C167CS-L [INFINEON]

16-Bit Single-Chip Microcontroller; 16位单芯片微控制器
C167CS-L
型号: C167CS-L
厂家: Infineon    Infineon
描述:

16-Bit Single-Chip Microcontroller
16位单芯片微控制器

微控制器
文件: 总80页 (文件大小:1105K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet, V2.0, June 2000  
C167CS-4R  
C167CS-L  
16-Bit Single-Chip Microcontroller  
Microcontrollers  
N e v e r s t o p t h i n k i n g .  
Edition 2000-06  
Published by Infineon Technologies AG,  
St.-Martin-Strasse 53,  
D-81541 München, Germany  
© Infineon Technologies AG 2000.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as warranted  
characteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding  
circuits, descriptions and charts stated herein.  
Infineon Technologies is an approved CECC manufacturer.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address  
list).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
Data Sheet, V2.0, June 2000  
C167CS-4R  
C167CS-L  
16-Bit Single-Chip Microcontroller  
Microcontrollers  
N e v e r s t o p t h i n k i n g .  
C167CS  
Revision History:  
2000-06  
V2.0  
Previous Version:  
1999-06  
1999-03  
(Advance Information)  
Page  
---  
Subjects (major changes since last revision)  
Flash descriptions removed  
Derivative table added  
2
9
Open drain for all P4 pins  
RSTIN note added  
12  
14  
Block diagram updated  
17  
Note corrected  
27, 28  
34  
GPT block diagrams updated  
OWD description improved  
Several markings corrected, RSTCON added  
CL adapted  
38ff  
49  
50  
Testcondition for hysteresis added  
50  
VOL specification for RSTIN in bidirectional reset mode added  
51  
Inactive/active current specification for READY added  
Separate table for power consumption  
Description of clock configuration improved  
Input clock specification improved  
52  
55  
59  
60  
Reset calibration time specified, definition of VAREF improved  
Clock related timing introduced  
63ff  
74  
XRAM access timing added  
Controller Area Network (CAN): License of Robert Bosch GmbH  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
mcdocu.comments@infineon.com  
16-Bit Single-Chip Microcontroller  
C166 Family  
C167CS  
C167CS-4R, C167CS-L  
• High Performance 16-bit CPU with 4-Stage Pipeline  
– 80/60 ns Instruction Cycle Time at 25/33 MHz CPU Clock  
– 400/303 ns Multiplication (16 × 16 bit), 800/606 ns Division (32/16 bit)  
– Enhanced Boolean Bit Manipulation Facilities  
– Additional Instructions to Support HLL and Operating Systems  
– Register-Based Design with Multiple Variable Register Banks  
– Single-Cycle Context Switching Support  
– 16 MBytes Total Linear Address Space for Code and Data  
– 1024 Bytes On-Chip Special Function Register Area  
• 16-Priority-Level Interrupt System with 56 Sources, Sample-Rate down to 40/30 ns  
• 8-Channel Interrupt-Driven Single-Cycle Data Transfer Facilities via  
Peripheral Event Controller (PEC)  
• Clock Generation via on-chip PLL (factors 1:1.5/2/2.5/3/4/5),  
via prescaler or via direct clock input  
• On-Chip Memory Modules  
– 3 KBytes On-Chip Internal RAM (IRAM)  
– 8 KBytes On-Chip Extension RAM (XRAM)  
– 32 KBytes On-Chip Program Mask ROM  
• On-Chip Peripheral Modules  
– 24-Channel 10-bit A/D Converter with Programmable Conversion Time  
down to 7.8 µs  
– Two 16-Channel Capture/Compare Units  
– 4-Channel PWM Unit  
– Two Multi-Functional General Purpose Timer Units with 5 Timers  
– Two Serial Channels (Synchronous/Asynchronous and High-Speed-Synchronous)  
– Two On-Chip CAN Interfaces (Rev. 2.0B active) with 2 × 15 Message Objects  
(Full CAN/Basic CAN), can work on one bus with 30 objects  
– On-Chip Real Time Clock  
• Up to 16 MBytes External Address Space for Code and Data  
– Programmable External Bus Characteristics for Different Address Ranges  
– Multiplexed or Demultiplexed External Address/Data Buses with 8-Bit or 16-Bit  
Data Bus Width  
– Five Programmable Chip-Select Signals  
– Hold- and Hold-Acknowledge Bus Arbitration Support  
• Idle, Sleep, and Power Down Modes with Flexible Power Management  
• Programmable Watchdog Timer and Oscillator Watchdog  
• Up to 111 General Purpose I/O Lines,  
partly with Selectable Input Thresholds and Hysteresis  
Data Sheet  
1
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
• Supported by a Large Range of Development Tools like C-Compilers,  
Macro-Assembler Packages, Emulators, Evaluation Boards, HLL-Debuggers,  
Simulators, Logic Analyzer Disassemblers, Programming Boards  
• On-Chip Bootstrap Loader  
• 144-Pin MQFP Package  
This document describes several derivatives of the C167 group. Table 1 enumerates  
these derivatives and summarizes the differences. As this document refers to all of these  
derivatives, some descriptions may not apply to a specific product.  
Table 1  
C167CS Derivative Synopsis  
Program Memory  
Derivative  
XRAM  
CAN Interface  
SAK-C167CS-LM  
SAB-C167CS-LM  
SAK-C167CS-L33M  
SAB-C167CS-L33M  
---  
8 KByte  
CAN1, CAN2  
SAK-C167CS-4RM  
SAB-C167CS-4RM  
SAK-C167CS-4R33M  
SAB-C167CS-4R33M  
32 KByte ROM  
8 KByte  
CAN1, CAN2  
For simplicity all versions are referred to by the term C167CS throughout this document.  
Data Sheet  
2
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Ordering Information  
The ordering code for Infineon microcontrollers provides an exact reference to the  
required product. This ordering code identifies:  
• the derivative itself, i.e. its function set, the temperature range, and the supply voltage  
• the package and the type of delivery.  
For the available ordering codes for the C167CS please refer to the “Product Catalog  
Microcontrollers”, which summarizes all available microcontroller variants.  
Note: The ordering codes for Mask-ROM versions are defined for each product after  
verification of the respective ROM code.  
Introduction  
The C167CS derivatives are high performance derivatives of the Infineon C166 Family  
of full featured single-chip CMOS microcontrollers. They combine high CPU  
performance (up to 16.5 million instructions per second) with high peripheral functionality  
and enhanced IO-capabilities. They also provide clock generation via PLL and various  
on-chip memory modules like program ROM, internal RAM, and extension RAM.  
VAREF VAGND VDD  
VSS  
Port 0  
16 Bit  
XTAL1  
XTAL2  
Port 1  
16 Bit  
RSTIN  
RSTOUT  
Port 2  
16 Bit  
NMI  
Port 3  
15 Bit  
EA  
C167CS  
Port 4  
8 Bit  
READY  
ALE  
Port 6  
8 Bit  
RD  
WR/WRL  
Port 7  
8 Bit  
Port 5  
16 Bit  
Port 8  
8 Bit  
MCL04411  
Figure 1  
Logic Symbol  
Data Sheet  
3
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Pin Configuration  
(top view)  
P6.0/CS0  
P6.1/CS1  
P6.2/CS2  
P6.3/CS3  
P6.4/CS4  
1
2
3
4
5
6
7
8
9
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
P0H.0/AD8  
P0L.7/AD7  
P0L.6/AD6  
P0L.5/AD5  
P0L.4/AD4  
P0L.3/AD3  
P0L.2/AD2  
P0L.1/AD1  
P0L.0/AD0  
EA  
ALE  
READY  
WR/WRL  
RD  
VSS  
P6.5/HOLD  
P6.6/HLDA  
P6.7/BREQ  
*P8.0/CC16IO  
*P8.1/CC17IO 10  
*P8.2/CC18IO 11  
*P8.3/CC19IO 12  
P8.4/CC20IO 13  
P8.5/CC21IO 14  
P8.6/CC22IO 15  
P8.7/CC23IO 16  
VDD  
VDD  
VSS  
P7.0/POUT0  
17  
18  
19  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
P4.7/A23/*  
P4.6/A22/*  
P4.5/A21/*  
P4.4/A20/*  
P4.3/A19  
P4.2/A18  
P4.1/A17  
P4.0/A16  
N.C.  
C167CS  
P7.1/POUT1 20  
P7.2/POUT2 21  
P7.3/POUT3 22  
P7.4/CC28IO 23  
P7.5/CC29IO 24  
P7.6/CC30IO 25  
P7.7/CC31IO 26  
P5.0/AN0 27  
P5.1/AN1 28  
P5.2/AN2 29  
P5.3/AN3 30  
P5.4/AN4 31  
P5.5/AN5 32  
P5.6/AN6 33  
P5.7/AN7 34  
P5.8/AN8 35  
P5.9/AN9 36  
VSS  
VDD  
P3.15/CLKOUT/FOUT  
P3.13/SCLK  
P3.12/BHE/WRH  
P3.111/RxD0  
P3.10/TxD0  
P3.9/MTSR  
P3.8/MRST  
P3.7/T2IN  
P3.6/T3IN  
76  
75  
74  
73  
MCP04431  
Figure 2  
*) The marked pins of Port 4 and Port 8 can have CAN interface lines assigned to them.  
Table 2 on the pages below lists the possible assignments.  
Data Sheet  
4
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Table 2  
Pin Definitions and Functions  
Input Function  
Symbol Pin  
Num. Outp.  
P6  
IO  
Port 6 is an 8-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state. Port 6 outputs can be configured as push/  
pull or open drain drivers.  
The Port 6 pins also serve for alternate functions:  
P6.0  
P6.1  
P6.2  
P6.3  
P6.4  
P6.5  
P6.6  
1
2
3
4
5
6
7
O
O
O
O
O
I
CS0  
CS1  
CS2  
CS3  
CS4  
HOLD  
HLDA  
Chip Select 0 Output  
Chip Select 1 Output  
Chip Select 2 Output  
Chip Select 3 Output  
Chip Select 4 Output  
External Master Hold Request Input  
Hold Acknowledge Output (master mode)  
or Input (slave mode)  
I/O  
P6.7  
8
O
BREQ  
Bus Request Output  
P8  
IO  
Port 8 is an 8-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state. Port 8 outputs can be configured as push/  
pull or open drain drivers. The input threshold of Port 8 is  
selectable (TTL or special). Port 8 pins provide inputs/  
outputs for CAPCOM2 and serial interface lines. 1)  
P8.0  
P8.1  
P8.2  
P8.3  
9
I/O  
I
I
I/O  
O
O
I/O  
I
I
I/O  
I
I
CC16IO  
CAPCOM2: CC16 Capture Inp./Compare Outp.,  
CAN1_RxD CAN 1 Receive Data Input,  
CAN2_RxD CAN 2 Receive Data Input  
CC17IO  
CAN1_TxD CAN 1 Transmit Data Output,  
CAN2_TxD CAN 2 Transmit Data Output  
CC18IO  
CAN1_RxD CAN 1 Receive Data Input,  
CAN2_RxD CAN 2 Receive Data Input  
CC19IO  
CAN1_TxD CAN 1 Transmit Data Output,  
CAN2_TxD CAN 2 Transmit Data Output  
10  
11  
12  
CAPCOM2: CC17 Capture Inp./Compare Outp.,  
CAPCOM2: CC18 Capture Inp./Compare Outp.,  
CAPCOM2: CC19 Capture Inp./Compare Outp.,  
P8.4  
P8.5  
P8.6  
P8.7  
13  
14  
15  
16  
I/O  
I/O  
I/O  
I/O  
CC20IO  
CC21IO  
CC22IO  
CC23IO  
CAPCOM2: CC20 Capture Inp./Compare Outp.  
CAPCOM2: CC21 Capture Inp./Compare Outp.  
CAPCOM2: CC22 Capture Inp./Compare Outp.  
CAPCOM2: CC23 Capture Inp./Compare Outp.  
Data Sheet  
5
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Table 2  
Pin Definitions and Functions (cont’d)  
Symbol Pin  
Input Function  
Num. Outp.  
P7  
IO  
Port 7 is an 8-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state. Port 7 outputs can be configured as push/  
pull or open drain drivers. The input threshold of Port 7 is  
selectable (TTL or special).  
The following Port 7 pins also serve for alternate functions:  
P7.0  
P7.1  
P7.2  
P7.3  
P7.4  
P7.5  
P7.6  
P7.7  
19  
20  
21  
22  
23  
24  
25  
26  
O
O
O
O
I/O  
I/O  
I/O  
I/O  
POUT0  
POUT1  
POUT2  
POUT3  
CC28IO  
CC29IO  
CC30IO  
CC31IO  
PWM Channel 0 Output  
PWM Channel 1 Output  
PWM Channel 2 Output  
PWM Channel 3 Output  
CAPCOM2: CC28 Capture Inp./Compare Outp.  
CAPCOM2: CC29 Capture Inp./Compare Outp.  
CAPCOM2: CC30 Capture Inp./Compare Outp.  
CAPCOM2: CC31 Capture Inp./Compare Outp.  
P5  
I
Port 5 is a 16-bit input-only port with Schmitt-Trigger char.  
The pins of Port 5 also serve as analog input channels for the  
A/D converter, or they serve as timer inputs:  
P5.0  
P5.1  
P5.2  
P5.3  
P5.4  
P5.5  
P5.6  
P5.7  
P5.8  
P5.9  
P5.10 39  
P5.11 40  
P5.12 41  
P5.13 42  
P5.14 43  
P5.15 44  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
AN8  
AN9  
AN10,  
AN11,  
AN12,  
AN13,  
AN14,  
AN15,  
T6EUD GPT2 Timer T6 Ext. Up/Down Ctrl. Inp.  
T5EUD GPT2 Timer T5 Ext. Up/Down Ctrl. Inp.  
T6IN  
T5IN  
GPT2 Timer T6 Count Inp.  
GPT2 Timer T5 Count Inp.  
T4EUD GPT1 Timer T4 Ext. Up/Down Ctrl. Inp.  
T2EUD GPT1 Timer T5 Ext. Up/Down Ctrl. Inp.  
Data Sheet  
6
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Table 2  
Pin Definitions and Functions (cont’d)  
Symbol Pin  
Input Function  
Num. Outp.  
P2  
IO  
Port 2 is a 16-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state. Port 2 outputs can be configured as push/  
pull or open drain drivers. The input threshold of Port 2 is  
selectable (TTL or special).  
The following Port 2 pins also serve for alternate functions:  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
P2.8  
47  
48  
49  
50  
51  
52  
53  
54  
57  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
I/O  
I
I/O  
I
I/O  
I
I/O  
I
CC0IO  
CC1IO  
CC2IO  
CC3IO  
CC4IO  
CC5IO  
CC6IO  
CC7IO  
CC8IO  
EX0IN  
CC9IO  
EX1IN  
CC10IO  
EX2IN  
CC11IO  
EX3IN  
CC12IO  
EX4IN  
CC13IO  
EX5IN  
CC14IO  
EX6IN  
CC15IO  
EX7IN  
T7IN  
CAPCOM1: CC0 Capture Inp./Compare Output  
CAPCOM1: CC1 Capture Inp./Compare Output  
CAPCOM1: CC2 Capture Inp./Compare Output  
CAPCOM1: CC3 Capture Inp./Compare Output  
CAPCOM1: CC4 Capture Inp./Compare Output  
CAPCOM1: CC5 Capture Inp./Compare Output  
CAPCOM1: CC6 Capture Inp./Compare Output  
CAPCOM1: CC7 Capture Inp./Compare Output  
CAPCOM1: CC8 Capture Inp./Compare Output,  
Fast External Interrupt 0 Input  
CAPCOM1: CC9 Capture Inp./Compare Output,  
Fast External Interrupt 1 Input  
CAPCOM1: CC10 Capture Inp./Compare Outp.,  
Fast External Interrupt 2 Input  
CAPCOM1: CC11 Capture Inp./Compare Outp.,  
Fast External Interrupt 3 Input  
CAPCOM1: CC12 Capture Inp./Compare Outp.,  
Fast External Interrupt 4 Input  
P2.9  
58  
P2.10 59  
P2.11 60  
P2.12 61  
P2.13 62  
P2.14 63  
P2.15 64  
I/O  
I
I/O  
I
I/O  
I
I
CAPCOM1: CC13 Capture Inp./Compare Outp.,  
Fast External Interrupt 5 Input  
CAPCOM1: CC14 Capture Inp./Compare Outp.,  
Fast External Interrupt 6 Input  
CAPCOM1: CC15 Capture Inp./Compare Outp.,  
Fast External Interrupt 7 Input,  
CAPCOM2: Timer T7 Count Input  
Note: During Sleep Mode a spike filter on the EXnIN  
interrupt inputs suppresses input pulses <10 ns.  
Input pulses >100 ns safely pass the filter.  
Data Sheet  
7
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Table 2  
Pin Definitions and Functions (cont’d)  
Symbol Pin  
Input Function  
Num. Outp.  
P3  
IO  
Port 3 is a 15-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state. Port 3 outputs can be configured as push/  
pull or open drain drivers. The input threshold of Port 3 is  
selectable (TTL or special).  
The following Port 3 pins also serve for alternate functions:  
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
P3.6  
P3.7  
P3.8  
P3.9  
65  
66  
67  
68  
69  
70  
73  
74  
75  
76  
I
O
I
O
I
I
T0IN  
CAPCOM1 Timer T0 Count Input  
GPT2 Timer T6 Toggle Latch Output  
T6OUT  
CAPIN  
T3OUT  
T3EUD  
T4IN  
GPT2 Register CAPREL Capture Input  
GPT1 Timer T3 Toggle Latch Output  
GPT1 Timer T3 External Up/Down Control Input  
GPT1 Timer T4 Count/Gate/Reload/Capture Inp  
GPT1 Timer T3 Count/Gate Input  
GPT1 Timer T2 Count/Gate/Reload/Capture Inp  
SSC Master-Receive/Slave-Transmit Inp./Outp.  
SSC Master-Transmit/Slave-Receive Outp./Inp.  
ASC0 Clock/Data Output (Async./Sync.)  
ASC0 Data Input (Async.) or Inp./Outp. (Sync.)  
External Memory High Byte Enable Signal,  
External Memory High Byte Write Strobe  
SSC Master Clock Output / Slave Clock Input.  
I
I
T3IN  
T2IN  
I/O  
I/O  
O
I/O  
O
O
I/O  
O
O
MRST  
MTSR  
T×D0  
R×D0  
BHE  
P3.10 77  
P3.11 78  
P3.12 79  
WRH  
SCLK  
P3.13 80  
P3.15 81  
CLKOUT System Clock Output (= CPU Clock)  
FOUT Programmable Frequency Output  
NC  
84  
This pin is not connected in the C167CS.  
No connection to the PCB is required.  
Data Sheet  
8
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Table 2  
Pin Definitions and Functions (cont’d)  
Symbol Pin  
Input Function  
Num. Outp.  
P4  
IO  
Port 4 is an 8-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state. The Port 4 outputs can be configured as  
push/pull or open drain drivers. The input threshold of Port 4  
is selectable (TTL or special).  
Port 4 can be used to output the segment address lines and  
for serial interface lines:1)  
P4.0  
P4.1  
P4.2  
P4.3  
P4.4  
85  
86  
87  
88  
89  
O
O
O
O
O
I
A16  
A17  
A18  
A19  
A20  
Least Significant Segment Address Line  
Segment Address Line  
Segment Address Line  
Segment Address Line  
Segment Address Line,  
CAN2_RxD CAN 2 Receive Data Input  
A21 Segment Address Line,  
CAN1_RxD CAN 1 Receive Data Input  
A22 Segment Address Line,  
CAN1_TxD CAN 1 Transmit Data Output,  
CAN2_TxD CAN 2 Transmit Data Output  
P4.5  
P4.6  
90  
91  
O
I
O
O
O
O
I
P4.7  
RD  
92  
A23  
Most Significant Segment Address Line,  
CAN1_RxD CAN 1 Receive Data Input,  
CAN2_TxD CAN 2 Transmit Data Output,  
CAN2_RxD CAN 2 Receive Data Input  
O
I
95  
96  
O
External Memory Read Strobe. RD is activated for every  
external instruction or data read access.  
WR/  
WRL  
O
External Memory Write Strobe. In WR-mode this pin is  
activated for every external data write access. In WRL-mode  
this pin is activated for low byte data write accesses on a 16-  
bit bus, and for every data write access on an 8-bit bus. See  
WRCFG in register SYSCON for mode selection.  
READY 97  
I
Ready Input. When the Ready function is enabled, a high  
level at this pin during an external memory access will force  
the insertion of memory cycle time waitstates until the pin  
returns to a low level.  
An internal pullup device will hold this pin high when nothing  
is driving it.  
Data Sheet  
9
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Table 2  
Pin Definitions and Functions (cont’d)  
Symbol Pin  
Input Function  
Num. Outp.  
ALE  
EA  
98  
O
Address Latch Enable Output. Can be used for latching the  
address into external memory or an address latch in the  
multiplexed bus modes.  
99  
I
External Access Enable pin. A low level at this pin during and  
after Reset forces the C167CS to begin instruction execution  
