C167SR [INFINEON]

16-Bit CMOS Single-Chip Microcontroller; 16位CMOS单芯片微控制器
C167SR
型号: C167SR
厂家: Infineon    Infineon
描述:

16-Bit CMOS Single-Chip Microcontroller
16位CMOS单芯片微控制器

微控制器
文件: 总66页 (文件大小:677K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Microcomputer Components  
16-Bit CMOS Single-Chip Microcontroller  
C167SR  
Data Sheet 06.95 Advance Information  
Edition 06.95  
Ausgabe 06.95  
Published by Siemens AG,  
Bereich Halbleiter, Marketing-  
Kommunikation, Balanstraße 73,  
81541 München  
Herausgegeben von Siemens AG,  
Bereich Halbleiter, Marketing-  
Kommunikation, Balanstraße 73,  
81541 München  
© Siemens AG 1995.  
All Rights Reserved.  
© Siemens AG 1995.  
Alle Rechte vorbehalten.  
Attention please!  
Wichtige Hinweise!  
As far as patents or other rights of third par-  
ties are concerned, liability is only assumed  
for components, not for applications, pro-  
cesses and circuits implemented within com-  
ponents or assemblies.  
Gewähr für die Freiheit von Rechten Dritter  
leisten wir nur für Bauelemente selbst, nicht  
für Anwendungen, Verfahren und für die in  
Bauelementen oder Baugruppen realisierten  
Schaltungen.  
The information describes the type of compo-  
nent and shall not be considered as assured  
characteristics.  
Mit den Angaben werden die Bauelemente  
spezifiziert, nicht Eigenschaften zugesichert.  
Terms of delivery and rights to change design  
reserved.  
Liefermöglichkeiten und technische Änderun-  
gen vorbehalten.  
For questions on technology, delivery and  
prices please contact the Semiconductor  
Group Offices in Germany or the Siemens  
Companies and Representatives worldwide  
(see address list).  
Fragen über Technik, Preise und Liefermög-  
lichkeiten richten Sie bitte an den Ihnen  
nächstgelegenen Vertrieb Halbleiter in  
Deutschland oder an unsere Landesgesell-  
schaften im Ausland.  
Due to technical requirements components  
may contain dangerous substances. For in-  
formation on the types in question please  
contact your nearest Siemens Office, Semi-  
conductor Group.  
Bauelemente können aufgrund technischer  
Erfordernisse Gefahrstoffe enthalten. Aus-  
künfte darüber bitten wir unter Angabe des  
betreffenden Typs ebenfalls über den Vertrieb  
Halbleiter einzuholen.  
Siemens AG is an approved CECC manufac-  
turer.  
Die Siemens AG ist ein Hersteller von CECC-  
qualifizierten Produkten.  
Packing  
Verpackung  
Please use the recycling operators known to  
you. We can also help you – get in touch with  
your nearest sales office. By agreement we  
will take packing material back, if it is sorted.  
You must bear the costs of transport.  
Bitte benutzen Sie die Ihnen bekannten Ver-  
werter. Wir helfen Ihnen auch weiter – wen-  
den Sie sich an Ihren für Sie zuständigen Ver-  
trieb Halbleiter. Nach Rücksprache nehmen  
wir Verpackungsmaterial sortiert zurück. Die  
Transportkosten müssen Sie tragen.  
For packing material that is returned to us un-  
sorted or which we are not obliged to accept,  
we shall have to invoice you for any costs in-  
curred.  
Für Verpackungsmaterial, das unsortiert an  
uns zurückgeliefert wird oder für das wir keine  
Rücknahmepflicht haben, müssen wir Ihnen  
die anfallenden Kosten in Rechnung stellen.  
Components used in life-support devices  
or systems must be expressly authorized  
for such purpose!  
Bausteine in lebenserhaltenden Geräten  
oder Systemen müssen ausdrücklich da-  
für zugelassen sein!  
1
1
Critical components of the Semiconductor  
Kritische Bauelemente des Bereichs Halblei-  
Group of Siemens AG, may only be used in  
life-support devices or systems with the ex-  
press written approval of the Semiconductor  
Group of Siemens AG.  
ter der Siemens AG dürfen nur mit ausdrückli-  
cher schriftlicher Genehmigung des Bereichs  
Halbleiter der Siemens AG in lebenserhalten-  
2
2
den Geräten oder Systemen eingesetzt wer-  
den.  
1 A critical component is a component used  
in a life-support device or system whose  
failure can reasonably be expected to  
cause the failure of that life-support de-  
vice or system, or to affect its safety or ef-  
fectiveness of that device or system.  
1 Ein kritisches Bauelement ist ein in einem  
lebenserhaltenden Gerät oder System ein-  
gesetztes Bauelement, bei dessen Ausfall  
berechtigter Grund zur Annahme besteht,  
daß das lebenserhaltende Gerät oder Sy-  
stem ausfällt bzw. dessen Sicherheit oder  
Wirksamkeit beeinträchtigt wird.  
2 Life support devices or systems are in-  
tended (a) to be implanted in the human  
body, or (b) to support and/or maintain  
and sustain human life. If they fail, it is  
reasonable to assume that the health of  
the user may be endangered.  
2 Lebenserhaltende Geräte und Systeme  
sind (a) zur chirurgischen Einpflanzung in  
den menschlichen Körper gedacht, oder  
(b) unterstützen bzw. erhalten das  
menschliche Leben. Sollten sie ausfallen,  
besteht berechtigter Grund zur Annahme,  
daß die Gesundheit des Anwenders ge-  
fährdet werden kann.  
C167SR  
Revision History:  
Original Version: 06.95 (Advance Information)  
Previous Releases:  
Data Sheet C167 06.94  
Page  
31  
Subjects (changes compared to C167)  
Register PICON added  
VILS, VIHS, HYS, IOV added.  
RRST, IRWH, IRWL, IALEL, IALEH, IP6H, test cond. IOZx changed.  
36  
36  
37  
IP6L, ICC, IID changed.  
37  
ICC, IID typical values added  
ADC specification changed.  
PLL description added.  
External Clock Drive specification changed.  
t14, t15, t16, t17, t22, t39, t46 changed.  
t47 changed.  
39  
41...43  
44  
46  
47  
52  
t14, t15, t16, t17, t20, t21, t22 changed.  
t39, t46, t47, t55 changed.  
t53 changed to t68.  
53  
56, 57  
58  
t36 changed.  
61  
t63 changed.  
C16x-Family of  
High-Performance CMOS 16-Bit Microcontrollers  
C167SR  
Advance Information  
C167SR 16-Bit Microcontroller  
High Performance 16-bit CPU with 4-Stage Pipeline  
100 ns Instruction Cycle Time at 20 MHz CPU Clock  
500 ns Multiplication (16 × 16 bit), 1 µs Division (32 / 16 bit)  
Enhanced Boolean Bit Manipulation Facilities  
Additional Instructions to Support HLL and Operating Systems  
Register-Based Design with Multiple Variable Register Banks  
Single-Cycle Context Switching Support  
Clock Generation via on-chip PLL or via direct clock input  
Up to 16 MBytes Linear Address Space for Code and Data  
2 KBytes On-Chip Internal RAM (IRAM)  
2 KBytes On-Chip Extension RAM (XRAM)  
Programmable External Bus Characteristics for Different Address Ranges  
8-Bit or 16-Bit External Data Bus  
Multiplexed or Demultiplexed External Address/Data Buses  
Five Programmable Chip-Select Signals  
Hold- and Hold-Acknowledge Bus Arbitration Support  
1024 Bytes On-Chip Special Function Register Area  
Idle and Power Down Modes  
8-Channel Interrupt-Driven Single-Cycle Data Transfer Facilities via Peripheral Event  
Controller (PEC)  
16-Priority-Level Interrupt System with 56 Sources, Sample-Rate down to 50 ns  
16-Channel 10-bit A/D Converter with 9.7 µs Conversion Time  
Two 16-Channel Capture/Compare Units  
4-Channel PWM Unit  
Two Multi-Functional General Purpose Timer Units with 5 Timers  
Two Serial Channels (Synchronous/Asynchronous and High-Speed-Synchronous)  
Programmable Watchdog Timer  
Up to 111 General Purpose I/O Lines, partly with Selectable Input Thresholds and Hysteresis  
Supported by a Wealth of Development Tools like C-Compilers, Macro-Assembler Packages,  
Emulators, Evaluation Boards, HLL-Debuggers, Simulators, Logic Analyzer Disassemblers,  
Programming Boards  
On-Chip Bootstrap Loader  
144-Pin MQFP Package (EIAJ)  
This document describes the SAB-C167SR-LM, the SAF-C167SR-LM and the SAK-C167SR-LM.  
For simplicity all versions are referred to by the term C167SR throughout this document.  
Semiconductor Group  
1
06.95  
C167SR  
C167SR  
Revision History:  
Original Version: 06.95 (Advance Information)  
Previous Releases:  
Data Sheet C167 06.94  
Page  
31  
Subjects (changes compared to C167)  
Register PICON added  
VILS, VIHS, HYS, IOV added.  
RRST, IRWH, IRWL, IALEL, IALEH, IP6H, test cond. IOZx changed.  
36  
36  
37  
IP6L, ICC, IID changed.  
37  
ICC, IID typical values added  
ADC specification changed.  
PLL description added.  
External Clock Drive specification changed.  
t14, t15, t16, t17, t22, t39, t46 changed.  
t47 changed.  
39  
41...43  
44  
46  
47  
52  
t14, t15, t16, t17, t20, t21, t22 changed.  
t39, t46, t47, t55 changed.  
t53 changed to t68.  
53  
56, 57  
58  
t36 changed.  
61  
t63 changed.  
Semiconductor Group  
2
C167SR  
Introduction  
The C167SR is a new derivative of the Siemens C16x Family of full featured single-chip CMOS  
microcontrollers. It combines high CPU performance (up to 10 million instructions per second) with  
high peripheral functionality and enhanced IO-capabilities. It also provides on-chip high-speed RAM  
and clock generation via PLL.  
C167SR  
Figure 1  
Logic Symbol  
Ordering Information  
Type  
Ordering Code  
Package  
Function  
SAB-C167SR-LM Q67121-C952  
P-MQFP-144-1  
16-bit microcontroller with  
2 × 2 KByte RAM  
Temperature range 0 to + 70 ˚C  
SAF-C167SR-LM Q67121-C953  
P-MQFP-144-1  
P-MQFP-144-1  
16-bit microcontroller with  
2 × 2 KByte RAM  
Temperature range – 40 to + 85 ˚C  
SAK-C167SR-LM  
C
16-bit microcontroller with  
2 × 2 KByte RAM  
Temperature range – 40 to + 125 ˚C  
Semiconductor Group  
3
C167SR  
Pin Configuration  
(top view)  
C167SR  
Figure 2  
Semiconductor Group  
4
C167SR  
Pin Definitions and Functions  
Symbol Pin  
Input (I)  
Function  
Number Output (O)  
P6.0 -  
P6.7  
1 -  
8
I/O  
Port 6 is an 8-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state. Port 6 outputs can be configured as push/  
pull or open drain drivers.  
The following Port 6 pins also serve for alternate functions:  
1
...  
5
6
7
8
O
...  
O
I
O
O
P6.0  
...  
P6.4  
P6.5  
P6.6  
P6.7  
CS0  
...  
CS4  
HOLD  
HLDA  
BREQ  
Chip Select 0 Output  
...  
Chip Select 4 Output  
External Master Hold Request Input  
Hold Acknowledge Output  
Bus Request Output  
P8.0 -  
P8.7  
9 -  
16  
I/O  
Port 8 is an 8-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state. Port 8 outputs can be configured as push/  
pull or open drain drivers. The input threshold of Port 8 is  
selectable (TTL or special).  
The following Port 8 pins also serve for alternate functions:  
9
...  
16  
I/O  
...  
I/O  
P8.0  
...  
P8.7  
CC16IO CAPCOM2: CC16 Cap.-In/Comp.Out  
... ...  
CC23IO CAPCOM2: CC23 Cap.-In/Comp.Out  
P7.0 -  
P7.7  
19 -  
26  
I/O  
Port 7 is an 8-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state. Port 7 outputs can be configured as push/  
pull or open drain drivers. The input threshold of Port 7 is  
selectable (TTL or special).  
The following Port 7 pins also serve for alternate functions:  
19  
...  
O
...  
P7.0  
...  
POUT0  
...  
PWM Channel 0 Output  
...  
22  
23  
...  
O
I/O  
...  
P7.3  
P7.4  
...  
POUT3  
PWM Channel 3 Output  
CC28IO CAPCOM2: CC28 Cap.-In/Comp.Out  
... ...  
CC31IO CAPCOM2: CC31 Cap.-In/Comp.Out  
26  
I/O  
P7.7  
Semiconductor Group  
5
C167SR  
Pin Definitions and Functions (cont’d)  
Symbol Pin  
Input (I)  
Function  
Number Output (O)  
P5.0 -  
P5.15  
27 - 36  
39 - 44  
I
I
Port 5 is a 16-bit input-only port with Schmitt-Trigger  
characteristics. The pins of Port 5 also serve as the (up to 16)  
analog input channels for the A/D converter, where P5.x  
equals ANx (Analog input channel x), or they serve as timer  
inputs:  
39  
40  
41  
42  
43  
44  
I
I
I
I
I
I
P5.10  
P5.11  
P5.12  
P5.13  
P5.14  
P5.15  
T6EUD  
T5EUD  
T6IN  
T5IN  
T4EUD  
T2EUD  
GPT2 Timer T6 Ext.Up/Down Ctrl.Input  
GPT2 Timer T5 Ext.Up/Down Ctrl.Input  
GPT2 Timer T6 Count Input  
GPT2 Timer T5 Count Input  
GPT1 Timer T4 Ext.Up/Down Ctrl.Input  
GPT1 Timer T2 Ext.Up/Down Ctrl.Input  
P2.0 -  
P2.15  
47 - 54  
57 - 64  
I/O  
Port 2 is a 16-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state. Port 2 outputs can be configured as push/  
pull or open drain drivers. The input threshold of Port 2 is  
selectable (TTL or special).  
The following Port 2 pins also serve for alternate functions:  
47  
...  
54  
57  
I/O  
...  
I/O  
I/O  
I
...  
I/O  
I
P2.0  
...  
P2.7  
P2.8  
CC0IO  
...  
CC7IO  
CC8IO  
EX0IN  
...  
CAPCOM: CC0 Cap.-In/Comp.Out  
...  
CAPCOM: CC7 Cap.-In/Comp.Out  
CAPCOM: CC8 Cap.-In/Comp.Out,  
Fast External Interrupt 0 Input  
...  
...  
64  
...  
P2.15  
