BTS3125EJ [INFINEON]

BTS3125EJ 是一款 125mΩ 智能单通道低边电源开关,采用 PG-TDSO8-31 封装,提供嵌入式保护功能。功率晶体管由 N 通道垂直功率 MOSFET 构成。该设备是单片集成的。BTS3125EJ 符合汽车标准,针对 12 V 汽车应用进行了优化。;
BTS3125EJ
型号: BTS3125EJ
厂家: Infineon    Infineon
描述:

BTS3125EJ 是一款 125mΩ 智能单通道低边电源开关,采用 PG-TDSO8-31 封装,提供嵌入式保护功能。功率晶体管由 N 通道垂直功率 MOSFET 构成。该设备是单片集成的。BTS3125EJ 符合汽车标准,针对 12 V 汽车应用进行了优化。

开关 电源开关 晶体管
文件: 总45页 (文件大小:1344K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
1
Overview  
Basic Features  
Single channel device  
Very low output leakage current in OFF state  
Electrostatic discharge protection (ESD)  
Embedded protection functions (see below)  
ELV compliant package  
Green Product (RoHS compliant)  
AEC Qualified  
Applications  
Suitable for resistive, inductive and capacitive loads  
Replaces electromechanical relays, fuses and discrete circuits  
Description  
The BTS3125EJ is a 125 msingle channel Smart Low-Side Power Switch with in a PG-TDSO8-31 package  
providing embedded protective functions. The power transistor is built by an N-channel vertical power  
MOSFET.  
The device is monolithically integrated. The BTS3125EJ is automotive qualified and is optimized for 12 V  
automotive applications.  
Type  
Package  
Marking  
BTS3125EJ  
PG-TDSO8-31  
S3125EJ  
Table 1  
Product Summary  
Operating voltage range  
Maximum load voltage  
Maximum input voltage  
VOUT  
0 .. 31 V  
40 V  
VBAT(LD)  
VIN  
5.5 V  
250 mΩ  
2 A  
Maximum On-State resistance at TJ = 150°C,VIN = 5 V  
Nominal load current  
RDS(ON)  
IL(NOM)  
IL(LIM)  
IL(OFF)  
Minimum current limitation  
7 A  
Maximum OFF state load current at TJ 85°C  
1 µA  
Datasheet  
www.infineon.com/hitfet  
1
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Overview  
Diagnostic Functions  
open-drain status output  
Protection Functions  
Over temperature shut-down with automatic-restart  
Active clamp over voltage protection  
Current limitation  
Detailed Description  
The device is able to switch all kind of resistive, inductive and capacitive loads, limited by maximum clamping  
energy and maximum current capabilities.  
The BTS3125EJ offers ESD protection on the IN pin which refers to the Source pin (Ground).  
The over temperature protection prevents the device from overheating due to overload and/or bad cooling  
conditions. The temperature information is given by a temperature sensor in the power MOSFET.  
The BTS3125EJ has an auto-restart thermal shut-down function. The device will turn on again, if input is still  
high, after the measured temperature has dropped below the thermal hysteresis.  
The over voltage protection can be activated during load dump or inductive turn off conditions. The power  
MOSFET is limiting the drain-source voltage, if it rises above the VOUT(CLAMP).  
Datasheet  
2
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Table of Contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2
3
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Assignment BTS3125EJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Voltage and current definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.1  
3.2  
3.3  
4
4.1  
4.2  
4.3  
4.3.1  
4.3.2  
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
PCB set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Transient Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5
5.1  
5.2  
5.3  
5.3.1  
5.3.1.1  
5.4  
5.5  
5.6  
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Output On-state Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Resistive Load Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Inductive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Output Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Reverse Current capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Inverse Current capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
6
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Over Voltage Clamping on OUTput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Thermal Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Short Circuit Protection / Current limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
6.1  
6.2  
6.3  
6.4  
7
7.1  
7.2  
Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Input Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
8
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
9
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Diagnostics (STATUS Pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
9.1  
9.2  
9.3  
9.4  
10  
Characterization Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
10.1  
10.2  
10.3  
10.4  
11  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Datasheet  
3
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
11.1  
12  
Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
13  
Datasheet  
4
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Block Diagram  
2
Block Diagram  
OUT  
Over  
Over-  
Voltage  
Protection  
temperature  
Protection  
Gate  
Driving  
Unit  
IN  
Short circuit  
detection /  
Current  
STATUS  
Status  
Feedback  
ESD  
Protection  
limitation  
GND  
Figure 1  
Block Diagram  
Datasheet  
5
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment BTS3125EJ  
1
2
8
7
1
2
8
7
3
4
6
5
3
4
6
5
Figure 2  
Pin Configuration  
3.2  
Pin Definitions and Functions  
Pin  
Symbol  
IN  
Function  
1
Input pin  
2
NC  
not connected  
3
STATUS  
NC  
Open-drain status feedback (low active)  
not connected  
4
5
NC  
not connected  
