 0.003  
+ 0.017  
SS  
参考电压为低  
REFLO  
REFHI  
SS  
SS  
SS  
V
V
2.520  
1.275  
2.595  
2.658  
参考功耗 = 中  
运算放大器偏压 = 低  
参考电压为高 2 × 带隙  
AGND  
1.300  
1.331  
带隙  
AGND  
V
V
V
+ 0.002  
+ 0.015  
SS  
参考电压为低  
REFLO  
SS  
SS  
SS  
0b111  
所有功耗设置。  
不适用于 3.3 V。  
文档编号:001-47288 版本 *E  
34/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
11.3.8 直流模拟 PSoC 模块规范  
下表分别列出了以下电压和温度范围内许可的最大和最小规范:4.75 V 5.25 V –40 °C TA 85 °C,或 3.0 V 3.6 V 和  
–40 °C TA 85 °C。典型参数的测量条件为 25 °C 下且电压为 5 V 3.3 V,这些参数仅供设计指导使用。  
21. 直流模拟 PSoC 模块规范  
符号  
说明  
电阻元件值 (连续时间)  
电容元件值 (开关电容)  
最小值  
典型值  
12.2  
80  
最大值  
单位  
k  
fF  
注释  
R
C
CT  
SC  
11.3.9 直流 POR LVD 规范  
下表分别列出了以下电压和温度范围内许可的最大和最小规范:4.75 V 5.25 V –40 °C TA 85 °C,或 3.0 V 3.6 V 和  
–40 °C TA 85 °C。典型参数的测量条件为 25 °C 下且电压为 5 V 3.3 V,这些参数仅供设计指导使用。  
注意:下表中的 PORLEV VM 位数是指 VLT_CR 寄存器中的位数。有关 VLT_CR 寄存器的详细信息,请参考 PSoC 技术参考  
手册 》。  
22. 直流 POR LVD 规范  
符号  
说明  
最小值 典型值  
最大值  
单位  
注释  
PPOR 被激发时的 V 值 (上升供电)  
DD  
V
V
V
PORLEV[1:0] = 00b  
PORLEV[1:0] = 01b  
PORLEV[1:0] = 10b  
2.91  
4.39  
4.55  
V
V
V
PPOR0R  
PPOR1R  
PPOR2R  
PPOR 期间的 V 值 (下降供电)  
DD  
[23]  
V
V
V
PORLEV[1:0] = 00b  
PORLEV[1:0] = 01b  
PORLEV[1:0] = 10b  
2.82  
4.39  
4.55  
V
V
V
PPOR0  
PPOR1  
PPOR2  
[23]  
[23]  
PPOR 迟滞  
V
V
V
PORLEV[1:0] = 00b  
PORLEV[1:0] = 01b  
PORLEV[1:0] = 10b  
92  
0
0
mV  
mV  
mV  
PH0  
PH1  
PH2  
LVD 激发的 V  
DD  
[24]  
V
V
V
V
V
V
V
V
VM[2:0] = 000b  
VM[2:0] = 001b  
VM[2:0] = 010b  
VM[2:0] = 011b  
VM[2:0] = 100b  
VM[2:0] = 101b  
VM[2:0] = 110b  
VM[2:0] = 111b  
2.86  
2.96  
3.07  
3.92  
4.39  
4.55  
4.63  
4.72  
2.92  
3.02  
3.13  
4.00  
4.48  
4.64  
4.73  
4.81  
2.98  
V
V
V
V
V
V
V
V
LVD0  
LVD1  
LVD2  
LVD3  
LVD4  
LVD5  
LVD6  
LVD7  
3.08  
3.20  
4.08  
4.57  
[25]  
4.74  
4.82  
4.91  
注释:  
23. 勘误表:如果将器件的 V 下拉到低于接地电压,那么每个 8K 闪存页面的最早读取都有可能受损害。这个问题不会影响到闪存页面 0,因为它是复位时选定的页面。  
DD  
更多信息,请参见59 页上的勘误表。  
24. 对于下降供电,始终比 PPOR PORLEV = 00)高 50 mV。  
25. 对于下降供电,始终比 PPOR PORLEV = 10)高 50 mV。  
文档编号:001-47288 版本 *E  
35/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
11.3.10 直流编程规范  
下表分别列出了以下电压和温度范围内许可的最大和最小规范 :4.75 V 5.25 V –40 °C TA 85 °C,或 3.0 V 3.6 V 和  
–40 °C TA 85 °C。典型参数的测量条件为 25 °C 下且电压为 5 V 3.3 V,这些参数仅供设计指导使用。  
23. 直流编程规范  
符号  
说明  
最小值  
典型值  
最大值  
单位  
注意  
V
V
V
V
I
4.5  
5
5.5  
V
用于编程和清除的 V  
用于验证的低电平 V  
该规范适用于外部编程工具  
的功能要求  
DDP  
DD  
3
5.1  
3
3.1  
5.2  
3.2  
5.3  
V
V
V
该规范适用于外部编程工具  
的功能要求  
DDLV  
DD  
进行验证时使用的高电压 V  
该规范适用于外部编程工具  
的功能要求  
DDHV  
DD  
5.25  
闪存写入操作的供电电压  
该规范适用于器件的内部闪  
存写入操作  
DDIWRITE  
15  
30  
0.8  
mA  
V
编程或验证期间的供电电流  
DDP  
V
编程或验证期间的输入低电平电压  
编程或验证期间的输入高电平电压  
ILP  
V
I
2.1  
V
IHP  
0.2  
mA  
编程或验证期间为 P1[0] P1[1] 采取 V 电压  
时的输入电流  
驱动内部下拉电阻  
驱动内部下拉电阻  
ILP  
ILP  
I
1.5  
mA  
编程或验证期间为 P1[0] P1[1] 采取 V  
时的输入电流  
电压  
IHP  
IHP  
V
V
V
+ 0.75  
SS  
V
V
编程或验证期间输出低电平电压  
编程或验证期间输出高电平电压  
OLV  
V
– 1.0  
V
DD  
OHV  
DD  
[26]  
Flash  
Flash  
Flash  
50,000  
(每个模块的)闪存耐久性  
[27]  
每个模块的擦 / 写次数。  
擦除 / 写周期次数。  
ENPB  
ENT  
DR  
1,800,000  
10  
闪存擦写次数 (总计)  
闪存数据保持时间  
11.3.11 I2C 直流规范  
下表分别列出了以下电压和温度范围内许可的最大和最小规范 :4.75 V 5.25 V –40 °C TA 85 °C,或 3.0 V 3.6 V –40  
°C TA 85 °C。典型参数的测量条件为 25 °C 下且电压为 5 V 3.3 V,这些参数仅供设计指导使用。  
24. 直流 I2C 规范 [28]  
符号  
说明  
最小值  
典型值  
最大值  
单位  
V
注释  
V
V
0.3 × V  
3.0 V V 3.6 V  
输入低电平  
输入高电平  
ILI2C  
DD  
DD  
0.25 × V  
V
4.75 V V 5.25 V  
DD  
DD  
0.7 × V  
V
3.0 V V 5.25 V  
IHI2C  
DD  
DD  
注释:  
26. 仅当闪存在一个电压范围内工作时,才能保证每个模块均有 50,000 次擦 / 写循环的闪存耐久性。电压范围为 3.0 V 3.6 V 4.75 V 5.25 V。  
27. 每个模块的最多擦 / 写周期数为 36 x 50,000 次。这可以在使用 36 x 1 个模每个模块最多 50,000 次擦 / 写周期36 x 2 个模每个模块最多 25,000 次擦 / 写  
周期)或 36 x 4 个模块 (每个模块最多 12,500 次擦 / 写周期)之间进行平衡 (将总擦 / 写周期次数限制为 36 x 50,000 次,而且单个模块的擦 / 写周期次数不超过  
50,000 。  
对于整个工业级范围,用户必须采用温度传感器用户模块 (FlashTemp并在写入闪存前将结果添加到温度参数内。更多有关信息,请参考闪存 API 应用笔记设计  
®
辅助 读取和写入 PSoC 闪存 — AN2015。  
2
28. 所有 GPIO 都符合 “ 直流 GPIO 规范 ” 部分中的直流 GPIO V V 规范。此外, I C GPIO 引脚也满足上述规范。  
IL  
IH  
文档编号:001-47288 版本 *E  
36/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
11.4 交流电气特性  
11.4.1 交流芯片级规范  
下表分别列出了以下电压和温度范围内许可的最大和最小规范:4.75 V 5.25 V –40 °C TA 85 °C,或 3.0 V 3.6 V 和  
–40 °C TA 85 °C。典型参数的测量条件为 25 °C 下且电压为 5 V 3.3 V,这些参数仅供设计指导使用。  
25. 交流芯片级规范  
符号  
说明  
最小值 典型值  
最大值  
24.96[29]  
单位  
注意  
F
F
F
F
23.04  
22.08  
23.94  
23.94  
24  
24  
24  
24  
MHz  
24 MHz 5 V)对应的内部主振荡器  
IMO)频率  
已使用出厂预设值对 5 V 工作电压  
IMO245V  
进行调整。  
25.92[30]  
24.06  
MHz  
24 MHz 3.3 V)对应的内部主振荡器  
IMO)频率  
已使用出厂预设值对 3.3 V 工作电压  
IMO243V  
进行调整。  
MHz –10 °C T 85 °C  
USB 的内部主振荡器频率 (5 V)  
使能频率锁定并存在 USB 通讯  
IMOUSB5V  
IMOUSB3V  
A
4.35 VDD 5.15  
24.06  
MHz –0 °C T 70 °C  
USB 的内部主振荡器频率 (3.3 V)  
使能频率锁定并存在 USB 通讯  
A
3.15 VDD 3.45  
SLIMO 模式 = 0。  
F
F
F
F
F
F
0.093  
24  
12  
48  
24  
32  
24.96[29]  
12.96[30]  
49.92[2931]  
25.92[31]  
64  
MHz  