CC15IO CAPCOM: CC15 Cap.-In/Comp.Out,  
EX7IN  
T7IN  
Fast External Interrupt 7 Input  
CAPCOM2 Timer T7 Count Input  
I
Semiconductor Group  
6
C167SR  
Pin Definitions and Functions (cont’d)  
Symbol Pin Input (I) Function  
Number Output (O)  
P3.0 -  
P3.13,  
P3.15  
65 - 70, I/O  
73 - 80, I/O  
Port 3 is a 15-bit (P3.14 is missing) bidirectional I/O port. It is  
bit-wise programmable for input or output via direction bits.  
For a pin configured as input, the output driver is put into high-  
impedance state. Port 3 outputs can be configured as push/  
pull or open drain drivers. The input threshold of Port 3 is  
selectable (TTL or special).  
81  
I/O  
The following Port 3 pins also serve for alternate functions:  
65  
66  
67  
68  
69  
70  
I
O
I
O
I
I
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
T0IN  
CAPCOM Timer T0 Count Input  
GPT2 Timer T6 Toggle Latch Output  
GPT2 Register CAPREL Capture Input  
GPT1 Timer T3 Toggle Latch Output  
GPT1 Timer T3 Ext.Up/Down Ctrl.Input  
GPT1 Timer T4 Input for  
T6OUT  
CAPIN  
T3OUT  
T3EUD  
T4IN  
Count/Gate/Reload/Capture  
73  
74  
I
I
P3.6  
P3.7  
T3IN  
T2IN  
GPT1 Timer T3 Count/Gate Input  
GPT1 Timer T2 Input for  
Count/Gate/Reload/Capture  
75  
76  
77  
78  
79  
I/O  
I/O  
O
I/O  
O
O
I/O  
O
P3.8  
P3.9  
P3.10  
P3.11  
P3.12  
MRST  
MTSR  
T×D0  
R×D0  
BHE  
SSC Master-Rec./Slave-Transmit I/O  
SSC Master-Transmit/Slave-Rec. O/I  
ASC0 Clock/Data Output (Asyn./Syn.)  
ASC0 Data Input (Asyn.) or I/O (Syn.)  
Ext. Memory High Byte Enable Signal,  
Ext. Memory High Byte Write Strobe  
SSC Master Clock Outp./Slave Cl. Inp.  
WRH  
SCLK  
80  
81  
P3.13  
P3.15  
CLKOUT System Clock Output (=CPU Clock)  
P4.0 -  
P4.7  
85 - 92  
I/O  
Port 4 is an 8-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state.  
In case of an external bus configuration, Port 4 can be used to  
output the segment address lines:  
85  
...  
89  
...  
O
...  
O
...  
O
P4.0  
...  
P4.4  
..  
A16  
...  
A20  
:
Least Significant Segment Addr. Line  
...  
Least Significant Segment Addr. Line  
:
92  
P4.7  
A23  
Most Significant Segment Addr. Line  
RD  
95  
O
External Memory Read Strobe. RD is activated for every  
external instruction or data read access.  
Semiconductor Group  
7
C167SR  
Pin Definitions and Functions (cont’d)  
Symbol Pin  
Input (I)  
Function  
Number Output (O)  
WR/  
WRL  
96 O  
External Memory Write Strobe. In WR-mode this pin is  
activated for every external data write access. In WRL-mode  
this pin is activated for low byte data write accesses on a 16-  
bit bus, and for every data write access on an 8-bit bus. See  
WRCFG in register SYSCON for mode selection.  
READY 97  
I
Ready Input. When the Ready function is enabled, a high  
level at this pin during an external memory access will force  
the insertion of memory cycle time waitstates until the pin  
returns to a low level.  
ALE  
EA  
98  
99  
O
I
Address Latch Enable Output. Can be used for latching the  
address into external memory or an address latch in the  
multiplexed bus modes.  
External Access Enable pin. A low level at this pin during and  
after Reset forces the C167SR to begin instruction execution  
out of external memory. A high level forces execution out of  
the internal ROM. ROMless versions must have this pin tied  
to ‘0’.  
PORT0:  
P0L.0 -  
P0L.7,  
P0H.0 - 108,  
P0H.7 111-117  
I/O  
PORT0 consists of the two 8-bit bidirectional I/O ports P0L  
and P0H. It is bit-wise programmable for input or output via  
direction bits. For a pin configured as input, the output driver  
is put into high-impedance state.  
In case of an external bus configuration, PORT0 serves as  
the address (A) and address/data (AD) bus in multiplexed bus  
modes and as the data (D) bus in demultiplexed bus modes.  
Demultiplexed bus modes:  
100 -  
107  
Data Path Width:  
P0L.0 - P0L.7:  
P0H.0- P0H.7:  
8-bit  
D0 - D7  
I/O  
16-bit  
D0 - D7  
D8 - D15  
Multiplexed bus modes:  
Data Path Width:  
P0L.0 - P0L.7:  
P0H.0 - P0H.7:  
8-bit  
AD0 - AD7  
A8 - A15  
16-bit  
AD0 - AD7  
AD8 - AD15  
Semiconductor Group  
8
C167SR  
Pin Definitions and Functions (cont’d)  
Symbol Pin Input (I) Function  
Number Output (O)  
PORT1:  
P1L.0 -  
P1L.7,  
P1H.0 - 128 -  
P1H.7  
I/O  
118 -  
125  
PORT1 consists of the two 8-bit bidirectional I/O ports P1L  
and P1H. It is bit-wise programmable for input or output via  
direction bits. For a pin configured as input, the output driver  
is put into high-impedance state. PORT1 is used as the 16-bit  
address bus (A) in demultiplexed bus modes and also after  
switching from a demultiplexed bus mode to a multiplexed  
bus mode.  
135  
The following PORT1 pins also serve for alternate functions:  
132  
133  
134  
135  
I
I
I
I
P1H.4  
P1H.5  
P1H.6  
P1H.7  
CC24IO CAPCOM2: CC24 Capture Input  
CC25IO CAPCOM2: CC25 Capture Input  
CC26IO CAPCOM2: CC26 Capture Input  
CC27IO CAPCOM2: CC27 Capture Input  
XTAL1  
XTAL2  
138  
I
XTAL1:  
Input to the oscillator amplifier and input to the  
internal clock generator  
Output of the oscillator amplifier circuit.  
137  
O
XTAL2:  
To clock the device from an external source, drive XTAL1,  
while leaving XTAL2 unconnected. Minimum and maximum  
high/low and rise/fall times specified in the AC Characteristics  
must be observed.  
RSTIN  
140  
I
Reset Input with Schmitt-Trigger characteristics. A low level at  
this pin for a specified duration while the oscillator is running  
resets the C167SR. An internal pullup resistor permits power-  
on reset using only a capacitor connected to VSS.  
RSTOUT 141  
O
I
Internal Reset Indication Output. This pin is set to a low level  
when the part is executing either a hardware-, a software- or a  
watchdog timer reset. RSTOUT remains low until the EINIT  
(end of initialization) instruction is executed.  
NMI  
142  
Non-Maskable Interrupt Input. A high to low transition at this  
pin causes the CPU to vector to the NMI trap routine. When  
the PWRDN (power down) instruction is executed, the NMI  
pin must be low in order to force the C167SR to go into power  
down mode. If NMI is high, when PWRDN is executed, the  
part will continue to run in normal mode.  
If not used, pin NMI should be pulled high externally.  
VAREF  
VAGND  
VPP  
37  
38  
84  
Reference voltage for the A/D converter.  
Reference ground for the A/D converter.  
Flash programming voltage. This pin accepts the  
programming voltage for flash versions of the C167SR.  
Note: This pin is not connected (NC) on non-flash versions.  
Semiconductor Group  
9
C167SR  
Pin Definitions and Functions (cont’d)  
Symbol Pin  
Input (I)  
Function  
Number Output (O)  
VCC  
17, 46,  
56, 72,  
82, 93,  
109,  
Digital Supply Voltage:  
+ 5 V during normal operation and idle mode.  
2.5 V during power down mode.  
126,  
136, 144  
VSS  
18, 45,  
55, 71,  
83, 94,  
110,  
Digital Ground.  
127,  
139, 143  
Semiconductor Group  
10  
C167SR  
Functional Description  
The architecture of the C167SR combines advantages of both RISC and CISC processors and of  
advanced peripheral subsystems in a very well-balanced way. The following block diagram gives an  
overview of the different on-chip components and of the advanced, high bandwidth internal bus  
structure of the C167SR.  
Note: All time specifications refer to a CPU clock of 20 MHz  
(see definition in the AC Characteristics section).  
Figure 3  
Block Diagram  
Semiconductor Group  
11  
C167SR  
Memory Organization  
The memory space of the C167SR is configured in a Von Neumann architecture which means that  
code memory, data memory, registers and I/O ports are organized within the same linear address  
space which includes 16 MBytes. The entire memory space can be accessed bytewise or wordwise.  
Particular portions of the on-chip memory have additionally been made directly bitaddressable.  
The C167SR is prepared to incorporate on-chip mask-programmable ROM or Flash Memory for  
code or constant data. Currently no ROM is integrated.  
2 KBytes of on-chip Internal RAM are provided as a storage for user defined variables, for the  
system stack, general purpose register banks and even for code. A register bank can consist of up  
to 16 wordwide (R0 to R15) and/or bytewide (RL0, RH0, …, RL7, RH7) so-called General Purpose  
Registers (GPRs).  
1024 bytes (2 × 512 bytes) of the address space are reserved for the Special Function Register  
areas (SFR space and ESFR space). SFRs are wordwide registers which are used for controlling  
and monitoring functions of the different on-chip units. Unused SFR addresses are reserved for  
future members of the C16x family.  
2 KBytes of on-chip Extension RAM (XRAM) are provided to store user data, user stacks or code.  
The XRAM is accessed like external memory and therefore cannot be used for the system stack or  
for register banks and is not bitadressable. The XRAM allows 16-bit accesses with maximum  
speed.  
In order to meet the needs of designs where more memory is required than is provided on chip, up  
to 16 MBytes of external RAM and/or ROM can be connected to the microcontroller.  
External Bus Controller  
All of the external memory accesses are performed by a particular on-chip External Bus Controller  
(EBC). It can be programmed either to Single Chip Mode when no external memory is required, or  
to one of four different external memory access modes, which are as follows:  
– 16-/18-/20-/24-bit Addresses, 16-bit Data, Demultiplexed  
– 16-/18-/20-/24-bit Addresses, 16-bit Data, Multiplexed  
– 16-/18-/20-/24-bit Addresses, 8-bit Data, Multiplexed  
– 16-/18-/20-/24-bit Addresses, 8-bit Data, Demultiplexed  
In the demultiplexed bus modes, addresses are output on PORT1 and data is input/output on  
PORT0. In the multiplexed bus modes both addresses and data use PORT0 for input/output.  
Important timing characteristics of the external bus interface (Memory Cycle Time, Memory Tri-  
State Time, Length of ALE and Read Write Delay) have been made programmable to allow the user  
the adaption of a wide range of different types of memories. In addition, different address ranges  
may be accessed with different bus characteristics. Up to 5 external CS signals can be generated  
in order to save external glue logic. Access to very slow memories is supported via a particular  
‘Ready’ function. A HOLD/HLDA protocol is available for bus arbitration.  
For applications which require less than 16 MBytes of external memory space, this address space  
can be restricted to 1 MByte, 256 KByte or to 64 KByte. In this case Port 4 outputs four, two or no  
address lines at all. It outputs all 8 address lines, if an address space of 16 MBytes is used.  
Semiconductor Group  
12  
C167SR  
Central Processing Unit (CPU)  
The main core of the CPU consists of a 4-stage instruction pipeline, a 16-bit arithmetic and logic unit  
(ALU) and dedicated SFRs. Additional hardware has been spent for a separate multiply and divide  
unit, a bit-mask generator and a barrel shifter.  
Based on these hardware provisions, most of the C167SR’s instructions can be executed in just one  
machine cycle which requires 100 ns at 20-MHz CPU clock. For example, shift and rotate  
instructions are always processed during one machine cycle independent of the number of bits to  
be shifted. All multiple-cycle instructions have been optimized so that they can be executed very  
fast as well: branches in 2 cycles, a 16 × 16 bit multiplication in 5 cycles and a 32-/16 bit division in  
10 cycles. Another pipeline optimization, the so-called ‘Jump Cache’, allows reducing the execution  
time of repeatedly performed jumps in a loop from 2 cycles to 1 cycle.  
Figure 4  
CPU Block Diagram  
Semiconductor Group  
13  
C167SR  
The CPU disposes of an actual register context consisting of up to 16 wordwide GPRs which are  
physically allocated within the on-chip RAM area. A Context Pointer (CP) register determines the  
base address of the active register bank to be accessed by the CPU at a time. The number of  
register banks is only restricted by the available internal RAM space. For easy parameter passing,  
a register bank may overlap others.  
A system stack of up to 2048 bytes is provided as a storage for temporary data. The system stack  
is allocated in the on-chip RAM area, and it is accessed by the CPU via the stack pointer (SP)  
register. Two separate SFRs, STKOV and STKUN, are implicitly compared against the stack  