Ground, Source of power DMOS1)  
6, 7, 8  
GND  
cooling OUT  
tab  
Drain, Load connection for power DMOS  
1) All GND pins must be connected together.  
Datasheet  
6
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Pin Configuration  
3.3  
Voltage and current definition  
Figure 3 shows all external terms used in this datasheet, with associated convention for positive values.  
VBAT  
VBAT  
VDD  
IDD  
ZL  
RSTATUS  
IIN  
IN  
I L, ID  
OUT  
I STATUS  
STATUS  
VOUT,  
VDS  
VDD  
GND  
VIN  
VSTATUS  
GND  
T
4 i  
f
Figure 3  
Naming definition of electrical parameters  
Datasheet  
7
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Table 2  
Absolute Maximum Ratings 1)  
Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise  
specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Voltages  
Output voltage  
VOUT  
40  
31  
V
V
internally clamped  
P_4.1.1  
P_4.1.2  
Battery voltage for short  
circuit protection  
VBAT(SC)  
l = 0 or 5 m  
R
SC = 20 m+ RCable  
RCable = l * 16 m/m  
SC = 5 µH + LCable  
L
LCable = l * 1 µH/m  
VIN = 5 V  
2)  
Battery voltage for load  
dump protection  
VBAT(LD)  
40  
V
P_4.1.4  
RI = 2 Ω  
RL = 4.5 Ω  
tD = 400 ms  
suppressed pulse  
Input Pin  
Input Voltage  
VIN  
IIN  
-0.3  
5.5  
2
V
3)  
P_4.1.7  
Input current  
mA  
P_4.1.10  
in inverse condition on OUT  
to GND)  
VOUT < -0.3 V  
Status Pin  
Status Voltage  
Status current  
VSTATUS  
ISTATUS  
-0.3  
5.5  
5
V
P_4.1.11  
P_4.1.12  
P_4.1.13  
mA  
mA  
-0.3 V < VSTATUS < 5.5 V  
VSTATUS < -0.3 V  
Status current in inverse  
ISTATUS_L -1  
current condition on STATUS  
Power Stage  
Load current  
Energies  
| IL |  
IL(LIM)  
A
P_4.1.14  
P_4.1.21  
Unclamped single inductive EAS  
energy single pulse  
30  
mJ  
IL(0) = IL(NOM)  
VBAT = 13.5 V  
TJ(0) = 150°C  
Unclamped repetitive  
inductive energy pulse with  
10k  
EAR(10k)  
24  
mJ  
IL(0) = IL(NOM)  
VBAT = 13.5 V  
P_4.1.33  
TJ(0) = 105 °C  
Datasheet  
8
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
General Product Characteristics  
Table 2  
Absolute Maximum Ratings 1) (cont’d)  
Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise  
specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Unclamped repetitive  
inductive energy pulse with  
100k cycles  
EAR(100k)  
19  
mJ  
mJ  
IL(0) = IL(NOM)  
VBAT = 13.5 V  
P_4.1.39  
TJ(0) = 105 °C  
Unclamped repetitive  
inductive energy pulse with  
1M cycles  
EAR(1M)  
15  
IL(0) = IL(NOM)  
VBAT = 13.5 V  
TJ(0) = 105 °C  
P_4.1.45  
Temperatures  
Operating temperature  
Storage temperature  
ESD Susceptibility  
TJ  
-40  
-55  
+150 °C  
+150 °C  
P_4.1.52  
P_4.1.53  
TSTG  
ESD susceptibility (all pins) VESD  
-3  
3
kV  
kV  
HBM4)  
HBM5)  
P_4.1.54  
P_4.1.55  
ESD susceptibility OUT-pin to VESD  
-10  
10  
GND  
ESD susceptibility  
VESD  
VESD  
-1  
-1  
1
1
kV  
kV  
CDM6)  
CDM7)  
P_4.1.56  
P_4.1.57  
ESD susceptibility non-  
corner pins  
1) Not subject to production test, specified by design.  
2) VBAT(LD) is setup without the DUT connected to the generator per ISO 7637-1;  
RI is the internal resistance of the load dump test pulse generator;  
tD is the pulse duration time for load dump pulse (pulse 5) according ISO 7637-1, -2.  
3) Maximum allowed value. Consider also inverse input current in inverse condition IIN(-VOUT) in Chapter 9  
4) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 (1.5 k, 100 pF)  
5) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 (1.5 k, 100 pF)  
6) ESD susceptibility, Charged Device Model “CDM” ESDA STM5.3.1 or ANSI/ESD S.5.3.1  
7) ESD susceptibility, Charged Device Model “CDM” ESDA STM5.3.1 or ANSI/ESD S.5.3.1  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
Datasheet  
9
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
General Product Characteristics  
4.2  
Functional Range  
Table 3  
Functional Range 1)  
Please refer to “Electrical Characteristics” on Page 22 for test conditions  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Battery Voltage Range for  
Nominal Operation  
VBAT(NOR) 6.0  
13.5 18.0  
V
P_4.2.1  
Extended Battery Voltage Range VBAT(EXT)  
for Operation  
0
31  
V
parameter deviations P_4.2.2  
possible  
Input Voltage Range for Nominal VIN(NOR)  
Operation  
3.0  
5.5  
150  
V
P_4.2.3  
Junction Temperature  
TJ  
-40  
°C  
P_4.2.5  
1) Not subject to production test, specified by design  
Note:  
Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics  
table.  
Datasheet  
10  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
General Product Characteristics  
4.3  
Thermal Resistance  
Note:  
This thermal data was generated in accordance with JEDEC JESD51 standards.  
For more information, go to www.jedec.org.  
Table 4  
Thermal Resistance PG-TDSO8-31  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
1) 2)  
1) 3)  
1) 4)  
Junction to Soldering Point  
Junction to Ambient (2s2p)  
RthJSP  
5.7  
39  
50  
K/W  
K/W  
K/W  
P_4.3.6  
RthJA(2s2p)  
RthJA(1s0p)  
P_4.3.12  
P_4.3.18  
Junction to Ambient  
(1s0p+600 mm2 Cu)  
1) 5)  
Junction to Ambient  
RthJA(1s0p)  
60  
K/W  
P_4.3.24  
(1s0p+300 mm2 Cu)  
1) Not subject to production test, specified by design  
2) Specified RthJSP value is simulated at natural convection on a cold plate setup (all pins are fixed to ambient  
temperature).  
TA = 85°C. Device is loaded with 1 W power.  
3) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board;  