out of external memory. A high level forces execution out of  
the internal program memory.  
“ROMless” versions must have this pin tied to ‘0’.  
PORT0  
P0L.0-7 100-  
107  
P0H.0-7 108,  
111-  
IO  
PORT0 consists of the two 8-bit bidirectional I/O ports P0L  
and P0H. It is bit-wise programmable for input or output via  
direction bits. For a pin configured as input, the output driver  
is put into high-impedance state.  
In case of an external bus configuration, PORT0 serves as  
the address (A) and address/data (AD) bus in multiplexed  
bus modes and as the data (D) bus in demultiplexed bus  
modes.  
117  
Demultiplexed bus modes:  
Data Path Width:  
P0L.0 – P0L.7:  
P0H.0 – P0H.7:  
8-bit  
D0 – D7  
I/O  
16-bit  
D0 - D7  
D8 - D15  
Multiplexed bus modes:  
Data Path Width:  
P0L.0 – P0L.7:  
P0H.0 – P0H.7:  
8-bit  
16-bit  
AD0 – AD7 AD0 - AD7  
A8 - A15 AD8 - AD15  
Data Sheet  
10  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Table 2  
Pin Definitions and Functions (cont’d)  
Symbol Pin  
Input Function  
Num. Outp.  
PORT1  
P1L.0-7 118-  
125  
P1H.0-7 128-  
135  
IO  
PORT1 consists of the two 8-bit bidirectional I/O ports P1L  
and P1H. It is bit-wise programmable for input or output via  
direction bits. For a pin configured as input, the output driver  
is put into high-impedance state. PORT1 is used as the 16-  
bit address bus (A) in demultiplexed bus modes and also  
after switching from a demultiplexed bus mode to a  
multiplexed bus mode.  
The following PORT1 pins also serve for alternate functions:  
P1L.0  
P1L.1  
P1L.2  
P1L.3  
P1L.4  
P1L.5  
P1L.6  
P1L.7  
118  
119  
120  
121  
122  
123  
124  
125  
I
I
I
I
I
I
I
I
AN16  
AN17  
AN18  
AN19  
AN20  
AN21  
AN22  
AN23  
Analog Input Channel 16  
Analog Input Channel 17  
Analog Input Channel 18  
Analog Input Channel 19  
Analog Input Channel 20  
Analog Input Channel 21  
Analog Input Channel 22  
Analog Input Channel 23  
P1H.4 132  
P1H.5 133  
P1H.6 134  
P1H.7 135  
I/O  
I/O  
I/O  
I/O  
CC24IO  
CC25IO  
CC26IO  
CC27IO  
CAPCOM2: CC24 Capture Inp./Compare Outp.  
CAPCOM2: CC25 Capture Inp./Compare Outp.  
CAPCOM2: CC26 Capture Inp./Compare Outp.  
CAPCOM2: CC27 Capture Inp./Compare Outp.  
XTAL2 137  
XTAL1 138  
O
I
XTAL2:  
XTAL1:  
Output of the oscillator amplifier circuit.  
Input to the oscillator amplifier and input to  
the internal clock generator  
To clock the device from an external source, drive XTAL1,  
while leaving XTAL2 unconnected. Minimum and maximum  
high/low and rise/fall times specified in the AC  
Characteristics must be observed.  
Data Sheet  
11  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Table 2  
Pin Definitions and Functions (cont’d)  
Symbol Pin  
Input Function  
Num. Outp.  
RSTIN 140  
I/O  
Reset Input with Schmitt-Trigger characteristics. A low level  
at this pin while the oscillator is running resets the C167CS.  
An internal pullup resistor permits power-on reset using only  
a capacitor connected to VSS.  
A spike filter suppresses input pulses < 10 ns. Input pulses  
> 100 ns safely pass the filter. The minimum duration for a  
safe recognition should be 100 ns + 2 CPU clock cycles.  
In bidirectional reset mode (enabled by setting bit BDRSTEN  
in register SYSCON) the RSTIN line is internally pulled low  
for the duration of the internal reset sequence upon any reset  
(HW, SW, WDT). See note below this table.  
Note: To let the reset configuration of PORT0 settle and to  
let the PLL lock a reset duration of ca. 1 ms is  
recommended.  
RST  
OUT  
141  
142  
O
I
Internal Reset Indication Output. This pin is set to a low level  
when the part is executing either a hardware-, a software- or  
a watchdog timer reset. RSTOUT remains low until the EINIT  
(end of initialization) instruction is executed.  
NMI  
Non-Maskable Interrupt Input. A high to low transition at this  
pin causes the CPU to vector to the NMI trap routine. When  
the PWRDN (power down) instruction is executed, the NMI  
pin must be low in order to force the C167CS to go into power  
down mode. If NMI is high, when PWRDN is executed, the  
part will continue to run in normal mode.  
If not used, pin NMI should be pulled high externally.  
VAREF 37  
VAGND 38  
Reference voltage for the A/D converter.  
Reference ground for the A/D converter.  
Data Sheet  
12  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Table 2  
Pin Definitions and Functions (cont’d)  
Symbol Pin  
Input Function  
Num. Outp.  
VDD  
17, 46, –  
Digital Supply Voltage:  
56, 72,  
82, 93,  
109,  
+ 5 V during normal operation and idle mode.  
2.5 V during power down mode.  
126,  
136,  
144  
VSS  
18, 45, –  
55, 71,  
83, 94,  
110,  
Digital Ground.  
127,  
139,  
143  
1)  
The CAN interface lines are assigned to ports P4 and P8 under software control. Within the CAN module  
several assignments can be selected.  
Note: The following behaviour differences must be observed when the bidirectional reset  
is active:  
• Bit BDRSTEN in register SYSCON cannot be changed after EINIT and is cleared  
automatically after a reset.  
• The reset indication flags always indicate a long hardware reset.  
• The PORT0 configuration is treated like on a hardware reset. Especially the bootstrap  
loader may be activated when P0L.4 is low.  
• Pin RSTIN may only be connected to external reset devices with an open drain output  
driver.  
• A short hardware reset is extended to the duration of the internal reset sequence.  
Data Sheet  
13  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Functional Description  
The architecture of the C167CS combines advantages of both RISC and CISC  
processors and of advanced peripheral subsystems in a very well-balanced way. In  
addition the on-chip memory blocks allow the design of compact systems with maximum  
performance.  
The following block diagram gives an overview of the different on-chip components and  
of the advanced, high bandwidth internal bus structure of the C167CS.  
Note: All time specifications refer to a CPU clock of 33 MHz  
(see definition in the AC Characteristics section).  
C166-Core  
ProgMem  
IRAM  
Internal  
RAM  
16  
16  
Data  
Data  
32  
16  
ROM  
32 KByte  
Instr. / Data  
CPU  
3 KByte  
Osc / PLL  
XTAL  
XRAM  
6+2 KByte  
PEC  
External Instr. / Data  
16-Level  
Priority  
Interrupt Controller  
RTC WDT  
16  
Interrupt Bus  
CAN2  
Rev 2.0B active  
Peripheral Data Bus  
16  
CAN1  
Rev 2.0B active  
ADC ASC0 SSC  
GPT PWM CCOM2CCOM1  
10-Bit  
(USART)  
(SPI)  
T2  
T3  
T4  
T7  
T8  
T0  
T1  
16+8  
Channels  
EBC  
8
8
XBUS Control  
External Bus  
Control  
16  
T5  
T6  
BRGen  
BRGen  
Port 0  
Port 1  
Port 5  
Port 3  
Port 7  
8
Port 8  
8
16  
16  
16  
15  
MCB04323_7CS  
Figure 3  
Block Diagram  
The program memory, the internal RAM (IRAM) and the set of generic peripherals are  
connected to the CPU via separate buses. A fourth bus, the XBUS, connects external  
resources as well as additional on-chip resoures, the X-Peripherals (see Figure 3).  
The XBUS resources (XRAM, CAN) of the C167CS can be individually enabled or  
disabled during initialization. Register XPERCON selects the required modules which  
are then enabled by setting the general X-Peripheral enable bit XPEN (SYSCON.2).  
Modules that are disabled consume neither address space nor port pins.  
Note: The default value of register XPERCON after reset selects 2 KByte XRAM and  
module CAN1, so the default XBUS resources are compatible with the C167CR.  
Data Sheet  
14  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Memory Organization  
The memory space of the C167CS is configured in a Von Neumann architecture which  
means that code memory, data memory, registers and I/O ports are organized within the  
same linear address space which includes 16 MBytes. The entire memory space can be  
accessed bytewise or wordwise. Particular portions of the on-chip memory have  
additionally been made directly bitaddressable.  
The C167CS incorporates 32 KBytes of on-chip mask-programmable ROM (not in the  
ROM-less derivative, of course) for code or constant data. The 32 KBytes of the on-chip  
ROM can be mapped either to segment 0 or segment 1.  
3 KBytes of on-chip Internal RAM (IRAM) are provided as a storage for user defined  
variables, for the system stack, general purpose register banks and even for code. A  
register bank can consist of up to 16 wordwide (R0 to R15) and/or bytewide (RL0, RH0,  
…, RL7, RH7) so-called General Purpose Registers (GPRs).  
1024 bytes (2 × 512 bytes) of the address space are reserved for the Special Function  
Register areas (SFR space and ESFR space). SFRs are wordwide registers which are  
used for controlling and monitoring functions of the different on-chip units. Unused SFR  
addresses are reserved for future members of the C166 Family.  
8 KBytes of on-chip Extension RAM (XRAM), organized as two blocks of 2 KByte and  
6 KByte, respectively, are provided to store user data, user stacks, or code. The XRAM  
is accessed like external memory and therefore cannot be used for the system stack or  
for register banks and is not bitaddressable. The XRAM permits 16-bit accesses with  
maximum speed.  
In order to meet the needs of designs where more memory is required than is provided  
on chip, up to 16 MBytes of external RAM and/or ROM can be connected to the  
microcontroller.  
Data Sheet  
15  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
External Bus Controller  
All of the external memory accesses are performed by a particular on-chip External Bus  
Controller (EBC). It can be programmed either to Single Chip Mode when no external  
memory is required, or to one of four different external memory access modes, which are  
as follows:  
– 16-/18-/20-/24-bit Addresses, 16-bit Data, Demultiplexed  
– 16-/18-/20-/24-bit Addresses, 16-bit Data, Multiplexed  
– 16-/18-/20-/24-bit Addresses, 8-bit Data, Multiplexed  
– 16-/18-/20-/24-bit Addresses, 8-bit Data, Demultiplexed  
In the demultiplexed bus modes, addresses are output on PORT1 and data is input/  
output on PORT0 or P0L, respectively. In the multiplexed bus modes both addresses  
and data use PORT0 for input/output.  
Important timing characteristics of the external bus interface (Memory Cycle Time,  
Memory Tri-State Time, Length of ALE and Read Write Delay) have been made  
programmable to allow the user the adaption of a wide range of different types of  
memories and external peripherals.  
In addition, up to 4 independent address windows may be defined (via register pairs  
ADDRSELx / BUSCONx) which control the access to different resources with different  
bus characteristics. These address windows are arranged hierarchically where  
BUSCON4 overrides BUSCON3 and BUSCON2 overrides BUSCON1. All accesses to  
locations not covered by these 4 address windows are controlled by BUSCON0.  
Up to 5 external CS signals (4 windows plus default) can be generated in order to save  
external glue logic. The C167CS offers the possibility to switch the CS outputs to an  
unlatched mode. In this mode the internal filter logic is switched off and the CS signals  
are directly generated from the address. The unlatched CS mode is enabled by setting  
CSCFG (SYSCON.6).  
Access to very slow memories or memories with varying access times is supported via  
a particular ‘Ready’ function.  
A HOLD/HLDA protocol is available for bus arbitration and allows to share external  
resources with other bus masters. The bus arbitration is enabled by setting bit HLDEN  
in register PSW. After setting HLDEN once, pins P6.7 … P6.5 (BREQ, HLDA, HOLD)  
are automatically controlled by the EBC. In Master Mode (default after reset) the HLDA  
pin is an output. By setting bit DP6.7 to ‘1’ the Slave Mode is selected where pin HLDA  
is switched to input. This allows to directly connect the slave controller to another master  
controller without glue logic.  
For applications which require less than 16 MBytes of external memory space, this  
address space can be restricted to 1 MByte, 256 KByte, or to 64 KByte. In this case  
Port 4 outputs four, two, or no address lines at all. It outputs all 8 address lines, if an  
address space of 16 MBytes is used.  
Data Sheet  
16  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Note: When one or both of the on-chip CAN Modules are used with the interface lines  
assigned to Port 4, the CAN lines override the segment address lines and the  
segment address output on Port 4 is therefore limited to 6/4 bits i.e. address lines  
A21/A19 … A16. CS lines can be used to increase the total amount of  
addressable external memory.  
Central Processing Unit (CPU)  
The main core of the CPU consists of a 4-stage instruction pipeline, a 16-bit arithmetic  
and logic unit (ALU) and dedicated SFRs. Additional hardware has been spent for a  
separate multiply and divide unit, a bit-mask generator and a barrel shifter.  
Based on these hardware provisions, most of the C167CS’s instructions can be  
executed in just one machine cycle which requires 60 ns at 33 MHz CPU clock. For  
example, shift and rotate instructions are always processed during one machine cycle  
independent of the number of bits to be shifted. All multiple-cycle instructions have been  
optimized so that they can be executed very fast as well: branches in 2 cycles, a 16 × 16  
bit multiplication in 5 cycles and a 32-/16 bit division in 10 cycles. Another pipeline  
optimization, the so-called ‘Jump Cache’, allows reducing the execution time of  
repeatedly performed jumps in a loop from 2 cycles to 1 cycle.  
CPU  
16  
Internal  
RAM  
SP  
STKOV  
STKUN  
MDH  
MDL  
R15  
Exec. Unit  
Instr. Ptr.  
Instr. Reg.  
Mul/Div-HW  
Bit-Mask Gen  
General  
Purpose  
Registers  
R15  
ALU  
32  
4-Stage  
Pipeline  
(16-bit)  
ROM  
Barrel - Shifter  
Context Ptr.  
R0  
PSW  
SYSCON  
BUSCON 0  
BUSCON 1  
BUSCON 2  
BUSCON 3  
BUSCON 4  
16  
R0  
ADDRSEL 1  
ADDRSEL 2  
ADDRSEL 3  
ADDRSEL 4  
Data Page Ptr.  
Code Seg. Ptr.  
MCB02147  
Figure 4  
CPU Block Diagram  
Data Sheet  
17  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
The CPU has a register context consisting of up to 16 wordwide GPRs at its disposal.  
These 16 GPRs are physically allocated within the on-chip RAM area. A Context Pointer  
(CP) register determines the base address of the active register bank to be accessed by  
the CPU at any time. The number of register banks is only restricted by the available  
internal RAM space. For easy parameter passing, a register bank may overlap others.  
A system stack of up to 1024 words is provided as a storage for temporary data. The  
system stack is allocated in the on-chip RAM area, and it is accessed by the CPU via the  
stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly  
compared against the stack pointer value upon each stack access for the detection of a  
stack overflow or underflow.  
The high performance offered by the hardware implementation of the CPU can efficiently  
be utilized by a programmer via the highly efficient C167CS instruction set which  
includes the following instruction classes:  
– Arithmetic Instructions  
– Logical Instructions  
– Boolean Bit Manipulation Instructions  
– Compare and Loop Control Instructions  
– Shift and Rotate Instructions  
– Prioritize Instruction  
– Data Movement Instructions  
– System Stack Instructions  
– Jump and Call Instructions  
– Return Instructions  
– System Control Instructions  
– Miscellaneous Instructions  
The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes  
and words. A variety of direct, indirect or immediate addressing modes are provided to  
specify the required operands.  
Data Sheet  
18  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Interrupt System  
With an interrupt response time within a range from just 5 to 12 CPU clocks (in case of  
internal program execution), the C167CS is capable of reacting very fast to the  
occurrence of non-deterministic events.  
The architecture of the C167CS supports several mechanisms for fast and flexible  
response to service requests that can be generated from various sources internal or  
external to the microcontroller. Any of these interrupt requests can be programmed to  
being serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC).  
In contrast to a standard interrupt service where the current program execution is  
suspended and a branch to the interrupt vector table is performed, just one cycle is  
‘stolen’ from the current CPU activity to perform a PEC service. A PEC service implies a  
single byte or word data transfer between any two memory locations with an additional  
increment of either the PEC source or the destination pointer. An individual PEC transfer  
counter is implicity decremented for each PEC service except when performing in the  
continuous transfer mode. When this counter reaches zero, a standard interrupt is  
performed to the corresponding source related vector location. PEC services are very  
well suited, for example, for supporting the transmission or reception of blocks of data.  
The C167CS has 8 PEC channels each of which offers such fast interrupt-driven data  
transfer capabilities.  
A separate control register which contains an interrupt request flag, an interrupt enable  