pointer value upon each stack access for the detection of a stack overflow or underflow.  
The high performance offered by the hardware implementation of the CPU can efficiently be utilized  
by a programmer via the highly efficient C167SR instruction set which includes the following  
instruction classes:  
– Arithmetic Instructions  
– Logical Instructions  
– Boolean Bit Manipulation Instructions  
– Compare and Loop Control Instructions  
– Shift and Rotate Instructions  
– Prioritize Instruction  
– Data Movement Instructions  
– System Stack Instructions  
– Jump and Call Instructions  
– Return Instructions  
– System Control Instructions  
– Miscellaneous Instructions  
The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes and words.  
A variety of direct, indirect or immediate addressing modes are provided to specify the required  
operands.  
Semiconductor Group  
14  
C167SR  
Interrupt System  
With an interrupt response time within a range from just 250 ns to 600 ns (in case of internal  
program execution), the C167SR is capable of reacting very fast to the occurence of non-  
deterministic events.  
The architecture of the C167SR supports several mechanisms for fast and flexible response to  
service requests that can be generated from various sources internal or external to the  
microcontroller. Any of these interrupt requests can be programmed to being serviced by the  
Interrupt Controller or by the Peripheral Event Controller (PEC).  
In contrast to a standard interrupt service where the current program execution is suspended and  
a branch to the interrupt vector table is performed, just one cycle is ‘stolen’ from the current CPU  
activity to perform a PEC service. A PEC service implies a single byte or word data transfer between  
any two memory locations with an additional increment of either the PEC source or the destination  
pointer. An individual PEC transfer counter is implicity decremented for each PEC service except  
when performing in the continuous transfer mode. When this counter reaches zero, a standard  
interrupt is performed to the corresponding source related vector location. PEC services are very  
well suited, for example, for supporting the transmission or reception of blocks of data. The C167SR  
has 8 PEC channels each of which offers such fast interrupt-driven data transfer capabilities.  
A separate control register which contains an interrupt request flag, an interrupt enable flag and an  
interrupt priority bitfield exists for each of the possible interrupt sources. Via its related register, each  
source can be programmed to one of sixteen interrupt priority levels. Once having been accepted  
by the CPU, an interrupt service can only be interrupted by a higher prioritized service request. For  
the standard interrupt processing, each of the possible interrupt sources has a dedicated vector  
location.  
Fast external interrupt inputs are provided to service external interrupts with high precision  
requirements. These fast interrupt inputs feature programmable edge detection (rising edge, falling  
edge or both edges).  
Software interrupts are supported by means of the ‘TRAP’ instruction in combination with an  
individual trap (interrupt) number.  
The following table shows all of the possible C167SR interrupt sources and the corresponding  
hardware-related interrupt flags, vectors, vector locations and trap (interrupt) numbers:  
Note: Three nodes in the table (X-Peripheral nodes) are prepared to accept interrupt requests from  
integrated X-Bus peripherals. Nodes, where no X-Peripherals are connected, may be used  
to generate software controlled interrupt requests by setting the respective XPnIR bit.  
Semiconductor Group  
15  
C167SR  
Source of Interrupt or  
PEC Service Request  
Request  
Flag  
Enable  
Flag  
Interrupt  
Vector  
Vector  
Location  
Trap  
Number  
CAPCOM Register 0  
CAPCOM Register 1  
CAPCOM Register 2  
CAPCOM Register 3  
CAPCOM Register 4  
CAPCOM Register 5  
CAPCOM Register 6  
CAPCOM Register 7  
CAPCOM Register 8  
CAPCOM Register 9  
CAPCOM Register 10  
CAPCOM Register 11  
CAPCOM Register 12  
CAPCOM Register 13  
CAPCOM Register 14  
CAPCOM Register 15  
CAPCOM Register 16  
CAPCOM Register 17  
CAPCOM Register 18  
CAPCOM Register 19  
CAPCOM Register 20  
CAPCOM Register 21  
CAPCOM Register 22  
CAPCOM Register 23  
CAPCOM Register 24  
CAPCOM Register 25  
CAPCOM Register 26  
CAPCOM Register 27  
CAPCOM Register 28  
CAPCOM Register 29  
CAPCOM Register 30  
CAPCOM Register 31  
CAPCOM Timer 0  
CC0IR  
CC0IE  
CC0INT  
CC1INT  
CC2INT  
CC3INT  
CC4INT  
CC5INT  
CC6INT  
CC7INT  
CC8INT  
CC9INT  
CC10INT  
CC11INT  
CC12INT  
CC13INT  
CC14INT  
CC15INT  
CC16INT  
CC17INT  
CC18INT  
CC19INT  
CC20INT  
CC21INT  
CC22INT  
CC23INT  
CC24INT  
CC25INT  
CC26INT  
CC27INT  
CC28INT  
CC29INT  
CC30INT  
CC31INT  
T0INT  
00’0040  
00’0044  
00’0048  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
H
H
H
H
H
H
H
H
H
H
H
H
H
CC1IR  
CC1IE  
CC2IR  
CC2IE  
CC3IR  
CC3IE  
00’004C  
H
CC4IR  
CC4IE  
00’0050  
00’0054  
00’0058  
H
CC5IR  
CC5IE  
H
H
CC6IR  
CC6IE  
CC7IR  
CC7IE  
00’005C  
H
CC8IR  
CC8IE  
00’0060  
00’0064  
00’0068  
H
CC9IR  
CC9IE  
H
H
CC10IR  
CC11IR  
CC12IR  
CC13IR  
CC14IR  
CC15IR  
CC16IR  
CC17IR  
CC18IR  
CC19IR  
CC20IR  
CC21IR  
CC22IR  
CC23IR  
CC24IR  
CC25IR  
CC26IR  
CC27IR  
CC28IR  
CC29IR  
CC30IR  
CC31IR  
T0IR  
CC10IE  
CC11IE  
CC12IE  
CC13IE  
CC14IE  
CC15IE  
CC16IE  
CC17IE  
CC18IE  
CC19IE  
CC20IE  
CC21IE  
CC22IE  
CC23IE  
CC24IE  
CC25IE  
CC26IE  
CC27IE  
CC28IE  
CC29IE  
CC30IE  
CC31IE  
T0IE  
1A  
1B  
H
H
00’006C  
H
00’0070  
00’0074  
00’0078  
1C  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
1D  
H
H
1E  
1F  
00’007C  
00’00C0  
00’00C4  
00’00C8  
H
H
H
H
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
00’00CC  
H
00’00D0  
00’00D4  
00’00D8  
H
H
H
00’00DC  
H
00’00E0  
00’00E4  
00’00E8  
H
H
H
3A  
3B  
H
00’00EC  
H
H
00’00E0  
3C  
H
H
00’0110  
00’0114  
00’0118  
00’0080  
44  
45  
46  
20  
H
H
H
H
H
H
H
H
Semiconductor Group  
16  
C167SR  
Source of Interrupt or  
PEC Service Request  
Request  
Flag  
Enable  
Flag  
Interrupt  
Vector  
Vector  
Location  
Trap  
Number  
CAPCOM Timer 1  
CAPCOM Timer 7  
CAPCOM Timer 8  
GPT1 Timer 2  
T1IR  
T7IR  
T8IR  
T2IR  
T3IR  
T4IR  
T5IR  
T6IR  
T1IE  
T1INT  
00’0084  
21  
H
H
T7IE  
T7INT  
00’00F4  
00’00F8  
3D  
H
H
H
H
H
H
H
H
H
H
H
H
H
T8IE  
T8INT  
3E  
T2IE  
T2INT  
00’0088  
22  
23  
24  
25  
26  
27  
28  
29  
GPT1 Timer 3  
T3IE  
T3INT  
00’008C  
H
GPT1 Timer 4  
T4IE  
T4INT  
00’0090  
00’0094  
00’0098  
H
GPT2 Timer 5  
T5IE  
T5INT  
H
H
GPT2 Timer 6  
T6IE  
T6INT  
GPT2 CAPREL Register CRIR  
A/D Conversion Complete ADCIR  
CRIE  
CRINT  
ADCINT  
ADEINT  
S0TINT  
S0TBINT  
S0RINT  
S0EINT  
SCTINT  
SCRINT  
SCEINT  
PWMINT  
XP0INT  
XP1INT  
XP2INT  
XP3INT  
00’009C  
H
H
H
H
ADCIE  
ADEIE  
S0TIE  
S0TBIE  
S0RIE  
S0EIE  
SCTIE  
SCRIE  
SCEIE  
PWMIE  
XP0IE  
XP1IE  
XP2IE  
XP3IE  
00’00A0  
00’00A4  
00’00A8  
A/D Overrun Error  
ASC0 Transmit  
ASC0 Transmit Buffer  
ASC0 Receive  
ASC0 Error  
ADEIR  
S0TIR  
S0TBIR  
S0RIR  
S0EIR  
SCTIR  
SCRIR  
SCEIR  
PWMIR  
XP0IR  
XP1IR  
XP2IR  
XP3IR  
2A  
H
H
00’011C  
47  
H
00’00AC  
2B  
H
H
00’00B0  
00’00B4  
00’00B8  
2C  
2D  
H
H
H
H
H
H
H
H
H
H
SSC Transmit  
H
H
SSC Receive  
2E  
SSC Error  
00’00BC  
2F  
3F  
H
PWM Channel 0...3  
X-Peripheral Node  
X-Peripheral Node  
X-Peripheral Node  
PLL Unlock  
00’00FC  
H
00’0100  
00’0104  
00’0108  
40  
41  
42  
43  
H
H
H
00’010C  
H
Semiconductor Group  
17  
C167SR  
The C167SR also provides an excellent mechanism to identify and to process exceptions or error  
conditions that arise during run-time, so-called ‘Hardware Traps’. Hardware traps cause immediate  
non-maskable system reaction which is similar to a standard interrupt service (branching to a  
dedicated vector table location). The occurence of a hardware trap is additionally signified by an  
individual bit in the trap flag register (TFR). Except when another higher prioritized trap service is in  
progress, a hardware trap will interrupt any actual program execution. In turn, hardware trap  
services can normally not be interrupted by standard or PEC interrupts.  
The following table shows all of the possible exceptions or error conditions that can arise during run-  
time:  
Exception Condition  
Trap  
Flag  
Trap  
Vector  
Vector  
Location  
Trap  
Number  
Trap  
Priority  
Reset Functions:  
Hardware Reset  
Software Reset  
Watchdog Timer Overflow  
RESET  
RESET  
RESET  
00’0000  
00’0000  
00’0000  
00  
00  
00  
III  
III  
III  
H
H
H
H
H
H
Class A Hardware Traps:  
Non-Maskable Interrupt  
Stack Overflow  
NMI  
STKOF  
STKUF  
NMITRAP 00’0008  
STOTRAP 00’0010  
STUTRAP 00’0018  
02  
04  
06  
II  
II  
II  
H
H
H
H
H
H
Stack Underflow  
Class B Hardware Traps:  
Undefined Opcode  
Protected Instruction  
Fault  
UNDOPC BTRAP  
00’0028  
00’0028  
0A  
0A  
I
I
H
H
H
H
PRTFLT  
BTRAP  
Illegal Word Operand  
Access  
ILLOPA  
BTRAP  
00’0028  
0A  
I
H
H
Illegal Instruction Access  
Illegal External Bus  
Access  
ILLINA  
ILLBUS  
BTRAP  
BTRAP  
00’0028  
00’0028  
0A  
0A  
I
I
H
H
H
H
Reserved  
[2C – 3C ] [0B – 0F ]  
H H H H  
Software Traps  
Any  
Any  
Current  
TRAP Instruction  
[00’0000 – [00 – 7F ] CPU  
H H H  
00’01FC ]  
Priority  
H
in steps  
of 4  
H
Semiconductor Group  
18  
C167SR  
Capture/Compare (CAPCOM) Units  
The CAPCOM units support generation and control of timing sequences on up to 32 channels with  
a maximum resolution of 400 ns (at 20-MHz system clock). The CAPCOM units are typically used  
to handle high speed I/O tasks such as pulse and waveform generation, pulse width modulation  
(PMW), Digital to Analog (D/A) conversion, software timing, or time recording relative to external  
events.  
Four 16-bit timers (T0/T1, T7/T8) with reload registers provide two independent time bases for the  
capture/compare register array.  
The input clock for the timers is programmable to several prescaled values of the internal system  
clock, or may be derived from an overflow/underflow of timer T6 in module GPT2. This provides a  
wide range of variation for the timer period and resolution and allows precise adjustments to the  
application specific requirements. In addition, external count inputs for CAPCOM timers T0 and T7  
allow event scheduling for the capture/compare registers relative to external events.  
Both of the two capture/compare register arrays contain 16 dual purpose capture/compare  
registers, each of which may be individually allocated to either CAPCOM timer T0 or T1 (T7 or T8,  
respectively), and programmed for capture or compare function. Each register has one port pin  
associated with it which serves as an input pin for triggering the capture function, or as an output pin  
(except for CC24...CC27) to indicate the occurence of a compare event.  
When a capture/compare register has been selected for capture mode, the current contents of the  
allocated timer will be latched (‘capture’d) into the capture/compare register in response to an  
external event at the port pin which is associated with this register. In addition, a specific interrupt  
request for this capture/compare register is generated. Either a positive, a negative, or both a  
positive and a negative external signal transition at the pin can be selected as the triggering event.  
The contents of all registers which have been selected for one of the five compare modes are  
continuously compared with the contents of the allocated timers. When a match occurs between the  
timer value and the value in a capture/compare register, specific actions will be taken based on the  
selected compare mode.  
Compare Modes  
Function  
Mode 0  
Interrupt-only compare mode;  
several compare interrupts per timer period are possible  
Mode 1  
Mode 2  
Mode 3  
Pin toggles on each compare match;  
several compare events per timer period are possible  
Interrupt-only compare mode;  
only one compare interrupt per timer period is generated  
Pin set ‘1’ on match; pin reset ‘0’ on compare time overflow;  
only one compare event per timer period is generated  
Double  
Register Mode  
Two registers operate on one pin; pin toggles on each compare match;  
several compare events per timer period are possible.  
