BTS70012-1ESP [INFINEON]

Qualified for automotive applications. Product validation according to AEC-Q100 Grade 1.;
BTS70012-1ESP
型号: BTS70012-1ESP
厂家: Infineon    Infineon
描述:

Qualified for automotive applications. Product validation according to AEC-Q100 Grade 1.

文件: 总59页 (文件大小:1792K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BTS70012-1ESP  
PROFET™ +2 12V  
1x 1.4 mΩ  
Smart High-Side Power Switch  
Package  
Marking  
PG-TSDSO-24  
70012-1ESP  
1
Overview  
Potential Applications  
Suitable for driving 31.3 A resistive, inductive and capacitive loads  
Replaces electromechanical relays, fuses and discrete circuits  
Suitable for driving glow plug, heating loads, DC motor and for power  
distribution  
VBAT  
ZWIRE  
Optional  
Optional  
CVS  
RGND  
CVSGND  
T1  
Logic Supply  
VDD  
GND  
VS  
GPIO  
RIN  
IN  
OUT  
GPIO  
RDEN  
DEN  
COUT0  
PROFET™ +2  
12V  
Microcontroller  
DZ2  
CVS2  
ADC  
VSS  
RADC  
RIS_PROT  
IS  
CSENSE  
DZ1  
Logic GND  
Power GND  
Optional  
Chassis GND  
*See Chapter 1 „Potential Applications“  
App_1CH_INTDIO_CVG.emf  
Figure 1  
BTS70012-1ESP Application Diagram. Further information in Chapter 10  
Data Sheet  
www.infineon.com  
Rev. 1.20  
2022-12-16  
1
BTS70012-1ESP  
PROFET™ +2 12V  
Overview  
Basic Features  
High-Side Switch with Diagnosis and Embedded Protection  
Part of PROFET™ +2 12V Family  
PRO-SIL™ ISO 26262-ready for supporting the integrator in evaluation of hardware element according to  
ISO 26262:2018 Clause 8-13  
Capacitive Load Switching mode  
ReverseON for low power dissipation in Reverse Polarity  
Switch ON capability while Inverse Current condition (InverseON)  
Green Product (RoHS compliant)  
Protection Features  
Absolute and dynamic temperature limitation with controlled reactivation  
Overcurrent protection (tripping) with Intelligent Latch  
Undervoltage shutdown  
Overvoltage protection with external components (as shown in Figure 39)  
Diagnostic Features  
Proportional load current sense  
Open Load in ON and OFF state  
Short circuit to ground and battery  
Product Validation  
Qualified for automotive applications. Product validation according to AEC-Q100 Grade 1.  
Description  
The BTS70012-1ESP is a Smart High-Side Power Switch, providing protection functions and diagnosis.  
Table 1  
Product Summary  
Parameter  
Symbol  
VS(OP)  
Values  
4.1 V  
Minimum Operating voltage  
Minimum Operating voltage (cranking)  
Maximum Operating voltage  
VS(UV)  
3.1 V  
VS  
28 V  
Minimum Overvoltage protection (TJ 25 °C)  
Maximum current in OFF mode (TJ 85 °C)  
Maximum operative current  
VDS(CLAMP)_25  
IVS(OFF)_85  
IGND(ON_D)  
RDS(ON)_25  
RDS(ON)_150  
IL(NOM)  
35 V  
2.2 µA  
3.3 mA  
1.4 mΩ  
2.47 mΩ  
31.3 A  
187 A  
34100  
Typical ON-state resistance (TJ = 25 °C)  
Maximum ON-state resistance (TJ = 150 °C)  
Nominal load current (TA = 85 °C)  
Minimum overload detection current (TJ = -40°C) IL(OVL0)_-40  
Typical current sense ratio at IL = IL(NOM)  
kILIS  
Data Sheet  
2
Rev.1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Block Diagram and Terms  
2
Block Diagram and Terms  
2.1  
Block Diagram  
VS  
Supply Voltage  
Monitoring  
Overvoltage  
Protection  
Channel  
Internal Power Supply  
Voltage Sensor  
Intelligent Restart  
Control  
T
Overtemperature  
Overvoltage  
Clamping  
IS  
IN  
SENSE Output  
Gate Control  
+
Overcurrent  
Protection  
Driver  
Logic  
Chargepump  
ReverseON  
InverseON  
OUT  
ESD  
Protection  
+
DEN  
Load Current Sense  
Output Voltage Limitation  
Input Logic  
Internal Reverse  
PolarityProtection  
GND Circuitry  
GND  
Block_HEAT1ch.emf  
Figure 2  
Block Diagram of BTS70012-1ESP  
Data Sheet  
3
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Block Diagram and Terms  
2.2  
Terms  
Figure 3 shows all terms used in this data sheet, with associated convention for positive values.  
IVS  
VSIS  
VS  
IIN  
VDS  
IN  
IDEN  
DEN  
IL  
VS  
OUT  
VIN  
IIS  
VDEN  
IS  
VOUT  
GND  
VIS  
IGND  
Terms_1CH.emf  
Figure 3  
Voltage and Current Convention  
Data Sheet  
4
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
n.c.  
OUT  
OUT  
OUT  
n.c.  
n.c.  
GND  
IN  
DEN  
IS  
n.c.  
n.c.  
n.c.  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
VS  
9
10  
11  
12  
n.c.  
n.c.  
exposed pad (bottom)  
Pinout_PROFET1ch_PDH_24.emf  
Figure 4  
Pin Configuration  
Data Sheet  
5
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Pin Configuration  
3.2  
Pin Definitions and Functions  
Table 2  
Pin  
Pin Definition  
Symbol  
Function  
EP  
VS  
Supply Voltage  
(exposed pad)  
Battery voltage  
4
5
GND  
Ground  
Signal ground  
IN  
Input Channel  
Digital signal to switch ON the channel (“high” active)  
If not used: connect with a 10 kΩ resistor either to GND pin or to module  
ground  
6
7
DEN  
IS  
Diagnostic Enable  
Digital signal to enable device diagnosis (“high” active) and to clear the  
protection latch of channel  
If not used: connect with a 10 kΩ resistor either to GND pin or to module  
ground  
SENSE current output  
Analog/digital signal for diagnosis  
If not used: left open  
1-3, 8-12 n.c.  
13-24 OUT  
Not connected, internally not bonded  
Output  
Protected high-side power output channel1)  
1) All output pins of the channel must be connected together on the PCB. All pins of the output are internally connected  
together. PCB traces have to be designed to withstand the maximum current which can flow.  
Data Sheet  
6
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings - General  
Table 3  
Absolute Maximum Ratings1)  
TJ = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Supply pins  
Power Supply Voltage  
Load Dump Voltage  
VS  
-0.3  
28  
35  
V
V
P_4.1.0.1  
P_4.1.0.3  
VBAT(LD)  
suppressed  
Load Dump  
acc. to  
ISO16750-2  
(2010).  
Ri = 2 Ω  
Supply Voltage for Short Circuit VBAT(SC)  
Protection  
0
24  
V
Setup acc. to  
AEC-Q100-012  
P_4.1.0.25  
P_4.1.0.5  
R
supply = 10 mΩ  
supply = 5 µH  
Rshort = 25 mΩ  
short = 5 µH  
L
L
Reverse Polarity Voltage  
Current through GND Pin  
-VBAT(REV)  
16  
50  
V
t 2 min  
TA = +25 °C  
Setup as  
described in  
Chapter 10  
IGND  
-50  
mA  
RGND according P_4.1.0.9  
to Chapter 10  
Logic & control pins (Digital Input = DI)  
DI = IN, DEN  
2)  
Current through DI Pin  
IDI  
-1  
-1  
2
mA  
mA  
P_4.1.0.14  
2)  
Current through DI Pin  
IDI(REV)  
10  
P_4.1.0.36  
Reverse Battery Condition  
t 2 min  
IS pin  
Voltage at IS Pin  
Current through IS Pin  
VIS  
IIS  
-1.5  
-25  
VS  
V
IIS = 10 μA  
P_4.1.0.16  
P_4.1.0.18  
IIS(SAT),M mA  
AX  
Data Sheet  
7
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
General Product Characteristics  
Table 3  
Absolute Maximum Ratings1) (continued)  
TJ = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Temperatures  
Junction Temperature  
Storage Temperature  
ESD Susceptibility  
TJ  
-40  
-55  
150  
150  
°C  
°C  
P_4.1.0.19  
P_4.1.0.20  
TSTG  
ESD Susceptibility all Pins  
(HBM)  
VESD(HBM)  
-2  
2
kV  
kV  
V
HBM3)  
HBM3)  
CDM4)  
CDM4)  
P_4.1.0.21  
P_4.1.0.22  
P_4.1.0.23  
P_4.1.0.24  
ESD Susceptibility OUT vs GND VESD(HBM)_OU -4  
and VS connected (HBM)  
4
T
ESD Susceptibility all Pins  
(CDM)  
VESD(CDM)  
-500  
500  
750  
ESD Susceptibility Corner Pins VESD(CDM)_CR -750  
V
(pins 1, 12, 13, 24)  
N
1) Not subject to production test - specified by design.  
2) Maximum VDI to be considered for Latch-Up tests: 5.5 V.  
3) ESD susceptibility, Human Body Model “HBM”, according to AEC Q100-002.  
4) ESD susceptibility, Charged Device Model “CDM”, according to AEC Q100-011.  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
Data Sheet  
8
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
General Product Characteristics  
4.2  
Absolute Maximum Ratings - Power Stages  
4.2.1  
Power Stages - 1.2 mΩ  
Table 4  
Absolute Maximum Ratings - 1.2 mΩ 1)  
TJ = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Maximum Energy Dissipation  
Single Pulse  
EAS  
525  
mJ  
IL = 2*IL(NOM)  
TJ(0) = 150 °C  
VS = 28 V  
P_4.2.21.1  
Maximum Energy Dissipation  
Repetitive Pulse  
EAR  
160  
mJ  
IL = IL(NOM)  
TJ(0) = 85 °C  
VS = 13.5 V  
1M cycles  
P_4.2.21.2  
P_4.2.21.3  
Load Current  
|IL|  
IL(OVL0),  
A
MAX  
1) Not subject to production test - specified by design.  
4.3  
Functional Range  
Table 5  
Functional Range - Supply Voltage and Temperature1)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Supply Voltage Range for  
Normal Operation  
VS(NOR)  
6
13.5  
18  
V
P_4.3.0.1  
P_4.3.0.2  
2)3)  
Lower Extended Supply  
VS(EXT,LOW)  
3.1  
6
V
Voltage Range for Operation  
(parameter  
deviations possible)  
Supply Voltage Range  
reached after Overload  
Protection activation  
leading toUndervoltage on  
VS” condition  
VS(EXT,CVG)  
3.1  
V
CVSGND is required  
when the Overload  
Protection is  
triggered (see  
Chapter 8.2) and  
the observed  
P_4.3.0.7  
number of retries is  
different from what  
specified in  
Chapter 8.3.1  
Data Sheet  
9
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
General Product Characteristics  
Table 5  
Functional Range - Supply Voltage and Temperature1) (continued)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
3)  
Upper Extended Supply  
VS(EXT,UP)  
18  
28  
V
P_4.3.0.3  
Voltage Range for Operation  
(parameter  
deviations possible)  
Junction Temperature  
TJ  
-40  
150 °C  
P_4.3.0.5  
1) Not subject to production test - specified by design.  
2) In case of VS voltage decreasing: VS(EXT,LOW),MIN = 3.1 V. In case of VS voltage increasing: VS(EXT,LOW),MIN = 4.1 V.  
3) Protection functions still operative.  
Note:  
Within the functional or operating range, the IC operates as described in the circuit description. The  
electrical characteristics are specified within the conditions given in the Electrical Characteristics  
tables.  
4.4  
Thermal Resistance  
Note:  
This thermal data was generated in accordance with JEDEC JESD51 standards. For more  
information, go to www.jedec.org.  
Table 6  
Thermal Resistance1)  
Parameter  
Symbol  
Values  
Typ.  
0.7  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
2)  
Thermal Characterization  
Parameter Junction-Top  
ΨJTOP  
1.3  