The product (Chip + Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70 µm  
Cu, 2 x 35 µm Cu). Where applicable a thermal via array under the ex posed pad contacted the first inner copper layer.  
TA = 85°C, Device is loaded with 1 W power.  
4) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 1s0p board;  
The product (Chip + Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with additional heatspreading copper  
area of 600 mm2 and 70 µm thickness. TA = 85°C, Device is loaded with 1 W power.  
5) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 1s0p board;  
The product (Chip + Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with additional heatspreading copper  
area of 300 mm2 and 70 µm thickness. TA = 85°C, Device is loaded with 1 W power.  
4.3.1  
PCB set up  
The following PCB set up was implemented to determine the transient thermal impedance1)  
70µm modelled (traces)  
35µm, 100% metalization*  
70µm, 5% metalization*  
Figure 4  
Cross section JEDEC2s2p  
1) (*) means percentual Cu metalization on each layer  
Datasheet  
11  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
General Product Characteristics  
70µm modelled (traces, cooling area)  
70µm; 5% metalization*  
Figure 5  
Cross section JEDEC1s0p  
Figure 6  
PCB layout  
4.3.2  
Transient Thermal Impedance  
Datasheet  
12  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
General Product Characteristics  
60  
JEDEC 2s2p  
40  
20  
0
0,000001  
0,0001  
0,01  
1
100  
10000  
Tp [s]  
Figure 7  
Typical transient thermal impedance ZthJA = f(tp), TA = 85°C  
Value is according to Jedec JESD51-2,-7 at natural convection on FR4 2s2p board; The  
product (Chip + Package) was simulated on a 76.2 x 114.3 x 1.5 mm³ board with 2 inner  
copper layers (2 x 70 µm Cu, 2 x 35 µm Cu). Device is dissipating 1 W power.  
160  
JEDEC 1s0p / footprint  
140  
JEDEC 1s0p / 300mm²  
120  
JEDEC 1s0p / 600mm²  
100  
80  
60  
40  
20  
0
0,000001  
0,0001  
0,01  
1
100  
10000  
Tp [s]  
Figure 8  
Typical transient thermal impedance ZthJA = f(tp), Ta = 85°C  
Value is according to Jedec JESD51-3 at natural convection on FR4 1s0p board. Device is  
dissipating 1 W power.  
Datasheet  
13  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Power Stage  
5
Power Stage  
5.1  
Output On-state Resistance  
The on-state resistance depends on the junction temperature TJ. The Figure below show this dependencies in  
terms of temperature and voltage for the typical on-state resistance RDS(ON). The behavior in reverse polarity is  
described in“Reverse Current capability” on Page 16  
320  
280  
240  
3V  
5V  
200  
160  
120  
80  
40  
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
TJ [°C]  
Figure 9  
Typical On-State Resistance,  
RDS(ON) = f(TJ), VIN = 3 V; VIN = 5 V  
5.2  
Resistive Load Output Timing  
Figure 10 shows the typical timing when switching a resistive load.  
VIN  
VIN(TH)  
t
VOUT  
VBAT  
90 %  
-(ΔV/Δt)ON  
(ΔV/Δt)OFF  
50 %  
10 %  
tDON  
tF  
tDOFF  
tR  
tOFF  
t
Switching.  
tON  
Figure 10 Definition of Power Output Timing for Resistive Load  
Datasheet  
14  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Power Stage  
5.3  
Inductive Load  
5.3.1  
Output Clamping  
When switching off inductive loads with low side switches, the Drain-Source voltage VOUT rises above battery  
potential, because the inductance intends to continue driving the current. To prevent unwanted high voltages  
the device has a voltage clamping mechanism to keep the voltage at VOUT(CLAMP). During this clamping  
operation mode the device heats up as it dissipates the energy from the inductance. Therefore the maximum  
allowed load inductance is limited. See Figure 11 and Figure 12 for more details.  
VBAT  
ZL  
IL  
OUT ( DMOS Drain  
VOUT  
GND ( DMOS Source)  
IGND  
Figure 11 Output Clamp Circuitry  
VIN  
t
IOUT  
t
VOUT  
VOUT(CLAMP)  
VBAT  
t
Figure 12 Switching an Inductive Load  
Datasheet  
15  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Power Stage  
5.3.1.1 Maximum Load Inductance  
While demagnetization of inductive loads, energy has to be dissipated in the BTS3125EJ.  
This energy can be calculated by the following equation:  
VBAT VOUT(CLAMP)  
RL × IL  
VBAT VOUT(CLAMP)  
L
E =VOUT(CLAMP)  
×
×ln 1−  
+ IL  
×
(5.1)  
(5.2)  
RL  
RL  
Following equation simplifies under assumption of RL = 0  
1
VBAT  
2
E = LIL × 1−  
2
VBAT VOUT(CLAMP)  
For maximum single avalanche energy please also refer to EAS value in “Energies” on Page 8  
10000  
1000  
100  
10  
1
0,5  
1
2
4
IL [A]  
Figure 13  
Maximum load inductance for single pulse  
L = f(IL), TJ(0) = TJ, start = 150°C, VBAT = 13.5 V  
5.4  
Reverse Current capability  
A reverse battery situation means the OUT pin is pulled below GND potentials to -VBAT via the load ZL.  
Datasheet  
16  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Power Stage  
In this situation the load is driven by a current through the intrinsic body diode of the BTS3125EJ. During  
Reverse Battery all protection functions like current limitation, over temperature shut down and over voltage  
clamping are not available.  
The device is dissipating a power loss which is defined by the driven current and the voltage drop on the DMOS  
reverse body diode “-VOUT”.  
5.5  
Inverse Current capability  
An inverse current situation means the OUT pin is pulled below GND potential by a current flowing from GND  
to OUT (for example in half-bridge configuration and inductive load using freewheeling via the low side path).  
