BTT6200-4ESA [INFINEON]

The power transistor is built by an N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 HV technology. It is specially designed to drive lamps up to R10 W 24 V or R5 W 12 V, as well as LEDs in the harsh automotive environment.;
BTT6200-4ESA
型号: BTT6200-4ESA
厂家: Infineon    Infineon
描述:

The power transistor is built by an N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 HV technology. It is specially designed to drive lamps up to R10 W 24 V or R5 W 12 V, as well as LEDs in the harsh automotive environment.

文件: 总51页 (文件大小:1248K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PROFET + 24V  
BTT6200-4ESA  
Feature list  
Quad channel device  
Very low stand-by current  
3.3 V and 5 V compatible logic inputs  
Electrostatic discharge protection (ESD)  
Optimized electromagnetic compatibility  
Logic ground independent from load ground  
Very low power DMOS leakage current in OFF state  
Green product (RoHS compliant)  
Potential applications  
Suitable for resistive, inductive and capacitive loads  
Replaces electromechanical relays, fuses and discrete circuits  
Most suitable for loads with high inrush current, such as lamps  
Suitable for 12 V and 24 V trucks and transportation systems  
VBAT  
Voltage Regulator  
OUT  
VS  
GND  
T1  
Z
CVDD  
CVS  
VDD  
VS  
RDEN  
I/O  
DEN  
OUT0  
OUT1  
COUT  
Relay  
I/O  
I/O  
RDSEL  
DSEL0  
DSEL1  
86  
85  
30  
87  
RDSEL  
COUT  
RIN  
RIN  
RIN  
RIN  
I/O  
I/O  
I/O  
I/O  
IN0  
IN1  
IN2  
IN3  
Micro  
controller  
+
-
OUT2  
OUT3  
COUT  
E.C.U.  
OT3  
OUT4  
COUT  
RSENSE  
IS  
A/D  
GND  
LED  
R5W  
GND  
CSENSE  
D
Page-1  
Figure 1  
Application Diagram with BTT6200-4ESA  
Product Type  
Package  
Marking  
BTT62004ESA  
BTT6200-4ESA  
PG-TSDSO-24  
Datasheet  
Please read the Important Notice and Warnings at the end of this document  
Rev. 1.00  
www.infineon.com  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Product summary  
Product summary  
The BTT6200-4ESA is a 200 mΩ quad channel Smart High-Side Power Switch, embedded in a PG-TSDSO-24  
package, providing protective functions and diagnosis.  
The power transistor is built by an N-channel vertical power MOSFET with charge pump. The device is  
integrated in Smart6 HV technology. It is specially designed to drive lamps up to R10 W 24 V or R5 W 12 V, as well  
as LEDs in the harsh automotive environment.  
Table 1  
Product summary  
Parameter  
Symbol  
VS(OP)  
Value  
5 V to 36 V  
65 V  
Operating voltage range  
Maximum supply voltage  
VS(LD)  
Maximum ON state resistance at TJ = 150°C per channel  
Nominal load current (one channel active)  
Nominal load current (all channels active)  
Typical current sense ratio  
RDS(ON)  
IL(NOM)1  
IL(NOM)2  
kILIS  
400 mΩ  
1.5 A  
1 A  
300  
Minimum current limitation  
IL5(SC)  
9 A  
Maximum standby current with load at TJ = 25°C  
IS(OFF)  
500 nA  
Diagnostic functions  
Proportional load current sense multiplexed for the 4 channels  
Open load detection in ON and OFF  
Short circuit to battery and ground indication  
Overtemperature switch off detection  
Stable diagnostic signal during short circuit  
Enhanced kILIS dependency with temperature and load current  
Protection functions  
Stable behavior during undervoltage  
Reverse polarity protection with external components  
Secure load turn-off during logic ground disconnection with external components  
Overtemperature protection with latch  
Overvoltage protection with external components  
Enhanced short circuit operation  
Product validation  
Qualified for Automotive Applications.  
Product validation according to AEC-Q100/101.  
Datasheet  
2
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Table of contents  
Table of contents  
Feature list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Block diagram reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1
2
3
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Pin definitions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Voltage and current definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.1  
3.2  
3.3  
4
4.1  
4.2  
4.3  
4.3.1  
4.3.2  
Electrical characteristics and parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
PCB set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Thermal impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5
Power stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Output ON-state resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Turn ON/OFF characteristics with resistive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Inductive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Output clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Maximum load inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Inverse current capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Electrical characteristics - power stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5.1  
5.2  
5.3  
5.3.1  
5.3.2  
5.4  
5.5  
6
Protection functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Loss of ground protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Undervoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Reverse polarity protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Overload protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Current limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Temperature limitation in the power DMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Electrical characteristics for the protection functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
6.1  
6.2  
6.3  
6.4  
6.5  
6.5.1  
6.5.2  
6.6  
7
Diagnostic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
7.1  
IS pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Datasheet  
3
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Table of contents  
7.2  
SENSE signal in different operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
7.3  
SENSE signal in nominal current range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
SENSE signal variation as a function of temperature and load current . . . . . . . . . . . . . . . . . . . . . .28  
SENSE signal timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
SENSE signal in open load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Open load in ON diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Open load in OFF diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Open load diagnostic timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
SENSE signal in short circuit to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
SENSE signal in case of overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
SENSE signal in case of inverse current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Electrical characteristics diagnostic function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
7.3.1  
7.3.2  
7.3.3  
7.3.3.1  
7.3.3.2  
7.3.3.3  
7.3.4  
7.3.5  
7.3.6  
7.4  
8
Input pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Input circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
DEN / DSEL0, 1 pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Input pin voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
8.1  
8.2  
8.3  
8.4  
9
Characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Power stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Protection functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Diagnostic mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Input pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
9.1  
9.2  
9.3  
9.4  
9.5  
10  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
10.1  
Further application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
11  
Package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Datasheet  
4