flag and an interrupt priority bitfield exists for each of the possible interrupt sources. Via  
its related register, each source can be programmed to one of sixteen interrupt priority  
levels. Once having been accepted by the CPU, an interrupt service can only be  
interrupted by a higher prioritized service request. For the standard interrupt processing,  
each of the possible interrupt sources has a dedicated vector location.  
Fast external interrupt inputs are provided to service external interrupts with high  
precision requirements. These fast interrupt inputs feature programmable edge  
detection (rising edge, falling edge or both edges).  
Software interrupts are supported by means of the ‘TRAP’ instruction in combination with  
an individual trap (interrupt) number.  
Table 3 shows all of the possible C167CS interrupt sources and the corresponding  
hardware-related interrupt flags, vectors, vector locations and trap (interrupt) numbers.  
Note: Interrupt nodes which are not used by associated peripherals, may be used to  
generate software controlled interrupt requests by setting the respective interrupt  
request bit (xIR).  
Data Sheet  
19  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Table 3  
C167CS Interrupt Nodes  
Source of Interrupt or Request  
PEC Service Request Flag  
Enable  
Flag  
Interrupt Vector  
Trap  
Vector  
Location Number  
00’0040H 10H  
00’0044H 11H  
00’0048H 12H  
00’004CH 13H  
00’0050H 14H  
00’0054H 15H  
00’0058H 16H  
00’005CH 17H  
00’0060H 18H  
00’0064H 19H  
CAPCOM Register 0  
CAPCOM Register 1  
CAPCOM Register 2  
CAPCOM Register 3  
CAPCOM Register 4  
CAPCOM Register 5  
CAPCOM Register 6  
CAPCOM Register 7  
CAPCOM Register 8  
CAPCOM Register 9  
CC0IR  
CC1IR  
CC2IR  
CC3IR  
CC4IR  
CC5IR  
CC6IR  
CC7IR  
CC8IR  
CC9IR  
CC0IE  
CC0INT  
CC1INT  
CC2INT  
CC3INT  
CC4INT  
CC5INT  
CC6INT  
CC7INT  
CC8INT  
CC9INT  
CC1IE  
CC2IE  
CC3IE  
CC4IE  
CC5IE  
CC6IE  
CC7IE  
CC8IE  
CC9IE  
CAPCOM Register 10 CC10IR  
CAPCOM Register 11 CC11IR  
CAPCOM Register 12 CC12IR  
CAPCOM Register 13 CC13IR  
CAPCOM Register 14 CC14IR  
CAPCOM Register 15 CC15IR  
CAPCOM Register 16 CC16IR  
CAPCOM Register 17 CC17IR  
CAPCOM Register 18 CC18IR  
CAPCOM Register 19 CC19IR  
CAPCOM Register 20 CC20IR  
CAPCOM Register 21 CC21IR  
CAPCOM Register 22 CC22IR  
CAPCOM Register 23 CC23IR  
CAPCOM Register 24 CC24IR  
CAPCOM Register 25 CC25IR  
CAPCOM Register 26 CC26IR  
CAPCOM Register 27 CC27IR  
CAPCOM Register 28 CC28IR  
CAPCOM Register 29 CC29IR  
CC10IE  
CC11IE  
CC12IE  
CC13IE  
CC14IE  
CC15IE  
CC16IE  
CC17IE  
CC18IE  
CC19IE  
CC20IE  
CC21IE  
CC22IE  
CC23IE  
CC24IE  
CC25IE  
CC26IE  
CC27IE  
CC28IE  
CC29IE  
CC10INT 00’0068H 1AH  
CC11INT 00’006CH 1BH  
CC12INT 00’0070H 1CH  
CC13INT 00’0074H 1DH  
CC14INT 00’0078H 1EH  
CC15INT 00’007CH 1FH  
CC16INT 00’00C0H 30H  
CC17INT 00’00C4H 31H  
CC18INT 00’00C8H 32H  
CC19INT 00’00CCH 33H  
CC20INT 00’00D0H 34H  
CC21INT 00’00D4H 35H  
CC22INT 00’00D8H 36H  
CC23INT 00’00DCH 37H  
CC24INT 00’00E0H 38H  
CC25INT 00’00E4H 39H  
CC26INT 00’00E8H 3AH  
CC27INT 00’00ECH 3BH  
CC28INT 00’00E0H 3CH  
CC29INT 00’0110H 44H  
Data Sheet  
20  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Table 3  
C167CS Interrupt Nodes (cont’d)  
Source of Interrupt or Request  
PEC Service Request Flag  
Enable  
Flag  
Interrupt Vector  
Vector  
Trap  
Location Number  
CAPCOM Register 30 CC30IR  
CC30IE  
CC31IE  
T0IE  
CC30INT 00’0114H 45H  
CAPCOM Register 31 CC31IR  
CC31INT 00’0118H 46H  
CAPCOM Timer 0  
CAPCOM Timer 1  
CAPCOM Timer 7  
CAPCOM Timer 8  
GPT1 Timer 2  
T0IR  
T1IR  
T7IR  
T8IR  
T2IR  
T3IR  
T4IR  
T5IR  
T6IR  
CRIR  
ADCIR  
T0INT  
T1INT  
T7INT  
T8INT  
T2INT  
T3INT  
T4INT  
T5INT  
T6INT  
CRINT  
ADCINT  
00’0080H 20H  
00’0084H 21H  
00’00F4H 3DH  
00’00F8H 3EH  
00’0088H 22H  
00’008CH 23H  
00’0090H 24H  
00’0094H 25H  
00’0098H 26H  
00’009CH 27H  
00’00A0H 28H  
T1IE  
T7IE  
T8IE  
T2IE  
GPT1 Timer 3  
T3IE  
GPT1 Timer 4  
T4IE  
GPT2 Timer 5  
T5IE  
GPT2 Timer 6  
T6IE  
GPT2 CAPREL Reg.  
CRIE  
ADCIE  
A/D Conversion  
Complete  
A/D Overrun Error  
ASC0 Transmit  
ADEIR  
S0TIR  
ADEIE  
S0TIE  
S0TBIE  
S0RIE  
S0EIE  
SCTIE  
SCRIE  
SCEIE  
PWMIE  
XP0IE  
XP1IE  
XP2IE  
XP3IE  
ADEINT  
S0TINT  
00’00A4H 29H  
00’00A8H 2AH  
ASC0 Transmit Buffer S0TBIR  
S0TBINT 00’011CH 47H  
ASC0 Receive  
ASC0 Error  
S0RIR  
S0EIR  
SCTIR  
SCRIR  
SCEIR  
PWMIR  
XP0IR  
XP1IR  
XP2IR  
XP3IR  
S0RINT  
S0EINT  
SCTINT  
SCRINT  
SCEINT  
00’00ACH 2BH  
00’00B0H 2CH  
00’00B4H 2DH  
00’00B8H 2EH  
00’00BCH 2FH  
SSC Transmit  
SSC Receive  
SSC Error  
PWM Channel 0...3  
CAN Interface 1  
CAN Interface 2  
Unassigned node  
PLL/OWD and RTC  
PWMINT 00’00FCH 3FH  
XP0INT  
XP1INT  
XP2INT  
XP3INT  
00’0100H 40H  
00’0104H 41H  
00’0108H 42H  
00’010CH 43H  
Data Sheet  
21  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
The C167CS also provides an excellent mechanism to identify and to process  
exceptions or error conditions that arise during run-time, so-called ‘Hardware Traps’.  
Hardware traps cause immediate non-maskable system reaction which is similar to a  
standard interrupt service (branching to a dedicated vector table location). The  
occurence of a hardware trap is additionally signified by an individual bit in the trap flag  
register (TFR). Except when another higher prioritized trap service is in progress, a  
hardware trap will interrupt any actual program execution. In turn, hardware trap services  
can normally not be interrupted by standard or PEC interrupts.  
Table 4 shows all of the possible exceptions or error conditions that can arise during run-  
time:  
Table 4  
Hardware Trap Summary  
Exception Condition  
Trap  
Flag  
Trap  
Vector  
Vector  
Location  
Trap  
Number  
Trap  
Priority  
Reset Functions:  
– Hardware Reset  
– Software Reset  
– W-dog Timer Overflow  
RESET  
RESET  
RESET  
00’0000H  
00’0000H  
00’0000H  
00H  
00H  
00H  
III  
III  
III  
Class A Hardware Traps:  
– Non-Maskable Interrupt NMI  
NMITRAP 00’0008H  
STOTRAP 00’0010H  
STUTRAP 00’0018H  
02H  
04H  
06H  
II  
II  
II  
– Stack Overflow  
– Stack Underflow  
STKOF  
STKUF  
Class B Hardware Traps:  
– Undefined Opcode  
– Protected Instruction  
Fault  
UNDOPC BTRAP  
PRTFLT BTRAP  
00’0028H  
00’0028H  
0AH  
0AH  
I
I
– Illegal Word Operand  
Access  
– Illegal Instruction  
Access  
– Illegal External Bus  
Access  
ILLOPA  
ILLINA  
ILLBUS  
BTRAP  
BTRAP  
BTRAP  
00’0028H  
00’0028H  
00’0028H  
0AH  
0AH  
0AH  
I
I
I
Reserved  
[2CH –  
3CH]  
[0BH –  
0FH]  
Software Traps  
– TRAP Instruction  
Any  
Any  
Current  
CPU  
Priority  
[00’0000H – [00H –  
00’01FCH] 7FH]  
in steps  
of 4H  
Data Sheet  
22  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Capture/Compare (CAPCOM) Units  
The CAPCOM units support generation and control of timing sequences on up to  
32 channels with a maximum resolution of 16 TCL. The CAPCOM units are typically  
used to handle high speed I/O tasks such as pulse and waveform generation, pulse  
width modulation (PMW), Digital to Analog (D/A) conversion, software timing, or time  
recording relative to external events.  
Four 16-bit timers (T0/T1, T7/T8) with reload registers provide two independent time  
bases for the capture/compare register array.  
The input clock for the timers is programmable to several prescaled values of the internal  
system clock, or may be derived from an overflow/underflow of timer T6 in module GPT2.  
This provides a wide range of variation for the timer period and resolution and allows  
precise adjustments to the application specific requirements. In addition, external count  
inputs for CAPCOM timers T0 and T7 allow event scheduling for the capture/compare  
registers relative to external events.  
Both of the two capture/compare register arrays contain 16 dual purpose capture/  
compare registers, each of which may be individually allocated to either CAPCOM timer  
T0 or T1 (T7 or T8, respectively), and programmed for capture or compare function.  
Each register has one port pin associated with it which serves as an input pin for  
triggering the capture function, or as an output pin to indicate the occurrence of a  
compare event.  
When a capture/compare register has been selected for capture mode, the current  
contents of the allocated timer will be latched (‘capture’d) into the capture/compare  
register in response to an external event at the port pin which is associated with this  
register. In addition, a specific interrupt request for this capture/compare register is  
generated. Either a positive, a negative, or both a positive and a negative external signal  
transition at the pin can be selected as the triggering event. The contents of all registers  
which have been selected for one of the five compare modes are continuously compared  
with the contents of the allocated timers. When a match occurs between the timer value  
and the value in a capture/compare register, specific actions will be taken based on the  
selected compare mode.  
Data Sheet  
23  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Table 5  
Compare Modes (CAPCOM)  
Compare Modes  
Function  
Mode 0  
Interrupt-only compare mode;  
several compare interrupts per timer period are possible  
Mode 1  
Mode 2  
Mode 3  
Pin toggles on each compare match;  
several compare events per timer period are possible  
Interrupt-only compare mode;  
only one compare interrupt per timer period is generated  
Pin set ‘1’ on match; pin reset ‘0’ on compare time overflow;  
only one compare event per timer period is generated  
Double  
Two registers operate on one pin;  
Register Mode  
pin toggles on each compare match;  
several compare events per timer period are possible.  
Data Sheet  
24  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Reload Reg. TxREL  
CAPCOM Timer Tx  
fCPU  
TxIN  
2n : 1  
Tx  
Input  
Control  
Interrupt  
Request  
GPT2 Timer T6  
Over/Underflow  
CCxIO  
Mode  
Control  
(Capture  
or  
16-Bit  
16 Capture Inputs  
16 Compare Outputs  
Capture/  
Compare  
Registers  
16 Capture/Compare  
Interrupt Request  
Compare)  
CCxIO  
fCPU  
2n : 1  
Ty  
Interrupt  
Request  
Input  
Control  
CAPCOM Timer Ty  
Reload Reg. TyREL  
GPT2 Timer T6  
Over/Underflow  
x = 0, 7  
y = 1, 8  
n = 3 … 10  
MCB02143B  
Figure 5  
CAPCOM Unit Block Diagram  
PWM Module  
The Pulse Width Modulation Module can generate up to four PWM output signals using  
edge-aligned or center-aligned PWM. In addition the PWM module can generate PWM  
burst signals and single shot outputs. The frequency range of the PWM signals covers  
4 Hz to 16.5 MHz (referred to a CPU clock of 33 MHz), depending on the resolution of  
the PWM output signal. The level of the output signals is selectable and the PWM  
module can generate interrupt requests.  
Data Sheet  
25  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
General Purpose Timer (GPT) Unit  
The GPT unit represents a very flexible multifunctional timer/counter structure which  
may be used for many different time related tasks such as event timing and counting,  
pulse width and duty cycle measurements, pulse generation, or pulse multiplication.  
The GPT unit incorporates five 16-bit timers which are organized in two separate  
modules, GPT1 and GPT2. Each timer in each module may operate independently in a  
number of different modes, or may be concatenated with another timer of the same  
module.  
Each of the three timers T2, T3, T4 of module GPT1 can be configured individually for  
one of four basic modes of operation, which are Timer, Gated Timer, Counter, and  
Incremental Interface Mode. In Timer Mode, the input clock for a timer is derived from  
the CPU clock, divided by a programmable prescaler, while Counter Mode allows a timer  
to be clocked in reference to external events.  
Pulse width or duty cycle measurement is supported in Gated Timer Mode, where the  
operation of a timer is controlled by the ‘gate’ level on an external input pin. For these  
purposes, each timer has one associated port pin (TxIN) which serves as gate or clock  
input. The maximum resolution of the timers in module GPT1 is 16 TCL.  
The count direction (up/down) for each timer is programmable by software or may  
additionally be altered dynamically by an external signal on a port pin (TxEUD) to  
facilitate e.g. position tracking.  
In Incremental Interface Mode the GPT1 timers (T2, T3, T4) can be directly connected  
to the incremental position sensor signals A and B via their respective inputs TxIN and  
TxEUD. Direction and count signals are internally derived from these two input signals,  
so the contents of the respective timer Tx corresponds to the sensor position. The third  
position sensor signal TOP0 can be connected to an interrupt input.  
Timer T3 has an output toggle latch (T3OTL) which changes its state on each timer over-  
flow/underflow. The state of this latch may be output on pin T3OUT e.g. for time out  
monitoring of external hardware components, or may be used internally to clock timers  
T2 and T4 for measuring long time periods with high resolution.  
In addition to their basic operating modes, timers T2 and T4 may be configured as reload  
or capture registers for timer T3. When used as capture or reload registers, timers T2  
and T4 are stopped. The contents of timer T3 is captured into T2 or T4 in response to a  
signal at their associated input pins (TxIN). Timer T3 is reloaded with the contents of T2  
or T4 triggered either by an external signal or by a selectable state transition of its toggle  
latch T3OTL. When both T2 and T4 are configured to alternately reload T3 on opposite  
state transitions of T3OTL with the low and high times of a PWM signal, this signal can  
be constantly generated without software intervention.  
Data Sheet  
26  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
T2EUD  
fCPU  
T2IN  
U/D  
Interrupt  
Request  
2n : 1  
GPT1 Timer T2  
T2  
Mode  
Control  
Reload  
Capture  
Interrupt  
Request  
fCPU  
2n : 1  
Toggle FF  
T3OTL  
T3  
Mode  
Control  
T3IN  
GPT1 Timer T3  
T3OUT  
U/D  
T3EUD  
Other  
Timers  
Capture  
Reload  
T4IN  
T4  
Mode  
Control  
Interrupt  
Request  
2n : 1  
GPT1 Timer T4  
U/D  
fCPU  
T4EUD  
MCT02141  
n = 3 … 10  
Figure 6  
Block Diagram of GPT1  
With its maximum resolution of 8 TCL, the GPT2 module provides precise event control  
and time measurement. It includes two timers (T5, T6) and a capture/reload register  
(CAPREL). Both timers can be clocked with an input clock which is derived from the CPU  
clock via a programmable prescaler or with external signals. The count direction (up/  
down) for each timer is programmable by software or may additionally be altered  
dynamically by an external signal on a port pin (TxEUD). Concatenation of the timers is  
supported via the output toggle latch (T6OTL) of timer T6, which changes its state on  
each timer overflow/underflow.  
The state of this latch may be used to clock timer T5, and/or it may be output on pin  
T6OUT. The overflows/underflows of timer T6 can additionally be used to clock the  
CAPCOM timers T0 or T1, and to cause a reload from the CAPREL register. The  
CAPREL register may capture the contents of timer T5 based on an external signal  
transition on the corresponding port pin (CAPIN), and timer T5 may optionally be cleared  
Data Sheet  
27  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
after the capture procedure. This allows the C167CS to measure absolute time  
differences or to perform pulse multiplication without software overhead.  
The capture trigger (timer T5 to CAPREL) may also be generated upon transitions of  
GPT1 timer T3’s inputs T3IN and/or T3EUD. This is especially advantageous when T3  
operates in Incremental Interface Mode.  
T5EUD  
fCPU  
T5IN  
2n : 1  
T5  
Mode  
Control  
U/D  
Interrupt  
Request  
GPT2 Timer T5  
Clear  
Capture  
Interrupt  
Request  
T3  
MUX  
CT3  
CAPIN  
GPT2 CAPREL  
Interrupt  
Request  
GPT2 Timer T6  
U/D  
T6OTL  
T6OUT  
T6IN  
T6  
Mode  
Control  
Other  
Timers  
fCPU  
2n : 1  
T6EUD  
MCB03999  
n = 2 … 9  
Figure 7  
Block Diagram of GPT2  
Data Sheet  
28  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Real Time Clock  
The Real Time Clock (RTC) module of the C167CS consists of a chain of 3 divider  
blocks, a fixed 8:1 divider, the reloadable 16-bit timer T14, and the 32-bit RTC timer  
(accessible via registers RTCH and RTCL). The RTC module is directly clocked with the  
on-chip oscillator frequency divided by 32 via a separate clock driver (fRTC = fOSC/32)  
and is therefore independent from the selected clock generation mode of the C167CS.  
All timers count up.  
The RTC module can be used for different purposes:  
• System clock to determine the current time and date  
• Cyclic time based interrupt  
• 48-bit timer for long term measurements  
T14REL  
Reload  
fRTC  
T14  
8:1  
Interrupt  
Request  
RTCH  
RTCL  
MCD04432  
Figure 8  
RTC Block Diagram  
Note: The registers associated with the RTC are not affected by a reset in order to  
maintain the correct system time even when intermediate resets are executed.  
Data Sheet  
29  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
A/D Converter  