CPU 频率 (5 V 额定值)  
CPU1  
CPU2  
BLK5  
BLK3  
32K1  
0.086  
MHz  
CPU 频率 (3.3 V 额定值)  
数字 PSoC 模块频率 (5 V 额定值)  
数字 PSoC 模块的频率 (3.3 V 额定值)  
内部低速振荡器频率  
SLIMO 模式 = 0。  
0
0
MHz  
MHz  
kHz  
kHz  
请参考交流数字模块规范。  
15  
5
100  
内部低速振荡器的未调整频率  
复位后和 M8C 开始运行前,未对 ILO  
进行调整。欲了解有关此调整的详细  
信息,请参见 《PSoC 技术参考手  
》的 “ 系统复位 ” 一节。  
32K_U  
t
10  
40  
20  
50  
50  
50  
48.0  
60  
80  
µs  
%
外部复位脉冲宽度  
XRST  
DC24M  
24 MHz 占空比  
DC  
%
内部低速振荡器占空比  
24 MHz 晶振的设置步长大小  
48 MHz 输出频率  
ILO  
Step24M  
Fout48M  
kHz  
MHz  
MHz  
V/ms  
ms  
49.92[2930]  
已经过调整。使用出厂预设值。  
46.08  
F
12.96  
行输入或行输出上信号的最大频率  
电源转换速率  
MAX  
SR  
250  
上电期间 V 的转换速率。  
POWER_UP  
DD  
t
t
16  
100  
从上电复位结束到 CPU 执行代码时的时间  
0 V 开始上电。请参见 《PSoC 技  
术参考手册》的 “ 系统复位 ” 一节。  
POWERUP  
2000  
900  
1200  
6000  
900  
ps  
24 MHz IMO 周期间的抖动 (RMS)  
24 MHz IMO 长期 N 周期间的抖动 (RMS)  
24 MHz IMO 期间抖动 (RMS)  
[32]  
ps N = 32  
ps  
jit_IMO  
2000  
注释:  
29. 4.75 V < VDD < 5.25 V。  
®
30. 3.0 V < V < 3.6 V。有关在工作电压为 3.3 V 时进行调整的信息,请参考应用笔记工作电压为 2.7 V 3.3 V 时调整 PSoC — AN2012。  
DD  
31. 有关用户模块的最大频率的信息,请参见相应的用户模块数据手册。  
32. 更多有关信息,请参考赛普拉斯抖动规范 应用笔记,了解赛普拉斯时序产品数据手册的抖动规范 — AN5054。  
文档编号:001-47288 版本 *E  
37/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
11.4.2 交流 GPIO 规范  
下表分别列出了以下电压和温度范围内许可的最大和最小规范 :4.75 V 5.25 V –40 °C TA 85 °C,或 3.0 V 3.6 V 和  
–40 °C TA 85 °C。典型参数的测量条件为 25 °C 下且电压为 5 V 3.3 V,这些参数仅供设计指导使用。  
26. 交流 GPIO 规范  
符号  
说明  
最小值  
典型值  
最大值  
12  
单位  
MHz  
ns  
注意  
F
t
0
3
GPIO 的工作频率  
常规强驱动模式  
GPIO  
18  
上升时间,常规强驱动模式, Cload = 50 pF  
下降时间,常规强驱动模式, Cload = 50 pF  
上升时间,慢速强驱动模式, Cload = 50 pF  
下降时间,慢速强驱动模式, Cload = 50 pF  
V
= 4.5 5.25 V,  
DD  
10% 90%  
RiseF  
t
t
t
2
18  
ns  
ns  
ns  
V
= 4.5 5.25 V,  
10% 90%  
FallF  
DD  
10  
10  
27  
22  
V
= 3 5.25 V,  
10% 90%  
RiseS  
FallS  
DD  
V
= 3 5.25 V,  
DD  
10% 90%  
12. GPIO 时序图  
90%  
GPIO  
Pin  
Output  
Voltage  
10%  
TRiseF  
TRiseS  
TFallF  
TFallS  
11.4.3 交流全速 USB 规范  
下表分别列出了以下电压和温度范围内许可的最大和最小规范:4.75 V 5.25 V –10 °C TA 85 °C 3.0 V 3.6 V 和  
–10 °C TA 85 °C。典型参数的测量条件为 25 °C 下且电压为 5 V 3.3 V,这些参数仅供设计指导使用。  
27. 交流全速 (12 MbpsUSB 规范  
符号  
说明  
最小值  
典型值  
最大值  
20  
单位  
ns  
注意  
对于 50 pF 负载  
对于 50 pF 负载  
对于 50 pF 负载  
t
t
t
t
4
跃变上升时间  
跃变下降时间  
RFS  
4
90  
20  
ns  
FSS  
111  
%
上升 / 下降时间匹配t t )  
RFMFS  
DRATEFS  
R/ F  
12 – 0.25%  
12  
12 + 0.25% Mbps  
全速数据速率  
文档编号:001-47288 版本 *E  
38/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
11.4.4 交流运算放大器规范  
下表分别列出了以下电压和温度范围内许可的最大和最小规范:4.75 V 5.25 V –40 °C TA 85 °C,或 3.0 V 3.6 V 和  
–40 °C TA 85 °C。典型参数的测量条件为 25 °C 下且电压为 5 V 3.3 V,这些参数仅供设计指导使用。  
建立时间、转换速率和增益带宽依赖于模拟连续时间 PSoC 模块。  
电压为 3.3 V 时不支持下面设置:电源 = 高,运算放大器偏压 =  
28. 5 V 交流运算放大器规范  
符号  
说明  
最小值  
典型值  
最大值  
单位  
t
t
V 80% V 0.1% 的上升建立时间 (10 pF 负载,单位增益)  
功耗 = 低,运算放大器偏压 = 低  
功耗 = 中,运算放大器偏压 = 高  
ROA  
3.9  
0.72  
0.62  
µs  
µs  
µs  
功耗 = 高,运算放大器偏压 = 高  
V 20% V 0.1% 的下降建立时间  
10 pF 负载,单位增益)  
SOA  
5.9  
0.92  
0.72  
µs  
µs  
µs  
功耗 = 低,运算放大器偏压 = 低  
功耗 = 中,运算放大器偏压 = 高  
功耗 = 高,运算放大器偏压 = 高  
SR  
SR  
上升转换速率 (20% - 80%10 pF 负载,单位增益)  
功耗 = 低,运算放大器偏压 = 低  
功耗 = 中,运算放大器偏压 = 高  
ROA  
FOA  
0.15  
1.7  
6.5  
V/µs  
V/µs  
V/µs  
功耗 = 高,运算放大器偏压 = 高  
下降转换速率 (20% - 80%10 pF 负载,单位增益)  
功耗 = 低,运算放大器偏压 = 低  
功耗 = 中,运算放大器偏压 = 高  
0.01  
0.5  
4.0  
V/µs  
V/µs  
V/µs  
功耗 = 高,运算放大器偏压 = 高  
BW  
增益带宽积  
OA  
0.75  
3.1  
5.4  
MHz  
MHz  
MHz  
功耗 = 低,运算放大器偏压 = 低  
功耗 = 中,运算放大器偏压 = 高  
功耗 = 高,运算放大器偏压 = 高  
E
100  
nV/rt-Hz  
在频率为 1 kHz 时的噪声 (功耗 = 中,运算放大器偏压 = 高)  
NOA  
29. 3.3 V 交流运算放大器规范  
符号  
说明  
最小值  
典型值  
最大值  
单位  
t
V 80% V 0.1% 的上升建立时间  
10 pF 负载,单位增益)  
ROA  
3.92  
0.72  
µs  
µs  
功耗 = 低,运算放大器偏压 = 低  
功耗 = 中,运算放大器偏压 = 高  
t
V 20% V 0.1% 的下降建立时间  
10 pF 负载,单位增益)  
SOA  
5.41  
0.72  
µs  
µs  
功耗 = 低,运算放大器偏压 = 低  
功耗 = 中,运算放大器偏压 = 高  
SR  
SR  
上升转换速率 (20% - 80%10 pF 负载,单位增益)  
功耗 = 低,运算放大器偏压 = 低  
功耗 = 中,运算放大器偏压 = 高  
ROA  
FOA  
0.31  
2.7  
V/µs  
V/µs  
下降转换速率 (20% - 80%10 pF 负载,单位增益)  
功耗 = 低,运算放大器偏压 = 低  
功耗 = 中,运算放大器偏压 = 高  
0.24  
1.8  
V/µs  
V/µs  
BW  
增益带宽积  
OA  
0.67  
2.8  
MHz  
MHz  
功耗 = 低,运算放大器偏压 = 低  
功耗 = 中,运算放大器偏压 = 高  
E
100  
nV/rt-Hz  
在频率为 1 kHz 时的噪声 (功耗 = 中,运算放大器偏压 = 高)  
NOA  
文档编号:001-47288 版本 *E  
39/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
P2[4] 上的电容旁路时,分布到每个模块的模拟接地信号的噪声最多可降至原来的 1/5 14 dB这种情况所采用的频率高于通过片  
8.1 K 电阻和外部电容定义的转折频率。  
13. 采用 P2[4] 旁路时的典型 AGND 噪声  
nV/rtHz  
10000  
0
0.01  
0.1  
1.0  
10  
1000  
100  
0.001  
0.01  
0.1 Freq (kHz)  
1
10  
100  
在较低频率下,运算放大器的噪声与 1/f 成正比,与功率无关,并且取决于器件的形状。在较高频率下,功耗水平越高,噪声谱级会  
越低。  
14. 典型的运算放大器噪声  
nV/rtHz  
10000  
PH_BH  
PH_BL  
PM_BL  
PL_BL  
1000  
100  
10  
0.001  
0.01  
0.1  
1
10  
100  
Freq(kHz)  
文档编号:001-47288 版本 *E  
40/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
11.4.5 交流低功耗电压比较器规范  
分别列出了以下电压和温度范围内允许的最大和最小规范4.75 V 5.25 V –40 °C TA 85 °C 3.0 V 3.6 V –40 °C TA  