In this situation the load is driven by a current through the intrinsic body diode (device off) of the BTS3125EJ.  
During Inverse operation all protection functions like current limitation, over temperature shut down and over  
voltage clamping are not available.  
The device is dissipating a power loss which is defined by the driven current and the voltage drop on the DMOS  
reverse body diode “-VOUT”.  
Input current behavior during inverse condition on Output  
Please note that during inverse current on drain an increased input current can flow ( IIN(-VOUT)). To limit this  
current it is needed to place a resistor (RIN) in line with the input, also to prevent the microcontroller I/O pins  
from latching up in this case. The value of this resistor is a compromise of input voltage level in normal  
operation and maximum allowed device input current IIN or I/O current (for example of microcontroller).  
VOHuC (max)  
RIN (min)  
=
(5.3)  
IIN (max)  
with IIN(max) = 2 mA (see also “Absolute Maximum Ratings” on Page 8) allow for the device;  
OHµC(max) maximum high level voltage of the control signal (microcontroller I/O)  
and assuming -VOUT = 1.1 V (worst case) in inverse condition on the output  
V
If inverse current occurs while the STATUS is active (LOW), the STATUS will be reset (HIGH) after the inverse  
current disappears.  
5.6  
Characteristics  
Please see “Power Stage” on Page 14 for electrical characteristic table.  
Datasheet  
17  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Protection Functions  
6
Protection Functions  
The device provides embedded protection functions. Integrated protection functions are designed to prevent  
IC destruction under fault conditions described in the datasheet. Fault conditions are considered as “outside”  
normal operation. Protection functions are not designed for continuous repetitive operation.  
6.1  
Over Voltage Clamping on OUTput  
The BTS3125EJ is equipped with a voltage clamp circuitry that keeps the drain-source (output to GND) voltage  
DS at a certain level VOUT(CLAMP). The over voltage clamping is overruling the other protection functions. Power  
V
dissipation has to be limited to not exceed the maximum allowed junction temperature.  
This function is also used in terms of inductive clamping. Please see also Chapter 5.3.1 for more details.  
6.2  
Thermal Protection  
The device is protected against over temperature due to overload and / or bad cooling conditions. To ensure  
this a temperature sensor is located in the power MOSFET.  
The BTS3125EJ has a thermal protection function with automatic restart. After the device has switched off due  
to over temperature the device will stay off until the junction temperature has dropped down below the  
thermal hysteresis “Thermal Protection” on Page 18.  
Thermal shutdown  
Thermal restart  
IN  
5V  
0V  
t
T
j
TJ(SD)  
ΔTJ(SD)_HYS  
t
VOUT  
VBAT  
t
Thermal _fault_restart.emf  
Figure 14 Thermal protective switch OFF scenario with thermal restart  
The device also features a digital feedback on the dedicated status pin. This feedback is latched and can be  
read out easily by the microcontroller. Please see “Diagnostics” on Page 21 for details on this feedback.  
6.3  
Short Circuit Protection / Current limitation  
The condition short circuit is an overload condition to the device. If the load current reaches the limitation  
value of IL(LIM) the device limits the current and therefore will start heating up. When the thermal shutdown  
temperature is reached, the device turns off.  
The time from the beginning of current limitation until the over temperature switch off depends strongly on  
the cooling conditions.  
Datasheet  
18  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Protection Functions  
If input is still high the device will turn on again after the measured temperature has dropped below the  
thermal hysteresis.  
Figure 15 shows this simplified behavior.  
Occurrence of Over current  
or high ohmic Short circuit  
Turn off due to over temperature  
Restart into short circuit after cooling down  
Restart into normal load condition  
IN  
5V  
0
t
ID  
Vbat/Zsc  
IL(lim )  
t
Tj  
TJ(SD)  
ΔTJ(SD)_HYS  
t
Short_circuit_restart.emf  
Figure 15 Short circuit protection via current limitation and over temperature switch off with auto-  
restart  
6.4  
Characteristics  
Please see “Protection Functions” on Page 18 for electrical characteristic table.  
Datasheet  
19  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Input Stage  
7
Input Stage  
7.1  
Input Circuit  
Figure 16 shows the input circuit of the BTS3125EJ. In case of open or floating input pin the device will  
automatically switch off and remain off. An ESD Zener structure protects the input circuit against ESD pulses.  
ESD protection circuit  
IN  
GND  
Input circuit.emf  
Figure 16 Simplified Input circuitry  
7.2  
Characteristics  
Please see “Input Stage” on Page 25 for electrical characteristic table.  
Datasheet  
20  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Diagnostics  
8
Diagnostics  
The BTS3125EJ provides a latching digital status signal via an open drain style feedback on the STATUS pin.  
In case of a detected over temperature condition, the device pulls the STATUS pin down to GND (pin) by an  
internal pull-down intend to signal a low level to the micro controller. This pull-down signal stays active also  