For analog signal measurement, a 10-bit A/D converter with 24 multiplexed input  
channels (16 standard channels and 8 extension channels) and a sample and hold  
circuit has been integrated on-chip. It uses the method of successive approximation. The  
sample time (for loading the capacitors) and the conversion time is programmable and  
can so be adjusted to the external circuitry.  
Overrun error detection/protection is provided for the conversion result register  
(ADDAT): either an interrupt request will be generated when the result of a previous  
conversion has not been read from the result register at the time the next conversion is  
complete, or the next conversion is suspended in such a case until the previous result  
has been read.  
For applications which require less than 24 analog input channels, the remaining  
channel inputs can be used as digital input port pins.  
The A/D converter of the C167CS supports four different conversion modes. In the  
standard Single Channel conversion mode, the analog level on a specified channel is  
sampled once and converted to a digital result. In the Single Channel Continuous mode,  
the analog level on a specified channel is repeatedly sampled and converted without  
software intervention. In the Auto Scan mode, the analog levels on a prespecified  
number of channels (standard or extension) are sequentially sampled and converted. In  
the Auto Scan Continuous mode, the number of prespecified channels is repeatedly  
sampled and converted. In addition, the conversion of a specific channel can be inserted  
(injected) into a running sequence without disturbing this sequence. This is called  
Channel Injection Mode.  
The Peripheral Event Controller (PEC) may be used to automatically store the  
conversion results into a table in memory for later evaluation, without requiring the  
overhead of entering and exiting interrupt routines for each data transfer.  
After each reset and also during normal operation the ADC automatically performs  
calibration cycles. This automatic self-calibration constantly adjusts the converter to  
changing operating conditions (e.g. temperature) and compensates process variations.  
These calibration cycles are part of the conversion cycle, so they do not affect the normal  
operation of the A/D converter.  
In order to decouple analog inputs from digital noise and to avoid input trigger noise  
those pins used for analog input can be disconnected from the digital IO or input stages  
under software control. This can be selected for each pin separately via registers  
P5DIDIS (Port 5 Digital Input Disable) and P1DIDIS (PORT1 Digital Input Disable).  
Data Sheet  
30  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Serial Channels  
Serial communication with other microcontrollers, processors, terminals or external  
peripheral components is provided by two serial interfaces with different functionality, an  
Asynchronous/Synchronous Serial Channel (ASC0) and a High-Speed Synchronous  
Serial Channel (SSC).  
The ASC0 is upward compatible with the serial ports of the Infineon 8-bit microcontroller  
families and supports full-duplex asynchronous communication at up to 781 KBaud/  
1.03 MBaud and half-duplex synchronous communication at up to 3.1/4.1 MBaud (@ 25/  
33 MHz CPU clock).  
A dedicated baud rate generator allows to set up all standard baud rates without  
oscillator tuning. For transmission, reception and error handling 4 separate interrupt  
vectors are provided. In asynchronous mode, 8- or 9-bit data frames are transmitted or  
received, preceded by a start bit and terminated by one or two stop bits. For  
multiprocessor communication, a mechanism to distinguish address from data bytes has  
been included (8-bit data plus wake up bit mode).  
In synchronous mode, the ASC0 transmits or receives bytes (8 bits) synchronously to a  
shift clock which is generated by the ASC0. The ASC0 always shifts the LSB first. A loop  
back option is available for testing purposes.  
A number of optional hardware error detection capabilities has been included to increase  
the reliability of data transfers. A parity bit can automatically be generated on  
transmission or be checked on reception. Framing error detection allows to recognize  
data frames with missing stop bits. An overrun error will be generated, if the last  
character received has not been read out of the receive buffer register at the time the  
reception of a new character is complete.  
The SSC supports full-duplex synchronous communication at up to 6.25/8.25 MBaud  
(@ 25/33 MHz CPU clock). It may be configured so it interfaces with serially linked  
peripheral components. A dedicated baud rate generator allows to set up all standard  
baud rates without oscillator tuning. For transmission, reception and error handling 3  
separate interrupt vectors are provided.  
The SSC transmits or receives characters of 2 … 16 bits length synchronously to a shift  
clock which can be generated by the SSC (master mode) or by an external master (slave  
mode). The SSC can start shifting with the LSB or with the MSB and allows the selection  
of shifting and latching clock edges as well as the clock polarity.  
A number of optional hardware error detection capabilities has been included to increase  
the reliability of data transfers. Transmit and receive error supervise the correct handling  
of the data buffer. Phase and baudrate error detect incorrect serial data.  
Data Sheet  
31  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
CAN-Modules  
The integrated CAN-Modules handle the completely autonomous transmission and  
reception of CAN frames in accordance with the CAN specification V2.0 part B (active),  
i.e. the on-chip CAN-Modules can receive and transmit standard frames with 11-bit  
identifiers as well as extended frames with 29-bit identifiers.  
The modules provide Full CAN functionality on up to 15 message objects each. Message  
object 15 may be configured for Basic CAN functionality. Both modes provide separate  
masks for acceptance filtering which allows to accept a number of identifiers in Full CAN  
mode and also allows to disregard a number of identifiers in Basic CAN mode. All  
message objects can be updated independent from the other objects and are equipped  
for the maximum message length of 8 bytes.  
The bit timing is derived from the XCLK and is programmable up to a data rate of  
1 MBaud. Each CAN-Module uses two pins of Port 4 or Port 8 to interface to an external  
bus transceiver. The interface pins are assigned via software.  
Module CAN2 is identical with the first one, except that it uses a separate address area  
and a separate interrupt node.  
The two CAN modules can be internally coupled by assigning their interface pins to the  
same two port pins, or they can interface to separate CAN buses.  
Note: When any CAN interface is assigned to Port 4, the respective segment address  
lines on Port 4 cannot be used. This will limit the external address space.  
Watchdog Timer  
The Watchdog Timer represents one of the fail-safe mechanisms which have been  
implemented to prevent the controller from malfunctioning for longer periods of time.  
The Watchdog Timer is always enabled after a reset of the chip, and can only be  
disabled in the time interval until the EINIT (end of initialization) instruction has been  
executed. Thus, the chip’s start-up procedure is always monitored. The software has to  
be designed to service the Watchdog Timer before it overflows. If, due to hardware or  
software related failures, the software fails to do so, the Watchdog Timer overflows and  
generates an internal hardware reset and pulls the RSTOUT pin low in order to allow  
external hardware components to be reset.  
The Watchdog Timer is a 16-bit timer, clocked with the system clock divided by 2/4/128/  
256. The high byte of the Watchdog Timer register can be set to a prespecified reload  
value (stored in WDTREL) in order to allow further variation of the monitored time  
interval. Each time it is serviced by the application software, the high byte of the  
Watchdog Timer is reloaded. Thus, time intervals between 15.5 µs and 508 ms can be  
monitored (@ 33 MHz).  
The default Watchdog Timer interval after reset is 3.97 ms (@ 33 MHz).  
Data Sheet  
32  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Parallel Ports  
The C167CS provides up to 111 I/O lines which are organized into eight input/output  
ports and one input port. All port lines are bit-addressable, and all input/output lines are  
individually (bit-wise) programmable as inputs or outputs via direction registers. The I/O  
ports are true bidirectional ports which are switched to high impedance state when  
configured as inputs. The output drivers of five I/O ports can be configured (pin by pin)  
for push/pull operation or open-drain operation via control registers. During the internal  
reset, all port pins are configured as inputs.  
The input threshold of Port 2, Port 3, Port 7, and Port 8 is selectable (TTL or CMOS like),  
where the special CMOS like input threshold reduces noise sensitivity due to the input  
hysteresis. The input threshold may be selected individually for each byte of the  
respective ports.  
All port lines have programmable alternate input or output functions associated with  
them. All port lines that are not used for these alternate functions may be used as general  
purpose IO lines.  
PORT0 and PORT1 may be used as address and data lines when accessing external  
memory, while Port 4 outputs the additional segment address bits A23/19/17 … A16 in  
systems where segmentation is enabled to access more than 64 KBytes of memory.  
Port 2, Port 8 and Port 7 (and parts of PORT1) are associated with the capture inputs or  
compare outputs of the CAPCOM units and/or with the outputs of the PWM module.  
Port 6 provides optional bus arbitration signals (BREQ, HLDA, HOLD) and chip select  
signals.  
Port 3 includes alternate functions of timers, serial interfaces, the optional bus control  
signal BHE, and the system clock output CLKOUT (or the programmable frequency  
output FOUT).  
Port 5 (and parts of PORT1) is used for the analog input channels to the A/D converter  
or timer control signals.  
The edge characteristics (transition time) and driver characteristics (output current) of  
the C167CS’s port drivers can be selected via the Port Output Control registers  
(POCONx).  
Data Sheet  
33  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Oscillator Watchdog  
The Oscillator Watchdog (OWD) monitors the clock signal generated by the on-chip  
oscillator (either with a crystal or via external clock drive). For this operation the PLL  
provides a clock signal which is used to supervise transitions on the oscillator clock. This  
PLL clock is independent from the XTAL1 clock. When the expected oscillator clock  
transitions are missing the OWD activates the PLL Unlock/OWD interrupt node and  
supplies the CPU with the PLL clock signal. Under these circumstances the PLL will  
oscillate with its basic frequency.  
In direct drive mode the PLL base frequency is used directly (fCPU = 2 … 5 MHz).  
In prescaler mode the PLL base frequency is divided by 2 (fCPU = 1 … 2.5 MHz).  
Note: The CPU clock source is only switched back to the oscillator clock after a  
hardware reset.  
The oscillator watchdog can be disabled by setting bit OWDDIS in register SYSCON.  
In this case (OWDDIS = ‘1’) the PLL remains idle and provides no clock signal, while the  
CPU clock signal is derived directly from the oscillator clock or via prescaler or SDD. Also  
no interrupt request will be generated in case of a missing oscillator clock.  
Note: At the end of a reset bit OWDDIS reflects the inverted level of pin RD at that time.  
Thus the oscillator watchdog may also be disabled via hardware by (externally)  
pulling the RD line low upon a reset, similar to the standard reset configuration via  
PORT0.  
Data Sheet  
34  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Power Management  
The C167CS provides several means to control the power it consumes either at a given  
time or averaged over a certain timespan. Three mechanisms can be used (partly in  
parallel):  
Power Saving Modes switch the C167CS into a special operating mode (control via  
instructions).  
Idle Mode stops the CPU while the peripherals can continue to operate.  
Sleep Mode and Power Down Mode stop all clock signals and all operation (RTC may  
optionally continue running). Sleep Mode can be terminated by external interrupt  
signals.  
Clock Generation Management controls the distribution and the frequency of  
internal and external clock signals (control via register SYSCON2).  
Slow Down Mode lets the C167CS run at a CPU clock frequency of fOSC/1 … 32 (half  
for prescaler operation) which drastically reduces the consumed power. The PLL can  
be optionally disabled while operating in Slow Down Mode.  
External circuitry can be controlled via the programmable frequency output FOUT.  
Peripheral Management permits temporary disabling of peripheral modules (control  
via register SYSCON3).  
Each peripheral can separately be disabled/enabled. A group control option disables  
a major part of the peripheral set by setting one single bit.  
The on-chip RTC supports intermittend operation of the C167CS by generating cyclic  
wakeup signals. This offers full performance to quickly react on action requests while the  
intermittend sleep phases greatly reduce the average power consumption of the system.  
Data Sheet  
35  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Instruction Set Summary  
Table 6 lists the instructions of the C167CS in a condensed way.  
The various addressing modes that can be used with a specific instruction, the operation  
of the instructions, parameters for conditional execution of instructions, and the opcodes  
for each instruction can be found in the “C166 Family Instruction Set Manual”.  
This document also provides a detailled description of each instruction.  
Table 6  
Mnemonic  
ADD(B)  
ADDC(B)  
SUB(B)  
SUBC(B)  
MUL(U)  
DIV(U)  
Instruction Set Summary  
Description  
Bytes  
2 / 4  
2 / 4  
2 / 4  
2 / 4  
Add word (byte) operands  
Add word (byte) operands with Carry  
Subtract word (byte) operands  
Subtract word (byte) operands with Carry  
(Un)Signed multiply direct GPR by direct GPR (16-16-bit) 2  
(Un)Signed divide register MDL by direct GPR (16-/16-bit) 2  
(Un)Signed long divide reg. MD by direct GPR (32-/16-bit) 2  
DIVL(U)  
CPL(B)  
NEG(B)  
AND(B)  
OR(B)  
Complement direct word (byte) GPR  
Negate direct word (byte) GPR  
Bitwise AND, (word/byte operands)  
Bitwise OR, (word/byte operands)  
Bitwise XOR, (word/byte operands)  
Clear direct bit  
2
2
2 / 4  
2 / 4  
2 / 4  
2
XOR(B)  
BCLR  
BSET  
Set direct bit  
2
BMOV(N)  
Move (negated) direct bit to direct bit  
AND/OR/XOR direct bit with direct bit  
4
BAND, BOR,  
BXOR  
4
BCMP  
Compare direct bit to direct bit  
4
4
BFLDH/L  
Bitwise modify masked high/low byte of bit-addressable  
direct word memory with immediate data  
CMP(B)  
CMPD1/2  
CMPI1/2  
PRIOR  
Compare word (byte) operands  
2 / 4  
Compare word data to GPR and decrement GPR by 1/2 2 / 4  
Compare word data to GPR and increment GPR by 1/2  
2 / 4  
2
Determine number of shift cycles to normalize direct  
word GPR and store result in direct word GPR  
SHL / SHR  
ROL / ROR  
ASHR  
Shift left/right direct word GPR  
2
2
2
Rotate left/right direct word GPR  
Arithmetic (sign bit) shift right direct word GPR  
Data Sheet  
36  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Table 6  
Instruction Set Summary (cont’d)  
Description  
Mnemonic  
MOV(B)  
MOVBS  
MOVBZ  
Bytes  
Move word (byte) data  
2 / 4  
Move byte operand to word operand with sign extension 2 / 4  
Move byte operand to word operand. with zero extension 2 / 4  
JMPA, JMPI,  
JMPR  
Jump absolute/indirect/relative if condition is met  
4
JMPS  
J(N)B  
JBC  
Jump absolute to a code segment  
4
4
4
4
Jump relative if direct bit is (not) set  
Jump relative and clear bit if direct bit is set  
Jump relative and set bit if direct bit is not set  
JNBS  
CALLA, CALLI,  
CALLR  
Call absolute/indirect/relative subroutine if condition is met 4  
CALLS  
PCALL  
Call absolute subroutine in any code segment  
4
4
Push direct word register onto system stack and call  
absolute subroutine  
TRAP  
Call interrupt service routine via immediate trap number  
Push/pop direct word register onto/from system stack  
2
2
4
PUSH, POP  
SCXT  
Push direct word register onto system stack und update  
register with word operand  
RET  
Return from intra-segment subroutine  
Return from inter-segment subroutine  
2
2
2
RETS  
RETP  
Return from intra-segment subroutine and pop direct  
word register from system stack  
RETI  
Return from interrupt service subroutine  
Software Reset  
2
SRST  
4
IDLE  
Enter Idle Mode  
4
PWRDN  
SRVWDT  
DISWDT  
EINIT  
Enter Power Down Mode (supposes NMI-pin being low)  
Service Watchdog Timer  
4
4
Disable Watchdog Timer  
4
Signify End-of-Initialization on RSTOUT-pin  
Begin ATOMIC sequence  
4
ATOMIC  
EXTR  
2
Begin EXTended Register sequence  
Begin EXTended Page (and Register) sequence  
Begin EXTended Segment (and Register) sequence  