K/W  
P_4.4.0.12  
P_4.4.0.13  
2)  
Thermal Resistance  
Junction-to-Case  
RthJC  
0.4  
0.7  
K/W  
simulated at  
exposed pad  
2)  
Thermal Resistance  
Junction-to-Ambient  
RthJA  
23.0  
K/W  
P_4.4.0.14  
1) Not subject to production test - specified by design.  
2) According to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; the Product (Chip + Package) was  
simulated on a 76.2 × 114.3 × 1.5 mm board with 2 inner copper layers (2 × 70 µm Cu, 2 × 35 µm Cu). Where applicable  
a thermal via array under the exposed pad contacted the first inner copper layer. Simulation done at TA = 105°C,  
P
DISSIPATION = 1 W.  
Data Sheet  
10  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
General Product Characteristics  
4.4.1  
PCB Setup  
70 µm modeled (traces, cooling area)  
70 µm, 5% metalization*  
*: means percentual Cu metalization on each layer  
PCB_Zth_1s0p.emf  
Figure 5  
1s0p PCB Cross Section  
70 µm modeled (traces)  
35 µm, 90% metalization*  
35 µm, 90% metalization*  
70 µm, 5% metalization*  
*: means percentual Cu metalization on each layer  
PCB_Zth_2s2p.emf  
Figure 6  
2s2p PCB Cross Section  
PCB 1s0p + 600 mm2 cooling  
PCB 2s2p / 1s0p footprint  
PCB_sim_setup_TSDSO24.emf  
Figure 7  
PCB setup for thermal simulations  
PCB_2s2p_vias_TSDSO24.emf  
Figure 8  
Thermal vias on PCB for 2s2p PCB setup  
Data Sheet  
11  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
General Product Characteristics  
4.4.2  
Thermal Impedance  
ZthJA - BTS70012-ESP  
JEDEC 2s2p  
100  
10  
1
JEDEC 1s0p - 600 mm²  
JEDEC 1s0p - 300 mm²  
JEDEC 1s0p - footprint  
0.1  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
Time [s]  
Figure 9  
Typical Thermal Impedance. PCB setup according Chapter 4.4.1  
RthJA - BTS70012-1ESP  
75  
JEDEC 1s0p  
70  
65  
60  
55  
50  
45  
40  
35  
30  
0
100  
200  
300  
400  
500  
600  
Cooling area [mm²]  
Figure 10 Thermal Resistance on 1s0p PCB with various cooling surfaces  
Data Sheet  
12  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Logic Pins  
5
Logic Pins  
The device has 2 digital pins.  
5.1  
Input Pin (IN)  
The input pin IN activates the output channel. The input circuitry is compatible with 3.3V and 5V  
microcontroller (see Chapter 10 for the complete application setup overview). The electrical equivalent of the  
input circuitry is shown in Figure 11. In case the pin is not used, it must be connected with a 10 kΩ resistor  
either to GND pin or to module ground.  
VS  
IN  
VS(CLAMP)  
IDI  
IDI  
ESD  
VDI(CLAMP)  
VDI  
GND  
IGND  
Input_IN_INTDIO.emf  
Figure 11 Input circuitry  
The logic thresholds for “low” and “high” states are defined by parameters VDI(TH) and VDI(HYS). The relationship  
between these two values is shown in Figure 12. The voltage VIN needed to ensure a “high” state is always  
higher than the voltage needed to ensure a “low” state.  
VDI  
VDI(TH ),MAX  
VDI(TH)  
VDI(HYS)  
VDI(TH ),MIN  
t
Internal channel  
activation signal  
0
x
1
x
0
t
Input_VDITH_2.emf  
Figure 12 Input Threshold voltages and hysteresis  
Data Sheet  
13  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Logic Pins  
5.2  
Diagnosis Pin  
The Diagnosis Enable (DEN) pin controls the diagnosis circuitry and can be used to reset the latched protection  
(Protection circuitry not disabled by DEN). When DEN pin is set to “high”, the diagnosis is enabled (see  
Chapter 9.2 for more details). When it is set to “low”, the diagnosis is disabled (IS pin is set to high  
impedance).  
The transition from “high” to “low” of DEN pin clears the protection latch of the channel depending on the  
logic state of IN pin and DEN pulse length (see Chapter 8.3 for more details). The internal structure of  
diagnosis pins is the same as the one of input pins. See Figure 11 for more details.  
5.3  
Electrical Characteristics Logic Pins  
VS = 6 V to 18 V, TJ = -40 °C to +150 °C  
Typical values: VS = 13.5 V, TJ = 25 °C  
Digital Input (DI) pins = IN, DEN  
Table 7  
Electrical Characteristics: Logic Pins - General  
Parameter  
Symbol  
Values  
Typ.  
1.3  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Digital Input Voltage  
Threshold  
VDI(TH)  
0.8  
2
V
See Figure 11 and P_5.4.0.1  
Figure 12  
1)  
Digital Input Clamping  
Voltage  
VDI(CLAMP1)  
7
V
P_5.4.0.2  
IDI = 1 mA  
See Figure 11 and  
Figure 12  
Digital Input Clamping  
Voltage  
VDI(CLAMP2)  
VDI(HYS)  
IDI(H)  
6.5  
7.5  
0.25  
10  
8.5  
V
IDI = 2 mA  
See Figure 11 and  
Figure 12  
1)  
P_5.4.0.3  
P_5.4.0.4  
P_5.4.0.5  
P_5.4.0.6  
Digital Input Hysteresis  
V
See Figure 11 and  
Figure 12  
Digital Input Current  
(“high”)  
2
25  
25  
µA  
µA  
VDI = 2 V  
See Figure 11 and  
Figure 12  
Digital Input Current (“low”) IDI(L)  
2
10  
VDI = 0.8 V  
See Figure 11 and  
Figure 12  
1) Not subject to production test - specified by design.  
Data Sheet  
14  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Power Supply  
6
Power Supply  
The BTS70012-1ESP is supplied by VS, which is used for the internal logic as well as supply for the power output  
stage. VS has an undervoltage detection circuit, which prevents the activation of the power output stage and  
diagnosis in case the applied voltage is below the undervoltage threshold (VS < VS(OP)). During power up, the  
internal power on signal is set when supply voltage (VS) exceeds the minimum operating voltage (VS > VS(OP)).  
6.1  
Operation Modes  
BTS70012-1ESP has the following operation modes in case of VS > VS(OP)  
:
OFF mode  
ON mode  
Diagnosis in ON mode  
Diagnosis in OFF mode  
Fault  
CLS mode  
The transition between operation modes is determined according to these variables:  
Logic level at IN pin  
PWM signal at IN pin  
Logic level at DEN pin  
Internal latch  
V
DS voltage level  
The truth table in case of VS > VS(OP) is shown in Table 8. The behavior of BTS70012-1ESP as well as some  
parameters may change in dependence on the operation mode of the device.  
There are three parameters describing each operation mode of BTS70012-1ESP:  
Status of the output channel  
Status of the diagnosis  
Current consumption at VS pin (measured by IVS in OFF mode, IGND in all other operative modes)  
Table 8  
IN  
Operation Mode truth table  
DEN  
Internal IIS  
Operative Mode Comment  
latch  
0
0
0
0
0
1
0
1
0
leakage  
OFF  
DMOS channel is OFF  
leakage  
leakage  
open load  
fault  
OFF  
DMOS channel is OFF  
OFF_DIAG  
Diagnostic in OFF-mode  
Diagnostic in OFF-mode  
Diagnostic in OFF-mode  
DMOS channel is ON, no diagnostic  
0
1
1
1
0
0
1
0
1
leakage  
leakage  
ON  
fault  
DMOS channel is switched OFF due to  
failure  
1
1
0
IIS  
ON_DIAG  
DMOS channel is ON and diagnostic  
Data Sheet  
15  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Power Supply  
Table 8  
IN  
Operation Mode truth table  
DEN  
Internal IIS  
Operative Mode Comment  
latch  
1
1
X
1
fault  
leakage  
fault  
CLS  
DMOS channel is switched OFF due to  
failure  
fIN(CLS)  
0
DMOS channel is ON in Capacitive Load  
Switching mode  
6.1.1  
OFF mode  
When BTS70012-1ESP is in OFF mode, the output channel is OFF. The current consumption is minimum (see  
parameter IVS(OFF)). No Overtemperature, Overload protection mechanism and no diagnosis function is active  
when the device is in OFF mode.  
6.1.2  
ON mode  
ON (IN = High; DEN = Low) mode is the normal operation mode of BTS70012-1ESP. Device current  
consumption is specified with IGND(ON_D) + IIS(OFF) (measured at GND pin because the current at VS pin includes  
the load current). Overcurrent and Overtemperature protections are active. No diagnosis function is active.  
6.1.3  
OFF_Diag mode  
The device is in OFF_Diag mode as long as DEN pin is set to “high” and IN pin is set to “low”. The output  
channel is OFF. Depending on the load condition, either a fault current IIS(FAULT) or an Open Load in OFF current  
(IIS(OLOFF)) may be present at IS pin. In such situation, the current consumption of the device is increased.  
6.1.4  
ON_Diag mode  
The device is in ON_Diag mode with current sense function enabled. Device current consumption is specified  
with IGND(ON_D). Depending on the load condition, either a fault current IIS(FAULT) or IIS current may be present at  
IS pin.  
6.1.5  
Fault mode  
The device is in Fault mode as soon as a protection event happens which affects that the device switches off  
due to its protection function. In Fault mode, a IIS(FAULT) signal is present at IS pin during the DEN signal is  
"high".  
6.1.6  
CLS mode  
The device has a Capacitive Load Switching mode (CLS) implemented to charge capacitive loads. The CLS  
mode is entered when an input frequency of fVIN(CLS) with the duty cycle of DCVIN(CLS) is applied at the input pin  
(for more details see Chapter 7.2.3). The device current consumption in CLS is specified by the parameter  
IGND(ON_D)  
.
Data Sheet  
16  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Power Supply  
6.2  
Undervoltage on VS  
Between VS(OP) and VS(UV) the undervoltage mechanism is triggered. If the device is operative (in ON mode) and  
the supply voltage drops below the undervoltage threshold VS(UV), the internal logic switches OFF the output  
channel.  
As soon as the supply voltage VS is above the operative threshold VS(OP), the channel is switched ON again as  
shown in Figure 13.  
If the device is in OFF mode and the input is set to “high”, the channel will be switched ON if VS > VS(OP)  
.
VS  
VS(OP)  
VS(HYS)  
VS(UV)  
t
IN  
t
VOUT  
t
PowerSupply_UV.vsdx  
Figure 13 VS undervoltage behavior  
Data Sheet  
17  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Power Supply  
6.3  
Electrical Characteristics Power Supply  
VS = 6 V to 18 V, TJ = -40 °C to +150 °C  
Typical values: VS = 13.5 V, TJ = 25 °C  
Typical resistive load connected to the output for testing (unless otherwise specified):  
RL = 2.1 Ω  
Table 9  
Electrical Characteristics: Power Supply - General  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
VS pin  
Power Supply Undervoltage VS(UV)  
Shutdown  
1.8  
2.3  
3.0  
3.1  
V
VS decreasing  
IN = “high”  
From VDS 0.5 V to  
P_6.4.0.1  
V
DS = VS  
See Figure 13  
Power Supply Minimum  
Operating Voltage  
VS(OP)  