Semiconductor Group  
19  
C167SR  
*)  
*) 12 outputs on CAPCOM2  
Figure 5  
CAPCOM Unit Block Diagram  
Semiconductor Group  
20  
C167SR  
PWM Module  
The Pulse Width Modulation Module can generate up to four PWM output signals using edge-  
aligned or center-aligned PWM. In addition the PWM module can generate PWM burst signals and  
single shot outputs. The frequency range of the PWM signals covers 4.8 Hz to 1 MHz (referred to  
a CPU clock of 20 MHz), depending on the resolution of the PWM output signal. The level of the  
output signals is selectable and the PWM module can generate interrupt requests.  
General Purpose Timer (GPT) Unit  
The GPT unit represents a very flexible multifunctional timer/counter structure which may be used  
for many different time related tasks such as event timing and counting, pulse width and duty cycle  
measurements, pulse generation, or pulse multiplication.  
The GPT unit incorporates five 16-bit timers which are organized in two separate modules, GPT1  
and GPT2. Each timer in each module may operate independently in a number of different modes,  
or may be concatenated with another timer of the same module.  
Each of the three timers T2, T3, T4 of module GPT1 can be configured individually for one of three  
basic modes of operation, which are Timer, Gated Timer, and Counter Mode. In Timer Mode, the  
input clock for a timer is derived from the CPU clock, divided by a programmable prescaler, while  
Counter Mode allows a timer to be clocked in reference to external events.  
Pulse width or duty cycle measurement is supported in Gated Timer Mode, where the operation of  
a timer is controlled by the ‘gate’ level on an external input pin. For these purposes, each timer has  
one associated port pin (TxIN) which serves as gate or clock input. The maximum resolution of the  
timers in module GPT1 is 400 ns (@ 20-MHz CPU clock).  
The count direction (up/down) for each timer is programmable by software or may additionally be  
altered dynamically by an external signal on a port pin (TxEUD) to facilitate e. g. position tracking.  
Timers T3 and T4 have output toggle latches (TxOTL) which change their state on each timer over-  
flow/underflow. The state of these latches may be output on port pins (TxOUT) e. g. for time out  
monitoring of external hardware components, or may be used internally to clock timers T2 and T4  
for measuring long time periods with high resolution.  
In addition to their basic operating modes, timers T2 and T4 may be configured as reload or capture  
registers for timer T3. When used as capture or reload registers, timers T2 and T4 are stopped. The  
contents of timer T3 is captured into T2 or T4 in response to a signal at their associated input pins  
(TxIN). Timer T3 is reloaded with the contents of T2 or T4 triggered either by an external signal or  
by a selectable state transition of its toggle latch T3OTL. When both T2 and T4 are configured to  
alternately reload T3 on opposite state transitions of T3OTL with the low and high times of a PWM  
signal, this signal can be constantly generated without software intervention.  
With its maximum resolution of 200 ns (@ 20 MHz), the GPT2 module provides precise event  
control and time measurement. It includes two timers (T5, T6) and a capture/reload register  
(CAPREL). Both timers can be clocked with an input clock which is derived from the CPU clock via  
a programmable prescaler or with external signals. The count direction (up/down) for each timer is  
programmable by software or may additionally be altered dynamically by an external signal on a  
port pin (TxEUD). Concatenation of the timers is supported via the output toggle latch (T6OTL) of  
timer T6, which changes its state on each timer overflow/underflow.  
Semiconductor Group  
21  
C167SR  
The state of this latch may be used to clock timer T5, or it may be output on a port pin (T6OUT). The  
overflows/underflows of timer T6 can additionally be used to clock the CAPCOM timers T0 or T1,  
and to cause a reload from the CAPREL register. The CAPREL register may capture the contents  
of timer T5 based on an external signal transition on the corresponding port pin (CAPIN), and timer  
T5 may optionally be cleared after the capture procedure. This allows absolute time differences to  
be measured or pulse multiplication to be performed without software overhead.  
Figure 6  
Block Diagram of GPT1  
Semiconductor Group  
22  
C167SR  
Figure 7  
Block Diagram of GPT2  
Watchdog Timer  
The Watchdog Timer represents one of the fail-safe mechanisms which have been implemented to  
prevent the controller from malfunctioning for longer periods of time.  
The Watchdog Timer is always enabled after a reset of the chip, and can only be disabled in the time  
interval until the EINIT (end of initialization) instruction has been executed. Thus, the chip’s start-up  
procedure is always monitored. The software has to be designed to service the Watchdog Timer  
before it overflows. If, due to hardware or software related failures, the software fails to do so, the  
Watchdog Timer overflows and generates an internal hardware reset and pulls the RSTOUT pin low  
in order to allow external hardware components to be reset.  
The Watchdog Timer is a 16-bit timer, clocked with the system clock divided either by 2 or by 128.  
The high byte of the Watchdog Timer register can be set to a prespecified reload value (stored in  
WDTREL) in order to allow further variation of the monitored time interval. Each time it is serviced  
by the application software, the high byte of the Watchdog Timer is reloaded. Thus, time intervals  
between 25 µs and 420 ms can be monitored (@ 20 MHz). The default Watchdog Timer interval  
after reset is 6.55 ms (@ 20 MHz).  
Semiconductor Group  
23  
C167SR  
A/D Converter  
For analog signal measurement, a 10-bit A/D converter with 16 multiplexed input channels and a  
sample and hold circuit has been integrated on-chip. It uses the method of successive  
approximation. The sample time (for loading the capacitors) and the conversion time is  
programmable and can so be adjusted to the external circuitry.  
Overrun error detection/protection is provided for the conversion result register (ADDAT): either an  
interrupt request will be generated when the result of a previous conversion has not been read from  
the result register at the time the next conversion is complete, or the next conversion is suspended  
in such a case until the previous result has been read.  
For applications which require less than 16 analog input channels, the remaining channel inputs can  
be used as digital input port pins.  
The A/D converter of the C167SR supports four different conversion modes. In the standard Single  
Channel conversion mode, the analog level on a specified channel is sampled once and converted  
to a digital result. In the Single Channel Continuous mode, the analog level on a specified channel  
is repeatedly sampled and converted without software intervention. In the Auto Scan mode, the  
analog levels on a prespecified number of channels are sequentially sampled and converted. In the  
Auto Scan Continuous mode, the number of prespecified channels is repeatedly sampled and  
converted. In addition, the conversion of a specific channel can be inserted (injected) into a running  
sequence without disturbing this sequence. This is called Channel Injection Mode.  
The Peripheral Event Controller (PEC) may be used to automatically store the conversion results  
into a table in memory for later evaluation, without requiring the overhead of entering and exiting  
interrupt routines for each data transfer.  
After each reset and also during normal operation the ADC automatically performs calibration  
cycles. This automatic self-calibration constantly adjusts the converter to changing operating  
conditions (e.g. temperature) and compensates process variations.  
These calibration cycles are part of the conversion cycle, so they do not affect the normal operation  
of the A/D converter.  
Serial Channels  
Serial communication with other microcontrollers, processors, terminals or external peripheral  
components is provided by two serial interfaces with different functionality, an Asynchronous/  
Synchronous Serial Channel (ASC0) and a High-Speed Synchronous Serial Channel (SSC).  
ASC0 is upward compatible with the serial ports of the Siemens SAB 8051x microcontroller family  
and support full-duplex asynchronous communication up to 625 KBaud and half-duplex  
synchronous communication up to 2.5 Mbaud on the @ 20-MHz system clock.  
The SSC allows half duplex synchronous communication up to 5 Mbaud @ 20-MHz system clock.  
Two dedicated baud rate generators allow to set up all standard baud rates without oscillator tuning.  
For transmission, reception, and erroneous reception 3 separate interrupt vectors are provided for  
each serial channel.  
Semiconductor Group  
24  
C167SR  
In asynchronous mode, 8- or 9-bit data frames are transmitted or received, preceded by a start bit  
and terminated by one or two stop bits. For multiprocessor communication, a mechanism to  
distinguish address from data bytes has been included (8-bit data + wake up bit mode).  
In synchronous mode, the ASC0 transmits or receives bytes (8 bits) synchronously to a shift clock  
which is generated by the ASC0. The SSC transmits or receives characters of 2...16 bits length  
synchronously to a shift clock which can be generated by the SSC (master mode) or by an external  
master (slave mode). The SSC can start shifting with the LSB or with the MSB, while the ASC0  
always shifts the LSB first.  
A loop back option is available for testing purposes.  
A number of optional hardware error detection capabilities has been included to increase the  
reliability of data transfers. A parity bit can automatically be generated on transmission or be  
checked on reception. Framing error detection allows to recognize data frames with missing stop  
bits. An overrun error will be generated, if the last character received has not been read out of the  
receive buffer register at the time the reception of a new character is complete.  
Parallel Ports  
The C167SR provides up to 111 I/O lines which are organized into eight input/output ports and one  
input port. All port lines are bit-addressable, and all input/output lines are individually (bit-wise)  
programmable as inputs or outputs via direction registers. The I/O ports are true bidirectional ports  
which are switched to high impedance state when configured as inputs. The output drivers of five  
I/O ports can be configured (pin by pin) for push/pull operation or open-drain operation via control  
registers. During the internal reset, all port pins are configured as inputs.  
The input threshold of Port 2, Port 3, Port 7 and Port 8 is selectable (TTL or CMOS like), where the  
special CMOS like input threshold reduces noise sensitivity due to the input hysteresis. The input  
threshold may be selected individually for each byte of the respective ports.  
All port lines have programmable alternate input or output functions associated with them.  
PORT0 and PORT1 may be used as address and data lines when accessing external memory,  
while Port 4 outputs the additional segment address bits A23/19/17...A16 in systems where  
segmentation is enabled to access more than 64 KBytes of memory.  
Port 2, Port 8 and Port 7 are associated with the capture inputs or compare outputs of the CAPCOM  
units and/or with the outputs of the PWM module.  
Port 6 provides optional bus arbitration signals (BREQ, HLDA, HOLD) and chip select signals.  
Port 3 includes alternate functions of timers, serial interfaces, the optional bus control signal BHE  
and the system clock output (CLKOUT).  
Port 5 is used for the analog input channels to the A/D converter or timer control signals.  
All port lines that are not used for these alternate functions may be used as general purpose IO  
lines.  
Semiconductor Group  
25  
C167SR  
Instruction Set Summary  
The table below lists the instructions of the C167SR in a condensed way.  
The various addressing modes that can be used with a specific instruction, the operation of the  
instructions, parameters for conditional execution of instructions, and the opcodes for each  
instruction can be found in the “C16x Family Instruction Set Manual”.  