Null operation  
2
EXTP(R)  
EXTS(R)  
NOP  
2 / 4  
2 / 4  
2
Data Sheet  
37  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Special Function Registers Overview  
Table 7 lists all SFRs which are implemented in the C167CS in alphabetical order.  
Bit-addressable SFRs are marked with the letter “b” in column “Name”. SFRs within the  
Extended SFR-Space (ESFRs) are marked with the letter “E” in column “Physical  
Address”. Registers within on-chip X-peripherals are marked with the letter “X” in column  
“Physical Address”.  
An SFR can be specified via its individual mnemonic name. Depending on the selected  
addressing mode, an SFR can be accessed via its physical address (using the Data  
Page Pointers), or via its short 8-bit address (without using the Data Page Pointers).  
Table 7  
Name  
C167CS Registers, Ordered by Name  
Physical 8-Bit Description  
Reset  
Value  
Address  
Addr.  
ADCIC  
b FF98H  
CCH A/D Converter End of Conversion  
Interrupt Control Register  
0000H  
ADCON  
b FFA0H  
D0H  
50H  
A/D Converter Control Register  
A/D Converter Result Register  
A/D Converter 2 Result Register  
Address Select Register 1  
Address Select Register 2  
Address Select Register 3  
Address Select Register 4  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
ADDAT  
FEA0H  
ADDAT2  
F0A0H E 50H  
ADDRSEL1  
ADDRSEL2  
ADDRSEL3  
ADDRSEL4  
ADEIC  
FE18H  
FE1AH  
0CH  
0DH  
0EH  
0FH  
FE1CH  
FE1EH  
b FF9AH  
CDH A/D Converter Overrun Error Interrupt  
Control Register  
BUSCON0 b FF0CH  
BUSCON1 b FF14H  
BUSCON2 b FF16H  
BUSCON3 b FF18H  
BUSCON4 b FF1AH  
86H  
8AH  
8BH  
8CH  
8DH  
Bus Configuration Register 0  
Bus Configuration Register 1  
Bus Configuration Register 2  
Bus Configuration Register 3  
Bus Configuration Register 4  
CAN1 Bit Timing Register  
0XX0H  
0000H  
0000H  
0000H  
0000H  
C1BTR  
EF04H X ---  
EF00H X ---  
UUUUH  
XX01H  
UFUUH  
XXXXH  
UUUUH  
UUUUH  
C1CSR  
C1GMS  
C1PCIR  
C1LGML  
C1LMLM  
CAN1 Control/Status Register  
CAN1 Global Mask Short  
EF06H X ---  
EF02H X ---  
EF0AH X ---  
EF0EH X ---  
CAN1 Port Control/Interrupt Register  
CAN1 Lower Global Mask Long  
CAN1 Lower Mask of Last Message  
Data Sheet  
38  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Table 7  
Name  
C167CS Registers, Ordered by Name (cont’d)  
Physical 8-Bit Description  
Reset  
Value  
Address  
Addr.  
C1UAR  
C1UGML  
C1UMLM  
C2BTR  
C2CSR  
C2GMS  
C2PCIR  
C2LGML  
C2LMLM  
C2UAR  
C2UGML  
C2UMLM  
CAPREL  
CC0  
EFn2H X ---  
EF08H X ---  
EF0CH X ---  
EE04H X ---  
EE00H X ---  
EE06H X ---  
EE02H X ---  
EE0AH X ---  
EE0EH X ---  
EEn2H X ---  
EE08H X ---  
EE0CH X ---  
CAN1 Upper Arbitration Reg. (msg. n)  
UUUUH  
UUUUH  
UUUUH  
UUUUH  
XX01H  
UFUUH  
XXXXH  
UUUUH  
UUUUH  
UUUUH  
UUUUH  
UUUUH  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
CAN1 Upper Global Mask Long  
CAN1 Upper Mask of Last Message  
CAN2 Bit Timing Register  
CAN2 Control/Status Register  
CAN2 Global Mask Short  
CAN2 Port Control/Interrupt Register  
CAN2 Lower Global Mask Long  
CAN2 Lower Mask of Last Message  
CAN2 Upper Arbitration Reg. (msg. n)  
CAN2 Upper Global Mask Long  
CAN2 Upper Mask of Last Message  
GPT2 Capture/Reload Register  
CAPCOM Register 0  
FE4AH  
FE80H  
25H  
40H  
CC0IC  
b FF78H  
FE82H  
BCH CAPCOM Reg. 0 Interrupt Ctrl. Reg.  
CC1  
41H  
4AH  
C6H  
4BH  
C7H  
4CH  
C8H  
4DH  
C9H  
4EH  
CAPCOM Register 1  
CC10  
FE94H  
CAPCOM Register 10  
CC10IC  
CC11  
b FF8CH  
FE96H  
CAPCOM Reg. 10 Interrupt Ctrl. Reg.  
CAPCOM Register 11  
CC11IC  
CC12  
b FF8EH  
FE98H  
CAPCOM Reg. 11 Interrupt Ctrl. Reg.  
CAPCOM Register 12  
CC12IC  
CC13  
b FF90H  
FE9AH  
CAPCOM Reg. 12 Interrupt Ctrl. Reg.  
CAPCOM Register 13  
CC13IC  
CC14  
b FF92H  
FE9CH  
CAPCOM Reg. 13 Interrupt Ctrl. Reg.  
CAPCOM Register 14  
CC14IC  
CC15  
b FF94H  
FE9EH  
CAH CAPCOM Reg. 14 Interrupt Ctrl. Reg.  
4FH CAPCOM Register 15  
CBH CAPCOM Reg. 15 Interrupt Ctrl. Reg.  
CC15IC  
CC16  
b FF96H  
FE60H  
30H  
CAPCOM Register 16  
CC16IC  
b F160H E B0H  
CAPCOM Reg. 16 Interrupt Ctrl. Reg.  
Data Sheet  
39  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Table 7  
Name  
C167CS Registers, Ordered by Name (cont’d)  
Physical 8-Bit Description  
Reset  
Value  
Address  
Addr.  
CC17  
FE62H  
31H  
CAPCOM Register 17  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
CC17IC  
CC18  
b F162H E B1H  
FE64H 32H  
b F164H E B2H  
FE66H 33H  
b F166H E B3H  
CAPCOM Reg.17 Interrupt Ctrl. Reg.  
CAPCOM Register 18  
CC18IC  
CC19  
CAPCOM Reg. 18 Interrupt Ctrl. Reg.  
CAPCOM Register 19  
CC19IC  
CC1IC  
CC2  
CAPCOM Reg. 19 Interrupt Ctrl. Reg.  
b FF7AH  
FE84H  
BDH CAPCOM Reg.1 Interrupt Ctrl. Reg.  
42H  
34H  
CAPCOM Register 2  
CC20  
FE68H  
CAPCOM Register 20  
CC20IC  
CC21  
b F168H E B4H  
FE6AH 35H  
b F16AH E B5H  
FE6CH 36H  
b F16CH E B6H  
FE6EH 37H  
b F16EH E B7H  
FE70H 38H  
b F170H E B8H  
FE72H 39H  
b F172H E B9H  
FE74H 3AH  
b F174H E BAH  
FE76H 3BH  
b F176H E BBH  
FE78H 3CH  
CAPCOM Reg. 20 Interrupt Ctrl. Reg.  
CAPCOM Register 21  
CC21IC  
CC22  
CAPCOM Reg. 21 Interrupt Ctrl. Reg.  
CAPCOM Register 22  
CC22IC  
CC23  
CAPCOM Reg. 22 Interrupt Ctrl. Reg.  
CAPCOM Register 23  
CC23IC  
CC24  
CAPCOM Reg. 23 Interrupt Ctrl. Reg.  
CAPCOM Register 24  
CC24IC  
CC25  
CAPCOM Reg. 24 Interrupt Ctrl. Reg.  
CAPCOM Register 25  
CC25IC  
CC26  
CAPCOM Reg. 25 Interrupt Ctrl. Reg.  
CAPCOM Register 26  
CC26IC  
CC27  
CAPCOM Reg. 26 Interrupt Ctrl. Reg.  
CAPCOM Register 27  
CC27IC  
CC28  
CAPCOM Reg. 27 Interrupt Ctrl. Reg.  
CAPCOM Register 28  
CC28IC  
CC29  
b F178H E BCH CAPCOM Reg. 28 Interrupt Ctrl. Reg.  
FE7AH  
3DH  
CAPCOM Register 29  
CC29IC  
CC2IC  
CC3  
b F184H E C2H  
CAPCOM Reg. 29 Interrupt Ctrl. Reg.  
CAPCOM Reg. 2 Interrupt Ctrl. Reg.  
CAPCOM Register 3  
b FF7CH  
BEH  
43H  
FE86H  
Data Sheet  
40  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Table 7  
Name  
C167CS Registers, Ordered by Name (cont’d)  
Physical 8-Bit Description  
Reset  
Value  
Address  
Addr.  
CC30  
CC30IC  
CC31  
CC31IC  
CC3IC  
CC4  
FE7CH  
3EH  
CAPCOM Register 30  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
FC00H  
0000H  
b F18CH E C6H  
FE7EH 3FH  
CAPCOM Reg. 30 Interrupt Ctrl. Reg.  
CAPCOM Register 31  
b F194H E CAH CAPCOM Reg. 31 Interrupt Ctrl. Reg.  
b FF7EH  
FE88H  
BFH  
44H  
C0H  
45H  
C1H  
46H  
C2H  
47H  
C3H  
48H  
C4H  
49H  
C5H  
A9H  
AAH  
ABH  
CAPCOM Reg. 3 Interrupt Ctrl. Reg.  
CAPCOM Register 4  
CC4IC  
CC5  
b FF80H  
FE8AH  
CAPCOM Reg. 4 Interrupt Ctrl. Reg.  
CAPCOM Register 5  
CC5IC  
CC6  
b FF82H  
FE8CH  
CAPCOM Reg. 5 Interrupt Ctrl. Reg.  
CAPCOM Register 6  
CC6IC  
CC7  
b FF84H  
FE8EH  
CAPCOM Reg. 6 Interrupt Ctrl. Reg.  
CAPCOM Register 7  
CC7IC  
CC8  
b FF86H  
FE90H  
CAPCOM Reg. 7 Interrupt Ctrl. Reg.  
CAPCOM Register 8  
CC8IC  
CC9  
b FF88H  
FE92H  
CAPCOM Reg. 8 Interrupt Ctrl. Reg.  
CAPCOM Register 9  
CC9IC  
CCM0  
CCM1  
CCM2  
CCM3  
CCM4  
CCM5  
CCM6  
CCM7  
CP  
b FF8AH  
b FF52H  
b FF54H  
b FF56H  
b FF58H  
b FF22H  
b FF24H  
b FF26H  
b FF28H  
FE10H  
CAPCOM Reg. 9 Interrupt Ctrl. Reg.  
CAPCOM Mode Control Register 0  
CAPCOM Mode Control Register 1  
CAPCOM Mode Control Register 2  
ACH CAPCOM Mode Control Register 3  
91H  
92H  
93H  
94H  
08H  
B5H  
04H  
CAPCOM Mode Control Register 4  
CAPCOM Mode Control Register 5  
CAPCOM Mode Control Register 6  
CAPCOM Mode Control Register 7  
CPU Context Pointer Register  
CRIC  
CSP  
b FF6AH  
FE08H  
GPT2 CAPREL Interrupt Ctrl. Reg.  
CPU Code Seg. Pointer Reg. (read only)  
P0L Direction Control Register  
0000H  
00H  
DP0L  
DP0H  
b F100H E 80H  
b F102H E 81H  
P0H Direction Control Register  
00H  
Data Sheet  
41  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Table 7  
Name  
C167CS Registers, Ordered by Name (cont’d)  
Physical 8-Bit Description  
Reset  
Value  
Address  
Addr.  
DP1L  
DP1H  
DP2  
b F104H E 82H  
b F106H E 83H  
P1L Direction Control Register  
P1H Direction Control Register  
Port 2 Direction Control Register  
Port 3 Direction Control Register  
Port 4 Direction Control Register  
Port 6 Direction Control Register  
Port 7 Direction Control Register  
Port 8 Direction Control Register  
00H  
00H  
b FFC2H  
b FFC6H  
b FFCAH  
b FFCEH  
b FFD2H  
b FFD6H  
FE00H  
E1H  
E3H  
E5H  
E7H  
E9H  
EBH  
00H  
01H  
02H  
03H  
0000H  
0000H  
00H  
DP3  
DP4  
DP6  
00H  
DP7  
00H  
DP8  
00H  
DPP0  
DPP1  
DPP2  
DPP3  
EXICON  
EXISEL  
FOCON  
IDCHIP  
IDMANUF  
IDMEM  
IDMEM2  
IDPROG  
ISNC  
CPU Data Page Pointer 0 Reg. (10 bits)  
CPU Data Page Pointer 1 Reg. (10 bits)  
CPU Data Page Pointer 2 Reg. (10 bits)  
CPU Data Page Pointer 3 Reg. (10 bits)  
External Interrupt Control Register  
0000H  
0001H  
0002H  
0003H  
0000H  
0000H  
0000H  
0CXXH  
1820H  
X040H  
XXXXH  
XXXXH  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
00H  
FE02H  
FE04H  
FE06H  
b F1C0H E E0H  
b F1DAH E EDH External Interrupt Source Select Reg.  
b FFAAH  
D5H  
Frequency Output Control Register  
Identifier  
F07CH E 3EH  
F07EH E 3FH  
F07AH E 3DH  
F076H E 3BH  
F078H E 3CH  
b F1DEH E EFH  
Identifier  
Identifier  
Identifier  
Identifier  
Interrupt Subnode Control Register  
CPU Multiply Divide Control Register  
CPU Multiply Divide Reg. – High Word  
CPU Multiply Divide Reg. – Low Word  
Port 2 Open Drain Control Register  
Port 3 Open Drain Control Register  
Port 4 Open Drain Control Register  
Port 6 Open Drain Control Register  
Port 7 Open Drain Control Register  
Port 8 Open Drain Control Register  
MDC  
b FF0EH  
FE0CH  
87H  
06H  
07H  
MDH  
MDL  
FE0EH  
ODP2  
ODP3  
ODP4  
ODP6  
ODP7  
ODP8  
b F1C2H E E1H  
b F1C6H E E3H  
b F1CAH E E5H  
b F1CEH E E7H  
b F1D2H E E9H  
b F1D6H E EBH  
00H  
00H  
00H  
Data Sheet  
42  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Table 7  
Name  
C167CS Registers, Ordered by Name (cont’d)  
Physical 8-Bit Description  
Reset  
Value  
Address  
b FF1EH  
b FF02H  
b FF00H  
FEA4H  
Addr.  
8FH  
81H  
80H  
52H  
83H  
82H  
E0H  
E2H  
E4H  
D1H  
D2H  
E6H  
E8H  
EAH  
60H  
61H  
62H  
63H  
64H  
65H  
66H  
67H  
ONES  
P0H  
Constant Value 1’s Register (read only)  
FFFFH  
00H  
Port 0 High Reg. (Upper half of PORT0)  
Port 0 Low Reg. (Lower half of PORT0)  
Port 1 Digital Input Disable Register  
Port 1 High Reg. (Upper half of PORT1)  
Port 1 Low Reg.(Lower half of PORT1)  
Port 2 Register  
P0L  
00H  
P1DIDIS  
P1H  
0000H  
00H  
b FF06H  
b FF04H  
b FFC0H  
b FFC4H  
b FFC8H  
b FFA2H  
b FFA4H  
b FFCCH  
b FFD0H  
b FFD4H  
FEC0H  
P1L  
00H  
P2  
0000H  
0000H  
00H  
P3  
Port 3 Register  
P4  
Port 4 Register (8 bits)  
P5  
Port 5 Register (read only)  
XXXXH  
0000H  
00H  
P5DIDIS  
P6  
Port 5 Digital Input Disable Register  
Port 6 Register (8 bits)  
P7  
Port 7 Register (8 bits)  
00H  
P8  
Port 8 Register (8 bits)  
00H  
PECC0  
PECC1  
PECC2  
PECC3  
PECC4  
PECC5  
PECC6  
PECC7  
PICON  
POCON0H  
POCON0L  
POCON1H  
POCON1L  
POCON2  
POCON20  
POCON3  
PEC Channel 0 Control Register  
PEC Channel 1 Control Register  
PEC Channel 2 Control Register  
PEC Channel 3 Control Register  
PEC Channel 4 Control Register  
PEC Channel 5 Control Register  
PEC Channel 6 Control Register  
PEC Channel 7 Control Register  
Port Input Threshold Control Register  
Port P0H Output Control Register  
Port P0L Output Control Register  
Port P1H Output Control Register  
Port P1L Output Control Register  
Port P2 Output Control Register  
Dedicated Pin Output Control Register  
Port P3 Output Control Register  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
FEC2H  
FEC4H  
FEC6H  
FEC8H  
FECAH  
FECCH  
FECEH  
b F1C4H E E2H  
F082H E 41H  
F080H E 40H  
F086H E 43H  
F084H E 42H  
F088H E 44H  
F0AAH E 55H  
F08AH E 45H  
Data Sheet  
43  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Table 7  
Name  
C167CS Registers, Ordered by Name (cont’d)  
Physical 8-Bit Description  
Reset  
Value  
Address  
Addr.  
POCON4  
POCON6  
POCON7  
POCON8  
PP0  
F08CH E 46H  
F08EH E 47H  
F090H E 48H  
F092H E 49H  
F038H E 1CH  
F03AH E 1DH  
F03CH E 1EH  
F03EH E 1FH  
Port P4 Output Control Register  
Port P6 Output Control Register  
Port P7 Output Control Register  
Port P8 Output Control Register  
PWM Module Period Register 0  
PWM Module Period Register 1  
PWM Module Period Register 2  
PWM Module Period Register 3  
CPU Program Status Word  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
PP1  
PP2  
PP3  
PSW  
b FF10H  
88H  
F030H E 18H  
F032H E 19H  
F034H E 1AH  
F036H E 1BH  
F0AEH E 57H  
PT0  
PWM Module Up/Down Counter 0  
PWM Module Up/Down Counter 1  
PWM Module Up/Down Counter 2  
PWM Module Up/Down Counter 3  
PT1  
PT2  
PT3  
PTCR  
PW0  
Port Temperature Compensation Reg.  
PWM Module Pulse Width Register 0  
PWM Module Pulse Width Register 1  
PWM Module Pulse Width Register 2  
PWM Module Pulse Width Register 3  
PWM Module Control Register 0  
PWM Module Control Register 1  
PWM Module Interrupt Control Register  
System Startup Config. Reg. (Rd. only)  
Reset Control Register  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
XXH  
FE30H  
FE32H  
FE34H  
FE36H  
18H  
19H  
1AH  
1BH  
98H  
99H  
PW1  
PW2  
PW3  
PWMCON0 b FF30H  
PWMCON1 b FF32H  
PWMIC  
RP0H  
b F17EH E BFH  
b F108H E 84H  
RSTCON b F1E0H m ---  
00XXH  
XXXXH  
XXXXH  
0000H  
RTCH  
RTCL  
S0BG  
F0D6H E 6BH  
F0D4H E 6AH  
RTC High Register  
RTC Low Register  
FEB4H  
5AH  
Serial Channel 0 Baud Rate Generator  
Reload Register  
S0CON  
S0EIC  
b FFB0H  
b FF70H  
D8H  
B8H  
Serial Channel 0 Control Register  
0000H  
0000H  
Serial Channel 0 Error Interrupt Ctrl. Reg  
Data Sheet  
44  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Table 7  
Name  
C167CS Registers, Ordered by Name (cont’d)  
Physical 8-Bit Description  
Reset  
Value  
Address  
Addr.  
S0RBUF  
S0RIC  
FEB2H  
59H  
Serial Channel 0 Receive Buffer Reg.  
(read only)  
XXH  
0000H  
0000H  
00H  
b FF6EH  
B7H  
Serial Channel 0 Receive Interrupt  
Control Register  
S0TBIC  
S0TBUF  
S0TIC  
b F19CH E CEH Serial Channel 0 Transmit Buffer  
Interrupt Control Register  
FEB0H  
b FF6CH  
FE12H  
58H  
B6H  
09H  
Serial Channel 0 Transmit Buffer  
Register (write only)  
Serial Channel 0 Transmit Interrupt  
Control Register  
0000H  
SP  
CPU System Stack Pointer Register  
SSC Baudrate Register  
FC00H  
0000H  
0000H  
0000H  
XXXXH  
SSCBR  
F0B4H E 5AH  
SSCCON b FFB2H  
D9H  
BBH  
SSC Control Register  
SSCEIC  
SSCRB  
SSCRIC  
SSCTB  
SSCTIC  
STKOV  
STKUN  
b FF76H  
SSC Error Interrupt Control Register  
SSC Receive Buffer  
F0B2H E 59H  
b FF74H  
BAH  
SSC Receive Interrupt Control Register  
SSC Transmit Buffer  
0000H  
0000H  
0000H  
FA00H  
FC00H  
1)0XX0H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
F0B0H E 58H  
b FF72H  
B9H  
0AH  
0BH  
89H  
SSC Transmit Interrupt Control Register  
CPU Stack Overflow Pointer Register  
CPU Stack Underflow Pointer Register  
CPU System Configuration Register  
CPU System Configuration Register 1  
CPU System Configuration Register 2  
CPU System Configuration Register 3  
CAPCOM Timer 0 Register  
FE14H  
FE16H  
SYSCON b FF12H  
SYSCON1 b F1DCH E EEH  
SYSCON2 b F1D0H E E8H  
SYSCON3 b F1D4H E EAH  
T0  
FE50H  
b FF50H  
b FF9CH  
FE54H  
28H  
A8H  
T01CON  
T0IC  
CAPCOM Timer 0 and Timer 1 Ctrl. Reg.  
CEH CAPCOM Timer 0 Interrupt Ctrl. Reg.  
T0REL  
T1  
2AH  
29H  
CFH  
2BH  
CAPCOM Timer 0 Reload Register  
CAPCOM Timer 1 Register  
FE52H  
T1IC  
b FF9EH  
FE56H  
CAPCOM Timer 1 Interrupt Ctrl. Reg.  
CAPCOM Timer 1 Reload Register  
T1REL  
Data Sheet  
45  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Table 7  
Name  
C167CS Registers, Ordered by Name (cont’d)  
Physical 8-Bit Description  
Reset  
Value  
Address  
Addr.  
T14  
F0D2H E 69H  
F0D0H E 68H  
RTC Timer 14 Register  
XXXXH  
XXXXH  
0000H  
0000H  
T14REL  
T2  
RTC Timer 14 Reload Register  
GPT1 Timer 2 Register  
FE40H  
b FF40H  
b FF60H  
FE42H  
20H  
A0H  
B0H  
21H  
A1H  
B1H  
22H  
A2H  
B2H  
23H  
A3H  
B3H  
24H  
A4H  
B4H  
T2CON  
T2IC  
T3  
GPT1 Timer 2 Control Register  
GPT1 Timer 2 Interrupt Control Register  
GPT1 Timer 3 Register  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
2)00XXH  
0000H  
0000H  
0000H  
T3CON  
T3IC  
T4  
b FF42H  
b FF62H  
FE44H  
GPT1 Timer 3 Control Register  
GPT1 Timer 3 Interrupt Control Register  
GPT1 Timer 4 Register  
T4CON  
T4IC  
T5  
b FF44H  
b FF64H  
FE46H  
GPT1 Timer 4 Control Register  
GPT1 Timer 4 Interrupt Control Register  
GPT2 Timer 5 Register  
T5CON  
T5IC  
T6  
b FF46H  
b FF66H  
FE48H  
GPT2 Timer 5 Control Register  
GPT2 Timer 5 Interrupt Control Register  
GPT2 Timer 6 Register  
T6CON  
T6IC  
T7  
b FF48H  
b FF68H  
GPT2 Timer 6 Control Register  
GPT2 Timer 6 Interrupt Control Register  
CAPCOM Timer 7 Register  
F050H E 28H  
T78CON  
T7IC  
T7REL  
T8  
b FF20H  
90H  
b F17AH E BEH  
F054H E 2AH  
F052H E 29H  
CAPCOM Timer 7 and 8 Control Reg.  
CAPCOM Timer 7 Interrupt Ctrl. Reg.  
CAPCOM Timer 7 Reload Register  
CAPCOM Timer 8 Register  
T8IC  
T8REL  
TFR  
b F17CH E BFH  
F056H E 2BH  
CAPCOM Timer 8 Interrupt Ctrl. Reg.  
CAPCOM Timer 8 Reload Register  
Trap Flag Register  
b FFACH  