during thermal restart until the input pin is pulled-down below the input threshold.  
In normal operation the status needs to be externally pulled up to a 3 V/5 V supply to signal a high level.  
Figure 17 shows this simplified behavior.  
Thermal shutdown  
Auto restart  
Thermal shutdown  
IN  
TJ  
5V  
0
t
TJ(SD)  
ΔTJ( SD ) _H YS  
t
t
VSTATUS  
3V/5V (VDD  
)
0
Status Latch reset  
by IN=low  
Error Status Latch  
Figure 17 Short circuit protection via current limitation and over temperature switch off with auto-  
restart and signaling via STATUS pin  
Datasheet  
21  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Electrical Characteristics  
9
Electrical Characteristics  
9.1  
Power Stage  
Please see Chapter “Power Stage” on Page 14 for parameter description and further details.  
Table 5 Electrical Characteristics: Power Stage  
Tj = -40°C to +150°C, VBAT =6 V to 18 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Power Stage  
On-State resistance  
at hot temperature (150°C)  
RDS(ON)_150  
RDS(ON)_25  
IL(NOM)  
208 250 mTJ = 150°C;  
VIN = 5 V;  
P_9.1.6  
IL = IL(NOM)  
On-State resistance  
at ambient temperature (25°C)  
108  
2
mTJ = 25°C;  
VIN = 5 V;  
P_9.1.12  
P_9.1.42  
IL = IL(NOM)  
1)  
Nominal load current  
A
TJ < 150°C;  
TA = 85°C  
VIN = 5 V  
2)  
OFF state load current,  
Output leakage current  
IL(OFF)_85  
0.6 µA  
P_9.1.48  
VBAT = 13.5 V;  
VIN = 0 V;  
TJ 85°C  
OFF state load current,  
Output leakage current  
IL(OFF)_150  
0.5 1.1 µA VBAT = 18 V;  
IN = 0 V;  
P_9.1.54  
P_9.1.67  
V
TJ = 150°C  
Reverse body diode forward voltage -VOUT  
0.8 1.1  
V
IL = -IL(NOM)  
VIN = 0 V  
;
Datasheet  
22  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Electrical Characteristics  
Table 5  
Electrical Characteristics: Power Stage (cont’d)  
Tj = -40°C to +150°C, VBAT =6 V to 18 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Dynamic characteristics - switching timessingle pulseVBAT = 13.5 V, RL = 10;  
for definition details see Figure 10 “Definition of Power Output Timing for Resistive Load” on Page 14  
3)  
Turn-on time  
tON  
35  
75  
115 µs  
P_9.1.68  
VIN = 0 V to 5 V;  
VOUT = 10% VBAT  
4)  
Turn-off time  
tOFF  
70  
135 210 µs  
P_9.1.69  
VIN = 5 V to 0 V;  
VOUT = 90% VBAT  
Turn-on delay time  
Turn-off delay time  
tDON  
5
15  
75  
60  
25  
µs  
VIN = 0 V to 5 V;  
VOUT = 90% VBAT  
P_9.1.70  
P_9.1.71  
P_9.1.72  
tDOFF  
40  
30  
120 µs  
VIN = 5 V to 0 V;  
VOUT = 10% VBAT  
Fall time, Falling output voltage (turn- tF  
on)  
90  
90  
µs  
µs  
VIN = 0 V to 5 V;  
VOUT = 90% VBAT to  
V
OUT = 10% VBAT  
Rise time, Rising output voltage  
Turn-on Slew rate  
tR  
30  
60  
VIN = 5 V to 0 V;  
P_9.1.73  
P_9.1.74  
P_9.1.75  
V
V
OUT = 10% VBAT to  
OUT = 90% VBAT  
5)  
-(ΔV/Δt)ON 0.22 0.45 0.65 V/µs  
(ΔV/Δt)OFF 0.22 0.45 0.65 V/µs  
VOUT = 90% VBAT to  
VOUT = 50% VBAT  
6)  
Turn-off Slew rate  
VOUT = 50% VBAT to  
V
OUT = 90% VBAT  
1) Not subject to production test, calculated by RthJA (JEDEC 2s2p, PCB) and RDS(ON)  
2) Not subject to production test, specified by design;  
3) Not subject to production test, calculated with delay time ON and fall time  
4) Not subject to production test, calculated with delay time OFF and rise time  
5) Not subject to production test, calculated slew rate between 90% and 50% VOUT  
6) Not subject to production test, calculated slew rate between 50% and 90% VOUT  
Datasheet  
23  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Electrical Characteristics  
9.2  
Protection  
Please see Chapter “Protection Functions” on Page 18 for parameter description and further details.  
Note:  
Integrated protection functions are designed to prevent IC destruction under fault conditions  
described in the data sheet. Fault conditions are considered as “outside” normal operating range.  
Protection functions are not designed for continuous repetitive operation  
Table 6  
Electrical Characteristics: Protection  
Tj = -40°C to +150°C, VBAT =6 V to 18 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Thermal Protection  
1)  
Thermal shut down  
TJ(SD)  
150 175  
°C  
P_9.2.1  
junction temperature  
3 V < VIN < 5.5 V  
1)  
Thermal hysteresis  
ΔTJ_HYS  
15  
K
P_9.2.3  
P_9.2.8  
1) 2)  
Minimum status latch reset time  
tRESET  
50  
µs  
VIN < 0.8 V;  
Overvoltage Protection  
Drain clamp voltage  
VOUT(CLAMP) 40  
45  
V
A
VIN = 0 V;  
IL = 4 mA  
P_9.2.14  
P_9.2.20  
Current limitation (see also Figure 15)  
Current limitation  
IL(LIM)  
7
10.5 14  
VIN = 5 V  
1) Not subject to production test, specified by design.  
2) Minimum time needed to reset the STATUS latch feedback signal  
Datasheet  
24  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Electrical Characteristics  
9.3  
Input Stage  
Please see Chapter “Input Stage” on Page 20 for description and further details.  
Table 7 Electrical Characteristics: Input  
Tj = -40°C to +150°C, VBAT =6 V to 18 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Input  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Input Current,  
normal ON state  
IIN(ON)  
82  
120  
180  
µA  
µA  
mA  
VIN = 5.0 V;  
P_9.3.1  
P_9.3.8  
P_9.3.9  
Input Current,  
protection mode  
IIN(PROT)  
124  
15  
VIN = 5.0 V;  
1) 2)  
Input current, inverse condition on IIN(-VOUT)  
OUT to GND  
VOUT < -0.3 V;  
-0.3 V VIN <5.5 V  
3)  
Input pull down current  
IIN-GND  
VIN(TH)  
10  
3
µA  
V
P_9.3.10  
P_9.3.11  
VIN = VIN(TH)  
Input Voltage on-threshold  