This document also provides a detailled description of each instruction.  
Instruction Set Summary  
Mnemonic  
ADD(B)  
Description  
Bytes  
2 / 4  
2 / 4  
2 / 4  
2 / 4  
2
Add word (byte) operands  
ADDC(B)  
SUB(B)  
Add word (byte) operands with Carry  
Subtract word (byte) operands  
SUBC(B)  
MUL(U)  
DIV(U)  
Subtract word (byte) operands with Carry  
(Un)Signed multiply direct GPR by direct GPR (16-16-bit)  
(Un)Signed divide register MDL by direct GPR (16-/16-bit)  
(Un)Signed long divide reg. MD by direct GPR (32-/16-bit)  
Complement direct word (byte) GPR  
Negate direct word (byte) GPR  
2
DIVL(U)  
CPL(B)  
2
2
NEG(B)  
AND(B)  
2
Bitwise AND, (word/byte operands)  
Bitwise OR, (word/byte operands)  
Bitwise XOR, (word/byte operands)  
Clear direct bit  
2 / 4  
2 / 4  
2 / 4  
2
OR(B)  
XOR(B)  
BCLR  
BSET  
Set direct bit  
2
BMOV(N)  
BAND, BOR, BXOR  
BCMP  
Move (negated) direct bit to direct bit  
AND/OR/XOR direct bit with direct bit  
Compare direct bit to direct bit  
4
4
4
BFLDH/L  
Bitwise modify masked high/low byte of bit-addressable  
direct word memory with immediate data  
4
CMP(B)  
CMPD1/2  
CMPI1/2  
PRIOR  
Compare word (byte) operands  
2 / 4  
2 / 4  
2 / 4  
2
Compare word data to GPR and decrement GPR by 1/2  
Compare word data to GPR and increment GPR by 1/2  
Determine number of shift cycles to normalize direct  
word GPR and store result in direct word GPR  
SHL / SHR  
ROL / ROR  
ASHR  
Shift left/right direct word GPR  
2
2
2
Rotate left/right direct word GPR  
Arithmetic (sign bit) shift right direct word GPR  
Semiconductor Group  
26  
C167SR  
Instruction Set Summary (cont’d)  
Mnemonic  
MOV(B)  
Description  
Bytes  
Move word (byte) data  
2 / 4  
MOVBS  
Move byte operand to word operand with sign extension  
Move byte operand to word operand. with zero extension  
Jump absolute/indirect/relative if condition is met  
Jump absolute to a code segment  
2 / 4  
MOVBZ  
2 / 4  
4
JMPA, JMPI, JMPR  
JMPS  
4
J(N)B  
Jump relative if direct bit is (not) set  
4
JBC  
Jump relative and clear bit if direct bit is set  
Jump relative and set bit if direct bit is not set  
Call absolute/indirect/relative subroutine if condition is met  
Call absolute subroutine in any code segment  
4
JNBS  
4
CALLA, CALLI, CALLR  
CALLS  
4
4
PCALL  
Push direct word register onto system stack and call  
absolute subroutine  
4
TRAP  
Call interrupt service routine via immediate trap number  
Push/pop direct word register onto/from system stack  
2
2
4
PUSH, POP  
SCXT  
Push direct word register onto system stack und update  
register with word operand  
RET  
Return from intra-segment subroutine  
Return from inter-segment subroutine  
2
2
2
RETS  
RETP  
Return from intra-segment subroutine and pop direct  
word register from system stack  
RETI  
Return from interrupt service subroutine  
Software Reset  
2
4
4
4
SRST  
IDLE  
Enter Idle Mode  
PWRDN  
Enter Power Down Mode  
(supposes NMI-pin being low)  
SRVWDT  
DISWDT  
EINIT  
Service Watchdog Timer  
4
Disable Watchdog Timer  
4
Signify End-of-Initialization on RSTOUT-pin  
Begin ATOMIC sequence  
4
ATOMIC  
EXTR  
2
Begin EXTended Register sequence  
Begin EXTended Page (and Register) sequence  
Begin EXTended Segment (and Register) sequence  
Null operation  
2
EXTP(R)  
EXTS(R)  
NOP  
2 / 4  
2 / 4  
2
Semiconductor Group  
27  
C167SR  
Special Function Registers Overview  
The following table lists all SFRs which are implemented in the C167SR in alphabetical order.  
Bit-addressable SFRs are marked with the letter “b” in column “Name”. SFRs within the Extended  
SFR-Space (ESFRs) are marked with the letter “E” in column “Physical Address”.  
An SFR can be specified via its individual mnemonic name. Depending on the selected addressing  
mode, an SFR can be accessed via its physical address (using the Data Page Pointers), or via its  
short 8-bit address (without using the Data Page Pointers).  
Special Function Registers Overview  
Name  
Physical 8-Bit  
Address Address  
Description  
Reset  
Value  
ADCIC  
b FF98  
CC  
A/D Converter End of Conversion Interrupt  
Control Register  
0000  
H
H
H
ADCON  
ADDAT  
ADDAT2  
b FFA0  
D0  
A/D Converter Control Register  
A/D Converter Result Register  
A/D Converter 2 Result Register  
Address Select Register 1  
Address Select Register 2  
Address Select Register 3  
Address Select Register 4  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
H
H
H
H
H
H
H
H
H
H
FEA0  
50  
H
H
F0A0 E 50  
H
H
ADDRSEL1 FE18  
0C  
H
H
H
H
H
ADDRSEL2 FE1A  
0D  
H
ADDRSEL3 FE1C  
0E  
0F  
H
H
H
ADDRSEL4 FE1E  
ADEIC  
b FF9A  
CD  
A/D Converter Overrun Error Interrupt Control  
Register  
H
BUSCON0 b FF0C  
86  
Bus Configuration Register 0  
Bus Configuration Register 1  
Bus Configuration Register 2  
Bus Configuration Register 3  
Bus Configuration Register 4  
GPT2 Capture/Reload Register  
CAPCOM Register 0  
0XX0  
H
H
H
BUSCON1 b FF14  
BUSCON2 b FF16  
BUSCON3 b FF18  
8A  
8B  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
8C  
8D  
H
BUSCON4 b FF1A  
H
H
CAPREL  
CC0  
FE4A  
25  
40  
H
H
H
H
FE80  
b FF78  
FE82  
H
CC0IC  
CC1  
BC  
CAPCOM Register 0 Interrupt Control Register  
CAPCOM Register 1  
H
H
H
41  
H
H
CC1IC  
CC2  
b FF7A  
BD  
42  
CAPCOM Register 1 Interrupt Control Register  
CAPCOM Register 2  
H
H
FE84  
H
CC2IC  
b FF7C  
BE  
CAPCOM Register 2 Interrupt Control Register  
H
Semiconductor Group  
28  
C167SR  
Special Function Registers Overview (cont’d)  
Name  
Physical 8-Bit  
Address Address  
Description  
Reset  
Value  
CC3  
FE86  
43  
CAPCOM Register 3  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
CC3IC  
CC4  
b FF7E  
BF  
CAPCOM Register 3 Interrupt Control Register  
CAPCOM Register 4  
H
H
H
H
H
H
H
H
H
FE88  
44  
H
CC4IC  
CC5  
b FF80  
C0  
45  
CAPCOM Register 4 Interrupt Control Register  
CAPCOM Register 5  
FE8A  
H
H
CC5IC  
CC6  
b FF82  
C1  
46  
CAPCOM Register 5 Interrupt Control Register  
CAPCOM Register 6  
H
FE8C  
H
H
CC6IC  
CC7  
b FF84  
C2  
47  
CAPCOM Register 6 Interrupt Control Register  
CAPCOM Register 7  
H
FE8E  
b FF86  
H
H
CC7IC  
CC8  
C3  
48  
CAPCOM Register 7 Interrupt Control Register  
CAPCOM Register 8  
H
FE90  
H
H
H
CC8IC  
CC9  
b FF88  
FE92  
C4  
49  
CAPCOM Register 8 Interrupt Control Register  
CAPCOM Register 9  
H
H
CC9IC  
CC10  
CC10IC  
CC11  
CC11IC  
CC12  
CC12IC  
CC13  
CC13IC  
CC14  
CC14IC  
CC15  
CC15IC  
CC16  
CC16IC  
CC17  
b FF8A  
C5  
CAPCOM Register 9 Interrupt Control Register  
CAPCOM Register 10  
H
H
H
H
FE94  
4A  
C6  
b FF8C  
CAPCOM Register 10 Interrupt Control Register 0000  
CAPCOM Register 11 0000  
CAPCOM Register 11 Interrupt Control Register 0000  
CAPCOM Register 12 0000  
CAPCOM Register 12 Interrupt Control Register 0000  
CAPCOM Register 13 0000  
CAPCOM Register 13 Interrupt Control Register 0000  
CAPCOM Register 14 0000  
CAPCOM Register 14 Interrupt Control Register 0000  
CAPCOM Register 15 0000  
CAPCOM Register 15 Interrupt Control Register 0000  
CAPCOM Register 16 0000  
CAPCOM Register 16 Interrupt Control Register 0000  
H
H
H
H
FE96  
b FF8E  
4B  
C7  
4C  
C8  
4D  
C9  
H
H
H
H
H
H
H
H
H
FE98  
b FF90  
FE9A  
H
b FF92  
H
FE9C  
4E  
CA  
H
H
H
b FF94  
H
H
FE9E  
4F  
H
b FF96  
CB  
30  
H
H
FE60  
H
b F160 E B0  
H
H
FE62  
31  
CAPCOM Register 17  
0000  
H
H
Semiconductor Group  
29  
C167SR  
Special Function Registers Overview (cont’d)  
Name  
Physical 8-Bit  
Address Address  
Description  
Reset  
Value  
CC17IC  
CC18  
b F162 E B1  
CAPCOM Register 17 Interrupt Control Register 0000  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
FE64  
32  
CAPCOM Register 18  
CAPCOM Register 18 Interrupt Control Register 0000  
CAPCOM Register 19 0000  
CAPCOM Register 19 Interrupt Control Register 0000  
CAPCOM Register 20 0000  
CAPCOM Register 20 Interrupt Control Register 0000  
CAPCOM Register 21 0000  
CAPCOM Register 21 Interrupt Control Register 0000  
CAPCOM Register 22 0000  
CAPCOM Register 22 Interrupt Control Register 0000  
CAPCOM Register 23 0000  
CAPCOM Register 23 Interrupt Control Register 0000  
CAPCOM Register 24 0000  
CAPCOM Register 24 Interrupt Control Register 0000  
CAPCOM Register 25 0000  
CAPCOM Register 25 Interrupt Control Register 0000  
CAPCOM Register 26 0000  
CAPCOM Register 26 Interrupt Control Register 0000  
CAPCOM Register 27 0000  
CAPCOM Register 27 Interrupt Control Register 0000  
CAPCOM Register 28 0000  
CAPCOM Register 28 Interrupt Control Register 0000  
CAPCOM Register 29 0000  
CAPCOM Register 29 Interrupt Control Register 0000  
CAPCOM Register 30 0000  
CAPCOM Register 30 Interrupt Control Register 0000  
CAPCOM Register 31 0000  
CAPCOM Register 31 Interrupt Control Register 0000  
0000  
H
CC18IC  
CC19  
b F164 E B2  
H
H
H
FE66  
33  
H
CC19IC  
CC20  
b F166 E B3  
H
H
H
FE68  
34  
H
CC20IC  
CC21  
b F168 E B4  
H
H
H
FE6A  
35  
H
CC21IC  
CC22  
b F16A E B5  
H
H
H
FE6C  
36  
H
CC22IC  
CC23  
b F16C E B6  
H
H
H
FE6E  
37  
H
CC23IC  
CC24  
b F16E E B7  
H
H
H
FE70  
38  
H
CC24IC  
CC25  
b F170 E B8  
H
H
H
FE72  
39  
H
CC25IC  
CC26  
b F172 E B9  
H
H
H
FE74  
3A  
H
CC26IC  
CC27  
b F174 E BA  
H
H
H
FE76  
3B  
H
CC27IC  
CC28  
b F176 E BB  
H
H
FE78  
3C  
H
H
CC28IC  
CC29  
b F178 E BC  
H
H
H
H
H
FE7A  
3D  
H
CC29IC  
CC30  
b F184 E C2  
H
FE7C  
3E  
H
CC30IC  
CC31  
b F18C E C6  
H
H
H
FE7E  
3F  
H
CC31IC  
b F194 E CA  
H H  
Semiconductor Group  
30  
C167SR  
Special Function Registers Overview (cont’d)  
Name  
Physical 8-Bit  
Address Address  
Description  
Reset  
Value  
CCM0  
CCM1  
CCM2  
CCM3  
CCM4  
CCM5  
CCM6  
CCM7  
CP  
b FF52  
b FF54  
b FF56  
b FF58  
b FF22  
b FF24  
b FF26  
b FF28  
A9  
CAPCOM Mode Control Register 0  
CAPCOM Mode Control Register 1  
CAPCOM Mode Control Register 2  
CAPCOM Mode Control Register 3  
CAPCOM Mode Control Register 4  
CAPCOM Mode Control Register 5  
CAPCOM Mode Control Register 6  
CAPCOM Mode Control Register 7  
CPU Context Pointer Register  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
AA  
AB  
H
H
AC  
H
91  
92  
93  
94  
08  
H
H
H
H
H
FE10  
FC00  
H
H
CRIC  
CSP  
b FF6A  
B5  
GPT2 CAPREL Interrupt Control Register  
0000  
H
H
H
H
H
H
H
H
H
FE08  
04  
CPU Code Segment Pointer Register (read only) 0000  
H
DP0L  
DP0H  
DP1L  
DP1H  
DP2  
b F100 E 80  
P0L Direction Control Register  
00  
00  
00  
00  
H
H
H
H
H
b F102 E 81  
P0H Direction Control Register  
H
b F104 E 82  
P1L Direction Control Register  
H
b F106 E 83  
P1H Direction Control Register  
H
b FFC2  
b FFC6  
E1  
Port 2 Direction Control Register  
0000  
0000  
H
H
H
H
H
H
H
H
DP3  
E3  
E5  
E7  
E9  
Port 3 Direction Control Register  
H
DP4  
b FFCA  
b FFCE  
Port 4 Direction Control Register  
00  
00  
00  
00  
H
H
H
H
H
H
H
H
H
H
H
H
DP6  
Port 6 Direction Control Register  
DP7  
b FFD2  
b FFD6  
Port 7 Direction Control Register  
DP8  
EB  
Port 8 Direction Control Register  
H
DPP0  
DPP1  
DPP2  
DPP3  
EXICON  
MDC  
MDH  
MDL  
FE00  
FE02  
FE04  
FE06  
00  
01  
02  
03  
CPU Data Page Pointer 0 Register (10 bits)  
CPU Data Page Pointer 1 Register (10 bits)  
CPU Data Page Pointer 2 Register (10 bits)  
CPU Data Page Pointer 3 Register (10 bits)  
External Interrupt Control Register  
CPU Multiply Divide Control Register  
CPU Multiply Divide Register – High Word  
CPU Multiply Divide Register – Low Word  
0000  
0001  
0002  
0003  
0000  
0000  
0000  
0000  
H
H
H
H
H
H
H
H
H
H
H
H
b F1C0 E E0  
H
H
H
H
H
b FF0E  
87  
06  
07  
H
FE0C  
H
H
FE0E  
Semiconductor Group  
31  
C167SR  
Special Function Registers Overview (cont’d)  
Name  
Physical 8-Bit  
Address Address  
Description  
Reset  
Value  
ODP2  
ODP3  
ODP6  
ODP7  
ODP8  
ONES  
P0L  
b F1C2 E E1  
Port 2 Open Drain Control Register  
Port 3 Open Drain Control Register  
Port 6 Open Drain Control Register  
Port 7 Open Drain Control Register  
Port 8 Open Drain Control Register  
Constant Value 1’s Register (read only)  
Port 0 Low Register (Lower half of PORT0)  
Port 0 High Register (Upper half of PORT0)  
Port 1 Low Register (Lower half of PORT1)  
Port 1 High Register (Upper half of PORT1)  
Port 2 Register  
0000  
0000  
H
H
H
H
H
H
H
b F1C6 E E3  
H
b F1CE E E7  
00  
00  
00  
H
H
H
H
b F1D2 E E9  
H
b F1D6 E EB  
H
H
FF1E  
8F  
FFFF  
H
H
H
H
H
H
H
b FF00  
b FF02  
b FF04  
b FF06  
80  
81  
82  
83  
00  
00  
00  
00  
H
H
H
H
H
H
H
H
P0H  
P1L  
P1H  
P2  
b FFC0  
b FFC4  
b FFC8  