2.0  
4.1  
V
VS increasing  
IN = “high”  
P_6.4.0.3  
From VDS = VS to  
V
DS 0.5 V  
See Figure 13  
1)  
Power Supply Undervoltage VS(HYS)  
Shutdown Hysteresis  
0.7  
V
V
P_6.4.0.6  
P_6.4.0.9  
VS(OP) - VS(UV)  
See Figure 13  
1)  
Breakdown Voltage  
between GND and VS Pins in  
Reverse Battery  
-VS(REV)  
16  
30  
IGND(REV) = 7 mA  
TJ = 150 °C  
1) Not subject to production test - specified by design.  
Data Sheet  
18  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Power Supply  
6.4  
Electrical Characteristics Power Supply - Product Specific  
VS = 6 V to 18 V, TJ = -40 °C to +150 °C  
Typical values: VS = 13.5 V, TJ = 25 °C  
Typical resistive load connected to the output for testing (unless otherwise specified):  
RL = 2.1 Ω  
6.4.1  
BTS70012-1ESP  
Table 10 Electrical Characteristics: Power Supply BTS70012-1ESP  
Parameter  
Symbol  
Values  
Typ.  
0.2  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Supply Current  
IVS(OFF)_85  
2.2  
µA  
P_6.5.25.1  
Consumption in OFF Mode  
with Loads  
VS = 18 V  
VOUT = 0 V  
IN = DEN = “low”  
TJ 85 °C  
Supply Current  
IVS(OFF)_150  
1
65  
µA  
VS = 18 V  
P_6.5.25.2  
Consumption in OFF Mode  
with Loads  
VOUT = 0 V  
IN = DEN = “low”  
TJ = 150 °C  
Operating Current in  
ON_Diag Mode (Channel  
ON)  
IGND(ON_D)  
2
3.3  
1.8  
mA  
mA  
VS = 18 V  
IN = DEN = “high”  
P_6.5.25.3  
P_6.5.25.5  
Operating Current in  
OFF_Diag Mode  
IGND(OFF_D)  
1.2  
VS = 18 V  
IN = “low”;  
DEN = “high”  
1) Not subject to production test - specified by design.  
Data Sheet  
19  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Power Stages  
7
Power Stages  
The high-side power stage is built using a N-channel vertical Power MOSFET with charge pump.  
7.1  
Output ON-State Resistance  
The ON-state resistance RDS(ON) depends mainly on junction temperature TJ. Figure 14 shows the variation of  
RDS(ON) across the whole TJ range. The value “2” on the y-axis corresponds to the maximum RDS(ON) measured  
at TJ = 150 °C.  
RDS(ON) variation over TJ  
2.20  
Reference value:  
"2" = RDS(ON),MAX @ 150 °C  
2.00  
1.80  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
Typical  
0.20  
0.00  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
Junction Temperature (°C)  
Figure 14  
RDS(ON) variation factor  
The behavior in Reverse Polarity is described in Chapter 8.4.1.  
Data Sheet  
20  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Power Stages  
7.2  
Switching loads  
7.2.1  
Switching Resistive Loads  
When switching resistive loads, the switching times and slew rates shown in Figure 15 can be considered. The  
switch energy values EON and EOFF are proportional to load resistance and times tON and tOFF  
.
IN  
VIN(TH)  
VIN(HYS)  
t
VOUT  
tON  
90% of VS  
tOFF(DELAY)  
70% of VS  
70% of VS  
30% of VS  
-(dV/dt)OFF  
(dV/dt)ON  
30% of VS  
10% of VS  
tON(DELAY)  
tOFF  
t
PDMOS  
EON  
EOFF  
t
Power St age_SwitchRes.emf  
Figure 15 Switching a Resistive Load  
Data Sheet  
21  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Power Stages  
7.2.2  
Switching Inductive Loads  
When switching OFF inductive loads with high-side switches, the voltage VOUT drops below ground potential,  
because the inductance intends to continue driving the current. To prevent the destruction of the device due  
to overvoltage, a voltage clamp mechanism is implemented. The clamping structure limits the negative  
output voltage so that VDS = VDS(CLAMP). Figure 16 shows a concept drawing of the implementation. The  
clamping structure is available in all operation modes listed in Chapter 6.1.  
VS  
High-side  
Channel  
VS  
VDS  
VSIS(CLAMP)  
VDS(CLAMP)  
IS  
IL  
VOUT  
VS(CLAMP)  
OUT  
GND  
L,  
RL  
IL  
PowerStage_Clamp_INTDIO_1CH.emf  
Figure 16 Output Clamp concept  
During demagnetization of inductive loads, energy has to be dissipated in BTS70012-1ESP. The energy can be  
calculated with Equation (7.1):  
RL IL  
ln 1 ------------------------------------------- + IL  
VS – VDS(CLAMP)  
-------------------------------------------  
RL  
L
RL  
æ
ö
------  
E = VDS(CLAMP)  
(7.1)  
è
ø
VS – VDS(CLAMP)  
The maximum energy, therefore the maximum inductance for a given current, is limited by the thermal design  
of the component. Please refer to Chapter 4.2 for the maximum allowed values of EAS (single pulse energy)  
and EAR (repetitive energy).  
Data Sheet  
22  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Power Stages  
7.2.3  
Switching Capacitive Loads  
When switching a resistive load with the Capacitive Load Switching (CLS) mode the switching times as well as  
the Switch-ON Slew Rate will change to tON_CLS, tON_CLS(DELAY), (dV/dt)ON_CLS as shown in Figure 17. The CLS mode  
is entered by applying a PWM signal at the IN pin with a frequency of fVIN(CLS) and a duty cycle of DCVIN(CLS)  
.
During this mode the thermal shut down temperature is reduced to TJ_CLS(DYN) and the device is set to auto-  
restart.  
1
fVIN(CLS)  
IN  
VIN(TH)  
VIN(HYS)  
t
VOUT  
tON_CLS  
90% of VS  
70% of VS  
(dV/dt)ON_CLS  
30% of VS  
10% of VS  
tON_CLS(DELAY)  
tCLS  
t
t
nACT  
nCLS_ACT = 1  
Figure 17 Switching a Resistive Load with CLS mode  
The CLS mode has to be left after a maximum time of tCLS by setting the input to "high" or "low" state. A  
transition from the CLS mode to the ON mode will be automatically done when VDS < VDS(OLOFF)  
.
Before changing from CLS mode to normal mode, it shall be ensured that there is no short circuit at the output.  
To distinguish between short circuit and normal load, a current sense measurement shall be performed before  
leaving CLS mode. If the current measurement delivers an expected value, the transition from CLS mode to  
normal mode is possible. If the current measurement delivers an open load value (no output current), it has  
to be assumed that there is either an open load or a short circuit at the output. Additionally, a short circuit  
condition could be excluded by an external voltage measurement at the output.  
Data Sheet  
23  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Power Stages  
tCLS  
IN  
t
t
VOUT  
VDS(OLOFF)  
IL  
t
t
t
nACT  
nCLS_ACT = 1  
Operation  
Mode  
ON  
CLS  
Figure 18 Switching a Capacitive Load with CLS mode  
7.2.4  
Output Voltage Limitation  
To increase the current sense accuracy, VDS voltage is monitored. When the output current IL decreases while  
the channel is diagnosed (DEN pin set to “high” - see Figure 19) bringing VDS equal or lower than VDS(SLC), the  
output DMOS gate is partially discharged. This increases the output resistance so that VDS = VDS(SLC) even for  
very small output currents. The VDS increase allows the current sensing circuitry to work more efficiently,  
providing better kILIS accuracy for output current in the low range.  
IN  
t
DEN  
t
IL  
t
t
VDS  
VDS(SLC)  
Figure 19 Output Voltage Limitation activation during diagnosis  
Data Sheet  
24  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Power Stages  
7.3  
Advanced Switching Characteristics  
7.3.1  
Inverse Current behavior  
When VOUT > VS, a current IINV flows into the power output transistor (see Figure 20). This condition is known  
as “Inverse Current”.  
If the channel is in OFF state, the current flows through the intrinsic body diode generating high power losses  
therefore an increase of overall device temperature. If the channel is in ON state, RDS(INV) can be expected and  
power dissipation in the output stage is comparable to normal operation in RDS(ON)  
.
During Inverse Current condition, the channel remains in ON or OFF state as long as |IL| < |IL(INV)|.  
With InverseON, it is possible to switch ON the channel during Inverse Current condition as long as |IL| < |IL(INV)  
(see Figure 21).  
|
VBAT  
VS  
Gate  
Driver  
VOUT > VS  
-IL  
Device  
Logic  
INV  
Comp.  
OUT  
GND  
PowerStage_Inverse_HEAT.emf  
Figure 20 Inverse Current Circuitry  
Data Sheet  
25  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Power Stages  
IN  
IN  
CASE 1 : Switch is ON  
CASE 2 : Switch is OFF  
OFF  
ON  
t
t
t
IL  
IL  
NORMAL  
NORMAL  
NORMAL  
NORMAL  
t
INVERSE  
OFF  
INVERSE  
ON  
DMOS state  
DMOS state  
t
t
CASE 3 : Switch ON into Inverse Current  
CASE 4 : Switch OFF into Inverse Current  
IN  
IN  
OFF  
ON  
OFF  
ON  
t
t
IL  
IL  
NORMAL  
NORMAL  
NORMAL  
NORMAL  
t
t
t
t
INVERSE  
INVERSE  
DMOS state  
DMOS state  
ON  
OFF  
OFF  
ON  
PowerStage_InvCurr_INVON.emf  
Figure 21 InverseON - Channel behavior in case of applied Inverse Current  
Note:  
No protection mechanism like Overtemperature or Overload protection is active during applied  
Inverse Currents.  
Data Sheet  
26  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Power Stages  
7.3.2  
Cross Current robustness with H-Bridge configuration  
When BTS70012-1ESP is used as high-side switch e.g. in a bridge configuration (therefore paired with a low-  
side switch as shown in Figure 22), the maximum slew rate applied to the output by the low-side switch must  
be lower than | dVOUT / dt |.  
VBAT  
R/L cable  
HSS1  
HSS 2  
VS  
VS  
T
T
IN  
OFF  
ON(DC) IN  
OUT  
OUT  
| dVOUT /dt |  
Cross  
Current  
Current through Motor  
M
ON( PWM)  
OFF  
PowerStag_e PassiveSlew_ PROFET1Ch.emf  
Figure 22 High-Side switch used in Bridge configuration  
Data Sheet  
27  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Power Stages  
7.4  
Electrical Characteristics Power Stages  
VS = 6 V to 18 V, TJ = -40 °C to +150 °C  
Typical values: VS = 13.5 V, TJ = 25 °C  
Typical resistive load connected to the output for testing (unless otherwise specified):  
RL = 2.1 Ω  
Table 11 Electrical Characteristics: Power Stages - General  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Voltages  
Drain to Source Clamping VDS(CLAMP)_-40 33  
Voltage at TJ = -40 °C  
36.5  
42  
V
V
IL = 20 mA  
P_7.4.0.4  
TJ = -40°C  
DEN = “high”  
See Figure 16  
1)  
Drain to Source Clamping VDS(CLAMP)_25 35  
Voltage at TJ 25 °C  
38  
44  
P_7.4.0.5  
IL = 20 mA  
TJ 25°C  
DEN = “high”  
See Figure 16  
1) Tested at TJ = 150°C.  
7.4.1  
Electrical Characteristics Power Stages  
Table 12 Electrical Characteristics: Power Stages  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Number  