0.8  
2.3  
IL =0.4mA;  
Power DMOS  
active  
1) Not subject to production test, specified by design  
2) Input current must not exceed the maximum ratings in Chapter 4, P_4.1.10  
3) Not subject to production test, specified by design  
9.4  
Diagnostics (STATUS Pin)  
Please see Chapter “Diagnostics” on Page 21 for description and further details.  
Table 8 Electrical Characteristics: Diagnostics  
Tj = -40°C to +150°C, VBAT =6 V to 18 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
Typ. Max.  
Status pin voltage drop  
VSTATUS(ON)  
0.65  
V
ISTATUS = 1 mA;  
latched fault;  
3 VVIN < 5.5 V  
1)  
P_9.4.1  
Status pin leakage current  
(85°C)  
ISTATUS(OFF)_85  
1.5  
6
µA  
P_9.4.2  
P_9.4.3  
VSTATUS 5.5 V; TJ  
85°C;  
3 VVIN < 5.5 V  
Status pin leakage current  
(150°C)  
ISTATUS(OFF)_150  
6
12  
µA  
VSTATUS 5.0 V;  
TJ = 150°C;  
3 VVIN < 5.5 V  
1) Not subject to production test, specified by design.  
Datasheet  
25  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Characterization Results  
10  
Characterization Results  
Typical performance characteristics.  
10.1  
Power Stage  
0.4  
0.35  
0.3  
0.25  
0.2  
150°C  
85°C  
25°C  
0.15  
0.1  
-40°C  
0.05  
0
3
3.5  
4
4.5  
5
5.5  
VIN [V]  
Figure 18 Typical RDS(ON) vs. VIN @ TJ = -40 … 150°C, IL = IL(NOM)  
Datasheet  
26  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Characterization Results  
0.3  
0.25  
0.2  
3V  
0.15  
0.1  
3.5V  
4V  
5V  
5.5V  
0.05  
0
-40  
-20  
0
25  
60  
85  
105  
125  
150  
TJ [°C]  
Figure 19 Typical RDS(ON) vs. TJ @ VIN = 3 … 5.5 V; IL = IL(NOM)  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-40  
0
85  
150  
TJ [°C]  
Figure 20 Typical Reverse Diode |VOUT| vs. TJ @ IL = -IL(NOM)  
Datasheet  
27  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Characterization Results  
2.5E-06  
2.0E-06  
1.5E-06  
1.0E-06  
5.0E-07  
0.0E+00  
150°C  
85°C  
-40°C  
25°C  
0
5
10  
15  
20  
25  
30  
VDS [V]  
Figure 21 Typical IL(OFF) vs. VDS @ TJ = -40 … 150°C, VIN = 0 V  
2.5E-06  
2.0E-06  
1.5E-06  
1.0E-06  
5.0E-07  
0.0E+00  
6V - -40°C  
6V - 25°C  
6V - 85°C  
6V - 150°C  
13.5V - -40°C  
13.5V - 25°C  
13.5V - 85°C  
13.5V - 150°C  
18V - -40°C  
18V - 25°C  
18V - 85°C  
18V - 150°C  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
VIN[V]  
Figure 22 Typical IL(OFF) vs. VIN @ TJ = -40 … 150°C, VBAT = 6 … 18 V  
Datasheet  
28  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Characterization Results  
3500  
3000  
2500  
2000  
1500  
1000  
500  
25°C  
150°C  
0
0.5  
1
2
4
IL [A]  
Figure 23 Typical destruction point. EAS vs. IL @ TJ(0) = 25°C and 150°C, VBAT = 13.5 V  
60  
50  
40  
10K cycles, 25°C  
100k cycles, 25°C  
10k cycles, 105°C  
100k cycles, 105°C  
30  
20  
10  
0
2
2,2  
2,4  
2,6  
2,8  
3
3,2  
3,4  
3,6  
3,8  
4
IL [A]  
Figure 24 Typical EAR vs. IL @ TJ(0)= 25°C and 105°C, VBAT = 13.5 V  
Datasheet  
29  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Characterization Results  
60  
50  
40  
30  
20  
10  
0
2A, 25°C  
4A, 25°C  
2A, 105°C  
4A, 105°C  
1,0E+0  
10,0E+0  
100,0E+0  
1,0E+3  
10,0E+3  
100,0E+3  
1,0E+6  
10,0E+6  
Nr. of Cycles  
Figure 25 Typical EAR vs. Nr of cycles @ TJ(0) = 25°C and 105°C, VBAT = 13.5 V  
Dynamic characteristics (switching times):  
250  
200  
150  
100  
50  
-40°C - Fall time  
25°C - Fall time  
150°C - Fall time  
-40°C - Rise time  
25°C - Rise time  
150°C - Rise time  
0
3
3.5  
4
4.5  
5
5.5  
VIN [V]  
Figure 26 Typical tF, tR vs VIN @ TJ = -40 … 150°C  
Datasheet  
30  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Characterization Results  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-40°C - Delay off time  
25°C - Delay off time  
150°C - Delay off time  
-40°C - Delay on time  
25°C - Delay on time  
150°C - Delay on time  
3
3.5  
4
4.5  
5
5.5  
VIN [V]  
Figure 27 Typical tDON, tDOFF vs VIN @ TJ = -40 … 150°C  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
150°C - Slew rate on  
25°C - Slew rate on  
-40°C - Slew rate on  
-40°C - Slew rate off  
25°C - Slew rate off  
150°C - Slew rate off  
3
3.5  
4
4.5  
5
5.5  
VIN [V]  
Figure 28 Typical -(ΔV/Δt)ON, (ΔV/Δt)OFF vs VIN @ TJ = -40 … 150°C  
Datasheet  
31  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Characterization Results  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-40°C - Rise time  
25°C - Fall time  
150°C - Fall time  
150°C - Rise time  
25°C - Rise time  
-40°C - Rise time  
6
11  
16  
21  
26  
31  
VBAT [V]  
Figure 29 Tyipcal tF, tR vs VBAT @ VIN = 5 V, TJ = -40 … 150°C  
120  
100  
80  
60  
40  
20  
0
-40°C - Delay off time  
25°C - Delay off time  
150°C - Delay off time  
-40°C - Delay on time  
25°C - Delay on time  
150°C - Delay on time  
6
11  
16  
21  
26  
31  
VBAT [V]  
Figure 30 Typical tDON, tDOFF vs VBAT @ VIN = 5 V, TJ = -40 … 150°C  
Datasheet  
32  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Characterization Results  
1.2  
1
150°C - Slew rate on  
25°C - Slew rate on  
-40°C - Slew rate on  
-40°C - Slew rate off  
25°C - Slew rate on  
150°C - Slew rate off  
0.8  
0.6  
0.4  
0.2  
0
6
11  
16  
21  
26  
31  
VBAT [V]  
Figure 31 Typical -(ΔV/Δt)ON, (ΔV/Δt)OFF vs VBAT @ VIN = 5 V, TJ = -40 … 150°C  
80  
70  
60  
50  
40  
30  
20  
10  
0
-40°C - Fall time  
25°C - Fall time  
150°C - Fall time  
150°C - Rise time  
25°C - Rise time  
-40°C - Rise time  
0
0.5  
1
1.5  
2
2.5  
3
IL [A]  