D6H  
57H  
D7H  
WDT  
FEAEH  
Watchdog Timer Register (read only)  
Watchdog Timer Control Register  
CAN1 Module Interrupt Control Register  
CAN2 Module Interrupt Control Register  
WDTCON b FFAEH  
XP0IC  
XP1IC  
XP2IC  
b F186H E C3H  
b F18EH E C7H  
b F196H E CBH Unassigned Interrupt Control Register  
Data Sheet  
46  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Table 7  
Name  
C167CS Registers, Ordered by Name (cont’d)  
Physical 8-Bit Description  
Reset  
Value  
Address  
Addr.  
XP3IC  
b F19EH E CFH  
F024H E 12H  
RTC/PLL Interrupt Control Register  
X-Peripheral Control Register  
0000H  
0401H  
XPERCON  
ZEROS  
b FF1CH  
8EH  
Constant Value 0’s Register (read only)  
0000H  
1)  
The system configuration is selected during reset.  
2)  
The reset value depends on the indicated reset source.  
Data Sheet  
47  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Absolute Maximum Ratings  
Table 8  
Absolute Maximum Rating Parameters  
Parameter  
Symbol  
Limit Values  
min. max.  
Unit  
Notes  
Storage temperature  
TST  
TJ  
– 65  
– 40  
– 0.5  
150  
150  
6.5  
°C  
°C  
V
Junction temperature  
under bias  
Voltage on VDD pins with VDD  
respect to ground (VSS)  
Voltage on any pin with  
respect to ground (VSS)  
VIN  
– 0.5  
– 10  
V
DD + 0.5 V  
Input current on any pin  
during overload condition  
10  
mA  
mA  
Absolute sum of all input  
currents during overload  
condition  
|100|  
Power dissipation  
PDISS  
1.5  
W
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in  
the operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
During absolute maximum rating overload conditions (VIN > VDD or VIN < VSS) the  
voltage on VDD pins with respect to ground (VSS) must not exceed the values  
defined by the absolute maximum ratings.  
Data Sheet  
48  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Operating Conditions  
The following operating conditions must not be exceeded in order to ensure correct  
operation of the C167CS. All parameters specified in the following sections refer to these  
operating conditions, unless otherwise noticed.  
Table 9  
Operating Condition Parameters  
Parameter  
Symbol  
Limit Values  
min. max.  
4.5 5.5  
Unit Notes  
Digital supply voltage  
VDD  
V
Active mode,  
CPUmax = 33 MHz  
f
2.51)  
5.5  
V
V
PowerDown mode  
Digital ground voltage  
Overload current  
VSS  
IOV  
0
Reference voltage  
± 5  
mA Per pin2)3)  
3)  
Absolute sum of overload Σ|IOV|  
50  
mA  
currents  
External Load  
Capacitance  
CL  
TA  
50  
pF  
Pin drivers in  
fast edge mode4)  
Ambient temperature  
0
70  
°C  
°C  
°C  
SAB-C167CS …  
SAF-C167CS …  
SAK-C167CS …  
– 40  
– 40  
85  
125  
1)  
Output voltages and output currents will be reduced when VDD leaves the range defined for active mode.  
2)  
Overload conditions occur if the standard operatings conditions are exceeded, i.e. the voltage on any pin  
exceeds the specified range (i.e. VOV > VDD + 0.5 V or VOV < VSS – 0.5 V). The absolute sum of input overload  
currents on all pins may not exceed 50 mA. The supply voltage must remain within the specified limits.  
Proper operation is not guaranteed if overload conditions occur on functional pins line XTAL1, RD, WR, etc.  
3)  
4)  
Not 100% tested, guaranteed by design and characterization.  
The timing is valid for pin drivers in high current or dynamic current mode. The reduced static output current in  
dynamic current mode must be respected when designing the system.  
Data Sheet  
49  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Parameter Interpretation  
The parameters listed in the following partly represent the characteristics of the C167CS  
and partly its demands on the system. To aid in interpreting the parameters right, when  
evaluating them for a design, they are marked in column “Symbol”:  
CC (Controller Characteristics):  
The logic of the C167CS will provide signals with the respective timing characteristics.  
SR (System Requirement):  
The external system must provide signals with the respective timing characteristics to  
the C167CS.  
DC Characteristics  
(Operating Conditions apply)1)  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min.  
max.  
Input low voltage (TTL,  
all except XTAL1)  
VIL SR – 0.5  
0.2 VDD  
– 0.1  
V
Input low voltage XTAL1  
VIL2 SR – 0.5  
VILS SR – 0.5  
0.3 VDD  
V
V
Input low voltage  
2.0  
(Special Threshold)  
Input high voltage (TTL,  
all except RSTIN and XTAL1)  
VIH SR 0.2 VDD VDD  
+ 0.9 0.5  
+
+
+
+
V
V
V
V
Input high voltage RSTIN  
(when operated as input)  
VIH1 SR 0.6 VDD VDD  
0.5  
Input high voltage XTAL1  
VIH2 SR 0.7 VDD VDD  
0.5  
Input high voltage  
(Special Threshold)  
VIHS SR 0.8 VDD VDD  
– 0.2  
0.5  
Input Hysteresis  
(Special Threshold)  
HYS  
400  
mV Series  
resistance = 0 Ω  
Output low voltage  
VOL CC –  
0.45  
0.45  
V
I
I
OL = 2.4 mA3)  
(PORT0, PORT1, Port 4, ALE,  
RD, WR, BHE, CLKOUT,  
RSTOUT, RSTIN2))  
OL = 0.5 mA4)  
Output low voltage  
(all other outputs)  
VOL1 CC –  
V
I
I
OL = 1.6 mA3)  
OL = 0.5 mA4)  
Data Sheet  
50  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
DC Characteristics (cont’d)  
(Operating Conditions apply)1)  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min.  
max.  
Output high voltage5)  
(PORT0, PORT1, Port 4, ALE,  
RD, WR, BHE, CLKOUT,  
RSTOUT)  
Output high voltage5)  
(all other outputs)  
VOH CC 2.4  
V
I
I
OH = – 2.4 mA3)  
OH = – 0.5 mA4)  
OH = – 0.5 mA3)  
0.9 VDD  
VOH1 CC 2.4  
V
V
I
I
I
OH = – 1.6 mA3)  
OH = – 0.5 mA4)  
0.9 VDD  
IOZ1 CC –  
V
I
OH = – 0.5 mA3)  
Input leakage current (Port 5)  
± 200  
± 500  
nA 0 V < VIN < VDD  
Input leakage current (all other) IOZ2 CC –  
nA 0.45 V < VIN  
< VDD  
7)  
RSTIN inactive current6)  
RSTIN active current6)  
READY/RD/WR inact. current9) IRWH  
IRSTH  
– 10  
µA VIN = VIH1  
µA VIN = VIL  
8)  
IRSTL  
– 100  
7)  
– 40  
µA  
µA  
µA  
µA  
µA  
µA  
V
V
V
V
V
V
OUT = 2.4 V  
8)  
READY/RD/WR active current9) IRWL  
– 500  
OUT = VOLmax  
OUT = VOLmax  
OUT = 2.4 V  
7)  
ALE inactive current9)  
ALE active current9)  
Port 6 inactive current9)  
Port 6 active current9)  
IALEL  
40  
8)  
IALEH  
500  
7)  
IP6H  
– 40  
OUT = 2.4 V  
8)  
IP6L  
– 500  
OUT = VOL1max  
7)  
PORT0 configuration current9) IP0H  
– 10  
µA VIN = VIHmin  
µA VIN = VILmax  
µA 0 V < VIN < VDD  
8)  
IP0L  
IIL  
CIO CC –  
– 100  
XTAL1 input current  
Pin capacitance10)  
CC –  
± 20  
10  
pF  
f = 1 MHz  
(digital inputs/outputs)  
TA = 25 °C  
1)  
Keeping signal levels within the levels specified in this table, ensures operation without overload conditions.  
For signal levels outside these specifications also refer to the specification of the overload current IOV  
.
2)  
3)  
4)  
5)  
Valid in bidirectional reset mode only.  
This output current may be drawn from (output) pins operating in High Current mode.  
This output current may be drawn from (output) pins operating in Low Current mode.  
This specification is not valid for outputs which are switched to open drain mode. In this case the respective  
output will float and the voltage results from the external circuitry.  
6)  
7)  
These parameters describe the RSTIN pullup, which equals a resistance of ca. 50 to 250 k.  
The maximum current may be drawn while the respective signal line remains inactive.  
Data Sheet  
51  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
8)  
9)  
The minimum current must be drawn in order to drive the respective signal line active.  
This specification is only valid during Reset, or during Hold- or Adapt-mode. During Hold mode Port 6 pins are  
only affected, if they are used (configured) for CS output and the open drain function is not enabled.  
10)  
Not 100% tested, guaranteed by design and characterization.  
Power Consumption C167CS  
(Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
min. max.  
Unit Test Condition  
Power supply current (active)  
with all peripherals active  
IDD  
20 +  
3.2 × fCPU  
mA RSTIN = VIL2  
f
CPU in [MHz]1)  
Idle mode supply current  
with all peripherals active  
IIDX  
15 +  
1.4 × fCPU  
mA RSTIN = VIH1  
CPU in [MHz]1)  
µA RSTIN = VIH1  
OSC in [MHz]1)  
f
2)  
Idle mode supply current  
with all peripherals deactivated,  
PLL off, SDD factor = 32  
IIDO  
500 +  
50 × fOSC  
f
2)  
Sleep and Power-down mode  
supply current with RTC running  
IPDR  
200 +  
25 × fOSC  
µA  
µA  
V
f
DD = VDDmax  
OSC in [MHz]3)  
3)  
Sleep and Power-down mode  
IPDO  
50  
VDD = VDDmax  
supply current with RTC disabled  
1)  
The supply current is a function of the operating frequency. This dependency is illustrated in Figure 10.  
These parameters are tested at VDDmax and maximum CPU clock with all outputs disconnected and all inputs  
at VIL or VIH.  
2)  
3)  
This parameter is determined mainly by the current consumed by the oscillator (see Figure 9). This current,  
however, is influenced by the external oscillator circuitry (crystal, capacitors). The values given refer to a typical  
circuitry and may change in case of a not optimized external oscillator circuitry.  
This parameter is tested including leakage currents. All inputs (including pins configured as inputs) at 0 V to  
0.1 V or at VDD – 0.1 V to VDD, VREF = 0 V, all outputs (including pins configured as outputs) disconnected.  
Data Sheet  
52  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Ι
A
1500  
1250  
1000  
750  
500  
250  
0
IIDOmax  
IIDOtyp  
IPDRmax  
IPDOmax  
12  
fOSC  
MHz  
0
4
8
16  
MCD04433  
Figure 9  
Idle and Power Down Supply Current as a Function of Oscillator  
Frequency  
Data Sheet  
53  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Ι
mA  
100  
IDDmax  
IDDtyp  
50  
IIDXmax  
IIDXtyp  
10  
0
fCPU  
0
5
10  
15  
20  
25  
30  
35 MHz  
MCD04434  
Figure 10  
Supply/Idle Current as a Function of Operating Frequency  
Data Sheet  
54  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
AC Characteristics  
Definition of Internal Timing  
The internal operation of the C167CS is controlled by the internal CPU clock fCPU. Both  
edges of the CPU clock can trigger internal (e.g. pipeline) or external (e.g. bus cycles)  
operations.  
The specification of the external timing (AC Characteristics) therefore depends on the  
time between two consecutive edges of the CPU clock, called “TCL” (see Figure 11).  
Phase Locked Loop Operation  
fOSC  
TCL  
fCPU  
TCL  
Direct Clock Drive  
fOSC  
TCL  
fCPU  
TCL  
Prescaler Operation  
fOSC  
TCL  
fCPU  
MCT04338  
TCL  
Figure 11  
Generation Mechanisms for the CPU Clock  
The CPU clock signal fCPU can be generated from the oscillator clock signal fOSC via  
different mechanisms. The duration of TCLs and their variation (and also the derived  
external timing) depends on the used mechanism to generate fCPU. This influence must  
be regarded when calculating the timings for the C167CS.  
Note: The example for PLL operation shown in Figure 11 refers to a PLL factor of 4.  
The used mechanism to generate the basic CPU clock is selected by bitfield CLKCFG  
in register RP0H.7-5.  
Upon a long hardware reset register RP0H is loaded with the logic levels present on the  
upper half of PORT0 (P0H), i.e. bitfield CLKCFG represents the logic levels on pins  
Data Sheet  
55  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
P0.15-13 (P0H.7-5). Register RP0H can be loaded from the upper half of register  
RSTCON under software control.  
Table 10 associates the combinations of these three bits with the respective clock  
generation mode.  
Table 10  
CLKCFG  
(RP0H.7-5) fCPU = fOSC × F  
C167CS Clock Generation Modes  
CPU Frequency External Clock  
Notes  
Input Range1)  
2.5 to 8.25 MHz  
3.33 to 11 MHz  
5 to 16.5 MHz  
2 to 6.6 MHz  
1 to 33 MHz  
1 1 1  
1 1 0  
1 0 1  
1 0 0  
0 1 1  
0 1 0  
0 0 1  
0 0 0  
f
f
f
f
f
f
f
f
OSC × 4  
OSC × 3  
OSC × 2  
OSC × 5  
OSC × 1  
OSC × 1.5  
OSC / 2  
Default configuration  
Direct drive2)  
6.66 to 22 MHz  
2 to 66 MHz  
CPU clock via prescaler  
OSC × 2.5  
4 to 13.2 MHz  
1)  
2)  
The external clock input range refers to a CPU clock range of 10 … 33 MHz.  
The maximum frequency depends on the duty cycle of the external clock signal.  
Prescaler Operation  
When prescaler operation is configured (CLKCFG=001B) the CPU clock is derived from  
the internal oscillator (input clock signal) by a 2:1 prescaler.  
The frequency of fCPU is half the frequency of fOSC and the high and low time of fCPU (i.e.  
the duration of an individual TCL) is defined by the period of the input clock fOSC  
.
The timings listed in the AC Characteristics that refer to TCLs therefore can be  
calculated using the period of fOSC for any TCL.  
Phase Locked Loop  
When PLL operation is configured (via CLKCFG) the on-chip phase locked loop is  
enabled and provides the CPU clock (see table above). The PLL multiplies the input  
frequency by the factor F which is selected via the combination of pins P0.15-13 (i.e.  
f
CPU = fOSC × F). With every F’th transition of fOSC the PLL circuit synchronizes the CPU  
clock to the input clock. This synchronization is done smoothly, i.e. the CPU clock  
frequency does not change abruptly.  
Due to this adaptation to the input clock the frequency of fCPU is constantly adjusted so  
it is locked to fOSC. The slight variation causes a jitter of fCPU which also effects the  
duration of individual TCLs.  
Data Sheet  
56  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
The timings listed in the AC Characteristics that refer to TCLs therefore must be  
calculated using the minimum TCL that is possible under the respective circumstances.  
The actual minimum value for TCL depends on the jitter of the PLL. As the PLL is  
constantly adjusting its output frequency so it corresponds to the applied input frequency  
(crystal or oscillator) the relative deviation for periods of more than one TCL is lower than  
for one single TCL (see formula and Figure 12).  
For a period of N × TCL the minimum value is computed using the corresponding  
deviation D :  
N
(N × TCL)min = N × TCLNOM – D ; D [ns] = ± (13.3 + N × 6.3)/fCPU [MHz],  
N
N
where N = number of consecutive TCLs and 1 N 40.  
So for a period of 3 TCLs @ 25 MHz (i.e. N = 3): D = (13.3 + 3 × 6.3)/25 = 1.288 ns,  
3
and (3TCL)min = 3TCLNOM – 1.288 ns = 58.7 ns (@ fCPU = 25 MHz).  
This is especially important for bus cycles using waitstates and e.g. for the operation of  
timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train  
generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter  
is neglectible.  
Note: For all periods longer than 40 TCL the N=40 value can be used (see Figure 12).  
Max. jitter DN  
±30  
10 MHz  
±26.5  
This approximated formula is valid for  
ns  
1
N
40 and 10 MHz fCPU 33 MHz.  
±20  
16 MHz  
20 MHz  
25 MHz  
33 MHz  
±10  
±1  
N
1
5
10  
20  
40  
MCD04413  
Figure 12  
Approximated Maximum Accumulated PLL Jitter  
Data Sheet  
57  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Direct Drive  
When direct drive is configured (CLKCFG = 011B) the on-chip phase locked loop is  
disabled and the CPU clock is directly driven from the internal oscillator with the input  
clock signal.  
The frequency of fCPU directly follows the frequency of fOSC so the high and low time of  
f
CPU (i.e. the duration of an individual TCL) is defined by the duty cycle of the input clock  
fOSC  
.
The timings listed below that refer to TCLs therefore must be calculated using the  
minimum TCL that is possible under the respective circumstances. This minimum value  
can be calculated via the following formula:  
TCLmin = 1/fOSC × DCmin  
(DC = duty cycle)  
For two consecutive TCLs the deviation caused by the duty cycle of fOSC is compensated  
so the duration of 2TCL is always 1/fOSC. The minimum value TCLmin therefore has to  
be used only once for timings that require an odd number of TCLs (1, 3, …). Timings that  
require an even number of TCLs (2, 4, …) may use the formula 2TCL = 1/fOSC  
.
Data Sheet  
58  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
AC Characteristics  
External Clock Drive XTAL1  
(Operating Conditions apply)  
Table 11  
External Clock Drive Characteristics  
Parameter  
Symbol  
Direct Drive  
1:1  
Prescaler  
2:1  
PLL  
1:N  
Unit  
min.  
max. min.  
max. min.  
max.  
5001) ns  
Oscillator period tOSC SR 30  
8
8
15  
5
5
5
451)  
10  
10  
High time2)  
Low time2)  
Rise time2)  
t1  
t2  
t3  
t4  
SR 153)  
SR 153)  
SR –  
ns  
ns  
ns  
ns  
5
10  
10  
Fall time2)  
SR –  
1)  
The minimum and maximum oscillator periods for PLL operation depend on the selected CPU clock generation  
mode. Please see respective table above.  
2)  
3)  
The clock input signal must reach the defined levels VIL2 and VIH2  
.
The minimum high and low time refers to a duty cycle of 50%. The maximum operating freqency (fCPU) in direct  
drive mode depends on the duty cycle of the clock input signal.  
t1  
t3  
t4  
VIH2  
VIL  
0.5 VDD  
t2  
tOSC  
MCT02534  
Figure 13  
External Clock Drive XTAL1  
Note: If the on-chip oscillator is used together with a crystal, the oscillator frequency is  
limited to a range of 4 MHz to 40 MHz.  
It is strongly recommended to measure the oscillation allowance (or margin) in the  
final target system (layout) to determine the optimum parameters for the oscillator  