Test Condition  
Min.  
Max.  
Timings  
Switch-ON Delay  
tON(DELAY)  
10  
70  
140  
μs  
μs  
μs  
μs  
μs  
VS = 13.5 V  
P_7.4.5.13  
P_7.4.5.12  
P_7.4.5.2  
P_7.4.5.3  
P_7.4.5.10  
V
OUT = 10% VS  
See Figure 15  
Switch-ON Delay Capacitive tON_CLS(DELAY) 20  
Load Switching  
550  
50  
1000  
160  
VS = 13.5 V  
VOUT = 10% VS  
See Figure 17  
Switch-OFF Delay  
Switch-ON Time  
tOFF(DELAY)  
10  
VS = 13.5 V  
VOUT = 90% VS  
See Figure 15  
tON  
50  
130  
1075  
210  
VS = 13.5 V  
V
OUT = 90% VS  
See Figure 15  
Switch-ON Time Capacitive tON_CLS  
350  
1800  
VS = 13.5 V  
Load Switching  
V
OUT = 90% VS  
See Figure 17  
Data Sheet  
28  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Power Stages  
Table 12 Electrical Characteristics: Power Stages (continued)  
Parameter  
Symbol  
Values  
Typ.  
100  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Switch-OFF Time  
tOFF  
30  
220  
μs  
VS = 13.5 V  
OUT = 10% VS  
P_7.4.5.4  
V
See Figure 15  
Switch-ON/OFF Matching  
tON - tOFF  
ΔtSW  
-85  
-10  
65  
μs  
VS = 13.5 V  
P_7.4.5.19  
P_7.4.5.6  
Voltage Slope  
Switch-ON Slew Rate  
(dV/dt)ON  
0.16  
0.27  
0.39  
V/μs VS = 13.5 V  
V
OUT = 30% to 70%  
of VS  
See Figure 15  
Switch-ON Slew Rate in CLS (dV/dt)ON_CLS 0.008 0.021 0.034 V/μs VS = 13.5 V  
P_7.4.5.11  
P_7.4.5.7  
V
OUT = 30% to 70%  
of VS  
See Figure 17  
Switch-OFF Slew Rate  
-(dV/dt)OFF  
0.16  
0.27  
0.39  
V/μs VS = 13.5 V  
VOUT = 70% to 30%  
of VS  
See Figure 15  
Slew Rate Matching  
(dV/dt)ON - (dV/dt)OFF  
Δ(dV/dt)SW  
-0.15  
2
0
+0.15 V/μs VS = 13.5 V  
P_7.4.5.8  
P_7.4.5.9  
Voltages  
1)  
Output Voltage Drop  
Limitation at Small Load  
Currents  
VDS(SLC)  
10  
20  
mV  
IOUT = IOUT(OL) = 20  
mA  
CLS Mode  
2)  
Input Frequency for CLS  
Mode Activation  
fVIN(CLS)  
22  
30  
38  
kHz  
P_7.4.5.14  
P_7.4.5.15  
DCVIN(CLS) = 50%  
See Figure 17  
1)  
Duty Cycle for CLS Mode  
Activation  
DCVIN(CLS)  
30%  
50%  
70%  
fVIN(CLS) = 30 kHz  
See Figure 17  
1)  
Maximum Time in CLS Mode tCLS  
100  
50k  
ms  
K
P_7.4.5.16  
P_7.4.5.17  
P_7.4.5.18  
See Figure 18  
1)  
Maximum Number of CLS  
Mode Activations  
nCLS(ACT)  
TJ_CLS(DYN)  
See Figure 18  
1)  
Thermal Shutdown  
Temperature in CLS Mode  
(Dynamic)  
20  
1) Not subject to production test - specified by design  
2) Functional test only  
Data Sheet  
29  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Power Stages  
7.5  
Electrical Characteristics - Power Output Stages  
VS = 6 V to 18 V, TJ = -40 °C to +150 °C  
Typical values: VS = 13.5 V, TJ = 25 °C  
Typical resistive load connected to the output for testing (unless otherwise specified):  
RL = 2.1 Ω  
7.5.1  
Power Output Stage - 1.2 mΩ  
Table 13 Electrical Characteristics: Power Stages - 1.2 mΩ  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Output characteristics  
1)  
ON-State Resistance at  
TJ = 25 °C  
RDS(ON)_25  
1.4  
mΩ  
mΩ  
mΩ  
mΩ  
P_7.5.23.1  
P_7.5.23.2  
P_7.5.23.3  
P_7.5.23.4  
TJ = 25 °C  
TJ = 150 °C  
ON-State Resistance at  
TJ = 150 °C  
RDS(ON)_150  
RDS(ON)_CRAN  
2.47  
2.9  
ON-State Resistance in  
Cranking  
TJ = 150 °C  
VS = 3.1 V  
1)  
K
ON-State Resistance in  
RDS(INV)_25  
1.5  
Inverse Current at TJ = 25 °C  
TJ = 25 °C  
VS = 13.5 V  
IL = -4 A  
DEN = “low”  
see Figure 20  
ON-State Resistance in  
Inverse Current at TJ = 150 °C  
RDS(INV)_150  
2.9  
mΩ  
mΩ  
TJ = 150 °C  
VS = 13.5 V  
IL = -4 A  
DEN = “low”  
see Figure 20  
1)  
P_7.5.23.5  
P_7.5.23.6  
ON-State Resistance in  
RDS(REV)_25  
2.9  
Reverse Polarity at TJ = 25 °C  
TJ = 25 °C  
VS = -13.5 V  
IL = -4 A  
see Figure 31  
ON-State Resistance in  
Reverse Polarity at  
TJ = 150 °C  
RDS(REV)_150  
4.6  
mΩ  
TJ = 150 °C  
VS = -13.5 V  
IL = -4 A  
1)  
P_7.5.23.7  
P_7.5.23.8  
Nominal Load Current  
IL(NOM)  
31.3  
A
TA = 85 °C  
TJ 150 °C  
Data Sheet  
30  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Power Stages  
Table 13 Electrical Characteristics: Power Stages - 1.2 mΩ (continued)  
Parameter  
Symbol  
Values  
Typ.  
0.2  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Output Leakage Current at IL(OFF)_85  
TJ 85 °C  
2.2  
μA  
P_7.5.23.9  
VOUT = 0 V  
VIN = “low”  
TA 85 °C  
Output Leakage Current at IL(OFF)_150  
TJ = 150 °C  
65  
μA  
VOUT = 0 V  
P_7.5.23.10  
P_7.5.23.11  
V
IN = “low”  
TA = 150 °C  
1)  
Inverse Current Capability  
IL(INV)  
-31.3  
A
VS < VOUT  
IN = “high”  
see Figure 20  
Voltage Slope  
1)  
Passive Slew Rate (e.g. for  
Half Bridge Configuration)  
| dVOUT / dt | –  
10  
V/μs  
P_7.5.23.12  
P_7.5.23.13  
VS = 13.5 V  
see Figure 22  
Voltages  
Drain Source Diode Voltage | VDS(DIODE)  
|
550  
700  
mV  
IL = -190 mA  
TJ = 150 °C  
Switching Energy  
1)  
Switch-ON Energy  
EON  
1.5  
mJ  
mJ  
P_7.5.23.14  
P_7.5.23.15  
VS = 18 V  
see Figure 15  
1)  
Switch-OFF Energy  
EOFF  
1.65  
VS = 18 V  
see Figure 15  
1) Not subject to production test - specified by design.  
Data Sheet  
31  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Protection  
8
Protection  
The BTS70012-1ESP is protected against Overtemperature, Overload, Reverse Battery (with ReverseON) and  
Overvoltage. Overtemperature and Overload protections are working when the device is in ON or ON_Diag  
mode but not during InverseON and ReverseON function. Overvoltage protection works in all operation  
modes. Reverse Battery protection works when the GND and VS pins are reverse supplied.  
8.1  
Overtemperature Protection  
The device incorporates both an absolute (TJ(ABS)) and a dynamic (TJ(DYN)) temperature protection circuitry for  
the channel. An increase of junction temperature TJ above either one of the two thresholds (TJ(ABS) or TJ(DYN)  
)
switches OFF the overheated channel to prevent destruction. The channel remains switched OFF until  
junction temperature has reached the “Reactivation” condition described in Table 14. The behavior is shown  
in Figure 23 (absolute Overtemperature Protection) and Figure 24 (dynamic Overtemperature Protection).  
TJ(REF) is the reference temperature used for dynamic temperature protection.  
IN  
t
t
DEN  
IL  
IL(OVL0)  
IL(NOM)  
t
TJ  
TJ(ABS)  
t
t
IIS  
IIS( FAULT)  
I
IS = IL  
kILIS  
Internal  
latch  
0
1
t
Over_Temperature_Behavior.emf  
Figure 23 Overtemperature Protection (Absolute)  
Data Sheet  
32  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Protection  
IN  
t
t
DEN  
IL  
IL( OVL)  
t
TJ  
TJ( ABS)  
T
J
(REF)  
t
I
IS  
IL  
k
/
ILIS  
I
IS( FAULT)  
t
t
Internal  
Latch  
0
1
Figure 24 Overtemperature Protection (Dynamic)  
When the Overtemperature protection circuitry allows the channel to be switched ON again, the Intelligent  
Latch strategy described in Chapter 8.3 is followed.  
Data Sheet  
33  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Protection  
8.2  
Overload Protection  
The BTS70012-1ESP is protected in case of Overload or short circuit to ground. Two Overload thresholds are  
defined (see Figure 25) and selected automatically depending on the voltage VDS across the power DMOS:  
I
L(OVL0) when VDS < 13 V  
IL(OVL1) when VDS > 22 V  
Figure 25 Overload Current Thresholds  
In order to allow a higher load inrush at low ambient temperature, Overload threshold is maximum at low  
temperature and decreases when TJ increases (see Figure 26). IL(OVL0) typical value remains approximately  
constant up to a junction temperature of +75 °C.  
Data Sheet  
34  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Protection  
IL(OVL0) variation over TJ  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
Typ  
Reference value  
"1" = IL(OVL0) typ @ -40 °C  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
-40°C  
-20°C  
0°C  
20°C  
40°C  
60°C  
80°C  
100°C  
120°C  
140°C  
160°C  
Junction Temperature (°C)  
Figure 26 Overload Current Thresholds variation with TJ  
Power supply voltage VS can increase above 18 V for short time, for instance in Load Dump or in Jump Start  
condition. Whenever VS VS(JS), the overload detection current is set to IL(OVL_JS) as shown in Figure 27.  
IL(OVL)  
IL(OVL0)  
IL(OVL_JS)  
VS  
VS(JS),min VS(JS),max  
Protection_JS.emf  
Figure 27 Overload Detection Current variation with VS voltage  
When IL IL(OVL) (either IL(OVL0), IL(OVL1) or IL(OVL_JS)) the channel is switched OFF. The channel is allowed to be  
reactivated according to the intelligent latch strategy described in Chapter 8.3.  
Data Sheet  
35  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Protection  
8.3  
Protection and Diagnosis in case of Fault  
Any event that triggers a protection mechanism (either Overtemperature or Overload) has 2 consequences:  
The channel switches OFF and the internal latch is set to “1”  
If the diagnosis is active for the channel, a current IIS(FAULT) is provided by IS pin (see Chapter 9.2.2 for  
further details)  
The channel can be switched ON again if all the protection mechanisms fulfill the ”reactivation” conditions  
described in Table 14. Furthermore, the device has the intelligent latch to protect itself against unwanted  
repetitive reactivation in fault condition.  
Table 14 Protection “Reactivation” Condition  
Fault condition  
Switch OFF event  
“Reactivation” condition  
Overtemperature  
TJ TJ(ABS) or (TJ - TJ(REF)) TJ(DYN)  
TJ < TJ(ABS) and (TJ - TJ(REF)) < TJ(DYN)  
(including hysteresis)  
Overload  
IL IL(OVL)  
IL < 50 mA, TJ within TJ(ABS) and  
TJ(DYN) ranges (including  
hysteresis)  
8.3.1  
Intelligent Latch Strategy  
At normal condition, when IN is set to “high”, the channel is switched ON. In case of fault condition the output  
stage latches OFF. There are two ways to de-latch the switch.  
With IN pin:  
It is necessary to set the input pin to “low” for a time longer than tDELAY(LR) (“latch reset delay” time) to de-latch  
the channel. The channel can be allowed to restart only if the “latch” conditions for the protection  
mechanisms are fulfilled (see Table 14 ).  
During the “latch reset delay” time, if the input is set to “high” the channel remains switched OFF and the timer  
tDELAY(LR) is reset. The timer tDELAY(LR) restarts as soon as the input pin is set to “low” again.  