Figure 32 Typical tF, tR vs IL @ VIN = 5 V, TJ = -40 … 150°C  
Datasheet  
33  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Characterization Results  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-40°C - Delay off time  
25°C - Delay off time  
150°C - Delay off time  
-40°C - Delay on time  
25°C - Delay on time  
150°C - Delay on time  
0
0.5  
1
1.5  
2
2.5  
3
IL [A]  
Figure 33 Typical tDON, tDOFF vs IL @ VIN = 5 V, TJ = -40 … 150°C  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
150°C - Slew rate on  
25°C - Slew rate on  
-40°C - Slew rate on  
-40°C - Slew rate off  
25°C - Slew rate off  
150°C - Slew rate off  
0
0.5  
1
1.5  
IL [A]  
2
2.5  
3
Figure 34 Typical -(ΔV/Δt)ON, (ΔV/Δt)OFF vs IL @ VIN = 5 V, TJ = -40 … 150°C  
Datasheet  
34  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Characterization Results  
70  
60  
50  
40  
30  
20  
10  
Rise time  
Fall time  
0
-40  
25  
85  
150  
TJ [°C]  
Figure 35 Typical tF, tR vs TJ @ VIN = 5 V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Delay on time  
Delay off time  
-40  
25  
85  
150  
TJ [°C]  
Figure 36 Typical tDON, tDOFF vs TJ @ VIN = 5 V  
Datasheet  
35  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Characterization Results  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Average of Slew rate on  
Average of Slew rate off  
-40  
25  
85  
150  
TJ [°C]  
Figure 37 Typical -(ΔV/Δt)ON, (ΔV/Δt)OFF vs TJ @ VIN = 5 V  
Datasheet  
36  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Characterization Results  
10.2  
Protection  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
-40  
0
85  
150  
TJ [°C]  
Figure 38 Typical VOUT(CLAMP) vs. TJ @ IL = 4 mA  
12  
10  
8
5V - -40°C  
5V - 25°C  
5V - 85°C  
5V - 150°C  
3V - -40°C  
3V - 25°C  
3V - 85°C  
3V - 150°C  
6
4
2
0
6
11  
16  
21  
26  
31  
VBAT [V]  
Figure 39 Typical IL(LIM) vs. VBAT @ TJ = -40 … 150°C, VIN = 3 V and 5 V  
Datasheet  
37  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Characterization Results  
10.3  
Input Stage  
3
2.5  
2
1.5  
1
Vth_rising  
Vth_falling  
0.5  
0
-40  
25  
85  
150  
TJ [°C]  
Figure 40 Typical VIN(TH) vs. TJ @ IL = 0.4 mA  
1.6E-04  
1.4E-04  
1.2E-04  
1.0E-04  
8.0E-05  
6.0E-05  
4.0E-05  
2.0E-05  
0.0E+00  
150°C  
85°C  
25°C  
-40°C  
3.00  
3.50  
4.00  
4.50  
5.00  
5.50  
VIN [V]  
Figure 41 Typical IIN(ON) vs. VIN @ TJ = -40 … 150°C, IL = IL(NOM)  
Datasheet  
38  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Characterization Results  
160.0E-6  
140.0E-6  
120.0E-6  
100.0E-6  
80.0E-6  
150°C  
85°C  
25°C  
60.0E-6  
-40°C  
40.0E-6  
20.0E-6  
000.0E+0  
3
3.5  
4
4.5  
5
5.5  
VIN [V]  
Figure 42 Typical IIN(PROT) vs. VIN @ TJ = -40 … 150°C, IL = IL(NOM)  
Datasheet  
39  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Characterization Results  
10.4  
Diagnosis  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
150°C  
85°C  
25°C  
-40°C  
3
3.5  
4
4.5  
5
5.5  
VIN [V]  
Figure 43 Typical VSTATUS(ON) vs. VIN @ TJ = -40 … 150°C  
7.0E-06  
6.0E-06  
5.0E-06  
4.0E-06  
3.0E-06  
2.0E-06  
1.0E-06  
0.0E+00  
3V  
4V  
5V  
5.5V  
-40  
25  
85  
150  
TJ [°C]  
Figure 44 Typical ISTATUS(OFF) vs. TJ @ VSTATUS = 3 … 5.5 V, VIN = 0 V  
Datasheet  
40  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Characterization Results  
7
6
5
4
3
2
1
0V  
0.4V  
0.8V  
0
-40  
25  
85  
150  
TJ [°C]  
Figure 45 Typical tRESET vs TJ @ VIN = 0 … 0.8 V  
Datasheet  
41  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Application Information  
11  
Application Information  
Note:  
The following information is given as a hint for the implementation of the device only and shall not  
be regarded as a description or warranty of a certain functionality, condition or quality of the device.  
11.1  
Application Diagram  
An application example with the BTS3125EJ is shown below.  
VBAT  
Voltage  
Regulator  
IN  
Load  
OUT  
RST ATUS  
Micro  
VDD  
controller  
OUT  
RIN  
IN  
I/O  
PWM  
ST ATUS  
I
RST ATUS(PROT)  
GND  
GND  
Figure 46 Application example circuitry  
Recommended values for VIN= 5 V and VDD= 5 V:  
RSTATUS=4.7 kΩ  
RSTATUS(PROT)=3.3 kΩ  
RIN=3.3 kΩ  
Note:  
This is a very simplified example of an application circuit. The function must be verified in the real  
application.  
Datasheet  
42  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Package Outlines  
12  
Package Outlines  
Figure 47 PG-TDSO8-31  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further information on alternative packages, please visit our website:  
http://www.infineon.com/packages.  
Dimensions in mm  
Datasheet  
43  
Rev. 1.0  
2016-09-12  
HITFET - BTS3125EJ  
Smart Low-Side Power Switch  
Revision History  
13  
Revision History  
Version  
Date  
Changes  
Datasheet released  
Rev. 1.0  
2016-09-12  
Datasheet  
44  
Rev. 1.0  
2016-09-12  
Please read the Important Notice and Warnings at the end of this document  
Trademarks of Infineon Technologies AG  
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,  
DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,  
HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,  
OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,  
SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™.  
Trademarks updated November 2015  
Other Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2016-09-12  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2016 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  