85 °C。典型参数的测量条件为 25 °C 下且电压为 5 V 3.3 V,这些参数仅供设计指导使用。  
30. 交流低功耗比较器规范  
符号  
说明  
最小值 典型值 最大值  
50  
单位  
注释  
t
µs  
LPC 响应时间  
50 mV 过驱动比较器参考 (比较  
RLPC  
器参考在 V  
中设置。  
REFLPC  
11.4.6 交流数字模块规范  
下表分别列出了以下电压和温度范围内许可的最大和最小规格:4.75 V 5.25 V –40 °C TA 85 °C,或 3.0 V 3.6 V 和  
–40 °C TA 85 °C。典型参数的测量条件为 25 °C 下且电压为 5 V 3.3 V,这些参数仅供设计指导使用。  
31. 交流数字模块规范  
功能  
说明  
最小值  
典型值  
最大值  
单位  
注意  
所有功能  
模块输入时钟频率  
V
V
4.75 V  
49.92  
25.92  
MHz  
MHz  
DD  
DD  
< 4.75 V  
定时器  
计数器  
输入时钟频率  
49.92  
25.92  
25.92  
MHz  
MHz  
MHz  
ns  
无捕获功能, V 4.75 V  
DD  
无捕获功能, V < 4.75 V  
DD  
具有捕获功能  
捕获脉冲宽度  
输入时钟频率  
50[33]  
49.92  
25.92  
25.92  
MHz  
MHz  
MHz  
ns  
无使能输入, V 4.75 V  
DD  
无使能输入, V < 4.75 V  
DD  
有使能输入  
50[33]  
使能输入脉冲宽度  
停止脉冲宽度  
20  
ns  
ns  
ns  
异步重启模式  
同步重启模式  
禁用模式  
50[33]  
50[33]  
输入时钟频率  
V
4.75 V  
49.92  
25.92  
MHz  
MHz  
DD  
V
< 4.75 V  
DD  
CRCPRS  
输入时钟频率  
PRS 模式)  
V
V
4.75 V  
49.92  
25.92  
24.6  
MHz  
MHz  
MHz  
DD  
DD  
< 4.75 V  
CRCPRS  
输入时钟频率  
CRC 模式)  
SPIM  
SPIS  
8.2  
MHz  
输入时钟频率  
SPI 串行时钟 (SCLK)频率等于输入时钟  
被二分频后得到的频率。  
4.1  
MHz  
ns  
输入时钟 (SCLK)频率  
输入时钟在 SPIS 模式下为 SPI SCLK。  
50[33]  
相邻传输之间的 SS_ Negated  
宽度  
发送器  
输入时钟频率  
波特率等于输入时钟 8 分频时的频率。  
49.92  
24.6  
24.6  
MHz  
MHz  
MHz  
V
V
V
4.75 V,两个停止位  
4.75 V,一个停止位  
< 4.75 V  
DD  
DD  
DD  
注释:  
33. 50 ns 的最小输入脉宽基于在 24 MHz 42 ns 额定周期)下运行的输入同步器。  
文档编号:001-47288 版本 *E  
41/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
31. 交流数字模块规范 (续)  
功能 说明  
接收器  
最小值  
典型值  
最大值  
单位  
注意  
输入时钟频率  
波特率等于输入时钟 8 分频时的频率。  
49.92  
24.6  
24.6  
MHz  
MHz  
MHz  
V
V
V
4.75 V,两个停止位  
DD  
4.75 V,一个停止位  
< 4.75 V  
DD  
DD  
11.4.7 交流外部时钟规范  
下表分别列出了以下电压和温度范围内许可的最大和最小规范:4.75 V 5.25 V –40 °C TA 85 °C,或 3.0 V 3.6 V 和  
–40 °C TA 85 °C。典型参数的测量条件为 25 °C 下且电压为 5 V 3.3 V,这些参数仅供设计指导使用。  
32. 交流外部时钟规范  
符号  
说明  
最小值 典型值 最大值  
单位  
MHz  
%
注意  
F
23.94  
47  
24  
50  
24.06  
53  
USB 应用的频率  
占空比  
OSCEXT  
150  
µs  
从上电至 IMO 开关  
11.4.8 交流模拟输出缓冲器规范  
下表分别列出了以下电压和温度范围内许可的最大和最小规范 :4.75 V 5.25 V –40 °C TA 85 °C,或 3.0 V 3.6 V 和  
–40 °C TA 85 °C。典型参数的测量条件为 25 °C 下且电压为 5 V 3.3 V,这些参数仅供设计指导使用。  
33. 5 V 交流模拟输出缓冲器规范  
符号  
说明  
最小值 典型值 最大值  
单位  
注释  
t
t
上升建立时间可达到最终值的 0.1%,步长为 1 V100 pF 负载  
功耗 = 低  
功耗 = 高  
ROB  
2.5  
2.5  
µs  
µs  
下降建立时间可达到最终值的 0.1%,步长为 1 V100 pF 负载  
SOB  
2.2  
2.2  
µs  
µs  
功耗 = 低  
功耗 = 高  
SR  
SR  
上升转换速率 (20% - 80%1 V 步长, 100 pF 负载  
功耗 = 低  
功耗 = 高  
ROB  
FOB  
0.65  
0.65  
V/µs  
V/µs  
下降转换速率 (80% - 20%1 V 步长, 100 pF 负载  
0.65  
0.65  
V/µs  
V/µs  
功耗 = 低  
功耗 = 高  
BW  
BW  
小信号带宽, 20 mV 3dB BW100 pF 负载  
功耗 = 低  
功耗 = 高  
OBSS  
OBLS  
pp  
0.8  
0.8  
MHz  
MHz  
大信号带宽, 1 V 3 dB BW100 pF 负载  
pp  
300  
300  
kHz  
kHz  
功耗 = 低  
功耗 = 高  
34. 3.3 V 交流模拟输出缓冲器规范  
符号 说明  
最小值 典型值 最大值  
单位  
注释  
t
上升建立时间可达到最终值的 0.1%,步长为 1 V,  
ROB  
3.8  
3.8  
µs  
µs  
100 pF 负载  
功耗 = 低  
功耗 = 高  
t
下降建立时间可达到最终值的 0.1%,步长为 1 V,  
SOB  
2.6  
2.6  
µs  
µs  
100 pF 负载  
功耗 = 低  
功耗 = 高  
文档编号:001-47288 版本 *E  
42/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
34. 3.3 V 交流模拟输出缓冲器规范 (续)  
符号  
说明  
最小值 典型值 最大值  
单位  
注释  
SR  
上升转换速率 (20% - 80%1 V 步长, 100 pF 负载  
ROB  
0.5  
0.5  
V/µs  
V/µs  
功耗 = 低  
功耗 = 高  
SR  
下降转换速率 (80% - 20%1 V 步长, 100 pF 负载  
FOB  
0.5  
0.5  
V/µs  
V/µs  
功耗 = 低  
功耗 = 高  
BW  
BW  
小信号带宽, 20 mV 3dB BW100 pF 负载  
功耗 = 低  
功耗 = 高  
OBSS  
OBLS  
pp  
0.7  
0.7  
MHz  
MHz  
大信号带宽, 1 V 3dB BW100 pF 负载  
pp  
200  
200  
kHz  
kHz  
功耗 = 低  
功耗 = 高  
11.4.9 交流编程规范  
下表分别列出了以下电压和温度范围内许可的最大和最小规格:4.75 V 5.25 V –40 °C TA 85 °C,或 3.0 V 3.6 V 和  
–40 °C TA 85 °C。典型参数适用于 25°C 且电压为 5 V 3.3 V 的情况,这些参数仅供设计指导之用。  
35. 交流编程规范  
符号  
说明  
最小值 典型值 最大值  
单位  
ns  
注释  
t
t
t
t
1
1
20  
20  
SCLK 的上升时间  
SCLK 的下降时间  
RSCLK  
ns  
FSCLK  
SSCLK  
HSCLK  
40  
40  
0
ns  
从数据建立时间到 SCLK 下降沿的时间  
SCLK 下降沿后的数据保持时间  
SCLK 的频率  
ns  
F
t
8
MHz  
ms  
ms  
ns  
SCLK  
10  
40  
闪存擦除时间 (模块)  
ERASEB  
WRITE  
t
t
t
t
闪存模块写入时间  
45  
50  
V
3.6  
DD  
SCLK 下降沿开始后的数据输出延迟时间  
SCLK 下降沿开始后的数据输出延迟时间  
闪存擦除时间 (批量)  
DSCLK  
ns  
3.0 V 3.6  
DSCLK3  
ERASEALL  
DD  
40  
ms  
一次性擦除所有模块和保护  
字段的时间  
[34]  
t
t
100  
200  
ms  
ms  
0 °C Tj 100 C  
–40 °C Tj 0 C  
闪存块擦除 + 闪存块写入的时间  
闪存块擦除 + 闪存块写入的时间  
PROGRAM_HOT  
PROGRAM_COLD  
[34]  
注释:  
34. 对于整个工业级范围,用户必须采用温度传感器用户模块 (FlashTemp并在写入闪存前将结果添加到温度参数内。更多有关信息,请参考闪存 API 应用笔记设  
®
计辅助 读取和写入 PSoC 闪存 — AN2015。  
文档编号:001-47288 版本 *E  
43/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
11.4.10 I2C 交流规范  
下表分别列出了以下电压和温度范围内许可的最大和最小规范 :4.75 V 5.25 V –40 °C TA 85 °C,或 3.0 V 3.6 V –40  
°C TA 85 °C。典型参数的测量条件为 25 °C 下且电压为 5 V 3.3 V,这些参数仅供设计指导使用。  
36. VDD I2C SDA SCL 引脚的交流电气特性  
标准模式  
快速模式  
符号  
说明  
单位  
注意  
最小值 最大值 最小值 最大值  
F
t
0
100  
0
400  
kHz  
µs  
SCL 时钟频率  
SCLI2C  
4.0  
0.6  
(重复)启动条件的保持时间。经过该时间段后,  
会生成第一个时钟脉冲  