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Description  
1
Description  
The BTT6200-4ESA is a 200 mΩ quad channel Smart High-Side Power Switch, embedded in a PG-TSDSO-24  
package, providing protective functions and diagnosis.  
The power transistor is built by an N-channel vertical power MOSFET with charge pump. The device is  
integrated in Smart6 HV technology. It is specially designed to drive lamps up to R10 W 24 V or R5 W 12 V, as well  
as LEDs in the harsh automotive environment.  
Datasheet  
5
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Block diagram reference  
2
Block diagram reference  
Channel 0  
VS  
voltage sensor  
internal  
power  
supply  
over  
temperature  
T
clamp for  
inductive load  
gate control  
&
charge pump  
IN0  
driver  
logic  
over current  
switch limit  
DEN  
ESD  
protection  
load current sense and  
OUT 0  
open load detection  
IS  
forward voltage drop detection  
VS  
Channel 1  
T
IN1  
Control and protection circuit equivalent to channel 0  
DSEL0  
DSEL1  
OUT 1  
Channel 2  
T
Control and protection circuit equivalent to channel 0  
IN2  
OUT 2  
Channel 3  
T
Control and protection circuit equivalent to channel 0  
IN3  
OUT 3  
GND  
Block diagram DxS.vsd  
Figure 2  
Block diagram for BTT6200-4ESA  
Datasheet  
6
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Pin configuration  
3
Pin configuration  
3.1  
Pin assignment  
NC  
IN0  
NC  
GND  
IN1  
DEN  
IS  
DSEL0  
IN2  
IN3  
DSEL1  
NC  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
OUT0  
NC  
NC  
NC  
OUT1  
NC  
NC  
OUT2  
NC  
NC  
NC  
OUT3  
9
10  
11  
12  
PG-TSDSO-24-21_Pinout.vsd  
Figure 3  
Pin configuration  
3.2  
Pin definitions and functions  
Table 2  
Pin  
Pin definitions and functions  
Symbol  
Function  
1, 3, 12, 14, 15, 16,  
18, 19 , 21, 22, 23  
NC  
Not Connected; No internal connection to the chip  
2
4
5
6
IN0  
INput channel 0; Input signal for channel 0 activation  
GrouND; Ground connection  
GND  
IN1  
INput channel 1; Input signal for channel 1 activation  
DEN  
Diagnostic ENable; Digital signal to enable/disable the diagnosis of  
the device  
7
8
IS  
Sense; Sense current of the selected channel  
DSEL0  
Diagnostic SELection; Digital signal to select the channel to be  
diagnosed  
9
IN2  
INput channel 2; Input signal for channel 2 activation  
INput channel 3; Input signal for channel 3 activation  
10  
11  
IN3  
DSEL1  
Diagnostic SELection; Digital signal to select the channel to be  
diagnosed  
13  
17  
20  
OUT3  
OUT2  
OUT1  
OUTput 3; Protected high side power output channel 3  
OUTput 2; Protected high side power output channel 2  
OUTput 1; Protected high side power output channel 1  
Datasheet  
7
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Pin configuration  
Table 2  
Pin definitions and functions (continued)  
Pin  
Symbol  
OUT0  
VS  
Function  
24  
OUTput 0; Protected high side power output channel 0  
Voltage Supply; Battery voltage  
Cooling tab  
3.3  
Voltage and current definition  
Figure 4 shows all terms used in this data sheet, with associated convention for positive values.  
VDS3  
VDS1  
VDS2  
VDS0  
I S  
VS  
VS  
IIN0  
IN0  
IN1  
IOUT0  
VIN0  
OUT0  
OUT1  
OUT2  
OUT3  
IIN1  
VIN1  
IIN2  
IOUT1  
IN2  
IN3  
DEN  
VIN2  
IIN3  
IDEN  
VIN3  
IOUT2  
VDEN  
IDSEL0  
DSEL0  
DSEL1  
IDSEL1  
IIS  
VDSEL0  
IOUT3  
VDSEL1  
IS  
VIS  
GND  
VOUT0  
VOUT2  
VOUT1  
VOUT3  
IGND  
voltage and current convention.vsd  
Figure 4  
Voltage and current definition  
Datasheet  
8
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Electrical characteristics and parameters  
4
Electrical characteristics and parameters  
4.1  
Absolute maximum ratings  
Table 3  
Absolute maximum ratings1)  
TJ = -40°C to 150°C; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or Test  
Condition  
Number  
Min.  
Max.  
Supply voltages  
Supply voltage  
VS  
-0.3  
48  
V
V
P_4.1.1  
P_4.1.2  
Reverse polarity voltage  
-VS(REV)  
0
28  
t < 2 min  
TA = 25°C  
RL ≥ 47 Ω  
ZGND = Diode  
+27 Ω  
Supply voltage for short  
circuit protection  
VBAT(SC)  
0
36  
V
RSupply = 10 mΩ  
LSupply = 5 µH  
RECU= 20 mΩ  
RCable= 16 mΩ/m  
LCable= 1 µH/m,  
l = 0 or 5 m  
P_4.1.3  
See Chapter 6 and  
Figure 29  
Supply voltage for Load dump VS(LD)  
protection  
65  
V
2) RI = 2 Ω  
RL = 47 Ω  
P_4.1.12  
P_4.1.4  
Short circuit capability  
3)  
Permanent short circuit  
IN pin toggles  
nRSC1  
100  
k cycles  
V
_
Input pins  
Voltage at INPUT pins  
VIN  
-0.3  
6
7
P_4.1.13  
t < 2 min  
Current through INPUT pins  
Voltage at DEN pin  
IIN  
-2  
2
mA  
V
P_4.1.14  
P_4.1.15  
VDEN  
-0.3  
6
7
t < 2 min  
Current through DEN pin  
IDEN  
-2  
2
mA  
P_4.1.16  
1
Not subject to production test. Specified by design.  
VS(LD) is setup without the DUT connected to the generator per ISO 7637-1.  
Threshold limit for short circuit failures: 100 ppm. Please refer to the legal disclaimer for short-circuit  
capability at the end of this document.  
2
3
Datasheet  
9
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Electrical characteristics and parameters  
Table 3  
Absolute maximum ratings1) (continued)  
TJ = -40°C to 150°C; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or Test  
Condition  
Number  
Min.  
-0.3  
Max.  
Voltage at DSEL pin  
VDSEL  
IDSEL  
6
7
V
P_4.1.17  
P_4.1.18  
t < 2 min  
Current through DSEL pin  
Sense pin  
-2  
2
mA  
Voltage at IS pin  
VIS  
IIS  
-0.3  
-25  
VS  
V
P_4.1.19  
P_4.1.20  
Current through IS pin  
50  
mA  
Power stage  
Load current  
| IL |  
IL(LIM)  
A
P_4.1.21  
P_4.1.22  
Power dissipation (DC)  
PTOT  
1.8  
W
TA = 85°C  
TJ < 150°C  
Maximum energy dissipation EAS  
Single pulse (one channel)  
20  
65  
mJ  
IL(0) = 1 A  
TJ(0) = 150°C  
VS = 28 V  
P_4.1.23  
Voltage at power transistor  
Currents  
VDS  
V
P_4.1.26  
P_4.1.27  
Current through ground pin  
I GND  
-20  
-150  
20  
20  
mA  
t < 2 min  
Temperatures  
Junction temperature  
Storage temperature  
ESD susceptibility  
ESD susceptibility (all pins)  
TJ  
-40  
-55  
150  
150  
°C  
°C  
P_4.1.28  
P_4.1.30  
TSTG  
VESD  
-2  
-4  
2
4
kV  
kV  
4) HBM  
4) HBM  
P_4.1.31  
P_4.1.32  
ESD susceptibility OUT pin vs. VESD  
GND and VS connected  
ESD susceptibility  
VESD  
VESD  
-500  
-750  
500  
750  
V
V
5) CDM  
5) CDM  
P_4.1.33  
P_4.1.34  
ESD susceptibility pin  
(corner pins)  
Notes:  
1.  
Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
1
4
5
Not subject to production test. Specified by design.  
ESD susceptibility Human Body Model "HBM" according to AEC Q100-002  
ESD susceptibility Charged Device Model "CDM" according to AEC Q100-011  
Datasheet  
10  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Electrical characteristics and parameters  
2.  
Integrated protection functions are designed to prevent IC destruction under fault conditions described in  
the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions  
are not designed for continuous repetitive operation.  
4.2  
Functional range  
Table 4  
Functional range  
TJ = -40°C to 150°C; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
28  
Unit Note or Test  
Condition  
Number  
Min.  
Max.  
36  
Nominal operating voltage  
Extended operating voltage  
VNOM  
8
5
V
V
7)  
P_4.2.1  
P_4.2.2  
VS(OP)  
48  
V = 4.5 V  
IN  
RL = 47 Ω  
VDS < 0.5 V  
6)  
Minimum functional supply  
voltage  
VS(OP)_MIN  
3.8  
4.3  
3.5  
5
V
V
V
= 4.5 V  
P_4.2.3  
IN  
RL = 47 Ω  
From IOUT = 0 A  
to  
VDS < 0.5 V; see  
Figure 16  
6)  
Undervoltage shutdown  
VS(UV)  
3
4.1  
V = 4.5 V  
IN  
P_4.2.4  
VDEN = 0 V  
RL = 47 Ω  
From VDS < 1 V;  
to IOUT = 0 A  
See Chapter 9.1  
and Figure 16  
7)  
Undervoltage shutdown  
hysteresis  
VS(UV)_HYS  
IGND_1  
850  
2
4
mV  
mA  
P_4.2.13  
P_4.2.5  