The intelligent latch strategy is shown in Figure 30 (flowchart) and Figure 28 (timing diagram).  
With DEN pin:  
It is possible to “force” a reset of the internal latch without waiting for tDELAY(LR) by applying a pulse (rising edge  
followed by a falling edge) to the DEN pin while IN pin is “low”. The pulse applied to DEN pin must have a  
duration longer than tDEN(LR) to ensure a reset of the internal latch.  
The timing is shown in Figure 29.  
Data Sheet  
36  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Protection  
tDELAY(LR)  
IN  
t
Short circuit  
to ground  
t
IL  
t
Internal  
latch  
0
1
0
1
t
DEN  
t
tsIS(DIAG )  
tON  
IIS (FAULT)  
IIS (FAULT)  
IIS  
t
Protection_Latch_Timing.emf  
Figure 28 Intelligent Latch Timing Diagram  
IN  
t
t
Short circuit  
to ground  
IL  
t
Internal  
0
1
0
1
latch  
t
t > tDEN(LR)  
t < tDEN(LR)  
DEN  
t
tsIS(DIAG)  
IIS (FAULT)  
tsIS(DIAG )  
IIS (FAULT )  
tsIS(DIAG)  
IIS (FAULT)  
IIS  
t
Protection_Latch_DENforce.emf  
Figure 29 Intelligent Latch Timing Diagram with Forced Reset  
Data Sheet  
37  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Protection  
START  
no  
IN is "high"  
yes  
yes  
Latch = 1  
no  
Reactivation  
condition fulfilled  
(TJ and / or ΔT / and / or  
Overload)  
no  
yes  
Latch = 0  
Yes  
Switch channel ON  
Fault  
DEN pulse > tDEN(LR)  
(Overtemperature  
or Overload)  
no  
no  
yes  
Switch channel OFF  
Wait until  
DEN pulse > tDEN(LR)  
Latch = 1  
Wait until IN is "low"  
then start counting for  
tDELAY(LR)  
Set DEN to „high“  
no  
IN is "low"  
yes  
yes  
De-latching with  
DEN  
no  
Continue latching for  
tDELAY(LR)  
tDELAY(LR) elapsed  
no  
yes  
Latch = 0  
Protection_PROFET_Flow_PDH.emf  
Figure 30 Intelligent Latch Flowchart  
Data Sheet  
38  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Protection  
8.4  
Additional protections  
8.4.1  
Reverse Polarity Protection  
In Reverse Polarity condition (also known as Reverse Battery), the output stage is switched ON (see parameter  
RDS(REV)) because of ReverseON feature which limits the power dissipation in the output stage. Each ESD diode  
of the logic contributes to total power dissipation. The reverse current through the output stage must be  
limited by the connected load. The current through Digital Input pins has to be limited as well by an external  
resistor (please refer to the Absolute Maximum Ratings listed in Chapter 4.1 and to Application Information in  
Chapter 10).  
Figure 31 shows a typical application including a device with ReverseON. A current flowing into GND pin (-IGND  
)
during Reverse Polarity condition is necessary to activate ReverseON, therefore a resistive path between  
module ground and device GND pin must be present.  
-VBA T(REV)  
High-side  
Channel  
VS  
IDI  
Microcontroller  
DO  
DI  
RDI  
ReverseON  
OUT  
-IL  
GND  
IS  
GND  
L, C, R  
-IIS  
-IGND  
Protection_RevBatt_HEAT.emf  
Figure 31 Reverse Battery Protection (application example)  
8.4.2  
Overvoltage Protection  
In the case of supply voltages between VS(EXT,UP) and VBAT(LD), the output transistor is still operational and  
follows the input pin. In addition to the output clamp for inductive loads as described in Chapter 7.2.2, there  
is a clamp mechanism available for Overvoltage protection for the logic circuit and the output channel,  
monitoring the voltage between VS and GND pins (VS(CLAMP)).  
Data Sheet  
39  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Protection  
8.5  
Protection against loss of connection  
8.5.1  
Loss of Battery and Loss of Load  
The loss of connection to battery or to the load has no influence on device robustness when load and wire  
harness are purely resistive. In case of driving an inductive load, the energy stored in the inductance must be  
handled. PROFET™ +2 12V devices can handle the inductivity of the wire harness up to 10 µH with IL(NOM). In  
case of applications where currents and/or the aforementioned inductivity are exceeded, an external  
suppressor diode (like diode DZ2 shown in Chapter 10) is recommended to handle the energy and to provide  
a well-defined path to the load current.  
8.5.2  
Loss of Ground  
In case of loss of device ground, it is recommended to have a resistor connected between any Digital Input pin  
and the microcontroller to ensure a channel switch OFF (as described in Chapter 10).  
Note:  
In case any Digital Input pin is pulled to ground (either by a resistor or active) a parasitic ground  
path is available, which could keep the device operational during loss of device ground.  
Data Sheet  
40  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Protection  
8.6  
Electrical Characteristics Protection  
VS = 6 V to 18 V, TJ = -40 °C to +150 °C  
Typical values: VS = 13.5 V, TJ = 25 °C  
Typical resistive load connected to the output for testing (unless otherwise specified):  
RL = 2.1 Ω  
Table 15 Electrical Characteristics: Protection - General  
Parameter  
Symbol  
Values  
Typ.  
175  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)2)  
Thermal Shutdown  
Temperature (Absolute)  
TJ(ABS)  
150  
200  
°C  
P_8.6.0.1  
P_8.6.0.2  
P_8.6.0.3  
P_8.6.0.6  
See Figure 23  
3)  
Thermal Shutdown  
Hysteresis (Absolute)  
THYS(ABS)  
TJ(DYN)  
30  
K
See Figure 23  
3)  
Thermal Shutdown  
Temperature (Dynamic)  
80  
K
See Figure 24  
Power Supply Clamping  
Voltage at TJ = -40 °C  
VS(CLAMP)_-40 33  
36.5  
42  
V
IVS = 5 mA  
TJ = -40 °C  
See Figure 16  
2)  
Power Supply Clamping  
Voltage at TJ 25 °C  
VS(CLAMP)_25 35  
38  
44  
V
V
P_8.6.0.7  
P_8.6.0.8  
IVS = 5 mA  
TJ 25 °C  
See Figure 16  
3)  
Power Supply Voltage  
Threshold for Overcurrent  
Threshold Reduction in case  
of Short Circuit  
VS(JS)  
20.5  
22.5  
24.5  
Setup acc. to AEC-  
Q100-012  
R
supply = 10 mΩ  
supply = 5 µH  
short = 25 mΩ  
Lshort = 5 µH  
L
R
1) Functional test only.  
2) Tested at TJ = 150°C only.  
3) Not subject to production test - specified by design.  
8.6.1  
Electrical Characteristics Protection  
Table 16 Electrical Characteristics: Protection  
Parameter Symbol  
Values  
Typ.  
70  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Latch Reset Delay Time after tDELAY(LR)  
40  
100  
ms  
P_8.6.4.1  
P_8.6.4.2  
Fault Condition  
See Figure 28  
2)  
Minimum DEN Pulse  
Duration for Latch Reset  
1) Functional test only.  
tDEN(LR)  
50  
100  
150  
µs  
See Figure 29  
2) Not subject to production test - specified by design.  
Data Sheet  
41  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Protection  
8.7  
Electrical Characteristics Protection - Power Output Stages  
VS = 6 V to 18 V, TJ = -40 °C to +150 °C  
Typical values: VS = 13.5 V, TJ = 25 °C  
Typical resistive load connected to the output for testing (unless otherwise specified):  
RL = 2.1 Ω  
8.7.1  
Protection Power Output Stage - 1.2 mΩ  
Table 17 Electrical Characteristics: Protection - 1.2 mΩ  
Parameter  
Symbol  
Values  
Typ.  
217  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Overload Detection Current IL(OVL0)_-40  
at TJ = -40 °C  
187  
248  
A
A
A
P_8.7.24.1  
TJ = -40 °C  
dI/dt = 0.4 A/µs  
see Figure 25 and  
Figure 26  
2)  
Overload Detection Current IL(OVL0)_25  
at TJ = 25 °C  
180  
146  
209  
170  
238  
193  
P_8.7.24.7  
P_8.7.24.8  
TJ = 25 °C  
dI/dt = 0.4 A/µs  
see Figure 25 and  
Figure 26  
2)  
Overload Detection Current IL(OVL0)_150  
at TJ = 150 °C  
TJ = 150 °C  
dI/dt = 0.4 A/µs  
see Figure 25 and  
Figure 26  
2)  
Overload Detection Current IL(OVL1)  
at High VDS  
130  
130  
A
A
P_8.7.24.5  
P_8.7.24.6  
dI/dt = 0.4 A/µs  
see Figure 25  
2)  
Overload Detection Current IL(OVL_JS)  
Jump Start Condition  
VS > VS(JS)  
dI/dt = 0.4 A/µs  
see Figure 27  
1) Functional test only.  
2) Not subject to production test - specified by design.  
Data Sheet  
42  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Diagnosis  
9
Diagnosis  
For diagnosis purpose, the BTS70012-1ESP provides a sense current signal (IIS) at pin IS. In case of disabled  
diagnostic (DEN pin set to “low”), IS pin becomes high impedance.  
A sense resistor RSENSE must be connected between IS pin and module ground if the current sense diagnosis is  
used. RSENSE value has to be higher than 820 Ω (or 400 Ω when a central Reverse Battery protection is present  
on the battery feed) to limit the power losses in the sense circuitry. A typical value is RSENSE = 1.2 kΩ.  
Due to the internal connection between IS pin and VS supply voltage, it is not recommended to connect the IS  
pin to the sense current output of other devices, if they are supplied by a different battery feed.  
See Figure 32 for details as an overview.  
VS  
Output  
Channel  
T
Overtemperature  
IS Pin Control  
Logic  
Latch  
OUT  
IN  
IL / kILIS  
DEN  
+
IIS(FAULT)  
VDS(OLOFF)  
IIS(OLOFF)  
MUX  
IS  
Diagnosis_HEAT_1CH.emf  
Figure 32 Diagnosis Block Diagram  
Data Sheet  
43  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Diagnosis  
9.1  
Overview  
Table 18 gives a quick reference to the state of the IS pin during BTS70012-1ESP operation.  
Table 18 SENSE Signal, Function of Application Condition  
Application Condition  
Input level DEN level VOUT  
Diagnostic Output  
Normal operation  
“low”  
“high”  
~ GND  
Z
IIS(FAULT) if latch 0  
Short circuit to GND  
~ GND  
Z
IIS(FAULT) if latch 0  
Overtemperature  
Z
IIS(FAULT)  
Short circuit to VS  
VS  
IIS(OLOFF)  
(IIS(FAULT) if latch 0)  
Open Load  
< VS - VDS(OLOFF)  
> VS - VDS(OLOFF)  
Z
1)  
IIS(OLOFF)  
(in both cases IIS(FAULT) if  
latch 0)  
Inverse current  
VOUT > VS  
IIS(OLOFF)  
(IIS(FAULT) if latch 0)  
Normal operation  
Overcurrent  
“high”  
~ VS  
< VS  
~ GND  
Z
IIS = IL / kILIS  
IIS(FAULT)  
Short circuit to GND  
Overtemperature  
Short circuit to VS  
Open Load  
IIS(FAULT)  
IIS(FAULT)  
VS  
IIS < IL / kILIS  
IIS = IIS(EN)  
2)  
~ VS  
3)  
Under load (e.g. Output Voltage  
Limitation condition)  
~ VS  
IIS(EN) < IIS < IL(NOM) / kILIS  
Inverse current  
CLS mode  
VOUT > VS  
< VS - VDS(OLOFF)  
n.a.  
IIS = IIS(EN)  
“pwm”  
n.a.  
“high”  
“low”  
Z
Z
All conditions  
1) With additional pull-up resistor.  
2) The output current has to be smaller than IL(OL)  