E0  
E2  
E4  
0000  
H
H
H
H
H
H
H
H
P3  
Port 3 Register  
0000  
H
P4  
Port 4 Register (8 bits)  
00  
H
P5  
b FFA2  
D1  
Port 5 Register (read only)  
XXXX  
H
H
H
H
P6  
b FFCC  
E6  
E8  
Port 6 Register (8 bits)  
00  
00  
00  
H
H
H
H
P7  
b FFD0  
b FFD4  
Port 7 Register (8 bits)  
H
P8  
EA  
Port 8 Register (8 bits)  
H
H
PECC0  
PECC1  
PECC2  
PECC3  
PECC4  
PECC5  
PECC6  
PECC7  
PICON  
PP0  
FEC0  
FEC2  
FEC4  
FEC6  
FEC8  
60  
61  
62  
63  
64  
65  
66  
67  
PEC Channel 0 Control Register  
PEC Channel 1 Control Register  
PEC Channel 2 Control Register  
PEC Channel 3 Control Register  
PEC Channel 4 Control Register  
PEC Channel 5 Control Register  
PEC Channel 6 Control Register  
PEC Channel 7 Control Register  
Port Input Threshold Control Register  
PWM Module Period Register 0  
PWM Module Period Register 1  
PWM Module Period Register 2  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
FECA  
H
FECC  
H
H
FECE  
F1C4 E E2  
H
H
F038 E 1C  
H
H
H
H
PP1  
F03A E 1D  
H
PP2  
F03C E 1E  
H
Semiconductor Group  
32  
C167SR  
Special Function Registers Overview (cont’d)  
Name  
Physical 8-Bit  
Address Address  
Description  
Reset  
Value  
PP3  
PSW  
PT0  
PT1  
PT2  
PT3  
PW0  
PW1  
PW2  
PW3  
F03E E 1F  
PWM Module Period Register 3  
CPU Program Status Word  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
b FF10  
88  
H
F030 E 18  
PWM Module Up/Down Counter 0  
PWM Module Up/Down Counter 1  
PWM Module Up/Down Counter 2  
PWM Module Up/Down Counter 3  
PWM Module Pulse Width Register 0  
PWM Module Pulse Width Register 1  
PWM Module Pulse Width Register 2  
PWM Module Pulse Width Register 3  
PWM Module Control Register 0  
PWM Module Control Register 1  
PWM Module Interrupt Control Register  
H
F032 E 19  
H
F034 E 1A  
H
H
H
H
H
F036 E 1B  
H
FE30  
FE32  
FE34  
FE36  
18  
19  
H
H
H
H
H
H
1A  
H
H
H
H
1B  
PWMCON0 b FF30  
PWMCON1 b FF32  
98  
99  
PWMIC  
RP0H  
b F17E E BF  
H H  
b F108 E 84  
System Startup Configuration Register (Rd. only) XX  
H
H
H
S0BG  
FEB4  
5A  
Serial Channel 0 Baud Rate Generator Reload  
Register  
0000  
H
H
H
S0CON  
S0EIC  
b FFB0  
D8  
Serial Channel 0 Control Register  
0000  
H
H
H
H
H
H
b FF70  
B8  
Serial Channel 0 Error Interrupt Control Register 0000  
H
S0RBUF  
FEB2  
59  
Serial Channel 0 Receive Buffer Register  
(read only)  
XX  
H
H
S0RIC  
b FF6E  
B7  
Serial Channel 0 Receive Interrupt Control  
Register  
0000  
H
H
H
S0TBIC  
S0TBUF  
S0TIC  
b F19C E CE  
Serial Channel 0 Transmit Buffer Interrupt Control 0000  
Register  
H
H
H
FEB0  
58  
Serial Channel 0 Transmit Buffer Register  
(write only)  
00  
H
H
H
H
H
b FF6C  
B6  
Serial Channel 0 Transmit Interrupt Control  
Register  
0000  
H
H
SP  
FE12  
09  
CPU System Stack Pointer Register  
SSC Baudrate Register  
FC00  
H
H
SSCBR  
F0B4 E 5A  
0000  
0000  
H
H
H
SSCCON b FFB2  
D9  
SSC Control Register  
H
H
H
Semiconductor Group  
33  
C167SR  
Special Function Registers Overview (cont’d)  
Name  
Physical 8-Bit  
Address Address  
Description  
Reset  
Value  
SSCEIC  
SSCRB  
SSCRIC  
SSCTB  
SSCTIC  
STKOV  
STKUN  
b FF76  
BB  
SSC Error Interrupt Control Register  
SSC Receive Buffer (read only)  
0000  
H
H
H
F0B2 E 59  
XXXX  
H
H
H
b FF74  
BA  
SSC Receive Interrupt Control Register  
SSC Transmit Buffer (write only)  
SSC Transmit Interrupt Control Register  
CPU Stack Overflow Pointer Register  
CPU Stack Underflow Pointer Register  
CPU System Configuration Register  
CAPCOM Timer 0 Register  
0000  
0000  
0000  
H
H
H
F0B0 E 58  
H
H
H
H
b FF72  
B9  
0A  
0B  
H
H
H
H
H
H
FE14  
FA00  
H
H
H
H
FE16  
FC00  
H
1)  
SYSCON b FF12  
89  
28  
0xx0  
H
T0  
FE50  
0000  
H
H
H
T01CON b FF50  
A8  
CAPCOM Timer 0 and Timer 1 Control Register 0000  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
T0IC  
T0REL  
T1  
b FF9C  
CE  
CAPCOM Timer 0 Interrupt Control Register  
CAPCOM Timer 0 Reload Register  
CAPCOM Timer 1 Register  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
H
H
H
H
FE54  
FE52  
2A  
H
29  
H
T1IC  
T1REL  
T2  
b FF9E  
CF  
CAPCOM Timer 1 Interrupt Control Register  
CAPCOM Timer 1 Reload Register  
GPT1 Timer 2 Register  
H
H
H
H
H
H
FE56  
FE40  
2B  
H
20  
H
T2CON  
T2IC  
T3  
b FF40  
b FF60  
A0  
B0  
GPT1 Timer 2 Control Register  
GPT1 Timer 2 Interrupt Control Register  
GPT1 Timer 3 Register  
H
H
H
FE42  
21  
H
H
H
T3CON  
T3IC  
T4  
b FF42  
b FF62  
A1  
GPT1 Timer 3 Control Register  
GPT1 Timer 3 Interrupt Control Register  
GPT1 Timer 4 Register  
H
H
H
B1  
FE44  
22  
H
H
H
T4CON  
T4IC  
T5  
b FF44  
b FF64  
A2  
B2  
GPT1 Timer 4 Control Register  
GPT1 Timer 4 Interrupt Control Register  
GPT2 Timer 5 Register  
H
H
H
FE46  
23  
H
H
H
T5CON  
T5IC  
T6  
b FF46  
b FF66  
A3  
B3  
GPT2 Timer 5 Control Register  
GPT2 Timer 5 Interrupt Control Register  
GPT2 Timer 6 Register  
H
H
H
FE48  
24  
A4  
H
H
T6CON  
b FF48  
GPT2 Timer 6 Control Register  
H
Semiconductor Group  
34  
C167SR  
Special Function Registers Overview (cont’d)  
Name  
Physical 8-Bit  
Address Address  
Description  
Reset  
Value  
T6IC  
T7  
b FF68  
B4  
GPT2 Timer 6 Interrupt Control Register  
CAPCOM Timer 7 Register  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
F050 E 28  
H
T78CON b FF20  
90  
CAPCOM Timer 7 and 8 Control Register  
CAPCOM Timer 7 Interrupt Control Register  
CAPCOM Timer 7 Reload Register  
CAPCOM Timer 8 Register  
H
T7IC  
b F17A E BE  
H
H
T7REL  
T8  
F054 E 2A  
H
H
F052 E 29  
H
H
T8IC  
b F17C E BF  
CAPCOM Timer 8 Interrupt Control Register  
CAPCOM Timer 8 Reload Register  
Trap Flag Register  
H
H
T8REL  
TFR  
F056 E 2B  
H
H
b FFAC  
D6  
H
H
H
H
WDT  
FEAE  
57  
Watchdog Timer Register (read only)  
Watchdog Timer Control Register  
X-Peripheral 0 Interrupt Control Register  
X-Peripheral 1 Interrupt Control Register  
X-Peripheral 2 Interrupt Control Register  
PLL Interrupt Control Register  
H
2)  
WDTCON  
XP0IC  
XP1IC  
XP2IC  
XP3IC  
ZEROS  
FFAE  
D7  
000X  
H
H
H
H
H
H
H
H
H
b F186 E C3  
0000  
0000  
0000  
0000  
0000  
H
b F18E E C7  
H
b F196 E CB  
H
H
H
H
b F19E E CF  
H
b FF1C  
8E  
Constant Value 0’s Register (read only)  
H
1)  
The system configuration is selected during reset.  
Bit WDTR indicates a watchdog timer triggered reset.  
2)  
Note: The Interrupt Control Registers XPnIC are prepared to control interrupt requests from  
integrated X-Bus peripherals. Nodes, where no X-Peripherals are connected, may be used  
to generate software controlled interrupt requests by setting the respective XPnIR bit.  
Semiconductor Group  
35  
C167SR  
Absolute Maximum Ratings  
Ambient temperature under bias (TA):  
SAB-C167SR-LM............................................................................................................0 to + 70 ˚C  
SAF-C167SR-LM....................................................................................................... – 40 to + 85 ˚C  
SAK-C167SR-LM..................................................................................................... – 40 to + 125 ˚C  
Storage temperature (TST)........................................................................................ – 65 to + 150 ˚C  
Voltage on VCC pins with respect to ground (VSS) ..................................................... – 0.5 to + 6.5 V  
Voltage on any pin with respect to ground (VSS).................................................– 0.5 to VCC + 0.5 V  
Input current on any pin during overload condition.................................................. – 10 to + 10 mA  
Absolute sum of all input currents during overload condition.............................................. |100 mA|  
Power dissipation..................................................................................................................... 1.5 W  
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent  
damage to the device. This is a stress rating only and functional operation of the device at  
these or any other conditions above those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for extended  
periods may affect device reliability. During overload conditions (VIN > VCC or VIN < VSS) the  
voltage on pins with respect to ground (VSS) must not exceed the values defined by the  
Absolute Maximum Ratings.  
Parameter Interpretation  
The parameters listed in the following partly represent the characteristics of the C167SR and partly  
its demands on the system. To aid in interpreting the parameters right, when evaluating them for a  
design, they are marked in column “Symbol”:  
CC (Controller Characteristics):  
The logic of the C167SR will provide signals with the respective timing characteristics.  
SR (System Requirement):  
The external system must provide signals with the respective timing characteristics to the C167SR.  
Semiconductor Group  
36  
C167SR  
DC Characteristics  
CC = 5 V ± 10 %;  
TA = 0 to + 70 ˚C  
V
VSS = 0 V;  
for SAB-C167SR-LM  
f
CPU = 20 MHz;  
Reset active  
TA = – 40 to + 85 ˚C for SAF-C167SR-LM  
TA = – 40 to + 125 ˚C for SAK-C167SR-LM  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min.  
max.  
Input low voltage  
(TTL)  
VIL SR – 0.5  
0.2 VCC  
– 0.1  
V
V
V
Input low voltage  
(Special Threshold)  
VILS SR – 0.5  
2.0  
Input high voltage, all except  
RSTIN and XTAL1 (TTL)  
VIH SR 0.2 VCC  
VCC + 0.5  
+ 0.9  
Input high voltage RSTIN  
Input high voltage XTAL1  
VIH1 SR 0.6 VCC  
VIH2 SR 0.7 VCC  
VCC + 0.5  
VCC + 0.5  
VCC + 0.5  
V
V
V
Input high voltage  
(Special Threshold)  
VIHS SR 0.8 VCC  
– 0.2  
Input Hysteresis  
(Special Threshold)  
HYS  
400  
mV  
V
Output low voltage  
(PORT0, PORT1, Port 4, ALE, RD,  
WR, BHE, CLKOUT, RSTOUT)  
VOL CC –  
VOL1 CC –  
0.45  
IOL = 2.4 mA  
Output low voltage  
(all other outputs)  
0.45  
V
V
IOL1 = 1.6 mA  
Output high voltage  
VOH CC 0.9 VCC  
IOH = – 500 µA  
(PORT0, PORT1, Port 4, ALE, RD,  
WR, BHE, CLKOUT, RSTOUT)  
2.4  
IOH = – 2.4 mA  
1)  
Output high voltage  
(all other outputs)  
VOH1 CC 0.9 VCC  
V
V
I
OH = – 250 µA  
2.4  
IOH = – 1.6 mA  
Input leakage current (Port 5)  
Input leakage current (all other)  
Overload current  
IOZ1 CC –  
IOZ2 CC –  
IOV SR –  
±200  
±500  
±5  
nA  
nA  
mA  
kΩ  
µA  
µA  
µA  
µA  
µA  
0.45V < VIN < VCC  
0.45V < VIN < VCC  
5) 8)  
RSTIN pullup resistor  
RRST CC 50  
250  
– 40  
4)  
2)  
Read/Write inactive current  
IRWH  
IRWL  
IALEL  
IALEH  
IP6H  
VOUT = 2.4 V  
VOUT = VOLmax  
VOUT = VOLmax  
VOUT = 2.4 V  
VOUT = 2.4 V  
4)  
3)  
2)  
3)  
2)  
Read/Write active current  
– 500  
4)  
ALE inactive current  
40  
4)  
ALE active current  
500  
4)  
Port 6 inactive current  
– 40  
Semiconductor Group  
37  
C167SR  
Parameter  
Symbol  
Limit Values  
max.  
Unit Test Condition  
min.  
4)  
3)  
Port 6 active current  
IP6L  
– 500  
µA  
µA  
µA  
µA  
pF  
VOUT = VOL1max  
4)  
2)  
PORT0 configuration current  
IP0H  
– 10  
VIN = VIHmin  
3)  
IP0L  
– 100  
VIN = VILmax  
XTAL1 input current  
IIL  
CC –  
± 20  
10  
0 V < VIN < VCC  
5)  
Pin capacitance  
CIO CC –  
f = 1 MHz  
TA = 25 ˚C  
(digital inputs/outputs)  
Power supply current  
ICC  
IID  
20 +  
5 × fCPU  
mA  
mA  
µA  
RSTIN = VIL2  
6)  
fCPU in [MHz]  
Idle mode supply current  
20 +  
2 × fCPU  
RSTIN = VIH1  
fCPU in [MHz]  
6)  
7)  
Power-down mode supply current IPD  
100  
VCC = 5.5 V  
Notes  
1)  
This specification is not valid for outputs which are switched to open drain mode. In this case the respective  
output will float and the voltage results from the external circuitry.  
2)  
3)  
4)  
The maximum current may be drawn while the respective signal line remains inactive.  
The minimum current must be drawn in order to drive the respective signal line active.  
This specification is only valid during Reset, or during Hold- or Adapt-mode. Port 6 pins are only affected, if  
they are used for CS output and the open drain function is not enabled.  
5)  
6)  
Not 100 % tested, guaranteed by design characterization.  
The supply current is a function of the operating frequency. This dependency is illustrated in the figure below.  
These parameters are tested at VCCmax and 20 MHz CPU clock with all outputs disconnected and all inputs at  
VIL or VIH.  
7)  
8)  
This parameter is tested including leakage currents. All inputs (including pins configured as inputs) at 0 V to  
0.1 V or at VCC – 0.1 V to VCC, VREF = 0 V, all outputs (including pins configured as outputs) disconnected.  