Operating current  
One channel active  
VIN = 5.5 V  
VDEN = 5.5 V  
Device in RDS(ON)  
VS = 36 V  
See Chapter 9.1  
7
Not subject to production test. Specified by design.  
Test at TJ = -40°C only.  
6
Datasheet  
11  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Electrical characteristics and parameters  
Table 4  
Functional range (continued)  
TJ = -40°C to 150°C; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test  
Condition  
Number  
Min.  
Max.  
Operating current  
All channels active  
IGND_4  
6
9
mA  
VIN = 5.5 V  
P_4.2.6  
VDEN = 5.5 V  
Device in RDS(ON)  
VS = 36 V  
See Chapter 9.1  
6) VS = 36 V  
VOUT = 0 V  
VIN floating  
VDEN floating  
TJ ≤ 85 °C  
Standby current for whole  
device with load (ambient)  
IS(OFF)  
0.1  
0.5  
20  
µA  
P_4.2.7  
P_4.2.10  
P_4.2.8  
Maximum standby current for  
whole device with load  
IS(OFF)_150  
µA  
VS = 36 V  
VOUT = 0 V  
VIN floating  
VDEN floating  
TJ = 150 °C  
7) VS = 36 V  
VOUT = 0 V  
Standby current for whole  
device with load, diagnostic  
active  
IS(OFF_DEN)  
0.6  
mA  
VIN floating  
VDEN = 5.5 V  
Note:  
Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics table.  
4.3  
Thermal resistance  
Table 5  
Thermal resistance  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test  
Condition  
Number  
Min.  
Max.  
8)  
Junction to case  
RthJC  
RthJA  
3
K/W  
P_4.3.1  
P_4.3.2  
8)9)  
Junction to ambient  
All channels active  
28  
K/W  
6
Test at TJ = -40°C only.  
Not subject to production test. Specified by design.  
Not subject to production test. Specified by design.  
7
8
Datasheet  
12  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Electrical characteristics and parameters  
4.3.1  
PCB set-up  
70µm  
35µm  
1.5mm  
0.3mm  
PCB 2s2p.vsd  
Figure 5  
2s2p PCB cross section  
Figure 6  
PC board top and bottom view for thermal simulation with 600 mm2 cooling area  
9
Specified Rthja value is according to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board with 1  
W power dissipation equally dissipated for all channel at TA = 105°C ; The product (chip + package) was  
simulated on a 76.4 mm x 114.3 mm x 1.5 mm board with 2 inner copper layers (2 x 70 μm Cu, 2 x 35 μm  
Cu). Where applicable, a thermal via array under the exposed pad contacts the first inner copper layer.  
Please refer to Figure 5 .  
Datasheet  
13  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Electrical characteristics and parameters  
4.3.2  
Thermal impedance  
BTT6200-4ESA  
100  
10  
1
2s2p  
1s0p - 600 mm²  
1s0p - 300 mm²  
1s0p - footprint  
0,1  
0,0001  
0,001  
0,01  
0,1  
1
10  
100  
1000  
Time (s)  
Figure 7  
Typical thermal impedance. 2s2p PCB set-up according to Figure 5  
BTT6200-4ESA  
120  
1s0p - Tambient = 105°C  
110  
100  
90  
80  
70  
60  
50  
40  
30  
0
100  
200  
300  
400  
500  
600  
Cooling area (mm²)  
Figure 8  
Typical thermal resistance. PCB set-up 1s0p  
Datasheet  
14  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Power stage  
5
Power stage  
The power stages are built using an N-channel vertical power MOSFET (DMOS) with charge pump.  
5.1  
Output ON-state resistance  
The ON-state resistance RDS(ON) depends on the supply voltage as well as the junction temperature TJ. Figure 9  
shows the dependencies in terms of temperature and supply voltage for the typical ON-state resistance. The  
behavior in reverse polarity is described in Chapter 6.4.  
Figure 9  
Typical ON-state resistance  
A high signal at the input pin (see Chapter 8) causes the power DMOS to switch ON with a dedicated slope,  
which is optimized in terms of EMC emission.  
5.2  
Turn ON/OFF characteristics with resistive load  
Figure 10 shows the typical timing when switching a resistive load.  
IN  
VIN_H  
VIN_L  
t
VOUT  
dV/dt ON  
dV/dt OFF  
tON  
90% VS  
tOFF_delay  
70% VS  
30% VS  
tON_delay  
tOFF  
10% VS  
t
Switching times.vsd  
Figure 10  
Switching a resistive load timing  
Datasheet  
15  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Power stage  
5.3  
Inductive load  
5.3.1  
Output clamping  
When switching OFF inductive loads with high side switches, the voltage VOUT drops below ground potential,  
because the inductance intends to continue driving the current. To prevent the destruction of the device by  
avalanche due to high voltages, there is a voltage clamp mechanism ZDS(AZ) implemented that limits negative  
output voltage to a certain level (VS - VDS(AZ)). Please refer to Figure 11 and Figure 12 for details. Nevertheless,  
the maximum allowed load inductance is limited.  
VS  
ZDS(AZ)  
VDS  
INx  
LOGIC  
IL  
VBAT  
GND  
ZGND  
OUTx  
VOUT  
VIN  
L, RL  
Output_clamp.vsd  
Figure 11  
Output clamp  
IN  
t
VOUT  
VS  
t
VS-VDS(AZ)  
IL  
t
Switching an inductance.vsd  
Figure 12  
Switching an inductive load timing  
Datasheet  
16  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Power stage  
5.3.2  
Maximum load inductance  
During demagnetization of inductive loads, energy has to be dissipated in the BTT6200-4ESA. This energy can  
be calculated with following equation:  
V
V  
R
R I  
V  
L
R
L
S
DS AZ  
L
L
L
E = VDS AZ  
ln 1 −  
+ IL  
DS AZ  
V
S
Equation 1  
The following equation simplifies under the assumption of RL = 0 Ω.  
VS  
1
E = L I2 1 −  
2
VS VDS AZ  
Equation 2  
The energy, which is converted into heat, is limited by the thermal design of the component. See Figure 13 for  
the maximum allowed energy dissipation as a function of the load current.  
Figure 13  
Maximum energy dissipation single pulse, TJ_START = 150°C; VS = 28 V  
5.4  
Inverse current capability  
In case of inverse current, meaning a voltage VINV at the OUTput higher than the supply voltage VS, a current IINV  
will flow from output to VS pin via the body diode of the power transistor (please refer to Figure 14). The output  
stage follows the state of the IN pin, except if the IN pin goes from OFF to ON during inverse. In that particular  
case, the output stage is kept OFF until the inverse current disappears. Nevertheless, the current IINV should not  
be higher than IL(INV). If the channel is OFF, the diagnostic will detect an open load at OFF. If the affected channel  
is ON, the diagnostic will detect open load at ON (the overtemperature signal is inhibited). At the appearance of  
VINV, a parasitic diagnostic can be observed. Aꢀer, the diagnosis is valid and reflects the output state. At VINV  
vanishing, the diagnosis is valid and reflects the output state. During inverse current, no protection functions  
are available.  
Datasheet  
17  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Power stage  
VBAT  
VS  
Gate  
driver  
Device  
logic  
VINV  
INV  
Comp.  
IL(INV)  
OUT  
GND  
ZGND  
inverse current.vsd  
Figure 14  
Inverse current circuitry  
5.5  
Electrical characteristics - power stage  
Table 6  
Electrical characteristics: Power stage  
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test  
Condition  
Number  
Min.  
ON-state resistance per channel RDS(ON)_150 300  
Max.  
400  
360  
mΩ  
IL = IL4 = 1 A  
VIN = 4.5 V  
P_5.5.1  
TJ = 150°C  
See Figure 9  
ON-state resistance per channel RDS(ON)_25  
200  
1.5  
mΩ  
A
10)TJ = 25 °C  
10) TA = 85°C  
TJ < 150°C  
P_5.5.21  
P_5.5.2  
Nominal load current One  
channel active  
IL(NOM)1  
Nominal load current All  
channels active  
IL(NOM)2  
1
A
P_5.5.3  
P_5.5.4  
Output voltage drop limitation at VDS(NL)  
10  
22  
mV  
IL = IL0 = 25 mA  
small load currents  
See Chapter 9.3  
Drain to source clamping voltage VDS(AZ)  
65  
70  
75  
V
IDS = 5 mA  
See Figure 12  
See Chapter 9.1  
11)  
P_5.5.5  
P_5.5.6  
VDS(AZ) = [VS - VOUT  
]
Output leakage current per  
IL(OFF)  
0.1  
0.5  
µA  
V floating  
IN  
channel TJ ≤ 85 °C  
VOUT = 0 V  
TJ ≤ 85°C  
10  