HDSTAI2C  
t
t
t
t
t
t
t
t
4.7  
4.0  
4.7  
0
1.3  
0.6  
0.6  
0
µs  
µs  
µs  
µs  
ns  
µs  
µs  
ns  
SCL 时钟的低电平周期  
SCL 时钟的高电平周期  
重复 START 条件的建立时间  
数据保持时间  
LOWI2C  
HIGHI2C  
SUSTAI2C  
HDDATI2C  
SUDATI2C  
SUSTOI2C  
BUFI2C  
[35]  
250  
4.0  
4.7  
100  
数据建立时间  
0.6  
1.3  
0
停止条件的建立时间  
停止和启动条件之间的总线空闲时间  
输入滤波器抑制了尖峰脉冲宽度  
50  
SPI2C  
15. I2C 总线在快速 / 标准模式下的时序定义  
I2C_SDA  
I2C_SCL  
TSUDATI2C  
THDSTAI2C  
TSPI2C  
TSUSTAI2C  
THDDATI2C  
TBUFI2C  
THIGHI2C TLOWI2C  
TSUSTOI2C  
P
S
S
Sr  
重复START条件  
STOP条件  
START条件  
注释:  
2
2
35. 快速模式 I C 总线器件可以用于标准模式 I C 总线系统,但必须满足 t  
250 ns 的要求。如果器件不会延长 SCL 信号的低周期,这种情况会自动发生。如果该  
SU;DAT  
器件延长 SCL 信号的低周期,则必须在 SDA 线被释放之前将下一个数据位输出到 SDA 线 t  
+ t  
= 1000 + 250 = 1250 ns (根据标准模式 I2C 总线规范。  
rmax  
SU;DAT  
文档编号:001-47288 版本 *E  
44/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
11.5 热阻  
37. 每种封装的热阻  
[36]  
封装  
56 引脚 QFN[37]  
68 引脚 QFN[37]  
100 球形焊盘 VFBGA  
100 引脚 TQFP  
典型 JA  
12.93 °C/W  
13.05 °C/W  
65 °C/W  
51 °C/W  
11.6 回流焊峰值规范  
38 显示不可超过的回流焊温度限制。  
38. 回流焊规范  
封装  
最大峰值温度 (TC)  
260 °C  
最长时间高于 TC – 5 °C  
56 引脚 QFN  
68 引脚 QFN  
30 秒  
30 秒  
30 秒  
30 秒  
260 °C  
260 °C  
100 球形焊盘 VFBGA  
100 引脚 TQFP  
260 °C  
注释:  
36. T = T + POWER ×   
JA  
J
A
37. 要达到 QFN 封装指定的热阻,请参考 http://www.amkor.com 网站所提供的 Amkor MicroLeadFrame MLF)封装的表面贴装汇编应用笔记。  
文档编号:001-47288 版本 *E  
45/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
12. 开发工具选择  
12.3.2 CY3210-PSoCEval1  
12.1 软件  
CY3210-PSoCEval1套件包含一个评估板和一MiniProg1编程  
单元估板包括 LCD 模块位器LED 和大量实验板空间,  
可满足您所有的评估需要。该套件包括:  
12.1.1 PSoC Designer  
PSoC Designer PSoC 开发软件套装的核心于生成 PSoC  
固件应用程序。 http://www.cypress.com 网站免费提供 PSoC  
Designer,并附带免费的 C 语言编译器。  
LCD 模块的评估板  
MiniProg 编程单元  
12.1.2 PSoC 编程器  
28 引脚 CY8C29466-24PXI PDIP PSoC 器件样品 (2)  
PSoC Designer 软件 CD  
入门指南  
PSoC Programmer 非常灵活,它不仅可用于开发,而且还适用  
于工厂编程,因此可作为独立的编程应用,也可从 PSoC  
Designer 中直接调用。 PSoC Programmer 软件与 PSoC  
ICE-Cube 在线仿真器和 PSoC MiniProg 相兼容。 PSoC  
Programmer http://www.cypress.com 网站上是免费提供的。  
USB 2.0 线缆  
12.2 开发套件  
12.3.3 CY3214-PSoCEvalUSB  
所有开发套件都可从赛普拉斯在线商店购买。  
CY3214-PSoCEvalUSB 评估套件主要用作 CY8C24794-24LFXI  
PSoC 器件的开发电路板电路板支持 USB 和电容式感应开发  
和调试评估板还包括 LCD 模块位器、LED警器和大  
量实验板空间,可满足所需的评估需要。该套件包括:  
12.2.1 CY3215-DK 基本开发套件  
CY3215-DK 适用于通过 PSoC Designer 进行原型设计和开发。  
此套件支持在线仿真功能,其软件界面可让您运行、暂停和单步  
执行处理查看特定存储器位置的内PSoC  
Designer 还支持高级仿真功能。该套件包括:  
PSoCEvalUSB 电路板  
LCD 模块  
MiniProg 编程单元  
Mini USB 缆线  
PSoC Designer 和示例工程 CD  
入门指南  
PSoC Designer 软件 CD  
ICE-Cube 在线仿真器  
用于 CY8C29x66 系列的 ICE Flex-Pod  
Cat-5 适配器  
线缆  
Mini-Eval 编程板  
12.4 器件编程器  
所有器件编程器都可从赛普拉斯在线商店购买。  
110 ~ 240 V 电源, Euro-Plug 适配器  
iMAGEcraft C 编译器 (需要注册)  
ISSP 线缆  
12.4.1 CY3216 模块化编程器  
CY3216 模块编程器 (MP)套件主要用作模块编程器和  
MiniProg1 编程单元。模块化编程器包括三个编程模块卡,并支  
持多个赛普拉斯产品。该套件包括:  
USB 2.0 线缆和蓝色 Cat-5 线缆  
2 CY8C29466-24PXI 28-PDIP 芯片样品  
模块编程器基础  
3 个编程模块卡  
MiniProg 编程单元  
PSoC Designer 软件 CD  
入门指南  
12.3 评估工具  
所有评估工具都可从赛普拉斯在线商店购买。  
12.3.1 CY3210-MiniProg1  
CY3210-MiniProg1套件允许您通MiniProg1编程单元PSoC  
器件进行编程。MiniProg 是一种紧凑的小型原型设计编程器通  
过随附的 USB 2.0 线缆连接到 PC。该套件包括:  
USB 2.0 线缆  
12.4.2 CY3207ISSP 系统内串行编程器 (ISSP)  
MiniProg 编程单元  
CY3207ISSP 是一个生产用的编程器。它包括保护电路和一个  
工业级外壳,该工业外壳在生产编程环境中比 MiniProg 更强  
大。  
MiniEval Socket 编程和评估板  
28 引脚 CY8C29466-24PXI PDIP PSoC 器件样品  
28 引脚 CY8C27443-24PXI PDIP PSoC 器件样品  
PSoC Designer 软件 CD  
注意:CY3207ISSP 需要特殊软件,它与 PSoC 编程器不兼容。  
该套件包括:  
CY3207 编程器单元  
入门指南  
PSoC ISSP 软件 CD  
110 ~ 240V 电源, Euro-Plug 适配器  
USB 2.0 线缆  
USB 2.0 线缆  
文档编号:001-47288 版本 *E  
46/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
12.5 附件 (仿真和编程)  
39. 仿真和编程配件  
器件编号  
引脚封装  
Flex-Pod 套件 [38]  
支脚套件 [39]  
适配器 [40]  
CY8C24794-24LQXI  
CY3250-24X94QFN  
56 引脚 QFN  
有关适配器的信息,请访问:  
http://www.emulation.com。  
注释:  
38. Flex-Pod 套件包含一个练习 flex-pod 和一个练习 PCB,另外附带两个 flex-pod。  
39. 底层套件 (Foot Kit)包括可焊接到目标 PCB 上的表面贴装脚。  
40. 通过编程适配器,可以将非 DIP 封装改成 DIP 封装。有关每种适配器的详细信息和订购信息,请访问 http://www.emulation.com。  
文档编号:001-47288 版本 *E  
47/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
13. 订购信息  
40. CY8C24x94 PSoC 器件系列的重要功能和订购信息  
100 引脚 OCD TQFP[41]  
–40°C +85°C  
–40 °C +85 °C  
51-85048  
CY8C24094-24AXI  
CY8C24794-24LQXI  
16K  
16K  
1K  
1K  
4
4
6
6
56 48  
50 48  
2
2
001-58740  
56 引脚 (7 × 7 mm)  
QFN  
CY8C24794-24LQXIT  
CY8C24794-24LTXI  
CY8C24794-24LTXIT  
16K  
16K  
16K  
1K  
1K  
1K  
4
4
4
6
6
6
50 48  
50 48  
50 48  
2
2
2
56 引脚 (7 × 7 mm)  
QFN (盘带包装)  
–40 °C +85 °C  
–40°C +85°C  
–40°C +85°C  
001-53450  
001-53450  
001-09618  
56 引脚 (8 × 8 mm)  
QFN Sawn)  
56 引脚 (8 × 8 mm)  
QFN Sawn)  
(盘带包装)  
CY8C24894-24LTXI  
CY8C24894-24LTXIT  
16K  
16K  
1K  
1K  
4
4
6
6
49 47  
49 47  
2
2
56 引脚 (8 × 8 mm)  
QFN Sawn)  
–40°C +85°C  
–40°C +85°C  
56 引脚 (8 × 8 mm)  
QFN Sawn)  
(盘带包装)  
CY8C24994-24LTXI  
CY8C24994-24LTXIT  