3) The output current has to be higher than IL(OL)  
.
.
9.2  
Diagnosis in ON state  
A current proportional to the load current (ratio kILIS = IL / IIS) is provided at pin IS when the following conditions  
are fulfilled:  
The power output stage is switched ON with VDS < VDS(OLOFF)  
The diagnosis is enabled  
No fault (as described in Chapter 8.3) is present or was present and not cleared yet (see Chapter 9.2.2 for  
further details)  
If a “hard” failure mode is present or was present and not cleared yet a current IIS(FAULT) is provided at IS pin.  
Data Sheet  
44  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Diagnosis  
9.2.1  
Current Sense (kILIS)  
The accuracy of the sense current depends on temperature and load current. IIS increases linearly with IL  
output current until it reaches the saturation current IIS(SAT). In case of Open Load at the output stage (IL close  
to 0 A), the maximum sense current IIS(EN) (no load, diagnosis enabled) is specified. This condition is shown in  
Figure 34. The blue line represents the ideal kILIS line, while the red lines show the behavior of a typical  
product.  
An external RC filter between IS pin and microcontroller ADC input pin is recommended to reduce signal ripple  
and oscillations (a minimum time constant of 1 µs for the RC filter is recommended).  
The kILIS factor is specified with limits that take into account effects due to temperature, supply voltage and  
manufacturing process. Tighter limits are possible (within a defined current window) with calibration:  
A well-defined and precise current (IL(CAL)) is applied at the output during End of Line test at customer side  
The corresponding current at IS pin is measured and the kILIS is calculated (kILIS @ IL(CAL)  
)
Within the current range going from IL(CAL)_L to IL(CAL)_H the kILIS is equal to kILIS @ IL(CAL) with limits defined by  
ΔkILIS  
The derating of kILIS after calibration is calculated using the formulas in Figure 33 and it is specified by ΔkILIS  
Diagnosis_dKILIS.emf  
Figure 33 ΔkILIS calculation formulas  
The calibration is intended to be performed at TA(CAL) = 25°C. The parameter ΔkILIS includes the drift  
overtemperature as well as the drift over the current range from IL(CAL)_L to IL(CAL)_H  
.
IIS  
IIS(OL)  
IIS(EN)  
IL  
IL(OL)  
Diagnosis_ OLON _adv .emf  
Figure 34 Current Sense Ratio in Open Load at ON condition  
Data Sheet  
45  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Diagnosis  
9.2.2  
Fault Current (IIS(FAULT))  
As soon as a protection event occurs, the value of the internal latch (see Chapter 8.3 for more details) is  
changed from 0 to 1, and a current IIS(FAULT) is provided by pin IS when DEN is set to “high”.  
If internal latch is 1, and it is not reset, the current IIS(FAULT) is provided each time the device diagnosis is  
activated by DEN=High.  
Figure 35 shows the relation between IIS = IL / kILIS, IIS(SAT) and IIS(FAULT)  
.
IIS  
IIS (SA T).max  
IIS (SA T)  
IIS (FA ULT).max  
IIS (FA ULT )  
IIS (SA T).min  
IIS (FA ULT).min  
IL / kILI S  
IL(OVL).min  
IL  
IL(OVL).max  
Diagnosis_HEAT_IISFAULT_IISSAT.emf  
Figure 35 SENSE behavior - overview  
9.3  
Diagnosis in OFF state  
When a power output stage is in OFF state, the BTS70012-1ESP can measure the drain-source voltage and  
compare it with a threshold voltage. In this way, using some additional external components (a pull-down  
resistor and a switchable pull-up current source), it is possible to detect if the load is missing or if there is a  
short circuit to battery. If a Fault condition was detected by the device (if internal latch is 1, fault current is  
provided by IS pin independent of drain-source or output voltage, as long as DEN=High) a current IIS(FAULT) is  
provided by IS pin each time the channel diagnosis is checked also in OFF state. See Chapter 9.2.2 for further  
details.  
9.3.1  
Open Load current (IIS(OLOFF))  
In OFF state, when DEN pin is set to “high”, the VDS voltage is compared with a threshold voltage VDS(OLOFF). If  
the load is properly connected and there is no short circuit to battery, VDS ~ VS therefore VDS > VDS(OLOFF). When  
the diagnosis is active and VDS VDS(OLOFF), a current IIS(OLOFF) is provided by IS pin. Figure 36 shows the  
relationship between IIS(OLOFF) and IIS(FAULT) as functions of VDS. The two currents do not overlap making it always  
possible to differentiate between Open Load in OFF and Fault condition.  
Data Sheet  
46  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Diagnosis  
IIS  
IIS(FAULT)  
IIS(OLOFF)  
VDS(OLOFF)  
VDS  
Figure 36  
IIS in OFF State  
It is necessary to wait a time tIS(OLOFF)_D between the falling edge of the input pin and the sensing at pin IS for  
Open Load in OFF diagnosis to allow the internal comparator to settle. In Figure 37 the timings for an Open  
Load detection are shown - the load is always disconnected.  
IN  
t
DEN  
tIS(OLOFF)_D  
t
VOUT  
VDS(OLOFF)  
~ VS  
Load  
conn ect ed  
t
t
IIS  
IIS(OLOFF)  
IIS(OL)  
Diagnosis_PROFET_OLOFF_time.emf  
Figure 37 Open Load in OFF Timings - load disconnected  
Data Sheet  
47  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Diagnosis  
9.4  
SENSE Timings  
Figure 38 shows the timing during settling tsIS(ON) and disabling tsIS(OFF) of the SENSE (including the case of load  
change). As a proper signal cannot be established before the load current is stable (therefore before tON),  
tsIS(DIAG) 3 × ( tON_max + tsIS(ON)_max ).  
IN  
OFF  
OFF  
ON  
t
t
DEN  
IL  
t
t
tsIS(LC)  
tsIS(O FF)  
tsIS(ON)  
tsIS(O FF)  
tsIS(DI AG)  
IIS  
Diagnose_PROFET_SENSE_timings_Heat.emf  
Figure 38 SENSE Settling / Disabling Timing  
Data Sheet  
48  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Diagnosis  
9.5  
Electrical Characteristics Diagnosis  
VS = 6 V to 18 V, TJ = -40 °C to +150 °C  
Typical values: VS = 13.5 V, TJ = 25 °C  
Typical resistive load connected to the output for testing (unless otherwise specified):  
RL = 2.1 Ω  
Table 19 Electrical Characteristics: Diagnosis - General  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
SENSE Saturation Current  
IIS(SAT)  
4.4  
15  
mA  
P_9.6.0.1  
VSIS = VS - VIS 2 V  
See Figure 35  
SENSE Leakage Current  
when Disabled  
IIS(OFF)  
0.01  
0.2  
0.5  
1
µA  
µA  
DEN = “low”  
VIS = 0 V  
1)  
P_9.6.0.2  
P_9.6.0.3  
SENSE Leakage Current  
IIS(EN)_85  
when Enabled at TJ 85 °C  
TJ 85 °C  
DEN = “high”  
IL = 0 A  
See Figure 34  
SENSE Leakage Current  
when Enabled at TJ = 150 °C  
IIS(EN)_150  
0.2  
0.5  
0.5  
0.5  
1
1
1
1
µA  
V
TJ = 150 °C  
DEN = “high”  
IL = 0 A  
See Figure 34  
1)  
P_9.6.0.4  
P_9.6.0.6  
P_9.6.0.7  
P_9.6.0.8  
Saturation Voltage in kILIS  
Operation  
(VS - VIS)  
VSIS_k  
VS = 6 V  
IN = DEN = “high”  
IL 2 * IL(NOM)  
1)  
Saturation Voltage in Open VSIS_OL  
Load at OFF Diagnosis  
(VS - VIS)  
V
VS = 6 V  
IN = “low”  
DEN = “high”  
1)  
Saturation Voltage in Fault VSIS_F  
V
Diagnosis  
VS = 6 V  
(VS - VIS)  
IN = “low”  
DEN = “high”  
latch 0  
Power Supply to IS Pin  
Clamping Voltage at  
TJ = -40 °C  
VSIS(CLAMP)_- 33  
36.5  
38  
42  
44  
V
V
IIS = 1 mA  
TJ = -40 °C  
See Figure 16  
2)  
P_9.6.0.9  
40  
Power Supply to IS Pin  
Clamping Voltage at  
TJ 25 °C  
VSIS(CLAMP)_25 35  
P_9.6.0.10  
IIS = 1 mA  
TJ 25 °C  
See Figure 16  
1) Not subject to production test - specified by design.  
2) Tested at TJ = 150°C.  
Data Sheet  
49  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Diagnosis  
9.5.1  
Electrical Characteristics Diagnosis  
Table 20 Electrical Characteristics: Diagnosis  
Parameter  
Symbol  
Values  
Typ.  
5.5  
Unit Note or  
Test Condition  
Number  
Min.  
4.4  
Max.  
10  
SENSE Fault Current  
IIS(FAULT)  
IIS(OLOFF)  
mA  
mA  
P_9.6.4.1  
P_9.6.4.2  
SENSE Open Load in OFF  
Current  
1.8  
2.5  
3.5  
SENSE Open Load in OFF  
Delay Time  
tIS(OLOFF)_D 70  
185  
300  
µs  
VDS < VOL(OFF)  
P_9.6.4.4  
from IN falling  
edge to VIS = RSENSE  
* 0.9 * IIS(OLOFF),MIN  
DEN = “high”  
Open Load VDS Detection  
Threshold in OFF State  
VDS(OLOFF)  
tsIS(ON)  
1.3  
1.8  
5
2.3  
40  
V
P_9.6.4.5  
P_9.6.4.6  
SENSE Settling Time with  
Nominal Load Current  
Stable  
µs  
IL = IL(NOM)  
DEN from “low” to  
“high”  
1)  
SENSE Disable Time  
tsIS(OFF)  
5
20  
µs  
µs  
µs  
P_9.6.4.8  
P_9.6.4.9  
P_9.6.4.15  
From DEN falling  
edge to IIS = IIS(OFF)  
See Figure 38  
1)  
SENSE Settling Time after  
Load Change  
tsIS(LC)  
5
20  
from IL = IL22 to  
IL = IL23  
See Figure 38  
1)  
SENSE Settling Time after  
Load Change with Small  
Load Current  
tsIS(LC)_SLC  
500  
800  
DEN = “high”  
Load Change from  
IL22 to IL10  
1) Not subject to production test - specified by design.  
Data Sheet  
50  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Diagnosis  
9.6  
Electrical Characteristics Diagnosis - Power Output Stages  
VS = 6 V to 18 V, TJ = -40 °C to +150 °C  
Typical values: VS = 13.5 V, TJ = 25 °C  
Typical resistive load connected to the output for testing (unless otherwise specified):  
RL = 2.1 Ω  
9.6.1  
Diagnosis Power Output Stage - 1.2 mΩ  
Table 21 Electrical Characteristics: Diagnosis - 1.2 mΩ  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Open Load Output Current IL(OL)_8u  
at IIS = 8 µA  
82  
464  
mA  
IIS = IIS(OL) = 8 µA  
see Figure 34  
P_9.7.26.3  
Current Sense Ratio at  
IL = IL07  
kILIS07  
kILIS10  
kILIS13  
kILIS17  
kILIS20  
kILIS22  
kILIS23  
ΔkILIS(OL)  
-65% 34100 +65%  
-65% 34100 +65%  
-55% 34100 +55%  
-40% 34100 +40%  
-24% 34100 +24%  
IL07 = 200 mA  
IL10 = 700 mA  
IL13 = 2 A  
P_9.7.26.11  
P_9.7.26.14  
P_9.7.26.17  
P_9.7.26.21  
P_9.7.26.24  
P_9.7.26.26  
P_9.7.26.31  
P_9.7.26.27  
Current Sense Ratio at  
IL = IL10  
Current Sense Ratio at  
IL = IL13  
Current Sense Ratio at  
IL = IL17  
IL17 = 7 A  
Current Sense Ratio at  
IL = IL20  
IL20 = 20 A  
Current Sense Ratio at  
IL = IL22  
-8%  
-8%  
-30  
34100 +8%  
34100 +8%  
IL22 = 30 A  
1)  
Current Sense Ratio at  
IL = IL23  
IL23 = 35 A  
1)  
SENSE Current Derating  
with Low Current  
Calibration  
0
+30  
%
%
IL(CAL) = IL10  
IL(CAL)_H = IL13  
IL(CAL)_L = IL07  
TA(CAL) = 25 °C  
1)  
SENSE Current Derating  