Not subject to production test, specified by design.  
Test at TJ = -40°C only  
11  
Datasheet  
18  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Power stage  
Table 6  
Electrical characteristics: Power stage (continued)  
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test  
Condition  
Number  
Min.  
Max.  
Output leakage current per  
channel TJ = 150 °C  
IL(OFF)_150  
1
5
µA  
VIN floating  
VOUT = 0 V  
TJ = 150°C  
P_5.5.8  
Inverse current capability  
IL(INV)  
1
A
10)VS< VOUTX See P_5.5.9  
Figure 14  
Slew rate  
30% to 70% VS  
dV/dtON  
0.3  
0.8  
1.3  
V/µs RL = 47 Ω  
VS = 28 V  
P_5.5.11  
P_5.5.12  
P_5.5.13  
See Figure 10  
Slew rate  
70% to 30% VS  
-dV/dtOFF  
0.3  
0.8  
0
1.3  
V/µs  
See Chapter 9.1  
Slew rate matching  
ΔdV/dt  
-0.15  
0.15  
V/µs  
dV/dtON - dV/dtOFF  
Turn-ON time to VOUT = 90% VS tON  
Turn-OFF time to VOUT = 10% VS tOFF  
20  
70  
70  
0
150  
150  
50  
µs  
µs  
µs  
P_5.5.14  
P_5.5.15  
P_5.5.16  
20  
Turn-ON / OFF matching  
ΔtSW  
-50  
tOFF - tON  
Turn-ON time to VOUT = 10% VS tON_delay  
Turn-OFF time to VOUT = 90% VS tOFF_delay  
35  
70  
70  
µs  
µs  
µJ  
P_5.5.17  
P_5.5.18  
P_5.5.19  
35  
Switch ON energy  
EON  
190  
10) RL = 47 Ω  
VOUT = 90% VS  
VS = 36 V  
See Chapter 9.1  
Switch OFF energy  
EOFF  
210  
µJ  
10) RL = 47 Ω  
VOUT = 10% VS  
VS = 36 V  
P_5.5.20  
See Chapter 9.1  
10  
Not subject to production test, specified by design.  
Datasheet  
19  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Protection functions  
6
Protection functions  
The device provides integrated protection functions. These functions are designed to prevent the destruction of  
the IC from fault conditions described in the data sheet. Fault conditions are considered as “outside” normal  
operating range. Protection functions are designed for neither continuous nor repetitive operation.  
6.1  
Loss of ground protection  
In case of loss of the module ground and the load remains connected to ground, the device protects itself by  
automatically turning OFF (when it was previously ON) or remains OFF, regardless of the voltage applied on IN  
pins.  
In case of loss of device ground, it’s recommended to use input resistors between the microcontroller and the  
BTT6200-4ESA to ensure switching OFF of channels.  
In case of loss of module or device ground, a current (IOUT(GND)) can flow out of the DMOS. Figure 15 sketches  
the situation.  
ZGND is recommended to be a resistor in series to a diode .  
ZIS(AZ)  
VS  
ZD(AZ)  
VBAT  
ZDS(AZ)  
IS  
RSENSE  
DSEL0  
DSEL1  
DEN  
RDSEL  
RDSEL  
RDEN  
LOGIC  
INx  
RIN  
IOUT(GND)  
OUTx  
ZDESD  
GND  
RIS  
IS  
ZGND  
Loss of ground protection.vsd  
Figure 15  
Loss of ground protection with external components  
6.2  
Undervoltage protection  
Between VS(UV) and VS(OP), the undervoltage mechanism is triggered. VS(OP) represents the minimum voltage  
where the switching ON and OFF can takes place. VS(UV) represents the minimum voltage the switch can hold  
ON. If the supply voltage is below the undervoltage mechanism VS(UV), the device is OFF (turns OFF). As soon as  
the supply voltage is above the undervoltage mechanism VS(OP), then the device can be switched ON. When the  
switch is ON, protection functions are operational. Nevertheless, the diagnosis is not guaranteed until VS is in  
the VNOM range. Figure 16 illustrates the undervoltage mechanism.  
Datasheet  
20  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Protection functions  
VOUT  
undervoltage behavior.vsd  
VS  
VS(UV)  
VS(OP)  
Figure 16  
Undervoltage behavior  
6.3  
Overvoltage protection  
There is an integrated clamp mechanism for overvoltage protection (ZD(AZ)). To guarantee this mechanism  
operates properly in the application, the current in the Zener diode has to be limited by a ground resistor.  
Figure 17 shows a typical application to withstand overvoltage issues. In case of supply voltage higher than  
VS(AZ), the power transistor switches ON and in addition the voltage across the logic section is clamped. As a  
result, the internal ground potential rises to VS - VS(AZ). Due to the ESD Zener diodes, the potential at pin INx,  
DSELx, and DEN rises almost to that potential, depending on the impedance of the connected circuitry. In the  
case the device was ON, prior to overvoltage, the BTT6200-4ESA remains ON. In the case the BTT6200-4ESA was  
OFF, prior to overvoltage, the power transistor can be activated. In the case the supply voltage is in above  
VBAT(SC) and below VDS(AZ), the output transistor is still operational and follows the input. If at least one channel  
is in the ON state, parameters are no longer guaranteed and lifetime is reduced compared to the nominal supply  
voltage range. This especially impacts the short circuit robustness, as well as the maximum energy EAS  
capability. ZGND is recommended to be a resistor in series to a diode.  
Datasheet  
21  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Protection functions  
ISOV  
ZIS(AZ)  
VS  
ZD(AZ)  
VBAT  
ZDS(AZ)  
IS  
RSENSE  
DSEL0  
DSEL1  
DEN  
RDSEL  
RDSEL  
RDEN  
LOGIC  
INx  
RIN  
OUTx  
ZDESD  
GND  
RIS  
ZGND  
Overvoltage protection.vsd  
Figure 17  
Overvoltage protection with external components  
6.4  
Reverse polarity protection  
In case of reverse polarity, the intrinsic body diodes of the power DMOS causes power dissipation. The current  
in this intrinsic body diode is limited by the load itself. Additionally, the current into the ground path and the  
logic pins has to be limited to the maximum current described in Chapter 4.1 with an external resistor. Figure  
18 shows a typical application. RGND resistor is used to limit the current in the Zener protection of the device.  
Resistors RDSEL, RDEN, and RIN are used to limit the current in the logic of the device and in the ESD protection  
stage. RSENSE is used to limit the current in the sense transistor which behaves as a diode. The recommended  
value for RDEN = RDSEL = RIN = RSENSE = 10 kΩ. It is recommended to use a resistor in series to a diode in the  
ground path.  
During reverse polarity, no protection functions are available.  
Datasheet  
22  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Protection functions  
Microcontroller  
protection diodes  
ZIS(AZ)  
VS  
ZD(AZ)  
ZDS(AZ)  
IS  
RSENSE  
VDS(REV)  
DSEL0  
DSEL1  
RDSEL0  
RDSEL1  
RDEN  
RIN  
DEN  
INx  
LOGIC  
-VS(REV)  
OUTx  
ZDESD  
GND  
IS  
RGND  
L,RL  
RIS  
D
Reverse Polarity.vsd  
Figure 18  
Reverse polarity protection with external components  
6.5  
Overload protection  
In case of overload, such as high inrush of cold lamp filament, or short circuit to ground, the BTT6200-4ESA  
offers several protection mechanisms.  
6.5.1  
Current limitation  
At first step, the instantaneous power in the switch is maintained at a safe value by limiting the current to the  
maximum current allowed in the switch IL(SC). During this time, the DMOS temperature increases, which affects  
the current flowing in the DMOS.  
6.5.2  
Temperature limitation in the power DMOS  
Each channel incorporates both an absolute (TJ(SC)) and a dynamic (TJ(SW)) temperature sensor. Activation of  
either sensor will cause an overheated channel to switch OFF to prevent destruction. Any protective switch OFF  
latches the output until the temperature has reached an acceptable value which is depicted in Figure 19.  
No retry strategy is implemented such that when the DMOS temperature has cooled down enough, the switch is  
switched ON again. Only the IN pin signal toggling can re-activate the power stage (latch behavior).  
Datasheet  
23  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Protection functions  
IN  
t
IL  
LOAD CURRENT BELOW  
LIMITATION PHASE  
LOAD CURRENT LIMITATION PHASE  