16K  
16K  
1K  
1K  
4
4
6
6
56 48  
56 48  
2
2
68 引脚 (8 × 8 mm)  
QFN Sawn)  
–40°C +85°C  
–40°C +85°C  
68 引脚 QFN  
8 × 8 mmSawn)  
(盘带包装)  
注意:有关裸片 (Die)的销售信息,请与当地的赛普拉斯销售办事处或现场应用工程师 (FAE)联系。  
13.1 订购代码定义  
CY  
8 C 24 XXX-SP XXT  
封装类型:T = 盘带封装  
耐热等级:  
C = 商业级  
I = 工业级  
E = 扩展型  
PX = PDIP 无铅  
SX = SOIC 无铅  
PVX = SSOP 无铅  
LFX = QFN (打孔、 8 × 8 mm无铅  
LTX = QFN sawn8 × 8 mm无铅  
LQX = QFN sawn7 × 7 mm无铅  
AX = TQFP 无铅  
BVX = VFBGA 无铅  
速度:24 MHz  
器件型号  
系列代码  
技术代码:C = CMOS  
销售代码:8 = PSoC  
公司 IDCY = 赛普拉斯  
注释:  
41. 该器件也可用于进行在线调试。它不能用于生产。  
文档编号:001-47288 版本 *E  
48/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
14. 封装尺寸  
本节介绍的是 CY8C24x94 PSoC 器件的封装规范、每个封装的热阻及回流焊峰值温度。  
重要注意:仿真工具在目标 PCB 上可能需要比芯片空间更大的面积。有关仿真工具尺寸的详细说明,请参见  
http://www.cypress.com/design/MR10161 网站上的仿真器转接板尺寸图。  
16. 56 引脚 QFN 7 × 7 × 0.6 mmLR56A/LQ56A 5.6 × 5.6 E-Pad Sawn 型)封装外形, 001-58740  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
NOTES:  
1. HATCH AREA IS SOLDERABLE EXPOSED PAD  
2. BASED ON REF JEDEC # MO-248  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
001-58740 *C  
文档编号:001-47288 版本 *E  
49/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
17. 56 引脚 QFN 8 × 8 × 1.0 mmLF56A/LY56A 4.5 × 5.21 E-Pad Subcon Punch 型封装)封装外形, 001-12921  
001-12921 *C  
18. 56 引脚 QFN 8 × 8 × 1.0 mmLT56B 4.5 × 5.2 E-Pad Sawn 型)封装外形, 001-53450  
001-53450 *D  
文档编号:001-47288 版本 *E  
50/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
19. 68 引脚 QFN 8 × 8 × 1.0 mmLT68 5.7 × 5.7 E-Pad Sawn 型)封装外形, 001-09618  
001-09618 *E  
文档编号:001-47288 版本 *E  
51/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
20. 100 球形焊盘 VFBGA 6 × 6 × 1.0 mmBZ100 封装外形, 51-85209  
51-85209 *E  
文档编号:001-47288 版本 *E  
52/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
21. 100 引脚 TQFP 14 × 14 × 1.4 mmA100SA 封装外形, 51-85048  
51-85048 *I  
重要说明  
有关安装 QFN 封装尺寸信息参考 http://www.amkor.com 网站上提供的应用笔记Amkor MicroLeadFrameMLF装的表面  
贴装应用笔记。  
低功耗 PSoC 器件不要求热导引脚的过孔。  
文档编号:001-47288 版本 *E  
53/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
15. 缩略语  
15.1 使用的缩略语  
下表列出了本文档中使用的缩略语。  
缩略语  
说明  
缩略语  
MIPS  
说明  
AC  
交流  
每秒百万条指令  
ADC  
API  
OCD  
PCB  
模数转换器  
应用编程接口  
互补金属氧化物半导体  
中央处理器  
循环冗余校验  
连续时间  
片上调试  
印刷电路板  
CMOS  
CPU  
CRC  
CT  
PDIP  
PGA  
塑料双列直插式封装  
可编程增益放大器  
上电复位  
POR  
PPOR  
PRS  
精确上电复位  
伪随机序列  
DAC  
DC  
数模转换器  
直流电  
PSoC®  
可编程片上系统 (Programmable  
System-on-Chip™)  
DTMF  
EEPROM  
GPIO  
ICE  
PWM  
QFN  
双音多频  
脉冲宽度调制器  
四方扁平无引脚器件  
逐次逼近寄存器  
开关电容  
电可擦除可编程只读存储器  
通用 I/O  
SAR  
SC  
在线仿真器  
IDE  
SLIMO  
SOIC  
SPI™  
SRAM  
SROM  
TQFP  
UART  
USB  
集成开发环境  
内部低速振荡器  
内部主振荡器  
输入 / 输出  
慢速 IMO  
ILO  
小外形集成电路  
串行外设接口  
IMO  
I/O  
静态随机存取存储器  
监控只读存储器  
薄型四方扁平封装  
通用异步接收器 / 发送器  
通用串行总线  
IrDA  
ISSP  
LCD  
LED  
红外数据关联性  
系统内串行编程  
液晶显示器  
发光二极管  
LPC  
VFBGA  
WDT  
低功耗电压比较器  
欠压检测  
细间距球栅阵列  
看门狗定时器  
LVD  
MAC  
MCU  
XRES  
乘法累加器  
外部复位  
微控制器单元  
文档编号:001-47288 版本 *E  
54/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
16. 文档规范  
16.1 测量单位  
符号  
测量单位  
符号  
mV  
nA  
ns  
测量单位  
°C  
dB  
摄氏度  
分贝  
毫伏  
纳安  
纳秒  
纳伏  
欧姆  
皮安  
皮法  
皮秒  
百分比  
根赫兹  
伏特  
瓦特  
fF  
飞法  
kHz  
k  
MHz  
A  
s  
V  
mA  
mm  
ms  
nV  
pA  
pF  
ps  
千赫兹  
千欧  
兆赫兹  
微安  
微秒  
%
微伏  
rt-Hz  
V
毫安  
毫米  
W
毫秒  
16.2 数字规范  
十六进制数字中的所有字母均为大写,结尾带小写的 ‘h’ (例如,‘14h’ 或 ‘3Ah十六进制数字还可以通过前缀 ‘0x’  
来表示 (C 编码规范二进制数字在结尾带小写的 ‘b’ (例如,‘01010100b’ 或 ‘01000011b不带 ‘h’ 或 ‘b’ 的  
数字是十进制数字。  
17. 术语表  
高电平有效  
1. 一种逻辑信号,它的激活状态为逻辑 1 状态。  
2. 一种逻辑信号,它的逻辑 1 状态作为两个状态中较高电压的状态。  
模拟模块  
基本的可编程运算放大器电路。它们是 SC (开关电容)和 CT (连续时间)模块。这些模块内部互联时能够提  
ADCDAC、多极滤波器、增益级等功能。  
模数转换器  
ADC)  
是将模拟信号转换为相应量级的数字信号的器件。通常, ADC 可以将电压转换为数字量。数模转换器 (DAC)  
可用于执行逆向操作。  
API  
一系列软件程序,包括计算机应用与低层服务和函数 (例如,用户模块和库)之间的接口。应用编程接口  
(应用编程接口) (API)用作程序员在创建软件应用时使用的基本模块。  
异步  
该信号的数据被立即确认或作出响应,与任何时钟信号无关。  
带隙参考  
指的是一种稳定的电压参考设计,它将 VT 温度正系数与 VBE 温度负系数相互匹配,从而生成零温度系数 (理  
想的)参考。  
带宽  
偏置  
1. 指的是消息或信息处理系统的频率范围 (单位为赫兹。  
2. 放大器 (或吸收器)在其频谱区会有大量增益 (或损益);有时,它表示更为具体,例如,半峰全宽。  
1. 数值与参考值之间的系统偏差。  
2. 一组值的平均值偏离参考值的幅度。  
3. 针对器件建立运行该器件所需的参考电平所适用的电力、机械力、磁场或其他力 (场。  
模块  
1. 用于执行单项功能的功能单元,例如振荡器。  
2. 用于执行某个功能而配置的功能单元,例如,数字 PSoC 模块或模拟 PSoC 模块。  
文档编号:001-47288 版本 *E  
55/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
17. 术语表 (续)  
缓冲区  
1. 数据存储区,当将数据从一个器件传输至另一个器件时,用于补偿速度之差。通常是指针对 IO 操作保留的区  
域,可以对该区进行读写操作。  
2. 一部分专门用于存储数据的储存器空间,通常在数据发送到外部器件之前或从外部器件接受到数据时使 用。  
3. 是用于降低系统的输出阻抗的放大器。  
总线  
1. 网络的命名连接。将网络捆绑到总线中,便于使用类似的布线模式来对网络进行布线。  
2. 执行通用功能并携带类似数据的一组信号。通常使用矢量符号来表示;例如,地址 [7:0]。  
3. 作为一组相关器件上通用连接的一个或多个导体。  
时钟  
是指生成具有固定频率和占空比的周期信号的器件。有时,时钟可以用来同步化各个不同的逻辑模块。  
两个输入电平同时满足预定幅度要求时,产生输出电压或电流的电气电路。  
比较器  
编译器  
是一种将高级语言 (例如 C 语言)转换成机器语言的程序。  
配置空间  
晶体振荡器  
PSoC 器件中,当 CPU_F 寄存器中的 XIO 位被设置为 ‘1’ 时,可以访问的寄存器空间。  
由压电晶体控制频率的振荡器。通常情况下,压电晶体对环境温度的敏感度低于其他电路组件。  
循环冗余校验  
CRC)  