Overload conditions occur if the standard operatings conditions are exceeded, ie. the voltage on any pin  
exceeds the specified range (i.e. VOV > VCC + 0.5 V or VOV < VSS – 0.5 V). The absolute sum of input overload  
currents on all port pins may not exceed 50 mA.  
Semiconductor Group  
38  
C167SR  
Figure 8  
Supply/Idle Current as a Function of Operating Frequency  
Semiconductor Group  
39  
C167SR  
A/D Converter Characteristics  
VCC = 5 V ± 10 %;  
VSS = 0 V  
TA = 0 to + 70 ˚C  
for SAB-C167SR-LM  
TA = – 40 to + 85 ˚C for SAF-C167SR-LM  
TA = – 40 to + 125 ˚C for SAK-C167SR-LM  
4.0 V VAREF VCC + 0.1 V; VSS – 0.1 V VAGND VSS + 0.2 V  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min.  
max.  
VAREF  
2 tSC  
1)  
Analog input voltage range  
Sample time  
VAIN SR VAGND  
V
2) 4)  
3) 4)  
tS  
tC  
CC –  
CC –  
Conversion time  
14 tCC +  
tS + 4TCL  
5)  
Total unadjusted error  
TUE CC –  
± 2  
LSB  
6) 7)  
tCC in [ns]  
Internal resistance of reference  
voltage source  
RAREF SR –  
tCC / 165 kΩ  
– 0.25  
2) 7)  
tS in [ns]  
Internal resistance of analog  
source  
RASRC SR –  
tS / 330  
– 0.25  
kΩ  
7)  
ADC input capacitance  
CAIN CC –  
33  
pF  
Sample time and conversion time of the C167SR’s ADC are programmable. The table below should  
be used to calculate the above timings.  
ADCON.15|14 Conversion Clock tCC  
(ADCTC)  
ADCON.13|12 Sample Clock tSC  
(ADSTC)  
00  
01  
10  
11  
TCL × 24  
00  
01  
10  
11  
tCC  
Reserved, do not use  
TCL × 96  
t
t
t
CC × 2  
CC × 4  
CC × 8  
TCL × 48  
Semiconductor Group  
40  
C167SR  
Notes  
1)  
VAIN may exceed VAGND or VAREF up to the absolute maximum ratings. However, the conversion result in these  
cases will be X000H or X3FFH, respectively.  
2)  
3)  
During the sample time the input capacitance CI can be charged/discharged by the external source. The  
internal resistance of the analog source must allow the capacitance to reach its final voltage level within tS.  
After the end of the sample time tS, changes of the analog input voltage have no effect on the conversion result.  
Values for the sample clock tSC depend on programming and can be taken from the table above.  
This parameter includes the sample time tS, the time for determining the digital result and the time to load the  
result register with the conversion result.  
Values for the conversion clock tCC depend on programming and can be taken from the table above.  
4)  
5)  
This parameter depends on the ADC control logic. It is not a real maximum value, but rather a fixum.  
TUE is tested at VAREF = 5.0 V, VAGND = 0 V, VCC = 4.9 V. It is guaranteed by design characterization for all other  
voltages within the defined voltage range.  
The specified TUE is guaranteed only if an overload condition (see IOV specification) occurs on maximum 2 not  
selected analog input pins and the absolute sum of input overload currents on all analog input pins does not  
exceed 10 mA.  
During the reset calibration sequence the maximum TUE may be ± 4 LSB.  
6)  
7)  
During the conversion the ADC’s capacitance must be repeatedly charged or discharged. The internal  
resistance of the reference voltage source must allow the capacitance to reach its respective voltage level  
within tCC. The maximum internal resistance results from the programmed conversion timing.  
Not 100 % tested, guaranteed by design characterization.  
Semiconductor Group  
41  
C167SR  
Testing Waveforms  
AC inputs during testing are driven at 2.4 V for a logic ‘1’ and 0.4 V for a logic ‘0’.  
Timing measurements are made at VIH min for a logic ‘1’ and VIL max for a logic ‘0’.  
Figure 9  
Input Output Waveforms  
For timing purposes a port pin is no longer floating when a 100 mV change from load  
voltageoccurs,butbeginstofloatwhena100mVchangefromtheloadedVOH/VOL leveloccurs  
(IOH/IOL = 20 mA).  
Figure 10  
Float Waveforms  
Semiconductor Group  
42  
C167SR  
AC Characteristics  
Definition of Internal Timing  
The internal operation of the C167SR is controlled by the internal CPU clock fCPU. Both edges of the  
CPU clock can trigger internal (e.g. pipeline) or external (e.g. bus cycles) operations.  
The specification of the external timing (AC Characteristics) therefore depends on the time between  
two consecutive edges of the CPU clock, called “TCL” (see figure below).  
Phase Locked Loop Operation  
f
XTAL  
CPU  
f
TCLTCL  
TCLTCL  
Direct Clock Drive  
f
XTAL  
CPU  
f
Figure 11  
Generation Mechanisms for the CPU Clock  
The CPU clock signal can be generated via different mechanisms. The duration of TCLs and their  
variation (and also the derived external timing) depends on the used mechanism to generate fCPU  
.
This influence must be regarded when calculating the timings for the C167SR.  
Direct Drive  
When pin P0.15 (P0H.7) is low (‘0’) during reset the on-chip phase locked loop is disabled and the  
CPU clock is directly driven from the oscillator with the input clock signal.  
The frequency of fCPU directly follows the frequency of fXTAL so the high and low time of fCPU (i.e. the  
duration of an individual TCL) is defined by the duty cycle of the input clock fXTAL  
.
The timings listed below that refer to TCLs therefore must be calculated using the minimum TCL  
that is possible under the respective circumstances. This minimum value can be calculated via the  
following formula:  
TCLmin = 1/fXTAL × DCmin  
(DC = duty cycle)  
For two consecutive TCLs the deviation caused by the duty cycle of fXTAL is compensated so the  
duration of 2TCL is always 1/fXTAL. The minimum value TCLmin therefore has to be used only once for  
timings that require an odd number of TCLs (1,3,...). Timings that require an even number of TCLs  
(2,4,...) may use the formula 2TCL = 1/fXTAL  
.
Note: The address float timings in Multiplexed bus mode (t11 and t45) use the maximum duration of  
TCL (TCLmax = 1/fXTAL × DCmax) instead of TCLmin.  
Semiconductor Group  
43  
C167SR  
Phase Locked Loop  
When pin P0.15 (P0H.7) is high (‘1’) during reset the on-chip phase locked loop is enabled and  
provides the CPU clock. The PLL multiplies the input frequency by 4 (i.e. fCPU = fXTAL × 4). With every  
fourth transition of fXTAL the PLL circuit synchronizes the CPU clock to the input clock. This  
synchronization is done smoothely, i.e. the CPU clock frequency does not change abruptly.  
Due to this adaptation to the input clock the frequency of fCPU is constantly adjusted so it is locked  
to fXTAL. The slight variation causes a jitter of fCPU which also effects the duration of individual TCLs.  
The timings listed in the AC Characteristics that refer to TCLs therefore must be calculated using the  
minimum TCL that is possible under the respective circumstances.  
The actual minimum value for TCL depends on the jitter of the PLL. As the PLL is constantly  
adjusting its output frequency so it corresponds to the applied input frequency (crystal or oscillator)  
the relative deviation for periods of more than one TCL is lower than for one single TCL (see formula  
and figure below).  
For a period of N × TCL the minimum value is computed using the corresponding deviation D :  
N
TCLmin = TCLNOM × (1 – D / 100)  
D = ± (4 – N /15) [%],  
N
N
where N = number of consecutive TCLs  
and 1 N 40.  
So for a period of 3 TCLs (i.e. N = 3): D = 4 – 3/15 = 3.8 %,  
3
and TCLmin = TCLNOM × (1 – 3.8 / 100) = TCLNOM × 0.962 (24.1 nsec @ fCPU = 20 MHz).  
This is especially important for bus cycles using waitstates and eg. for the operation of timers, serial  
interfaces, etc. For all slower operations and longer periods (e.g. pulse train generation or  
measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is neglectible.  
Figure 12  
Approximated Maximum PLL Jitter  
Semiconductor Group  
44  
C167SR  
AC Characteristics  
External Clock Drive XTAL1  
VCC = 5 V ± 10 %;  
VSS = 0 V  
TA = 0 to + 70 ˚C  
for SAB-C167SR-LM  
TA = – 40 to + 85 ˚C for SAF-C167SR-LM  
TA = – 40 to + 125 ˚C for SAK-C167SR-LM  
Parameter  
Symbol  
Direct Drive 1:1  
PLL 1:4  
max.  
Unit  
min.  
tOSC SR 50  
max.  
1000  
min.  
200  
10  
10  
Oscillator period  
High time  
333  
ns  
ns  
ns  
ns  
ns  
1) 2)  
t1  
t2  
t3  
t4  
SR 23  
SR 23  
SR –  
SR –  
1) 2)  
Low time  
2)  
2)  
Rise time  
10  
10  
10  
2)  
2)  
Fall time  
10  
1)  
For temperatures above TA = +85 ˚C the minimum value for t1 and t2 is 25 ns.  
2)  
The clock input signal must reach the defined levels VIL and VIH2  
.
Figure 13  
External Clock Drive XTAL1  
Semiconductor Group  
45  
C167SR  
Memory Cycle Variables  
The timing tables below use three variables which are derived from the BUSCONx registers and  
represent the special characteristics of the programmed memory cycle. The following table  
describes, how these variables are to be computed.  
Description  
Symbol Values  
ALE Extension  
tA  
tC  
tF  
TCL × <ALECTL>  
Memory Cycle Time Waitstates  
Memory Tristate Time  
2TCL × (15 – <MCTC>)  
2TCL × (1 – <MTTC>)  
AC Characteristics  
Multiplexed Bus  
V
CC = 5 V ± 10 %;  
VSS = 0 V  
for SAB-C167SR-LM  
TA = 0 to + 70 ˚C  
TA = – 40 to + 85 ˚C for SAF-C167SR-LM  
TA = – 40 to + 125 ˚C for SAK-C167SR-LM  
CL (for PORT0, PORT1, Port 4, ALE, RD, WR, BHE, CLKOUT) = 100 pF  
CL (for Port 6, CS) = 100 pF  
ALE cycle time = 6 TCL + 2tA + tC + tF (150 ns at 20-MHz CPU clock without waitstates)  
Parameter  
Symbol  
Max. CPU Clock  
= 20 MHz  
Variable CPU Clock  
1/2TCL = 1 to 20 MHz  
Unit  
min.  
CC 15 + tA  
max.  
min.  
max.  
ALE high time  
t5  
t6  
TCL – 10 + tA  
TCL – 15 + tA  
TCL – 10 + tA  
TCL – 10 + tA  
ns  
ns  
ns  
ns  
CC  
CC  
CC  
Address setup to ALE  
Address hold after ALE  
10 + tA  
15 + tA  
15 + tA  
t7  
t8  
ALE falling edge to RD,  
WR (with RW-delay)  
t9  
CC  
ALE falling edge to RD,  
WR (no RW-delay)  
– 10 + tA  
– 10 + tA  
ns  
ns  
ns  
ns  
ns  
t10 CC  
t11 CC  
Address float after RD,  
WR (with RW-delay)  
5
5
Address float after RD,  
WR (no RW-delay)  
30  
TCL + 5  
RD, WR low time  
(with RW-delay)  
t12 CC 40 + tC  
t13 CC 65 + tC  
2TCL – 10  
+ tC  
RD, WR low time  
(no RW-delay)  
3TCL – 10  
+ tC  
Semiconductor Group  
46  
C167SR  
Parameter  
Symbol  
Max. CPU Clock  
= 20 MHz  
Variable CPU Clock  
1/2TCL = 1 to 20 MHz  
Unit  
min.  
max.  
min.  
max.  
RD to valid data in  
(with RW-delay)  
t14 SR  
t15 SR  
t16 SR  
t17 SR  
t18 SR  
t19 SR  
0
30 + tC  
0
2TCL – 20  
+ tC  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RD to valid data in  
(no RW-delay)  
55 + tC  
3TCL – 20  
+ tC  
ALE low to valid data in  
55  
+ tA + tC  
3TCL – 20  
+ tA + tC  
Address to valid data in  
70  
+ 2tA + tC  
4TCL – 30  
+ 2tA + tC  
Data hold after RD  
rising edge  
Data float after RD  
Data valid to WR  
Data hold after WR  
35 + tF  
2TCL – 15  
+ tF  
t22 SR 25 + tC  
t23 CC 35 + tF  
2TCL – 25  
+ tC  
2TCL – 15  
+ tF  
ALE rising edge after RD, t25 CC 35 + tF  
WR  
2TCL – 15  
+ tF  
Address hold after RD,  
WR  
t27 CC 35 + tF  
t38 CC – 5 – tA  
2TCL – 15  
+ tF  
ALE falling edge to CS  
CS low to Valid Data In  
10 – tA  
– 5 – tA  
10 – tA  
ns  
ns  
t39 SR  
55  
3TCL – 20  
+ tC + 2tA  
+ tC + 2tA  
CS hold after RD, WR  
t40 CC 60 + tF  
t42 CC 20 + tA  
t43 CC – 5 + tA  
3TCL – 15  
+ tF  
ns  
ns  
ns  
ns  
ns  
ns  
ALE fall. edge to RdCS,  
WrCS (with RW delay)  
TCL – 5  
+ tA  
ALE fall. edge to RdCS,  
WrCS (no RW delay)  
– 5  
+ tA  
Address float after RdCS, t44 CC  
WrCS (with RW delay)  
0
0
Address float after RdCS, t45 CC  
WrCS (no RW delay)  
25  
TCL  
RdCS to Valid Data In  
(with RW delay)  
t46 SR  
25 + tC  
2TCL – 25  
+ tC  
Semiconductor Group  
47  
C167SR  
Parameter  
Symbol  
Max. CPU Clock  
= 20 MHz  
Variable CPU Clock  
1/2TCL = 1 to 20 MHz  
Unit  
min.  
max.  
min.  
max.  
RdCS to Valid Data In  
(no RW delay)  
t47 SR  
50 + tC  
3TCL – 25  
+ tC  
ns  
ns  
ns  
ns  
RdCS, WrCS Low Time  
(with RW delay)  
t48 CC 40 + tC  
t49 CC 65 + tC  
t50 CC 35 + tC  
2TCL – 10  
+ tC  
RdCS, WrCS Low Time  
(no RW delay)  
3TCL – 10  
+ tC  
Data valid to WrCS  
2TCL – 15  
+ tC  
Data hold after RdCS  
Data float after RdCS  
t51 SR  
t52 SR  
0
0
ns  
ns  
30 + tF  
2TCL – 20  
+ tF  
Address hold after  
RdCS, WrCS  
t54 CC 30 + tF  
t56 CC 30 + tF  
2TCL – 20  
+ tF  
ns  
ns  
Data hold after WrCS  
2TCL – 20  
+ tF  
Semiconductor Group  
48  
C167SR  
t5  
t16  
t25  
ALE  
CSx  
t38  
t39  
t40  