IL(x)SC  
IL(NOM)  
t
TDMOS  
TJ(SC)  
Temperature  
protection phase  
TJ(SW)  
TA  
tsIS(FAULT)  
t
t
tsIS(OC_blank)  
IIS  
IIS(FAULT)  
IL(NOM) / kILIS  
0A  
VDEN  
tsIS(OFF)  
0V  
t
Hard start.vsd  
Figure 19  
Overload protection  
Note:  
For better understanding, the time scale is not linear. The real timing of this drawing is application  
dependant and cannot be described.  
Datasheet  
24  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Protection functions  
6.6  
Electrical characteristics for the protection functions  
Table 7  
Electrical Characteristics: Protection  
VS = 8 V to 36 V, TJ = -40°C to 150°C, (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Unit Note or Test  
Condition  
Number  
Min.  
Typ. Max.  
Loss of ground  
Output leakage current while  
GND disconnected  
IOUT(GND)  
VDS(REV)  
VS(AZ)  
0.1  
650  
70  
mA  
mV  
V
12)13)VS = 28 V  
See Figure 15  
P_6.6.1  
P_6.6.2  
P_6.6.3  
Reverse polarity  
Drain source diode voltage  
during reverse polarity  
200  
65  
700  
75  
14)IL = - 1 A  
See Figure 18  
Overvoltage  
Overvoltage protection  
ISOV = 5 mA  
See Figure 17  
Overload condition  
15)  
Load current limitation  
IL5(SC)  
9
11  
80  
14  
A
K
V
= 5 V See  
P_6.6.4  
P_6.6.8  
DS  
Figure 19 and  
Chapter 9.3  
16)See Figure 19  
Dynamic temperature increase ΔTJ(SW)  
while switching  
Thermal shutdown temperature TJ(SC)  
150  
170  
30  
200  
°C  
K
14)See Figure 19  
13)  
P_6.6.10  
P_6.6.11  
Thermal shutdown hysteresis  
ΔTJ(SC)  
12  
All pins are disconnected except VS and OUT.  
Not Subject to production test, specified by design.  
Test at TJ = +150°C only.  
Test at TJ = -40°C only.  
Functional test only  
13  
14  
15  
16  
Datasheet  
25  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Diagnostic functions  
7
Diagnostic functions  
For diagnosis purposes, the BTT6200-4ESA provides a combination of digital and analog signals at pin IS. These  
signals are called SENSE. In case the diagnostic is disabled via DEN, pin IS becomes high impedance. In case  
DEN is activated, the sense current of the channel X is enabled/disabled via associated pins DSEL0 and DSEL1.  
Table 8 gives the truth table.  
Table 8  
Diagnostic truth table  
DEN  
DSEL1  
DSEL0  
IS  
Z
0
1
1
1
1
don't care  
don't care  
Z
Z
Z
0
0
1
1
0
1
0
1
IIS(0)  
0
0
0
0
IIS(1)  
0
0
0
0
IIS(2)  
0
0
0
0
IIS(3)  
7.1  
IS pin  
The BTT6200-4ESA provides a sense signal called IIS at pin IS. As long as no “hard” failure mode occurs (short  
circuit to GND / current limitation / overtemperature / excessive dynamic temperature increase or open load at  
OFF) a proportional signal to the load current (ratio kILIS = IL / IIS) is provided. The complete IS pin and diagnostic  
mechanism is described in Figure 20. The accuracy of the sense current depends on temperature and load  
current. The sense pin multiplexes the currents IIS(0), IIS(1), IIS(2) and IIS(3) via the pins DSEL0 and DSEL1. Thanks to  
this multiplexing, the matching between kILISCHANNEL0, kILISCHANNEL1, kILISCHANNEL2 and kILISCHANNEL3 is optimized.  
Due to the ESD protection, in connection to VS, it is not recommended to share the IS pin with other devices if  
these devices are using another battery feed. The consequence is that the unsupplied device would be fed via  
the IS pin of the supplied device.  
VS  
IIS3  
IL3 / kILIS  
=
IIS1  
IL1 / kILIS  
=
IIS0  
IL0 / kILIS  
=
IIS2  
IL2 / kILIS  
=
IIS(FAULT)  
ZIS(AZ)  
0
1
0
1
FAULT  
1
0
IS  
DEN  
0
1
FAULT  
DSEL1  
Sense schematic.vsd  
DSEL0  
Figure 20  
Diagnostic block diagram  
Datasheet  
26  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Diagnostic functions  
7.2  
SENSE signal in different operating modes  
Table 9 gives a quick reference for the state of the IS pin during device operation.  
Table 9  
Sense signal, function of operation mode  
Operation mode Input level  
channel x  
DEN17)  
Output level  
Diagnostic  
output  
Normal operation OFF  
H
Z
Z
Z
Short circuit to  
GND  
~GND  
Overtemperature  
Short circuit to VS  
Open load  
Z
Z
VS  
IIS(FAULT)  
Z
18)  
< VOL(OFF)  
18)  
> VOL(OFF)  
IIS(FAULT)  
IIS(FAULT)  
IIS = IL / kILIS  
IIS(FAULT)  
IIS(FAULT)  
Inverse current  
~VINV  
~VS  
Normal operation ON  
Current limitation  
<VS  
Short circuit to  
GND  
~GND  
Overtemperature  
Z
IIS(FAULT)  
TJ(SW) event  
Short circuit to VS  
Open load  
VS  
IIS < IL / kILIS  
IIS < IIS(OL)  
19)  
~VS  
20)  
Inverse current  
Underload  
~VINV  
IIS < IIS(OL)  
21)  
~VS  
IIS(OL) < IIS < IL /  
kILIS  
Don't care  
Don't care  
L
Don't care  
Z
17  
The table doesn’t indicate but it is assumed that the appropriate channel is selected via the DSEL pins.  
Stable with additional pull-up resistor.  
18  
19  
20  
21  
The output current has to be smaller than IL(OL)  
Aꢀer maximum tINV  
The output current has to be higher than IL(OL)  
.
.
.
Datasheet  
27  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Diagnostic functions  
7.3  
SENSE signal in nominal current range  
Figure 21 shows the current sense as a function of the load current in the power DMOS. Usually, a pull-down  
resistor RIS is connected to the current sense IS pin. This resistor has to be higher than 560 Ω to limit the power  
losses in the sense circuitry. A typical value is 1.2 kΩ. The blue curve represents the ideal sense current,  
assuming an ideal kILIS factor value. The red curves shows the accuracy the device provides across full  
temperature range at a defined current.  
Figure 21  
Current sense for nominal load  
7.3.1  
SENSE signal variation as a function of temperature and load  
current  
In some applications a better accuracy is required at smaller currents. To achieve this accuracy requirement, a  
calibration on the application is possible. To avoid multiple calibration points at different load and temperature  
conditions, the BTT6200-4ESA allows limited derating of the kILIS value, at a given point (IL3; TJ = +25°C). This  
derating is described by the parameter ΔkILIS. Figure 22 shows the behavior of the sense current, assuming one  
calibration point at nominal load at +25°C.  
The blue line indicates the ideal kILIS ratio.  
The green lines indicate the derating on the parameter across temperature and voltage, assuming one  
calibration point at nominal temperature and nominal battery voltage.  
The red lines indicate the kILIS accuracy without calibration.  
Datasheet  
28  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Diagnostic functions  
Figure 22  
Improved current sense accuracy with one calibration point at 0.2 A  
Datasheet  
29  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Diagnostic functions  
7.3.2  
SENSE signal timing  
Figure 23 shows the timing during settling and disabling of the SENSE.  
VINx  
t
ILx  
tONx  
tOFFx  
tONx  
90% of  
IL static  
t
VDEN  
t
IIS  
tsIS(LC)  
tsIS(chC)  
tsIS(OFF)  
tsIS(ON)  
tsIS(ON_DEN)  
90% of  
IIS static  
t
t
VDSEL  
VINy  
t
ILy  
tONy  
t
current sense settling disabling time.vsd  
Figure 23  
Current sense settling / disabling timing  
7.3.3  
SENSE signal in open load  
7.3.3.1  
Open load in ON diagnostic  
If the channel is ON, a leakage current can still flow through an open load, for example due to humidity. The  
parameter IL(OL) gives the threshold of recognition for this leakage current. If the current IL flowing out the  
power DMOS is below this value, the device recognizes a failure, if the DEN (and DSEL) is selected. In that case,  
the SENSE current is below IIS(OL). Otherwise, the minimum SENSE current is given above parameter IIS(OL)  
.
Figure 24 shows the SENSE current behavior in this area. The red curve shows a typical product curve. The blue  
curve shows the ideal current sense.  
Datasheet  