with Nominal Current  
Calibration  
ΔkILIS(NOM) -5  
0
+5  
P_9.7.26.29  
IL(CAL) = IL22  
IL(CAL)_H = IL23  
IL(CAL)_L = IL20  
TA(CAL) = 25 °C  
1) Not subject to production test - specified by design.  
Data Sheet  
51  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Application Information  
10  
Application Information  
Note:  
10.1  
The following information is given as a hint for the implementation of the device only and shall not  
be regarded as a description or warranty of a certain functionality, condition or quality of the device.  
Application setup  
VBAT  
ZWIRE  
Optional  
Optional  
CVSGND  
CVS  
RGND  
T1  
Logic Supply  
VDD  
GND  
VS  
GPIO  
RIN  
IN  
OUT  
GPIO  
RDEN  
DEN  
COUT0  
PROFET™ +2  
12V  
Microcontroller  
DZ2  
CVS2  
ADC  
VSS  
RADC  
RIS_PROT  
IS  
CSENSE  
DZ1  
Logic GND  
Power GND  
Optional  
Chassis GND  
*See Chapter 1 „Potential Applications“  
App_1CH_INTD IO_CVG.emf  
Figure 39 BTS70012-1ESP Application Diagram  
Note:  
This is a very simplified example of an application circuit. The function must be verified in the real  
application.  
Data Sheet  
52  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Application Information  
10.2  
External Components  
Table 22 Suggested Component values  
Reference  
Value  
Purpose  
RIN  
4.7 kΩ  
Protection of the microcontroller during Overvoltage and Reverse Polarity  
Necessary to switch OFF BTS70012-1ESP output during Loss of Ground  
RDEN  
RPD  
4.7 kΩ  
47 kΩ  
Protection of the microcontroller during Overvoltage and Reverse Polarity  
Necessary to switch OFF BTS70012-1ESP output during Loss of Ground  
Output polarization (pull-down)  
Ensures polarization of BTS70012-1ESP outputs to distinguish between  
Open Load and Short to VS in OFF Diagnosis  
ROL  
1.5 kΩ  
Output polarization (pull-up)  
Ensures polarization of BTS70012-1ESP output during Open Load in OFF  
diagnosis  
COUT  
T1  
10 nF  
Protection of BTS70012-1ESP output during ESD events and BCI  
Switch the battery voltage for Open Load in OFF diagnosis  
Filtering of voltage spikes on the battery line  
BC 807  
100 nF  
47 nF  
CVS  
CVSGND  
Buffer capacitor for fast transient  
See Table 5 (P_4.3.0.7) for the boundary conditions  
A placeholder on PCB layout is recommended  
DZ2  
33 V TVS Diode Transient Voltage Suppressor diode  
Protection during Overvoltage and in case of Loss of Battery while driving  
an inductive load  
CVS2  
Filtering / buffer capacitor located at VBAT connector  
SENSE resistor  
RSENSE  
RIS_PROT  
1.2 kΩ  
4.7 kΩ  
Protection during Overvoltage, Reverse Polarity, Loss of Ground  
Value to be tuned according to microcontroller specifications  
DZ1  
7 V Z-Diode  
Protection of microcontroller during Overvoltage  
RADC  
4.7 kΩ  
Protection of microcontroller ADC input during Overvoltage, Reverse  
Polarity, Loss of Ground  
Value to be tuned according to microcontroller specifications  
CSENSE  
RGND  
220 pF  
Sense signal filtering  
A time constant (RADC + RIS_PROT) * CSENSE longer than 1 µs is recommended  
47 Ω  
Protection in case of Overvoltage and Loss of Battery while driving  
inductive loads  
10.3  
Further Application Information  
Please contact us for information regarding the Pin FMEA  
For further information you may contact http://www.infineon.com/  
Data Sheet  
53  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Package Outlines  
11  
Package Outlines  
Figure 40 PG-TSDSO-24 (Thin (Slim) Dual Small Outline 24 pins) Package drawing  
Data Sheet  
54  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Package Outlines  
Figure 41 PG-TSDSO-24 (Thin (Slim) Dual Small Outline 24 pins) Package pads and stencil  
Green product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
Further information on packages  
https://www.infineon.com/packages  
Data Sheet  
55  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Revision History  
12  
Revision History  
Table 23 BTS70012-1ESP - List of changes  
Revision  
Changes  
1.20, 2022-12-16 Icon “PRO-SIL™ ISO 26262-ready” added to front page  
Marking on front page updated (BTS70012-1ESP 70012-1ESP)  
Basic Features list updated  
Chapter 6.1.4, Chapter 6.1.5, Chapter 6.2, Chapter 7.3.1, Chapter 9.2.2 updated  
Figure 9, Figure 10, Figure 13, Figure 26 updated  
Table 1, Table 8, Table 14, Table 18 updated  
P_4.4.0.14 updated (Typ.: 24.2 23.0)  
P_6.4.0.7 removed  
P_7.4.5.12 updated (Typ.: 460 µs 550 µs; Max.: 900 µs 1000 µs)  
1.10, 2020-12-14 Typo fixed (PROFET™+2 PROFET™ +2)  
P_4.2.21.1 updated (Typ.: 525 –; Max.: – 525)  
P_4.2.21.2 updated (Typ.: 160 –; Max.: – 160)  
1.00, 2020-10-16 Data Sheet available  
Data Sheet  
56  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Table of Contents  
Table of Contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2
2.1  
2.2  
Block Diagram and Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3
3.1  
3.2  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
4
4.1  
4.2  
4.2.1  
4.3  
4.4  
4.4.1  
4.4.2  
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Absolute Maximum Ratings - General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Absolute Maximum Ratings - Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Power Stages - 1.2 mΩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
PCB Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5
Logic Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Input Pin (IN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Diagnosis Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Electrical Characteristics Logic Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.1  
5.2  
5.3  
6
6.1  
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
OFF mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
ON mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
OFF_Diag mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
ON_Diag mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Fault mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
CLS mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Undervoltage on VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Electrical Characteristics Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Electrical Characteristics Power Supply - Product Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
BTS70012-1ESP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
6.1.6  
6.2  
6.3  
6.4  
6.4.1  
7
7.1  
7.2  
Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Output ON-State Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Switching loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Switching Resistive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Switching Inductive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Switching Capacitive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Output Voltage Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Advanced Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Inverse Current behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Cross Current robustness with H-Bridge configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Electrical Characteristics Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Electrical Characteristics Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
7.3  
7.3.1  
7.3.2  
7.4  
7.4.1  
Data Sheet  
57  
Rev. 1.20  
2022-12-16  
BTS70012-1ESP  
PROFET™ +2 12V  
Table of Contents  
7.5  
Electrical Characteristics - Power Output Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
7.5.1  
Power Output Stage - 1.2 mΩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
8
8.1  
8.2  
8.3  
Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Overtemperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Protection and Diagnosis in case of Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Intelligent Latch Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Additional protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Protection against loss of connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Loss of Battery and Loss of Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Loss of Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Electrical Characteristics Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Electrical Characteristics Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Electrical Characteristics Protection - Power Output Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Protection Power Output Stage - 1.2 mΩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
8.3.1  
8.4  
8.4.1  
8.4.2  
8.5  
8.5.1  
8.5.2  
8.6  
8.6.1  
8.7  
8.7.1  
9
9.1  
9.2  
Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Diagnosis in ON state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Current Sense (kILIS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Fault Current (IIS(FAULT)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Diagnosis in OFF state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Open Load current (IIS(OLOFF)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
SENSE Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Electrical Characteristics Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Electrical Characteristics Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Electrical Characteristics Diagnosis - Power Output Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Diagnosis Power Output Stage - 1.2 mΩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
9.2.1  
9.2.2  
9.3  
9.3.1  
9.4  
9.5  
9.5.1  
9.6  
9.6.1  
10  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Application setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
External Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
10.1  
10.2  
10.3  
11  
12  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Data Sheet  
58  
Rev. 1.20  
2022-12-16  
Please read the Important Notice and Warnings at the end of this document  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2022-12-16  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
© 2022 Infineon Technologies AG.  
All Rights Reserved.  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
a written document signed by  
Document reference  
Z8F65710207  