operation. Please refer to the limits specified by the crystal supplier.  
When driven by an external clock signal it will accept the specified frequency  
range. Operation at lower input frequencies is possible but is guaranteed by  
design only (not 100% tested).  
Data Sheet  
59  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
A/D Converter Characteristics  
(Operating Conditions apply)  
Table 12  
A/D Converter Characteristics  
Symbol  
Parameter  
Limit Values  
max.  
Unit Test  
Condition  
min.  
1)  
Analog reference supply  
Analog reference ground  
V
V
AREF SR  
AGNDSR  
4.0  
V
DD + 0.1  
V
VSS – 0.1 VSS + 0.2  
V
2)  
Analog input voltage range VAIN SR VAGND  
VAREF  
V
3)  
4)  
Basic clock frequency  
Conversion time  
fBC  
tC  
0.5  
6.25  
MHz  
CC  
40 tBC + tS  
+ 2tCPU  
t
CPU = 1/fCPU  
5)  
Calibration time after reset tCAL CC  
3328 tBC  
± 2  
Total unadjusted error  
TUE CC1)  
LSB Channels  
0 … 15  
± 10  
LSB Channels  
16 … 23  
Internal resistance of  
reference voltage source  
R
R
AREF SR  
ASRC SR  
tBC/60  
– 0.25  
kΩ  
t
BC in [ns]6)7)  
Internal resistance of  
analog source  
tS/450  
– 0.25  
ktS in [ns]7)8)  
7)  
ADC input capacitance  
CAIN CC  
33  
pF  
1)  
TUE is tested at VAREF = 5.0 V, VAGND = 0 V, VDD = 4.9 V. It is guaranteed by design for all other voltages  
within the defined voltage range.  
If the analog reference supply voltage exceeds the power supply voltage by up to 0.2 V  
(i.e. VAREF = VDD = + 0.2 V) the maximum TUE is increased to ± 3/11 LSB. This range is not 100% tested.  
The specified TUE is guaranteed only if the absolute sum of input overload currents on Port 5 pins (see IOV  
specification) does not exceed 10 mA.  
During the reset calibration sequence the maximum TUE may be ± 4 LSB (± 12 LSB for channels 16 … 23).  
2)  
VAIN may exceed VAGND or VAREF up to the absolute maximum ratings. However, the conversion result in  
these cases will be X000 or X3FF , respectively.  
H
H
3)  
4)  
The limit values for fBC must not be exceeded when selecting the CPU frequency and the ADCTC setting.  
This parameter includes the sample time tS, the time for determining the digital result and the time to load the  
result register with the conversion result.  
Values for the basic clock tBC depend on programming and can be taken from Table 13.  
This parameter depends on the ADC control logic. It is not a real maximum value, but rather a fixum.  
5)  
During the reset calibration conversions can be executed (with the current accuracy). The time required for  
these conversions is added to the total reset calibration time.  
Data Sheet  
60  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
6)  
During the conversion the ADC’s capacitance must be repeatedly charged or discharged. The internal  
resistance of the reference voltage source must allow the capacitance to reach its respective voltage level  
within each conversion step. The maximum internal resistance results from the programmed conversion  
timing.  
7)  
8)  
Not 100% tested, guaranteed by design and characterization.  
During the sample time the input capacitance CAIN can be charged/discharged by the external source. The  
internal resistance of the analog source must allow the capacitance to reach its final voltage level within tS.  
After the end of the sample time tS, changes of the analog input voltage have no effect on the conversion result.  
Values for the sample time tS depend on programming and can be taken from Table 13.  
Sample time and conversion time of the C167CS’s A/D Converter are programmable.  
Table 13 should be used to calculate the above timings.  
The limit values for fBC must not be exceeded when selecting ADCTC.  
Table 13  
A/D Converter Computation Table  
ADCON.13|12 Sample time  
ADCON.15|14 A/D Converter  
(ADCTC)  
Basic Clock fBC  
(ADSTC)  
tS  
00  
01  
10  
11  
f
f
f
f
CPU/4  
CPU/2  
CPU/16  
CPU/8  
00  
01  
10  
11  
t
t
t
t
BC × 8  
BC × 16  
BC × 32  
BC × 64  
Converter Timing Example:  
Assumptions:  
fCPU = 25 MHz (i.e. tCPU = 40 ns), ADCTC = ‘00’, ADSTC = ‘00’.  
Basic clock  
Sample time  
fBC  
tS  
= fCPU/4 = 6.25 MHz, i.e. tBC = 160 ns.  
= tBC × 8 = 1280 ns.  
Conversion time tC  
= tS + 40 tBC + 2 tCPU = (1280 + 6400 + 80) ns = 7.8 µs.  
Data Sheet  
61  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Testing Waveforms  
2.4 V  
1.8 V  
0.8 V  
1.8 V  
0.8 V  
Test Points  
0.45 V  
AC inputs during testing are driven at 2.4 V for a logic ’1’ and 0.45 V for a logic ’0’.  
Timing measurements are made at IH min for a logic ’1’ and IL max for a logic ’0’.  
V
V
MCA04414  
Figure 14  
Input Output Waveforms  
VLoad + 0.1 V  
VOH - 0.1 V  
Timing  
Reference  
Points  
VLoad - 0.1 V  
VOL + 0.1 V  
For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs,  
but begins to float when a 100 mV change from the loaded VOH  
/
VOL level occurs (IOH  
/
I
OL = 20 mA).  
MCA00763  
Figure 15  
Float Waveforms  
Data Sheet  
62  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
AC Characteristics  
Table 14  
CLKOUT Reference Signal  
Parameter  
Symbol  
Limits  
Unit  
min.  
max.  
CLKOUT cycle time  
CLKOUT high time  
CLKOUT low time  
CLKOUT rise time  
CLKOUT fall time  
tc5 CC  
301)  
ns  
ns  
ns  
ns  
ns  
tc6 CC 8  
tc7 CC 6  
tc8 CC –  
tc9 CC –  
4
4
1)  
The CLKOUT cycle time is influenced by the PLL jitter.  
For a single CLKOUT cycle (2 TCL) the deviation caused by the PLL jitter is below 1 ns (for fCPU > 25 MHz).  
For longer periods the relative deviation decreases (see PLL deviation formula).  
tc9  
tc7  
tc8  
tc5  
tc6  
CLKOUT  
MCT04415  
Figure 16  
CLKOUT Signal Timing  
Variable Memory Cycles  
The bus timing shown below is programmable via the BUSCONx registers. The duration  
of ALE and two types of waitstates can be selected. This table summarizes the possible  
bus cycle durations.  
Table 15  
Variable Memory Cycles  
Bus Cycle Type  
Bus Cycle Duration  
Unit 25/33 MHz, 0 Waitstates  
Demultiplexed bus cycle  
with normal ALE  
4 + 2 × (15 – <MCTC>) TCL 80 ns / 60.6 ns  
+ 2 × (1 – <MTTC>)  
Demultiplexed bus cycle  
with extended ALE  
6 + 2 × (15 – <MCTC>) TCL 120 ns / 90.9 ns  
+ 2 × (1 – <MTTC>)  
Multiplexed bus cycle with 6 + 2 × (15 – <MCTC>) TCL 120 ns / 90.9 ns  
normal ALE + 2 × (1 – <MTTC>)  
Multiplexed bus cycle with 8 + 2 × (15 – <MCTC>) TCL 160 ns / 121.2 ns  
extended ALE  
+ 2 × (1 – <MTTC>)  
Data Sheet  
63  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Table 16  
External Bus Cycle Timing (Operating Conditions apply)  
Parameter  
Symbol  
Limits  
Unit  
min.  
max.  
Output delay from CLKOUT falling edge  
Valid for: address (MUX on PORT0), write data out  
tc10 CC 1  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output delay from CLKOUT edge  
Valid for: latched CS, ALE (normal)  
tc11 CC – 3  
tc12 CC – 3  
tc13 CC – 1  
tc14 SR 12  
tc15 SR – 1  
tc16 CC 1  
6
Output delay from CLKOUT edge  
Valid for: WR, WRL, WRH, WrCS  
7
Output delay from CLKOUT edge  
Valid for: RD, RdCS  
7
Input setup time to CLKOUT falling edge  
Valid for: read data in  
Input hold time after CLKOUT falling edge  
Valid for: read data in1)  
Output delay from CLKOUT falling edge  
Valid for: address (on PORT1 and/or P4), BHE  
12  
10  
Output hold time after CLKOUT falling edge  
Valid for: address, BHE2)  
Output hold time after CLKOUT edge3)  
Valid for: write data out  
tc17 CC – 1  
tc18 CC 0  
Output delay from CLKOUT falling edge  
Valid for: ALE (extended), early CS  
Turn off delay after CLKOUT edge3)  
Valid for: write data out  
Turn on delay after CLKOUT falling edge3)  
Valid for: write data out  
tc19 CC – 5  
tc20 CC –  
7
7
tc21 CC – 5  
tc22 CC – 6  
Output hold time after CLKOUT edge  
Valid for: early CS  
4
1)  
Read data are latched with the same (internal) clock edge that triggers the address change and the rising edge  
of RD. Therefore address changes before the end of RD have no impact on (demultiplexed) read cycles.  
2)  
3)  
Due to comparable propagation delays the address does not change before WR goes high. The minimum  
output delay (tc17min) is therefore the actual value of tc12.  
Not 100% tested, guaranteed by design and characterization.  
Data Sheet  
64  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
General Notes For The Following Timing Figures  
These standard notes apply to all subsequent timing figures. Additional individual notes  
are placed at the respective figure.  
1)  
The falling edge of signals RD and WR/WRH/WRL/WrCS is controlled by the Read/Write delay feature (bit  
BUSCON.RWDCx).  
2)  
The rising edge of signal WR/WRH/WRL/WrCS is controlled by the early write feature (bit BUSCON.EWENx).  
A bus cycle is extended here, if MCTC waitstates are selected or if the READY input is sampled inactive.  
A bus cycle is extended here, if an MTTC waitstate is selected.  
3)  
4)  
CLKOUT  
Normal ALE Cycle  
tc11  
tc11  
Normal ALE  
Extended ALE Cycle  
tc19  
tc19  
Extended ALE  
CSxE, CSxL  
tc19  
tc19  
tc11  
tc11  
tc16  
tc16  
tc17  
A23-A0,  
BHE  
Valid  
tc12  
tc12  
tc12  
tc12  
WRL, WRH,  
WR, WrCS  
1)  
2)  
tc10  
tc20  
tc21  
tc18  
D15-D0  
Data OUT  
3)  
MCTC  
4)  
MTTC  
Note: Write data is deactivated 1 TCL earlier  
if early write is enabled (same timing).  
MCT04435  
Figure 17  
Demultiplexed Bus, Write Access  
Data Sheet  
65  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
CLKOUT  
Normal ALE Cycle  
tc11  
tc11  
Normal ALE  
Extended ALE Cycle  
tc19  
tc19  
Extended ALE  
CSxE, CSxL  
tc19  
tc19  
tc11  
tc11  
tc16  
tc16  
tc17  
A23-A0,  
BHE  
Valid  
tc13  
tc13  
tc13  
RD,  
RdCS  
1)  
tc15  
tc14  
D15-D0  
Data IN  
3)  
MCTC  
4)  
MTTC  
MCT04436  
Figure 18  
Demultiplexed Bus, Read Access  
Data Sheet  
66  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
CLKOUT  
Normal ALE Cycle  
tc11  
tc11  
Normal ALE  
Extended ALE Cycle  
tc19  
tc19  
Extended ALE  
CSxE, CSxL  
tc19  
tc19  
tc11  
tc11  
tc16  
tc16  
tc17  
A23-A16,  
BHE  
Valid  
tc12  
tc12  
tc12  
tc12  
WRL, WRH,  
WR, WrCS  
1)  
2)  
tc10  
tc10  
tc20  
tc21  
tc17  
tc18  
AD15-AD0  
(Normal ALE)  
Low Address  
Data OUT  
Data OUT  
tc10  
tc10  
tc20  
tc21  
tc17  
tc18  
AD15-AD0  
(Extended ALE)  
Low Address  
3)  
MCTC  
4)  
MTTC  
Note: Write data is deactivated 2 TCL earlier if early write is enabled (same timing).  
MCT04437  
Figure 19  
Multiplexed Bus, Write Access  
Data Sheet  
67  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
CLKOUT  
Normal ALE Cycle  
tc11  
tc11  
Normal ALE  
Extended ALE Cycle  
tc19  
tc19  
Extended ALE  
CSxE, CSxL  
tc19  
tc19  
tc11  
tc11  
tc16  
tc16  
tc17  
A23-A16,  
BHE  
Valid  
tc13  
tc13  
tc13  
RD,  
RdCS  
1)  
tc10  
tc20  
tc15  
tc21  
tc17  
tc14  
AD15-AD0  
(Normal ALE)  
Low Address  
tc20  
Data IN  
tc10  
tc15  
tc21  
tc17  
tc14  
AD15-AD0  
(Extended ALE)  
Low Address  
Data IN  
3)  
MCTC  
4)  
MTTC  
MCT04438  
Figure 20  
Multiplexed Bus, Read Access  
Data Sheet  
68  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Bus Cycle Control via READY Input  
The duration of an external bus cycle can be controlled by the external circuitry via the  
READY input signal.  
Synchronous READY permits the shortest possible bus cycle but requires the input  
signal to be synchronous to the reference signal CLKOUT.  
Asynchronous READY puts no timing constraints on the input signal but incurs one  
waitstate minimum due to the additional synchronization stage.  
Table 17  
READY Timing (Operating Conditions apply)  
Parameter  
Symbol  
Limits  
min max  
Unit  
Input setup time to CLKOUT rising edge  
Valid for: READY input  
tc25 CC 15  
tc26 CC  
tc27 CC tc5 + tc25  
ns  
ns  
ns  
Input hold time after CLKOUT rising edge  
Valid for: READY input  
Asynchronous READY input low time6)  
0
Notes (Valid also for Figure 21)  
4)  
5)  
Cycle as programmed, including MCTC waitstates (Example shows 0 MCTC WS).  
READY sampled HIGH at this sampling point generates a READY controlled waitstate,  
READY sampled LOW at this sampling point terminates the currently running bus cycle.  
These timings are given for test purposes only, in order to assure recognition at a specific clock edge.  
If the Asynchronous READY signal does not fulfill the indicated setup and hold times with respect to CLKOUT,  
it must fulfill tc27 in order to be safely synchronized.  
6)  
Proper deactivation of READY is guaranteed if READY is deactivated in response to the trailing (rising) edge  
of the corresponding command (RD or WR).  
Multiplexed bus modes have a MUX waitstate added after a bus cycle, and an additional MTTC waitstate may  
be inserted here. For a multiplexed bus with MTTC waitstate this delay is 2 CLKOUT cycles, for a  
demultiplexed bus without MTTC waitstate this delay is zero.  
If the next following bus cycle is READY controlled, an active READY signal must be disabled before the first  
valid sample point for the next bus cycle. This sample point depends on the MTTC waitstate of the current  
cycle, and on the MCTC waitstates and the ALE mode of the next following cycle. If the current cycle uses a  
multiplexed bus the intrinsic MUX waitstate adds another CLKOUT cycle to the READY deactivation time.  
7)  
8)  
Data Sheet  
69  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Running Cycle4)  
READY WS  
MUX/MTTC  
7)  
CLKOUT  
D15-D0  
tc15  
tc14  
Data IN  
tc10  
tc20  
tc21  
tc18  
D15-D0  
Data OUT  
tc13  
tc12  
tc13  
/
tc19  
Command  
(RD, WR)  
1)  
6)  
tc26  
tc26  
tc25  
tc25  
Synchronous  
READY  
5)  
5)  
tc27  
tc26  
tc25  
tc26  
tc25  
Asynchronous  
READY  
5)  
5)  
8)  
MCT04420  
Figure 21  
READY Timing  
Data Sheet  
70  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
External Bus Arbitration  
Table 18  
Bus Arbitration Timing (Operating Conditions apply)  
Symbol Limits  
Parameter  
Unit  
min.  
15  
–3  
–2  
0
max.  
HOLD input setup time to CLKOUT falling edge tc28 SR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CLKOUT to BREQ delay  
CLKOUT to HLDA delay  
CSx release1)  
tc29 CC  
tc30 CC  
tc31 CC  
tc32 CC  
tc33 CC  
tc34 CC  
6
6
10  
4
CSx drive  
–3  
0
Other signals release1)  
10  
6
Other signals drive1)  
0
1)  
Not 100% tested, guaranteed by design and characterization.  
Data Sheet  
71  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
CLKOUT  
HOLD  
HLDA  
BREQ  
CS  
tc28  
tc30  
1)  
tc29  
2)  
tc31  
3)  
tc33  
Other  
Signals  
MCT04421  
Figure 22  
External Bus Arbitration, Releasing the Bus  
Notes  
1)  
The C167CS will complete the currently running bus cycle before granting bus access.  
This is the first possibility for BREQ to get active.  
The CS outputs will be resistive high (pullup) after t33. Latched CS outputs are driven high for 1 TCL before  
2)  
3)  
the output drivers are switched off.  
Data Sheet  
72  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
CLKOUT  
HOLD  
HLDA  
BREQ  
CS  
5)  
tc28  
tc30  
tc29  
tc29  
tc29  
4)  
tc32  
tc34  
Other  
Signals  
MCT04422  
Figure 23  
External Bus Arbitration, (Regaining the Bus)  
Notes  
4)  
This is the last chance for BREQ to trigger the indicated regain-sequence.  
Even if BREQ is activated earlier, the regain-sequence is initiated by HOLD going high.  
Please note that HOLD may also be deactivated without the C167CS requesting the bus.  
The next C167CS driven bus cycle may start here.  
5)  
Data Sheet  
73  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
External XRAM Access  
If XPER-Share mode is enabled the on-chip XRAM of the C167CS can be accessed  
(during hold states) by an external master like an asynchronous SRAM.  
Table 19  
XRAM Access Timing (Operating Conditions apply)  
Parameter  
Symbol  
Limits  
min max  
Unit  
Address setup time before RD/WR falling edge  
Address hold time after RD/WR rising edge  
Data turn on delay after RD falling edge  
Data output valid delay after address latched  
Data turn off delay after RD rising edge  
Write data setup time before WR rising edge  
Write data hold time after WR rising edge  
WR pulse width  
t40 SR 4  
t41 SR 0  
t42 CC 1  
t43 CC –  
t44 CC 1  
t45 SR 10  
t46 SR 2  
t47 SR 20  
t48 SR t40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
40  
14  
WR signal recovery time  
t40  
t41  
Address  
t47  
t48  
Command  
(RD, WR)  
t46  
t45  
Write Data  
t43  
t42  
t44  
Read Data  
MCT04423  
Figure 24  
External Access to the XRAM  
Data Sheet  
74  
V2.0, 2000-06  
C167CS-4R  
C167CS-L  
Package Outlines  
P-MQFP-144  
(Plastic Metric Quad Flat Package)  
Sorts of Packing  
Package outlines for tubes, trays etc. are contained in our  
Data Book “Package Information”.  
Dimensions in mm  
SMD = Surface Mounted Device  
Data Sheet  
75  
V2.0, 2000-06  
Infineon goes for Business Excellence  
“Business excellence means intelligent approaches and clearly  
defined processes, which are both constantly under review and  
ultimately lead to good operating results.  
Better operating results and business excellence mean less  
idleness and wastefulness for all of us, more professional  
success, more accurate information, a better overview and,  
thereby, less frustration and more satisfaction.”  
Dr. Ulrich Schumacher  
h t t p : / / w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