30  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Diagnostic functions  
IIS  
IIS(OL)  
IL  
IL(OL)  
Sense for OL.vsd  
Figure 24  
Current sense ratio for low currents  
7.3.3.2  
Open load in OFF diagnostic  
For open load diagnosis in OFF-state, an external output pull-up resistor (ROL) is recommended. For the  
calculation of pull-up resistor value, the leakage currents and the open load threshold voltage VOL(OFF) have to  
be taken into account. Figure 25 gives a sketch of the situation. Ileakage defines the leakage current in the  
complete system, including IL(OFF) (see Chapter 5.5) and external leakages, e.g, due to humidity, corrosion, etc...  
in the application.  
To reduce the stand-by current of the system, an open load resistor switch SOL is recommended. If the channel x  
is OFF, the output is no longer pulled down by the load and VOUT voltage rises to nearly VS. This is recognized by  
the device as an open load. The voltage threshold is given by VOL(OFF). In that case, the SENSE signal is switched  
to the IIS(FAULT)  
.
An additional RPD resistor can be used to pull VOUT to 0 V. Otherwise, the OUT pin is floating. This resistor can be  
used as well for short circuit to battery detection, see Chapter 7.3.4  
Datasheet  
31  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Diagnostic functions  
Vbat  
SOL  
VS  
IIS(FAULT)  
OL  
comp.  
OUT  
IS  
ILOFF  
Ileakage  
GND  
ZGND  
VOL(OFF)  
Open Load in OFF.vsd  
Figure 25  
Open load detection in OFF electrical equivalent circuit  
7.3.3.3  
Open load diagnostic timing  
Figure 26 shows the timing during either Open Load in ON or OFF condition when the DEN pin is HIGH. Please  
note that a delay tsIS(FAULT_OL_OFF) has to be respected aꢀer the falling edge of the input, when applying an open  
load in OFF diagnosis request, otherwise the diagnosis can be wrong.  
Datasheet  
32  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Diagnostic functions  
Load is present  
Open load  
VIN  
VOUT  
t
VS-VOL(OFF)  
shutdown with load  
RDS(ON) x IL  
t
t
IOUT  
tsIS(FAULT_OL_ON_OFF)  
IIS  
tsIS(LC)  
t
Error Settling Disabling Time.vsd  
Figure 26  
Sense signal in open load timing  
7.3.4  
SENSE signal in short circuit to VS  
In case of a short circuit between the OUTput-pin and the VS pin, all or portion (depending on the short circuit  
impedance) of the load current will flow through the short circuit. As a result, a lower current compared to the  
normal operation will flow through the DMOS of the BTT6200-4ESA, which can be recognized at the current  
sense signal. The open load at OFF detection circuitry can also be used to distinguish a short circuit to VS. In  
that case, an external resistor to ground RSC_VS is required. Figure 27 gives a sketch of the situation.  
Datasheet  
33  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Diagnostic functions  
Vbat  
VS  
IIS(FAULT)  
VBAT  
OL  
comp.  
IS  
OUT  
GND  
ZGND  
VOL(OFF)  
RSC_VS  
RIS  
Short circuit to Vs.vsd  
Figure 27  
Short circuit to battery detection in OFF electrical equivalent circuit  
7.3.5  
SENSE signal in case of overload  
An overload condition is defined by a current flowing out of the DMOS reaching the current limitation and / or  
the absolute dynamic temperature swing TJ(SW) is reached, and / or the junction temperature reaches the  
thermal shutdown temperature TJ(SC). Please refer to Chapter 6.5 for details.  
In that case, the SENSE signal given is by IIS(FAULT) when the diagnostic is selected.  
The device has a thermal latch behavior, such that when the overtemperature or the exceed dynamic  
temperature condition has disappeared, the DMOS is reactivated only when the IN is toggled LOW to HIGH. If  
the DEN pin is activated, and DSEL pin is selected to the correct channel, the SENSE follows the output stage. If  
no reset of the latch occurs, the device remains in the latching phase and IIS(FAULT) at the IS pin, even though the  
DMOS is OFF.  
7.3.6  
SENSE signal in case of inverse current  
In the case of inverse current, the sense signal of the affected channel will indicate open load in OFF state and  
indicate open load in ON state. The unaffected channels indicate normal behavior as long as the IINV current  
does not exceed the maximum value specified in Chapter 5.4.  
Datasheet  
34  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Diagnostic functions  
7.4  
Electrical characteristics diagnostic function  
Table 10  
Electrical characteristics: Diagnostics  
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test  
Condition  
Number  
Min.  
Max.  
Load condition threshold for diagnostic  
22)  
Open load detection threshold in VS - VOL(OFF)  
OFF state  
4
5
6
V
V
= 0 V  
P_7.5.1  
P_7.5.2  
IN  
VDEN = 4.5 V  
See Figure 26  
Open load detection threshold in IL(OL)  
ON state  
15  
mA VIN = VDEN = 4.5 V  
IIS(OL) = 33 μA  
See Figure 24  
See Chapter 9.4  
Sense pin  
22)  
IS pin leakage current when  
sense is disabled  
IIS_(DIS)  
1
0.02  
1
µA  
V
V
= 4.5 V  
P_7.5.4  
P_7.5.6  
IN  
VDEN = 0 V  
IL = IL4 = A  
Sense signal saturation voltage  
VS- VIS  
3.5  
VIN = 0 V  
(RANGE)  
VOUT = VS > 10 V  
VDEN = 4.5 V  
IIS = 6 mA  
See Chapter 9.4  
Sense signal maximum current in IIS(FAULT)  
fault condition  
6
15  
70  
35  
75  
mA VIS = VIN = VDSEL = 0 V P_7.5.7  
VOUT = VS > 10 V  
VDEN = 4.5 V  
See Figure 20  
See Chapter 9.4  
Sense pin maximum voltage VS  
to IS  
VIS(AZ)  
65  
V
IIS = 5 mA  
P_7.5.3  
See Figure 20  
Current sense ratio signal in the nominal area, stable load current condition  
22  
DSEL pin select channel 0 only.  
Datasheet  
35  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Diagnostic functions  
Table 10  
Electrical characteristics: Diagnostics (continued)  
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test  
Condition  
Number  
Min.  
Max.  
Current sense ratio  
IL0 = 10 mA  
kILIS0  
kILIS1  
kILIS2  
kILIS3  
kILIS4  
ΔkILIS  
-50% 330  
-40% 300  
-15% 300  
-11% 300  
+50%  
VIN = 4.5 V  
VDEN = 4.5 V  
See Figure 21  
TJ = -40°C; 150°C  
P_7.5.8  
P_7.5.9  
P_7.5.10  
P_7.5.11  
P_7.5.12  
Current sense ratio  
IL1 = 0.05 A  
+40%  
+15%  
+11%  
+9%  
+8  
Current sense ratio  
IL2 = 0.2 A  
Current sense ratio  
IL3 = 0.5 A  
Current sense ratio  
IL4 = 1 A  
-9%  
-8  
300  
0
23)  
kILIS derating with current and  
%
k
versus kILIS2 P_7.5.17  
ILIS3  
temperature  
See Figure 22  
Diagnostic timing in normal condition  
23)  
Current sense settling time to  
kILIS function stable aꢀer positive  
input slope on both INput and  
DEN  
tsIS(ON)  
150  
µs  
V
= VIN = 0 to  
P_7.5.18  
DEN  
4.5 V  
VS = 28 V  
RIS = 1.2 kΩ  
CSENSE < 100 pF  
IL = IL3 = 0.5 A  
See Figure 23  
22)  
Current sense settling time with tsIS(ON_DEN)  
load current stable and transition  
of the DEN  
10  
15  
µs  
µs  
V
= 0 to 4.5 V  
P_7.5.19  
P_7.5.20  
DEN  
RIS = 1.2 kΩ  
CSENSE < 100 pF  
IL = IL3 = 0.5 A  
See Figure 23  
22)  
Current sense settling time to IIS tsIS(LC)  
stable aꢀer positive input slope  
on current load  
V
= 4.5 V  
DEN  
RIS = 1.2 kΩ  
CSENSE < 100 pF  
IL = IL2 = 0.2 A to  
IL = L3  
I = 0.5 A  
See Figure 23  
Diagnostic timing in open load condition  
23  
Not subject to production test, specified by design. Current sense settling time to  
DSEL pin select channel 0 only.  
22  
Datasheet  
36  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Diagnostic functions  
Table 10  
Electrical characteristics: Diagnostics (continued)  
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test  
Condition  
Number  
Min.  
Max.  
50  
22)  
Current sense settling time to IIS tsIS(FAULT_OL  
stable for open load detection in  
OFF state  
µs  
V
= 0 to 4.5 V  
P_7.5.22  
DEN  
_OFF)  
RIS = 1.2 kΩ  
CSENSE < 100 pF  
VOUT = VS = 28 V  
23)  
Current sense settling time to IIS tsIS(FAULT_OL  