检测数据通迅中的错误时使用的计算方法,通常采用线性反馈移位寄存器来执行。相似计算法可用于其他多种用  
途,例如:数据压缩。  
数据总线  
调试器  
计算机使用以将信息从存储器位置传输到中央处理单元 (CPU)或反向传输信息的双向信号组。更为普遍的  
是,用来传送数字功能之间数据的信号组。  
允许用户用进行分析正在开发系统操作的软件和硬件系统。调试器通常允许开发人员逐步执行固件操作,设置断  
点及分析存储器。  
死区  
两个或多个信号都没有处于活跃状态或切换状态的一段时间。  
数字模块  
可用作计数器、定时器、串行接收器、串行发送器、 CRC 发生器、伪随机数发生器或 SPI 8 位逻辑模块。  
可将数字信号转换为相应量级的模拟信号的器件。模数转换器 (ADC)可用于执行逆向操作。  
数模转换器  
DAC)  
占空比  
仿真器  
时钟周期的高电平时间与其低电平时间的关系,表示为一个百分比。  
将某个系统的功能复制 (仿真)到另一个系统,从而使第二个系统的操作类似于第一个系统的操作。  
传入 PSoC 器件的高电平有效信号。这会停止 CPU 的所有操作和模块,并返回到预定义的状态。  
外部复位  
XRES)  
闪存  
可电编程和电擦除、非易失性得技术,可为用户提供可编程功能和数据存储以及系统内可擦除功能的 EPROM。  
非易失性意味着断电时,数据仍被保留。  
闪存模块  
频率  
可一次性程序化的闪存 ROM 最小空间及受保护的闪存最小空间。闪存模块的大小为 64 字节。  
是指一个周期功能中每个时间单位内的周期数或事件数。  
增益  
输出电流、电压或功率与相应的输入电流、电压或功率之间的比率。增益的单位通常为分贝 (dB。  
文档编号:001-47288 版本 *E  
56/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
17. 术语表 (续)  
I2C  
由飞利浦半导体 (现更名为 NXP 半导体)生产的两线串行计算机总线。 I2C 是内部集成电路。它用于连接嵌入  
式系统中的低速外设。原始系统创建于 20 世纪 80 年代初期,当时只作为电池控制接口,但后来被用作为构建  
控制电子器件的简单的内部总线系统。 I2C 仅使用两个双向引脚,即时钟和数据,二者均以 +5 V 的电压运行,  
并采用电阻上拉。在标准模式下,总线每秒运行 100 Kb,而在快速模式下,总线每秒运行 400 Kb。  
ICE  
在线仿真系统允许您使用硬件测试项目,并且使用软件 (PSoC Designer)来查看调试器件活动。  
输入 / 输 (I/O) 将数据引入系统或从系统中提取数据的器件。  
中断  
流程暂停 (例如,执行计算机程序由流程外事件导致的,且在暂停后可以恢复该流程。  
中断服务子程序 M8C 收到硬件中断时常规代码执行转入的代码模块。许多中断源均有各自的优先级和单个 ISR 代码模块。各个  
ISR)  
ISR 代码模块均以 RETI 指令结束,并将器件返回到退出常规程序执行的程序点。  
抖动  
1. 从其理想位置转换的时序错位。在串行数据流中发生的典型损坏。  
2. 一个或多个信号特性的突发和无必要变化,例如连续脉冲之间的间隔、连续周期的振幅或连续周期的频率或  
相位。  
低压检测 (LVD) 是指在 VDD 降低到选定阈值以下时,可检测 VDD 并实现系统中断的电路。  
M8C  
8 位哈佛 (Harvard)架构微处理器。微处理器通过连接至闪存、 SRAM 和寄存器空间来协调 PSoC 内部的所有  
活动。  
主设备  
微控制器  
用于控制两个器件间数据交换时序的器件。或者,以脉冲宽度级联器件时,主设备是用来控制级联器件与外部接  
口之间数据交换时序的器件。受控制的器件被称为从设备。  
主要用于控制系统和产品的集成电路芯片。除 CPU 外,微控制器通常还包含存储器、定时电路和 I/O 电路。这  
样做的原因是允许实现包含最小芯片数量的控制器,从而达到最大程度的微型化。相反,这会降低控制器的体积  
和成本。微控制器通常不能用作微处理器执行通用计算功能。  
混合信号  
调制器  
噪声  
是指包含模拟和数字技术及组件的电路参考。  
指的是在载波上附加信号的器件。  
1. 影响信号,且使信号携带的信息失真的干扰。  
2. 电压、电流或数据等任何实体的一种或多种特性的随机变化。  
振荡器  
可受晶控,并用于生成时钟频率的电路。  
奇偶校验  
用于测试传输数据的技术。通常,将一个二进制数字添加到数据中,以便使所有二进制数据之和始终为奇数  
(奇校验)或偶数 (偶校验。  
锁相环 (PLL) 用来控制振荡器以便维持参考信息相关的常相角的电气电路。  
引脚分布  
端口  
引脚号分配:印刷电路板 (PCB)封装中 PSoC 器件及其物理对立方的逻辑输入与输出之间的关系。引脚分布  
涉及引脚号 (如原理图与 PCB 设计 (两者均为计算机生成的文件)之间的链接也涉及引脚名称。  
一组引脚,通常有八个。  
上电复位  
POR)  
当电压低于预设电平时,用于强制 PSoC 器件复位的电路。这是一种硬件复位的类型。  
PSoC®  
PSoC® 是赛普拉斯半导体公司的注册商标, PSoC™ 是赛普拉斯公司的商标。  
文档编号:001-47288 版本 *E  
57/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
17. 术语表 (续)  
PSoC Designer™  
赛普拉斯的可编程片上系统技术的软件。  
脉宽调制器  
PWM)  
以占空比形式表示的输出,随着应用测量对象的不同而变化  
RAM  
随机存取存储器的缩略语。数据存储器件,可以对该器件进行读写操作。  
具有特定容量 (例如一位或字节)的存储器件。  
寄存器  
复位  
它是一种使系统返回已知状态的方法。请参见硬件复位和软件复位部分的内容。  
只读存储器的缩略语。数据存储器件,可以读取该器件,但无法对它进行写操作。  
ROM  
串行  
1. 是指所有事件在其中连续发生的流程。  
2. 表示在单个器件或通道中两个或多个相关活动连续发生。  
建立时间  
移位寄存器  
从设备  
输入从一个值改为另一个值后,输出信号或值进入稳定状态需要的时长。  
按顺序向左或向右转移一个文字以便输出串行数据流的存储器存储器件  
允许另一个器件控制两个器件之间数据交换的时序的器件。或者,以脉冲宽度级联器件时,从设备是允许另一个  
器件控制级联器件与外部接口之间数据交换的时序的器件。控制器件被称为主设备。  
SRAM  
SROM  
静态随机存取存储器的缩略语。允许用户能高速存储和检索数据的存储器件。之所以使用术语 “ 静态 ”,是因  
为在将某一值加载到 SRAM 单元时,该值会保持不变,直至它被明确更改,或直至器件断电为止。  
只读管理存储器的缩略语。 SROM 保留代码,用于引导器件、校准电路和执行闪存操作。使用普通用户代码访  
SROM 功能,并从闪存中运行。  
停止位  
同步  
是字符或模块带有的信号,用于准备接收器来接收下一个字符或模块。  
1. 指的是一个信号,其数据未被确认或做出响应,直到时钟信号的下一个边沿有效为止。  
2. 指的是一个系统,其操作根据时钟信号进行同步。  
三态  
该功能的输出可采用三种状态:01 Z (高阻抗该功能不在 Z 状态下驱动任何值,在许多方面,它可以  
被视为从其余电路断开,允许另一次输出以驱动相同网络。  
UART  
UART 或通用异步接收器 - 发送器在数据并行位和串行位之间转换。  
用户模块  
负责全面管理和配置低级模拟和数字 PSoC 模块的预构建、预测试硬件 / 固件外设功能。此外,用户模块还针对  
外设功能提供高级 API (应用编程接口。  
用户空间  
寄存器映射的组 0 的空间。在执行常规程序和初始化期间,很可能会对该组中的寄存器进行修改。在程序初始  
化阶段,很可能对组 1 中的寄存器进行了修改。  
V
电源网络名称,意为 “ 电压漏极 ”。最正极的电源信号。电压通常为 5 V 3.3 V。  
电源网络名称,意为 “ 电压源 ”。最负极的电源信号。  
DD  
VSS  
看门狗定时器  
它是一个必须定期处理的定时器。如果未定期处理,则 CPU 会在指定时间期间后复位。  
文档编号:001-47288 版本 *E  
58/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
18. 勘误表  
本节介绍了 CY8C24x94 器件的勘误表。勘误表中包括勘误触发条件、影响范围、可用解决方案和芯片修订适用性。若有任何问题,  
请联系本地赛普拉斯销售代表。  
受影响的器件型号  
器件型号  
CY8C24x94  
CY8C24x94 勘误表摘要  
下表定义了可用器件系列的勘误表适用性。  
条目  
器件型号  
CY8C24x94  
CY8C24x94  
CY8C24x94  
CY8C24x94  
1. PSoC 器件因从睡眠模式唤醒而导致主机计算机的意外唤醒时, USB 接口的 DP 线将为脉冲低电平。  
2. 如果就在上电之前 Vdd 被下拉到 –0.5 V,可能发生无效闪存读取。  
3. 如果将 CPU_Clock 设置为 SysClk/1 24 MHzPMA 索引寄存器将无法进行自动递增。  
4. 现场使用期间,内部主振荡器 (IMO)频率参数 (FIMO245V)可能会递增,并且超过规范的最大限制值  
24.96 MHz)  
1. PSoC 器件因从睡眠模式唤醒而导致主机计算机的意外唤醒时, USB 接口的 DP 线将为脉冲低电平。  
问题定义  
当器件的工作电压位于 4.75 V 5.25 V 的范围内,且使能了 3.3 V 电压调节器时,在器件被唤醒期间, DP 信号线上将出现短路  
低脉冲信号。主机计算机会将 DP 线的 15-20 µs 低脉冲翻译为分离或唤醒过程的开始。  
触发条件 (S)  
在睡眠模式下,由于存在漏电流,因此 3.3 V 电压调节器所使用的带隙参考电压会降低。当器件被唤醒时,带隙被重新使能;建立  
延迟后, 3.3 V 的电压调节器将被使能。在某些器件上,用于生成 USB DP 信号的 3.3 V 电压调节器会在完全稳定前被使能。这样  
会在该带隙稳定前的这段时间内,使电压调节器输出和 DP 信号线保持为低电平脉冲。在某些应用中, Vdd 3.3 V,并且不适用  
电压调节器,因此不会生成 DP 低电平脉冲。  
解决方案  
为防止 DP 信号进入低电平脉冲状态睡眠期间必须使能带隙有效的方法是设置 OSC_CR0 寄存器中的 No Buzz(不繁忙)  
位。在睡眠期间No Buzz 位保持带隙的供电状态并保持输出状态。设置 No Buzz 位后,睡眠电流的额定值将增加到 100 µA。在  
睡眠期间使能模拟参考模块也可以解决该问题,因为该操作会强制带隙保持使能状态。禁用 No Buzz 位的示例如下所示。  
汇编语言  
M8C_SetBank1  
or  
reg[OSC_CR0], 0x20  