相关型号:

BTS3125TF

BTS3125TF 是一款 125 mOhm 智能单通道低边电源开关,采用 PG-T0252-3 封装,提供嵌入式保护功能。功率晶体管由 N 通道垂直功率MOSFET 构成。
INFINEON

BTS3134D

Smart Lowside Power Switch
INFINEON

BTS3134DATMA1

Buffer/Inverter Based Peripheral Driver, 3.5A, MOS, PSSO2, GREEN, PLASTIC, TO-252, 3 PIN
INFINEON

BTS3134DNTMA1

Buffer/Inverter Based Peripheral Driver, 3.5A, MOS, PSSO2, GREEN, PLASTIC, TO-252, 3 PIN
INFINEON

BTS3134D_06

Smart Low Side Power Switch
INFINEON

BTS3134N

Smart Lowside Power Switch
INFINEON

BTS3134N_08

Smart Low Side Power Switch
INFINEON

BTS3142D

Smart Lowside Power Switch
INFINEON

BTS3142DATMA1

Buffer/Inverter Based Peripheral Driver, 45A, PSSO2, PLASTIC, TO-252, 3 PIN
INFINEON

BTS3142D_06

Smart Low Side Power Switch
INFINEON

BTS3160D

10mOhm Smart Low Side Power Switch
INFINEON

BTS3205G

Smart Low-Side Power Switch
INFINEON