150  
µs  
V
= 4.5 to 0 V  
P_7.5.23  
IN  
stable for open load detection in  
ON-OFF transition  
_ON_OFF)  
VDEN = 4.5 V  
RIS = 1.2 kΩ  
CSENSE < 100 pF  
VOUT = VS = 28 V See  
Figure 26  
Diagnostic timing in overload condition  
24)25)26)  
Current sense settling time to IIS tsIS(FAULT)  
150  
µs  
V = VDEN = 0 P_7.5.24  
IN  
stable for overload detection  
to 4.5 V  
RIS = 1.2 kΩ  
CSENSE < 100 pF  
VDS = 5 V  
See Figure 19  
Current sense over current  
blanking time  
tsIS(OC_blank  
)
350  
µs  
µs  
VIN = VDEN = 4.5 V  
RIS = 1.2 kΩ  
CSENSE < 100 pF  
VDS = 5 V to 0 V  
See Figure 19  
P_7.5.32  
P_7.5.25  
Diagnostic disable time  
DEN transition to  
IIS < 50% IL /kILIS  
tsIS(OFF)  
20  
VIN = 4.5 V  
VDEN = 4.5 V to 0 V  
RIS = 1.2 kΩ  
CSENSE < 100 pF  
IL = IL3 = 0.5 A  
See Figure 23  
22  
DSEL pin select channel 0 only.  
Not subject to production test, specified by design. Current sense settling time to  
DSEL pin select channel 0 only.  
Test at TJ = -40°C only.  
Functional Test only.  
23  
24  
25  
26  
Datasheet  
37  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Diagnostic functions  
Table 10  
Electrical characteristics: Diagnostics (continued)  
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test  
Condition  
Number  
Min.  
Max.  
20  
Current sense settling time from tsIS(ChC)  
one channel to another  
µs  
VIN0 = VIN1 = 4.5 V  
VDEN = 4.5 V  
P_7.5.26  
VDSEL = 0 to 4.5 V  
RIS = 1.2 kΩ  
CSENSE < 100 pF  
IL(OUT0) = IL3 = 0.5 A  
IL(OUT1) = L2  
I = 0.2 A  
See Figure 23  
Datasheet  
38  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Input pins  
8
Input pins  
8.1  
Input circuitry  
The input circuitry is compatible with 3.3 V and 5 V microcontrollers. The concept of the input pin is to react to  
voltage thresholds. An implemented Schmitt trigger avoids any undefined state if the voltage on the input pin is  
slowly increasing or decreasing. The output is either OFF or ON but cannot be in a linear or undefined state. The  
input circuitry is compatible with PWM applications. Figure 28 shows the electrical equivalent input circuitry. In  
case the pin is not needed, it must be leꢀ opened, or must be connected to device ground (and not module  
ground) via a 10 kΩ input resistor.  
IN  
GND  
Input circuitry.vsd  
Figure 28  
Input pin circuitry  
8.2  
DEN / DSEL0, 1 pin  
The DEN / DSEL0, 1 pins enable and disable the diagnostic functionality of the device. The pins have the same  
structure as the INput pins, please refer to Figure 28.  
8.3  
Input pin voltage  
The IN, DSEL and DEN use a comparator with hysteresis. The switching ON / OFF takes place in a defined region,  
set by the thresholds VIN(L) Max. and VIN(H) Min. The exact value where the ON and OFF take place are unknown  
and depends on the process, as well as the temperature. To avoid cross talk and parasitic turn ON and OFF, a  
hysteresis is implemented. This ensures a certain immunity to noise.  
8.4  
Electrical characteristics  
Table 11  
Electrical characteristics: Input pins  
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 28V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test  
Condition  
Number  
Min.  
Max.  
INput pins characteristics  
Low level input voltage range  
VIN(L)  
-0.3  
0.8  
V
V
See Chapter 9.5 P_8.4.1  
See Chapter 9.5 P_8.4.2  
High level input voltage range VIN(H)  
2
6
Datasheet  
39  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Input pins  
Table 11  
Electrical characteristics: Input pins (continued)  
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 28V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test  
Condition  
Number  
Min.  
Max.  
Input voltage hysteresis  
VIN(HYS)  
250  
mV  
27) See Chapter  
9.5  
P_8.4.3  
Low level input current  
High level input current  
IIN(L)  
IIN(H)  
1
2
10  
10  
25  
25  
µA  
µA  
VIN = 0.8 V  
P_8.4.4  
P_8.4.5  
VIN = 5.5 V  
See Chapter 9.5  
DEN Pin  
Low level input voltage range  
VDEN(L)  
-0.3  
2
0.8  
6
V
P_8.4.6  
P_8.4.7  
P_8.4.8  
P_8.4.9  
P_8.4.10  
High level input voltage range VDEN(H)  
V
27)  
Input voltage hysteresis  
Low level input current  
High level input current  
DSEL Pins  
VDEN(HYS)  
IDEN(L)  
250  
10  
10  
mV  
µA  
µA  
1
25  
25  
VDEN = 0.8 V  
VDEN = 5.5 V  
IDEN(H)  
2
Low level input voltage range  
VDSEL(L)  
-0.3  
2
0.8  
6
V
P_8.4.11  
P_8.4.12  
P_8.4.13  
P_8.4.14  
P_8.4.15  
High level input voltage range VDSEL(H)  
V
27)  
Input voltage hysteresis  
Low level input current  
High level input current  
VDSEL(HYS)  
IDSEL(L)  
250  
10  
10  
mV  
µA  
µA  
1
25  
25  
VDSEL = 0.8 V  
VDSEL = 5.5 V  
IDSEL(H)  
2
27  
Not subject to production test, specified by design.  
Datasheet  
40  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Characterization results  
9
Characterization results  
The characterization has been performed on 3 lots, with 3 devices each. Characterization has been performed at  
8 V, 28 V and 36 V overtemperature range.  
9.1  
General product characteristics  
P_4.2.3  
P_4.2.4  
Minimum functional supply voltage VS(OP)_MIN = f(TJ) Undervoltage threshold VS(UV) = f(TJ)  
5.000  
4.900  
4.800  
4.700  
4.600  
4.500  
4.000  
3.900  
3.800  
3.700  
3.600  
3.500  
[V]  
[V]  
3.400  
3.300  
3.200  
3.100  
3.000  
4.400  
4.300  
4.200  
4.100  
4.000  
8V  
8V  
28V  
36V  
28V  
36V  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature [°C]  
Temperature [°C]  
P_4.2.6  
P_4.2.7, P_4.2.10  
Current consumption for whole device with load -  
all channels active IGND_2 = f(TJ; VS)  
Standby current for whole device with load IS(OFF)  
f(TJ; VS)  
=
7.000  
6.000  
5.000  
4.000  
4.000  
3.500  
3.000  
2.500  
2.000  
[µA]  
[mA]  
3.000  
1.500  
2.000  
1.000  
8V  
8V  
1.000  
0.500  
0.000  
28V  
36V  
28V  
36V  
0.000  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature [°C]  
Temperature [°C]  
Datasheet  
41  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Characterization results  
9.2  
Power stage  
P_5.5.4  
P_5.5.5  
Output voltage drop limitation at low load current: Drain to source clamp voltage VDS(AZ)= f(TJ)  
VDS(NL) = f(TJ) and VDS(NL) = f(VS)  
12.000  
11.500  
11.000  
10.500  
10.000  
9.500  
75.000  
74.000  
73.000  
72.000  
71.000  
70.000  
[V]  
[mV]  
69.000  
68.000  
67.000  
66.000  
65.000  
9.000  
8.500  
8.000  
7.500  
7.000  
8V  
8V  
28V  
36V  
28V  
36V  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature [°C]  
Temperature [°C]  
P_5.5.11  
P_5.5.12  
Slew rate at turn ON dV / dtON = f(TJ; VS) = RL= 47 Ω  
Slew rate at turn OFF-dV / dtOFF = f(TJ; VS) = RL= 47 Ω  
1.000  
0.900  
0.800  
0.700  
0.600  
1.000  
0.900  
0.800  
0.700  
0.600  
0.500  
[V/µs]  
0.500  
[V/µs]  
0.400  
0.400  
0.300  
0.300  
0.200  
0.200  
8V  
8V  
28V  
28V  
0.100  
0.100  
36V  
36V  
0.000  
0.000  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature [°C]  
Temperature [°C]  
Datasheet  
42  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Characterization results  
P_5.5.14  
P_5.5.15  
Turn ONtON = f(TJ; VS) = RL= 47 Ω  
Turn OFF tOFF = f(TJ; VS) = RL= 47 Ω  
80.000  
90.000  
80.000  
70.000  
60.000  
50.000  
70.000  
60.000  
50.000  
40.000  
[µs]  
40.000  
[ms]  
30.000  
20.000  
10.000  
0.000  
30.000  
20.000  
10.000  
0.000  
8V  
8V  
28V  
36V  
28V  
36V  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature [°C]  
Temperature [°C]  
P_5.5.19  
P_5.5.20  
Switch ON energy EON = f(TJ; VS) = RL= 47 Ω  
Switch OFF energy EOFF = f(TJ; VS) = RL= 47 Ω  
2.50E-04  
3.00E-04  
2.50E-04  
2.00E-04  
2.00E-04  
1.50E-04  
1.50E-04  
[µJ]  
[µJ]  
1.00E-04  
1.00E-04  
5.00E-05  
5.00E-05  
0.00E+00  
8V  
8V  
28V  
36V  
28V  
36V  
0.00E+00  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature [°C]  