M8C_SetBank0  
C
OSC_CR0 |= 0x20;  
文档编号:001-47288 版本 *E  
59/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
2. 如果就在上电之前 Vdd 被下拉到 –0.5 V,可能发生无效闪存读取。  
问题定义  
就在上电前果将器件的 Vdd 下拉到低于接地电压么每个 8K 闪存页面的最早读取都有可能受损害个问题不会影响到闪  
存页面 0,因为它是复位时选定的页面。  
触发条件 (S)  
如果在上电前下拉 Vdd 到低于接地电压,则内部闪存参考电压可能会偏离其额定电压。参考偏差往往会导致第一个闪存读取该页  
面返回 0xFF。当第一次读取每个页面时,复位参考电压将导致所有将来读取都返回正确值。在第一次真正读取之前,需要 5 µs 的  
短暂延迟使参考电压变为稳定状态。  
解决方案  
为了防止无效的闪存读取,在使用这些闪存页面前必须进行模拟读取。在模拟读取之后和真正读取之前,必须发生 5 µs 的延迟。  
应尽早进行模拟读取在读取其他闪存页面之前其放置在闪存页面 0 述实例显示的是从每个闪存页面中读取一个存储  
器字节。应将该示例放在 boot.tpl boot.asm 文件中的 ‘start:’ 标签后面。  
// dummy read from each 8K Flash page  
// page 1  
mov A, 0x20  
mov X, 0x00  
romx  
// MSB  
// LSB  
// wait at least 5 µs  
mov X, 14  
loop1:  
dec  
X
jnz loop1  
文档编号:001-47288 版本 *E  
60/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
3. 如果将 CPU_Clock 设置为 SysClk/1 24 MHzPMA 索引寄存器将无法进行自动递增。  
问题定义  
当器件的工作电压位于 4.75 5.25 V 的范围内,并且将 CPU_Clock 设置为 SysClk/1 24 MHz)时,在全速模式下的 OUT 端  
点配置中, USB PMA 索引寄存器将无法自动递增。当应用程序尝试使用 bReadOutEP() 函数时,将始终返回 PMA 缓冲器中的第  
一个字节。  
触发条件 (S)  
内部触发器存在与索引寄存器递增函数相关的问题。所有与 RAM 相关的读取操作都是从第一个字节开始读取的。该问题不会对器  
件中的其他电路或函数产生影响。  
解决方案  
为了确保索引寄存器正确递增,在读取 PMA 缓冲器期间,需要将 CPU_Clock 设置为 SysClk/2 12 MHz时钟调整方法示例  
如下所示。  
PSoC Designer™ 4.3 用户模块解决方案 :PSoC Designer 版本 4.3 和后续版本包含全速 USB 用户模块和修订固件的解决方案  
(请参考以下示例。  
;;  
;; 24 MHz read PMA workaround  
;;  
M8C_SetBank1  
mov A, reg[OSC_CR0]  
push A  
and A, 0xf8 ;clear the clock bits (briefly chg the cpu_clk to 3 MHz)  
or A, 0x02 ;will set clk to 12Mhz  
mov reg[OSC_CR0],A ;clk is now set at 12 MHz  
M8C_SetBank0  
.loop:  
mov A, reg[PMA0_DR] ; Get the data from the PMA space  
mov [X], A ; save it in data array  
inc X ; increment the pointer  
dec [USB_APITemp+1] ; decrement the counter  
jnz .loop ; wait for count to zero out  
;;  
;; 24MHz read PMA workaround (back to previous clock speed)  
;;  
pop A ;recover previous reg[OSC_CR0] value  
M8C_SetBank1  
mov reg[OSC_CR0],A ;clk is now set at previous value  
M8C_SetBank0  
;;  
;;  
end 24Mhz read PMA workaround  
文档编号:001-47288 版本 *E  
61/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
4. 现场使用期间,内部主振荡器 (IMO)频率参数 (FIMO245V)可能会递增,并且超过规范的最大限制值 (24.96 MHz)  
问题定义  
如果器件长时间运行于 4.75 V ~ 5.25 V 的工作电压,现场使用期间,它的 IMO 频率会慢慢递增,甚至超过规范的最大限制值  
24.96 MHz这样会使对最大 IMO 频率灵敏的各种应用 (如:使用 UART 通信的应用)产生不利影响,并会使其性能失效。  
触发条件 (S)  
器件长时累加的使用量)运行于 4.75 V ~ 5.25 V 的工作电压,并且 IMO 时钟保持连续运行时,可能引起器件退化。供电电压  
越高、工作环境温度越低,器件退化就越快。  
解决方案  
保持器件运行于 3.0 V ~ 3.6 V 的工作电压范围内,可以避免 IMO 频率超过规范限制的最大值 (24.96 MHz。  
修复状态  
可解决这种问题的新型芯片版本,期待将在 2015 8 1 日发布。  
文档编号:001-47288 版本 *E  
62/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
19. 文档修订记录  
文档标题:CY8C24094/CY8C24794/CY8C24894/CY8C24994PSoC® Programmable System-on-Chip™ (可编程片上系统)  
文档编号:001-47288  
ECN  
版本  
**  
变更者  
VLX  
提交日期  
07/03/2008  
03/26/2010  
变更说明  
2526064  
2899723  
新数据手册。  
*A  
VLX  
删除了订购信息中的无效器件。  
更新了封装图。  
*B  
*C  
*D  
*E  
3566849  
3783262  
4564283  
4966547  
VLX  
ANBA  
YLIU  
03/30/2012  
10/17/2012  
11/19/2014  
10/21/2015  
译自英文版 38-12018 Rev AD。  
更新了技术参考手册的链接。  
本文档版本号为 Rev*D,译自英文版 38-12018 Rev AH。  
本文档版本号为 Rev*E,译自英文版 38-12018 Rev AK。  
YANS  
文档编号:001-47288 版本 *E  
63/64  
CY8C24094/CY8C24794  
CY8C24894/CY8C24994  
20. 销售、解决方案和法律信息  
全球销售和设计支持  
赛普拉斯公司具有一个由办事处、解决方案中心、厂商代表和经销商组成的全球性网络。要想找到离您最近的办事处,请访问赛普拉  
斯所在地。  
®
产品  
PSoC 解决方案  
psoc.cypress.com/solutions  
汽车级产品  
时钟与缓冲器  
接口  
cypress.com/go/automotive  
cypress.com/go/clocks  
cypress.com/go/interface  
cypress.com/go/powerpsoc  
cypress.com/go/memory  
cypress.com/go/psoc  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP  
赛普拉斯开发者社区  
照明与电源控制  
存储器  
社区 | 论坛 | 博客 | 视频 | 培训  
技术支持  
PSoC  
cypress.com/go/support  
触摸感应产品  
USB 控制器  
无线 / 射频  
cypress.com/go/touch  
cypress.com/go/USB  
cypress.com/go/wireless  
© 赛普拉斯半导体公司, 2004-2015。此处所包含的信息可能会随时更改,恕不另行通知。除赛普拉斯产品内嵌的电路外,赛普拉斯半导体公司不对任何其他电路的使用承担任何责任。也不根据专利  
或其他权利以明示或暗示的方式授予任何许可。除非与赛普拉斯签订明确的书面协议,否则赛普拉斯不保证产品能够用于或适用于医疗、生命支持、救 生、关键控制或安全应用领域。此外,对于可能  
发生运转异常和故障并对用户造成严重伤害的生命支持系统,赛普拉斯不授权将其产品用作此类系统的关键组件。若将赛普拉斯产品用于生命支持系统,则表示制造商将承担因此类使用而招致的所有  
风险,并确保赛普拉斯免于因此而受到任何指控。  
所有源代码 (软件和 / 或固件)均归赛普拉斯半导体公司 (赛普拉斯)所有,并受全球专利法规 (美国和美国以外的专利法规美国版权法以及国际条约规定的保护和约束。赛普拉斯据此向获许可  
者授予适用于个人的、非独占性、不可转让的许可,用以复制、使用、修改、创建赛普拉斯源代码的派生作品、编译赛普拉斯源代码和派生作品,并且其目的只能是创建自定义软件和 / 或固件,以支  
持获许可者仅将其获得的产品依照适用协议规定的方式与赛普拉斯集成电路配合使用。除上述指定的用途外,未经赛普拉斯明确的书面许可,不得对此类源代码进行任何复制、修改、转换、编译或演  
示。  
免责声明:赛普拉斯不针对此材料提供任何类型的明示或暗示保证,包括 (但不限于)针对特定用途的 适销性和适用性的暗示保证。赛普拉斯保留在不做出通知的情况下对此处所述材料进行更改的  
权利。赛普拉斯不对此处所述之任何产品或电路的应用或使用承担任何责任。对于可能发生运转异常和故障并对用户造成严重伤害的生命支持系统,赛普拉斯不授权将其产品用作 此类系统的关键组  
件。若将赛普拉斯产品使用于生命支持系统中,则表示制造商将承担因此类使用而招致的所有风险,并确保 赛普 拉斯免于因此而受到任何指控。  
产品使用可能受适用于赛普拉斯软件许可协议的限制。  
文档编号:001-47288 版本 *E  
修订日期 October 21, 2015  
64/64  
®
PSoC Designer™ 是赛普拉斯半导体公司的商标且 PSoC 是赛普拉斯半导体公司的注册商标。此处引用的所有其他商标或注册商标均归其各自所有者所有。  