相关型号:

BTS7002-1EPP

PROFET™+2 12V | Automotive Smart High-Side Switch
INFINEON

BTS70020-1ESP

Qualified for automotive applications. Product validation according to AEC-Q100 Grade 1.
INFINEON

BTS7004

PROFET™2 12V Smart High-Side Power Switch
INFINEON

BTS7004-1EPP

PROFET™2 12V Smart High-Side Power Switch
INFINEON

BTS7006-1EPP

PROFET™+2 12V | Automotive Smart High-Side Switch
INFINEON

BTS7006-1EPZ

PROFET™+2 12V | Automotive Smart High-Side Switch
INFINEON

BTS7008-1EPA

PROFET™+2 12V | Automotive Smart High-Side Switch
INFINEON

BTS7008-1EPP

PROFET™+2 12V | Automotive Smart High-Side Switch
INFINEON

BTS7008-1EPZ

The device is suitable for applications with extended or/and high temperature mission profiles.
INFINEON

BTS7008-2EPA

BTS7008-2EPA 是一款 8 mΩ 双通道的智能高边电源开关,提供保护和诊断功能。该设备被集成到 SMART7 技术中。
INFINEON

BTS70081EPPXUMA1

Buffer/Inverter Based Peripheral Driver,
INFINEON

BTS7010-1EPA

PROFET™+2 12V | Automotive Smart High-Side Switch
INFINEON