Temperature [°C]  
Datasheet  
43  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Characterization results  
9.3  
Protection functions  
P_6.6.4  
Overload condition in the low voltage area IL5(SC)  
=
f(TJ; VS)  
12.000  
10.000  
8.000  
6.000  
[A]  
4.000  
2.000  
0.000  
8V  
28V  
36V  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature [°C]  
Datasheet  
44  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Characterization results  
9.4  
Diagnostic mechanism  
P_7.5.2  
Current sense at no loadIIS = f(TJ; VS)IL= 0  
Open load detection ON state threshold IL(OL)= f(TJ)  
1.400  
11.000  
10.500  
10.000  
9.500  
1.200  
1.000  
0.800  
9.000  
[mA]  
[µA]  
0.600  
8.500  
0.400  
0.200  
0.000  
8.000  
8V  
8V  
7.500  
7.000  
28V  
36V  
28V  
36V  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature [°C]  
Temperature [°C]  
P_7.5.3  
P_7.5.7  
Sense signal at maximum voltageVIS(AZ) = f(TJ; VS)  
Sense signal maximum current in fault condition  
IIS(FAULT)= f(TJ;VS)  
75.000  
74.000  
73.000  
72.000  
71.000  
20.000  
18.000  
16.000  
14.000  
12.000  
10.000  
70.000  
[V]  
[mA]  
8.000  
6.000  
69.000  
68.000  
4.000  
67.000  
8V  
8V  
28V  
28V  
2.000  
66.000  
36V  
36V  
0.000  
65.000  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature [°C]  
Temperature [°C]  
Datasheet  
45  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Characterization results  
9.5  
Input pins  
P_8.4.1  
P_8.4.2  
Input voltage threshold VIN(L) = f(TJ;VS)  
Input voltage threshold VIN(H) = f(TJ;VS)  
1.340  
1.320  
1.300  
1.280  
1.260  
1.240  
1.530  
1.520  
1.510  
1.500  
1.490  
[V]  
[V]  
1.220  
1.480  
1.470  
1.200  
1.180  
1.160  
1.140  
1.120  
8V  
8V  
1.460  
1.450  
28V  
36V  
28V  
36V  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature [°C]  
Temperature [°C]  
P_8.4.3  
P_8.4.5  
Input voltage hysteresis VIN(HYS) = f(TJ;VS)  
Input current high level IIN(H) = f(TJ;VS)  
350.000  
16.000  
14.000  
12.000  
10.000  
300.000  
250.000  
200.000  
8.000  
[µA]  
[mV]  
150.000  
6.000  
4.000  
2.000  
0.000  
100.000  
8V  
8V  
50.000  
28V  
36V  
28V  
36V  
0.000  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature [°C]  
Temperature [°C]  
Datasheet  
46  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Application information  
10  
Application information  
Note:  
The following information is given as a hint for the implementation of the device only and shall not be  
regarded as a description or warranty of a certain functionality, condition or quality of the device.  
VBAT  
Voltage Regulator  
OUT  
VS  
GND  
T1  
Z
CVDD  
CVS  
VDD  
VS  
RDEN  
I/O  
DEN  
OUT0  
OUT1  
COUT  
Relay  
I/O  
I/O  
RDSEL  
DSEL0  
DSEL1  
86  
85  
30  
87  
RDSEL  
COUT  
RIN  
RIN  
RIN  
RIN  
I/O  
I/O  
I/O  
I/O  
IN0  
IN1  
IN2  
IN3  
Micro  
controller  
+
-
OUT2  
OUT3  
COUT  
E.C.U.  
OT3  
OUT4  
COUT  
RSENSE  
IS  
A/D  
GND  
LED  
R5W  
GND  
CSENSE  
D
Page-1  
Figure 29  
Application diagram with BTT6200-4ESA  
Note:  
This is a very simplified example of an application circuit. The function must be verified in the real  
application.  
Table 12  
Bill of material  
Reference  
Value  
Purpose  
RIN  
10 kΩ  
Protection of the microcontroller during overvoltage, reverse polarity  
Guarantee BTT6200-4ESA channels OFF during loss of ground  
RDSEL  
RDEN  
10 kΩ  
10 kΩ  
Protection of the microcontroller during overvoltage, reverse polarity  
Protection of the microcontroller during overvoltage, reverse polarity  
Datasheet  
47  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Application information  
Table 12  
Bill of material (continued)  
Reference  
Value  
Purpose  
RPD  
47 kΩ  
Polarization of the output for short circuit to VS detection. Improve  
BTT6200-4ESA immunity to electromagnetic noise  
ROL  
1.5 kΩ  
1.2 kΩ  
10 kΩ  
Polarization of the output during open load in OFF detection  
Sense resistor  
RIS  
RSENSE  
Overvoltage, reverse polarity, loss of ground. Value to be tuned with  
microcontroller specification.  
CSENSE  
COUT  
RLED  
RGND  
D
100 pF  
10 nF  
680 Ω  
27 Ω  
Sense signal filtering  
Protection of the device during ESD and BCI  
Overvoltage protection of the LED. Value to be tuned with LED specification  
Protection of the BTT6200-4ESA during overvoltage  
Protection of the BTT6200-4ESA during reverse polarity  
Protection of the device during overvoltage  
BAS21  
Z
58 V Zener  
diode  
CVS  
T1  
100 nF  
Filtering of voltage spikes at the battery line  
Dual NPN/PNP Switch the battery voltage for open load in OFF diagnostic  
10.1  
Further application information  
Please contact us to get the pin FMEA  
Existing App. Notes  
For further information you may visit www.infineon.com  
Datasheet  
48  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Package outlines  
11  
Package outlines  
1)  
8.65±0.1  
1)  
3.9±0.1  
D
0.1  
0.1  
2x  
2x  
0.67±0.25  
6±0.2  
C
0.08 C  
24x  
SEATING COPLANARITY  
PLANE  
0.2 D  
24x  
2)  
0.25±0.05  
0.25  
A
A-B C  
24x  
BOTTOM VIEW  
D
0.15  
24  
13  
13  
24  
1
12  
12  
1
INDEX  
MARKING  
6.4±0.1  
B
0.15  
A-B  
0.65  
1) DOES NOT INCLUDE PLASTIC OR METAL PROTRUSION OF 0.15 MAX. PER SIDE  
2) DAMBAR PROTUSION SHALL BE MAXIMUM 0.1MM TOTAL IN EXCESS OF LEAD WIDTH  
ALL DIMENSIONS ARE IN UNITS MM  
THE DRAWING IS IN COMPLIANCE WITH ISO 128 & PROJECTION METHOD 1 [  
]
Figure 30  
PG-TSDSO-24 (Plastic dual small outline package)(RoHS-compliant)  
Green product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with  
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-  
free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
Legal disclaimer for short-circuit capability  
Infineon disclaims any warranties and liablilities, whether expressed or implied, for any short-circuit failures  
below the threshold limit.  
Datasheet  
49  
Rev. 1.00  
2019-03-09  
PROFET + 24V  
BTT6200-4ESA  
Revision history  
Revision history  
Document  
version  
Date of  
release  
Description of changes  
1.00  
2019-03-09  
Datasheet created  
Datasheet  
50  
Rev. 1.00  
2019-03-09  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
Edition 2019-03-09  
Published by  
IMPORTANT NOTICE  
WARNINGS  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”) .  
With respect to any examples, hints or any typical values  
stated herein and/or any information regarding the  
application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities of  
any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer’s compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer’s products and any use of the product of  
Infineon Technologies in customer’s applications.  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
Except as otherwise explicitly approved by Infineon  
Technologies in  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or  
any consequences of the use thereof can reasonably  
be expected to result in personal injury  
Infineon Technologies AG  
81726 Munich, Germany  
a written document signed by  
©
2019 Infineon Technologies AG  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Document reference  
IFX-fst1527583024507  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to such  
application.  

相关型号:

BTT62001EJAXUMA1

Buffer/Inverter Based Peripheral Driver, 1A, PDSO8, DSO-8
INFINEON

BTT62004EMAXUMA1

Buffer/Inverter Based Peripheral Driver, 1A, PDSO24, SSOP-24
INFINEON

BTT62004ESAXUMA1

Buffer/Inverter Based Peripheral Driver, 1A, PDSO24, SOP-24
INFINEON

BTT9170KP

PCM Transceiver
ETC

BTT9170KPJ

PCM Transceiver
ETC

BTTLDL020

Logic IC
ETC

BTTLDL020M

Logic IC
ETC

BTTLDL020MX

Logic IC
ETC

BTTLDL020MY

Logic IC
ETC

BTTLDL025

Logic IC
ETC

BTTLDL025M

Logic IC
ETC

BTTLDL025MX

Logic IC
ETC