C167CS-L16M3V

16-Bi t Single-Chip Microcontroller
INFINEON

C167CS-LM

16-Bit Single-Chip Microcontroller
INFINEON

C167CS-XC

16-Bit Single-Chip Microcontroller Bare Die Delivery
INFINEON

C167CSL16M3VCAFXUMA2

Microcontroller, 16-Bit, 16MHz, CMOS, PQFP144, MQFP-144
INFINEON

C167CSL33MCAFXUMA1

Microcontroller, CMOS,
INFINEON

C167CSL33MCAFXUMA2

Microcontroller, 16-Bit, 33MHz, CMOS, PQFP144, MQFP-144
INFINEON

C167CSL33MCAKXUMA1

Microcontroller, CMOS,
INFINEON

C167CSL33MCAKXUMA2

Microcontroller, 16-Bit, 33MHz, CMOS, PQFP144, MQFP-144
INFINEON

C167CSL40MCABXQLA2

RISC Microcontroller, 16-Bit, 40MHz, CMOS, PQFP144, MQFP-144
INFINEON

C167CSL40MCABXUMA2

RISC Microcontroller, 16-Bit, 40MHz, CMOS, PQFP144, MQFP-144
INFINEON

C167CSL40MCAKXQLA1

Microcontroller, 16-Bit, 40MHz, CMOS, PQFP144, METRIC, PLASTIC, QFP-144
INFINEON

C167CSL40MCAKXQLA2

RISC Microcontroller, 16-Bit, MROM, 40MHz, CMOS, PQFP144, MQFP-144
INFINEON