t17  
t27  
A23-A16  
(A15-A8)  
BHE  
Address  
t6  
t7  
t54  
t19  
t18  
Read Cycle  
BUS  
Address  
t8  
Data In  
t10  
t14  
t12  
t46  
t48  
RD  
t51  
t44  
t42  
t52  
RdCSx  
Write Cycle  
t23  
BUS  
Address  
t8  
Data Out  
t56  
t10  
t22  
WR,  
WRL, WRH  
t12  
t44  
t42  
t50  
WrCSx  
t48  
Figure 14-1  
External Memory Cycle: Multiplexed Bus, With Read/Write Delay, Normal ALE  
Semiconductor Group 49  
C167SR  
t5  
t16  
t25  
ALE  
CSx  
t38  
t39  
t40  
t17  
t27  
A23-A16  
(A15-A8)  
BHE  
Address  
t6  
t7  
t54  
t19  
t18  
Read Cycle  
BUS  
Address  
Data In  
t10  
t8  
t14  
t12  
t46  
t48  
RD  
t51  
t44  
t42  
t52  
RdCSx  
Write Cycle  
t23  
BUS  
Address  
Data Out  
t56  
t10  
t8  
t22  
WR,  
WRL, WRH  
t12  
t44  
t42  
t50  
WrCSx  
t48  
Figure 14-2  
External Memory Cycle: Multiplexed Bus, With Read/Write Delay, Extended ALE  
Semiconductor Group 50  
C167SR  
t5  
t16  
t25  
ALE  
CSx  
t38  
t39  
t40  
t17  
t27  
A23-A16  
(A15-A8)  
BHE  
Address  
t6  
t7  
t54  
t19  
t18  
Read Cycle  
BUS  
Address  
t9  
Data In  
t11  
t15  
t13  
t47  
t49  
RD  
t51  
t43  
t45  
t52  
RdCSx  
Write Cycle  
t23  
BUS  
Address  
t9  
Data Out  
t56  
t11  
t22  
WR,  
WRL, WRH  
t13  
t50  
t43  
t45  
WrCSx  
t49  
Figure 14-3  
External Memory Cycle: Multiplexed Bus, No Read/Write Delay, Normal ALE  
Semiconductor Group 51  
C167SR  
t5  
t16  
t25  
ALE  
CSx  
t38  
t39  
t40  
t17  
t27  
A23-A16  
(A15-A8)  
BHE  
Address  
t6  
t7  
t54  
t19  
t18  
Read Cycle  
BUS  
Address  
t9  
Data In  
t11  
t15  
t13  
t47  
t49  
RD  
t51  
t43  
t45  
t52  
RdCSx  
Write Cycle  
t23  
BUS  
Address  
t9  
Data Out  
t56  
t11  
t22  
WR,  
WRL, WRH  
t13  
t43  
t45  
t50  
WrCSx  
t49  
Figure 14-4  
External Memory Cycle: Multiplexed Bus, No Read/Write Delay, Extended ALE  
Semiconductor Group 52  
C167SR  
AC Characteristics  
Demultiplexed Bus  
VCC = 5 V ± 10 %;  
VSS = 0 V  
TA = 0 to + 70 ˚C  
for SAB-C167SR-LM  
TA = – 40 to + 85 ˚C for SAF-C167SR-LM  
TA = – 40 to + 125 ˚C for SAK-C167SR-LM  
CL (for PORT0, PORT1, Port 4, ALE, RD, WR, BHE, CLKOUT) = 100 pF  
CL (for Port 6, CS) = 100 pF  
ALE cycle time = 4 TCL + 2tA + tC + tF (100 ns at 20-MHz CPU clock without waitstates)  
Parameter  
Symbol  
Max. CPU Clock  
= 20 MHz  
Variable CPU Clock  
1/2TCL = 1 to 20 MHz  
Unit  
min.  
CC 15 + tA  
max.  
min.  
max.  
ALE high time  
t5  
t6  
TCL – 10 + tA  
TCL – 15 + tA  
ns  
ns  
ns  
CC  
CC  
Address setup to ALE  
10 + tA  
15 + tA  
t8  
ALE falling edge to RD,  
WR (with RW-delay)  
TCL – 10  
+ tA  
t9  
CC  
ALE falling edge to RD,  
WR (no RW-delay)  
– 10 + tA  
– 10  
+ tA  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RD, WR low time  
(with RW-delay)  
t12 CC 40 + tC  
t13 CC 65 + tC  
2TCL – 10  
+ tC  
RD, WR low time  
(no RW-delay)  
3TCL – 10  
+ tC  
RD to valid data in  
(with RW-delay)  
t14 SR  
t15 SR  
t16 SR  
t17 SR  
t18 SR  
0
30 + tC  
55 + tC  
0
2TCL – 20  
+ tC  
RD to valid data in  
(no RW-delay)  
3TCL – 20  
+ tC  
ALE low to valid data in  
55  
+ tA + tC  
3TCL – 20  
+ tA + tC  
Address to valid data in  
70  
+ 2tA + tC  
4TCL – 30  
+ 2tA + tC  
Data hold after RD  
rising edge  
Data float after RD rising t20 SR  
35 + tF  
2TCL – 15  
+ 2tA + tF  
1)  
1)  
edge (with RW-delay )  
Data float after RD rising t21 SR  
15 + tF  
TCL – 10  
+ 2tA + tF  
1)  
1)  
edge (no RW-delay )  
Data valid to WR  
t22 CC 25 + tC  
t24 CC 15 + tF  
2TCL – 25  
+ tC  
Data hold after WR  
TCL – 10 + tF  
Semiconductor Group  
53  
C167SR  
Parameter  
Symbol  
Max. CPU Clock  
= 20 MHz  
Variable CPU Clock  
1/2TCL = 1 to 20 MHz  
Unit  
min.  
max.  
min.  
max.  
ALE rising edge after RD, t26 CC – 10 + tF  
WR  
– 10  
+ tF  
ns  
ns  
Address hold after RD,  
WR  
t28 CC 0 + tF  
0
+ tF  
ALE falling edge to CS  
CS low to Valid Data In  
t38 CC – 5 – tA  
10 – tA  
– 5 – tA  
10 – tA  
ns  
ns  
t39 SR  
55  
3TCL – 20  
+ tC + 2tA  
+ tC + 2tA  
CS hold after RD, WR  
t41 CC 10 + tF  
t42 CC 20 + tA  
TCL – 15  
+ tF  
ns  
ns  
ALE falling edge to  
RdCS, WrCS (with RW-  
delay)  
TCL – 5  
+ tA  
ALE falling edge to  
RdCS, WrCS (no RW-  
delay)  
t43 CC – 5 + tA  
– 5  
+ tA  
ns  
RdCS to Valid Data In  
(with RW-delay)  
t46 SR  
t47 SR  
25 + tC  
2TCL – 25  
+ tC  
ns  
ns  
ns  
ns  
ns  
RdCS to Valid Data In  
(no RW-delay)  
50 + tC  
3TCL – 25  
+ tC  
RdCS, WrCS Low Time  
(with RW-delay)  
t48 CC 40 + tC  
t49 CC 65 + tC  
t50 CC 35 + tC  
2TCL – 10  
+ tC  
RdCS, WrCS Low Time  
(no RW-delay)  
3TCL – 10  
+ tC  
Data valid to WrCS  
2TCL – 15  
+ tC  
Data hold after RdCS  
t51 SR  
t53 SR  
0
0
ns  
ns  
Data float after RdCS  
(with RW-delay)  
30 + tF  
2TCL – 20  
+ tF  
Data float after RdCS  
(no RW-delay)  
t68 SR  
5 + tF  
TCL – 20  
+ tF  
ns  
ns  
ns  
Address hold after  
RdCS, WrCS  
t55 CC – 10 + tF  
t57 CC 10 + tF  
– 10  
+ tF  
Data hold after WrCS  
TCL – 15  
+ tF  
1)  
RW-delay and tA refer to the next following bus cycle.  
Semiconductor Group  
54  
C167SR  
t5  
t16  
t26  
ALE  
CSx  
t38  
t39  
t41  
t17  
t28  
A23-A16  
A15-A0  
BHE  
Address  
t6  
t55  
t20  
Read Cycle  
BUS  
(D15-D8)  
D7-D0  
t18  
Data In  
t8  
t14  
RD  
t12  
t46  
t48  
t51  
t42  
t53  
RdCSx  
Write Cycle  
BUS  
(D15-D8)  
D7-D0  
t24  
Data Out  
t57  
t8  
t22  
WR,  
WRL, WRH  
t12  
t42  
t50  
WrCSx  
t48  
Figure 15-1  
External Memory Cycle: Demultiplexed Bus, With Read/Write Delay, Normal ALE  
Semiconductor Group 55  
C167SR  
t5  
t16  
t39  
t17  
t26  
ALE  
CSx  
t38  
t41  
t28  
A23-A16  
A15-A0  
BHE  
Address  
t6  
t55  
t20  
t18  
Read Cycle  
BUS  
(D15-D8)  
D7-D0  
Data In  
t8  
t14  
t12  
t46  
t48  
RD  
t51  
t42  
t53  
RdCSx  
Write Cycle  
BUS  
(D15-D8)  
D7-D0  
t24  
Data Out  
t57  
t8  
t22  
WR,  
WRL, WRH  
t12  
t42  
t50  
WrCSx  
t48  
Figure 15-2  
External Memory Cycle: Demultiplexed Bus, With Read/Write Delay, Extended ALE  
Semiconductor Group 56  
C167SR  
t5  
t16  
t26  
ALE  
CSx  
t38  
t39  
t41  
t17  
t28  
A23-A16  
A15-A0  
BHE  
Address  
t6  
t55  
t21  
Read Cycle  
BUS  
(D15-D8)  
D7-D0  
t18  
Data In  
t9  
t15  
t13  
t47  
t49  
RD  
t51  
t43  
t68  
RdCSx  
Write Cycle  
BUS  
(D15-D8)  
D7-D0  
t24  
Data Out  
t57  
t9  
t22  
WR,  
WRL, WRH  
t13  
t50  
t43  
WrCSx  
t49  
Figure 15-3  
External Memory Cycle: Demultiplexed Bus, No Read/Write Delay, Normal ALE  
Semiconductor Group 57  
C167SR  
t5  
t16  
t39  
t17  
t26  
ALE  
CSx  
t38  
t41  
t28  
A23-A16  
A15-A0  
BHE  
Address  
t6  
t55  
t21  
t18  
Read Cycle  
BUS  
(D15-D8)  
D7-D0  
Data In  
t9  
t15  
t13  
t47  
t49  
RD  
t51  
t43  
t68  
RdCSx  
Write Cycle  
BUS  
(D15-D8)  
D7-D0  
t24  
Data Out  
t57  
t9  
t22  
WR,  
WRL, WRH  
t13  
t43  
t50  
WrCSx  
t49  
Figure 15-4  
External Memory Cycle: Demultiplexed Bus, No Read/Write Delay, Extended ALE  
Semiconductor Group 58  
C167SR  
AC Characteristics  
CLKOUT and READY  
VCC = 5 V ± 10 %;  
VSS = 0 V  
TA = 0 to + 70 ˚C  
for SAB-C167SR-LM  
TA = – 40 to + 85 ˚C for SAF-C167SR-LM  
TA = – 40 to + 125 ˚C for SAK-C167SR-LM  
CL (for PORT0, PORT1, Port 4, ALE, RD, WR, BHE, CLKOUT) = 100 pF  
CL (for Port 6, CS) = 100 pF  
Parameter  
Symbol  
Max. CPU Clock  
= 20 MHz  
Variable CPU Clock  
1/2TCL = 1 to 20 MHz  
Unit  
min.  
max.  
min.  
max.  
CLKOUT cycle time  
CLKOUT high time  
CLKOUT low time  
CLKOUT rise time  
CLKOUT fall time  
t29 CC 50  
50  
2TCL  
TCL – 5  
TCL – 10  
2TCL  
ns  
ns  
ns  
ns  
ns  
ns  
t30 CC  
t31 CC  
20  
15  
t32 CC  
t33 CC  
5
5
5
5
CLKOUT rising edge to  
ALE falling edge  
t34 CC 0 + tA  
10 + tA  
0 + tA  
10 + tA  
Synchronous READY  
setup time to CLKOUT  
t35 SR 15  
0
15  
ns  
ns  
ns  
ns  
ns  
ns  
Synchronous READY  
hold time after CLKOUT  
t36 SR  
0
0
Asynchronous READY  
low time  
t37 SR 65  
2TCL + 15  
t58 SR  
t59 SR  
t60 SR  
Asynchronous READY  
15  
0
15  
0
1)  
setup time  
Asynchronous READY  
hold time 1)  
Async. READY hold time  
after RD, WR high  
(Demultiplexed Bus)2)  
0
0
TCL – 25  
+ 2tA + tF  
+ 2tA + tF  
2)  
2)  
Notes  
1)  
These timings are given for test purposes only, in order to assure recognition at a specific clock edge.  
2)  
Demultiplexed bus is the worst case. For multiplexed bus 2TCL are to be added to the maximum values. This  
adds even more time for deactivating READY.  
The 2tA refer to the next following bus cycle.  
Semiconductor Group  
59  
C167SR  
READY  
waitstate  
6)  
1)  
MUX/Tristate  
Running cycle  
t32  
t33  
CLKOUT  
ALE  
t30  
t34  
t29  
t31  
7)  
2)  
Command  
RD, WR  
t35  
t36  
t35  
t36  
Sync  
READY  
3)  
3)  
4)  
t58  
t59  
t58  
t59  
t60  
Async  
3)  
3)  
READY  
t37  
5)  
see 6)  
Figure 16  
CLKOUT and READY  
Notes  
1)  
Cycle as programmed, including MCTC waitstates (Example shows 0 MCTC WS).  
The leading edge of the respective command depends on RW-delay.  
2)  
3)  
READY sampled HIGH at this sampling point generates a READY controlled waitstate,  
READY sampled LOW at this sampling point terminates the currently running bus cycle.  
4)  
5)  
READY may be deactivated in response to the trailing (rising) edge of the corresponding command (RD or  
WR).  
If the Asynchronous READY signal does not fulfill the indicated setup and hold times with respect to CLKOUT  
(eg. because CLKOUT is not enabled), it must fulfill t37 in order to be safely synchronized. This is guaranteed,  
if READY is removed in reponse to the command (see Note 4)).  
6)  
7)  
Multiplexed bus modes have a MUX waitstate added after a bus cycle, and an additional MTTC waitstate may  
be inserted here.  
For a multiplexed bus with MTTC waitstate this delay is 2 CLKOUT cycles, for a demultiplexed bus without  
MTTC waitstate this delay is zero.  
The next external bus cycle may start here.  
Semiconductor Group  
60  
C167SR  
AC Characteristics  
External Bus Arbitration  
VCC = 5 V ± 10 %;  
VSS = 0 V  
TA = 0 to + 70 ˚C  
for SAB-C167SR-LM  
TA = – 40 to + 85 ˚C for SAF-C167SR-LM  
TA = – 40 to + 125 ˚C for SAK-C167SR-LM  
CL (for PORT0, PORT1, Port 4, ALE, RD, WR, BHE, CLKOUT) = 100 pF  
CL (for Port 6, CS) = 100 pF  
Parameter  
Symbol  
Max. CPU Clock  
= 20 MHz  
Variable CPU Clock  
1/2TCL = 1 to 20 MHz  
Unit  
min.  
max.  
min.  
max.  
HOLD input setup time  
to CLKOUT  
t61 SR 20  
20  
ns  
ns  
ns  
CLKOUT to HLDA high  
or BREQ low delay  
t62 CC  
t63 CC  
20  
20  
20  
20  
CLKOUT to HLDA low  
or BREQ high delay  
CSx release  
t64 CC  
t65 CC  
20  
25  
20  
25  
20  
25  
20  
25  
ns  
ns  
ns  
ns  
CSx drive  
– 5  
– 5  
t66 CC  
t67 CC  
Other signals release  
Other signals drive  
– 5  
– 5  
Semiconductor Group  
61  
C167SR  
CLKOUT  
HOLD  
t61  
t63  
HLDA  
1)  
t62  
2)  
BREQ  
t64  
3)  
CSx  
(On P6.x)  
t66  
Other  
Signals  
1)  
Figure 17  
External Bus Arbitration, Releasing the Bus  
Notes  
1)  
The C167SR will complete the currently running bus cycle before granting bus access.  
This is the first possibility for BREQ to get active.  
2)  
3)  
The CS outputs will be resistive high (pullup) after t64.  
Semiconductor Group  
62  
C167SR  
2)  
CLKOUT  
HOLD  
t61  
t62  
HLDA  
t62  
t62  
t63  
1)  
BREQ  
t65  
CSx  
(On P6.x)  
t67  
Other  
Signals  
Figure 18  
External Bus Arbitration, (Regaining the Bus)  
Notes  
1)  
This is the last chance for BREQ to trigger the indicated regain-sequence.  
Even if BREQ is activated earlier, the regain-sequence is initiated by HOLD going high.  
Please note that HOLD may also be deactivated without the C167SR requesting the bus.  
2)  
The next C167SR driven bus cycle may start here.  
Semiconductor Group  
63  

相关型号:

C167SR-LM

16-Bi t Single-Chip Microcont roller
INFINEON

C167SRLMHABXUMA1

Microcontroller, 16-Bit, 25MHz, CMOS, PQFP144, PLASTIC, MQFP-144
INFINEON

C167SRLMHAKXQLA2

Microcontroller, 16-Bit, 25MHz, CMOS, PQFP144, MQFP-144
INFINEON

C167SRLMHAKXUMA2

Microcontroller, 16-Bit, 25MHz, CMOS, PQFP144, MQFP-144
INFINEON

C168

TRANSISTOR | BJT | NPN | 7V V(BR)CEO | 3A I(C) | TO-92
ETC

C16844-000

PolySwitch Resettable Devices
MACOM

C169

TRANSISTOR | BJT | NPN | 9V V(BR)CEO | 3A I(C) | TO-92
ETC

C16A50Z4

Surface Mount Termination 16 Watts, 50ヘ
ANAREN

C16B100Z1A

Surface Mount Termination 16 Watts, 100W
ANAREN

C16B50Z1A

Surface Mount Termination 16 Watts, 50W
ANAREN

C16C20

HMI - Human-Machine Interface: Consolets
ETC

C16C24

HMI - Human-Machine Interface: Consolets
ETC