相关型号:

CY8C25122

8-Bit Programmable System-on-Chip (PSoC⑩) Microcontrollers
CYPRESS

CY8C25122-24PI

8-Bit Programmable System-on-Chip (PSoC⑩) Microcontrollers
CYPRESS

CY8C25122-24PXI

Mixed-Signal Array with On-board Controller
CYPRESS

CY8C25122_05

Mixed-Signal Array with On-board Controller
CYPRESS

CY8C26233

8-Bit Programmable System-on-Chip (PSoC⑩) Microcontrollers
CYPRESS

CY8C26233-24PI

8-Bit Programmable System-on-Chip (PSoC⑩) Microcontrollers
CYPRESS

CY8C26233-24PVI

8-Bit Programmable System-on-Chip (PSoC⑩) Microcontrollers
CYPRESS

CY8C26233-24PVXI

Mixed-Signal Array with On-board Controller
CYPRESS

CY8C26233-24PVXIT

Mixed-Signal Array with On-board Controller
CYPRESS

CY8C26233-24PXI

Mixed-Signal Array with On-board Controller
CYPRESS

CY8C26233-24SI

8-Bit Programmable System-on-Chip (PSoC⑩) Microcontrollers
CYPRESS

CY8C26233-24SXI

Mixed-Signal Array with On-board Controller
CYPRESS