BTM7752G [INFINEON]

High Current H-Bridge Trilith IC 3G; 大电流H桥Trilith IC 3G
BTM7752G
型号: BTM7752G
厂家: Infineon    Infineon
描述:

High Current H-Bridge Trilith IC 3G
大电流H桥Trilith IC 3G

文件: 总25页 (文件大小:1170K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet, Rev. 2.0, May 2010  
BTM7752G  
High Current H-Bridge  
Trilith IC 3G  
Automotive Power  
High Current H-Bridge  
BTM7752G  
Table of Contents  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1
2
3
4
4.1  
4.2  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
5
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
5.1  
5.2  
5.3  
6
6.1  
6.2  
Block Description and Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Supply Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Power Stages - Static Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Switching Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Power Stages - Dynamic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Overvoltage Lock Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Undervoltage Shut Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Overtemperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Current Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Short Circuit Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Electrical Characteristics - Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Control and Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Input Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Dead Time Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Status Flag Diagnosis with Current Sense Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Electrical Characteristics - Control and Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.2.1  
6.2.2  
6.2.3  
6.3  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
6.4  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.4.5  
7
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
7.1  
Application and Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
8
9
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Data Sheet  
2
Rev. 2.0, 2010-05-28  
High Current H-Bridge  
Trilith IC 3G  
BTM7752G  
1
Overview  
Features  
Integrated high current H-Bridge  
Path resistance of max. 295 mΩ @ 150 °C (typ. 150 mΩ @ 25 °C)  
Low quiescent current of typ. 5µA @ 25 °C  
PWM capability of up to 25kHz combined with active freewheeling  
Current limitation level of 12 A typ. (8 A min.)  
Driver circuit with logic inputs  
Status flag diagnosis with current sense capability  
Overtemperature shut down with latch behaviour  
Overvoltage lock out  
Undervoltage shut down  
Switch-mode current limitation for reduced power dissipation in overcurrent situation  
Integrated dead time generation  
Operation up to 28V  
Green Product (RoHS compliant)  
AEC Qualified  
PG-DSO-36-29  
Description  
The BTM7752G is a fully integrated high current H-bridge for motor drive applications. It contains two p-channel  
highside MOSFETs and two n-channel lowside MOSFETs with an integrated driver IC in one package. Due to the  
p-channel highside switches the need for a charge pump is eliminated thus minimizing EMI. Interfacing to a  
microcontroller is made easy by the integrated driver IC which features logic level inputs, diagnosis with current  
sense, dead time generation and protection against overtemperature, overvoltage, undervoltage, overcurrent and  
short circuit.  
The BTM7752G provides an optimized solution for protected high current PWM motor drives with very low board  
space consumption.  
Type  
Package  
Marking  
BTM7752G  
PG-DSO-36-29  
BTM7752G  
Data Sheet  
3
Rev. 2.0, 2010-05-28  
High Current H-Bridge  
BTM7752G  
Block Diagram  
2
Block Diagram  
VS  
VS  
Overtemp.  
detection  
Current  
Sense  
HS1  
Current  
Sense  
HS2  
HS1  
HS2  
Undervolt.  
detection  
Overvolt.  
detection  
Overcurr.  
Detection  
HS1  
Overcurr.  
Detection  
HS2  
Gate Driver  
HS  
Gate Driver  
HS  
HS off  
LS off  
LS off  
HS off  
Digital Logic  
OUT1  
OUT2  
Gate Driver  
Gate Driver  
LS  
LS  
Overcurr.  
Detection  
LS1  
Overcurr.  
Detection  
LS2  
LS1  
LS2  
GND  
GND  
IN1  
IN2  
INH  
IS  
Figure 1  
Block Diagram  
3
Terms  
following figure shows the terms used in this data sheet.  
VDS(HS)  
VDS(HS)  
IS , -ID(HS)  
VS  
VS  
IIN1  
IN1  
IN2  
INH  
IS  
VIN1  
IOUT , ID, IL  
IIN2  
OUT1  
VOUT  
VIN2  
VSD(LS)  
IINH  
IOUT , ID, IL  
VINH  
OUT2  
VOUT  
IIS  
VIS  
VSD(LS)  
GND  
IGND , ID(LS)  
Figure 2  
Terms  
Data Sheet  
4
Rev. 2.0, 2010-05-28  
High Current H-Bridge  
BTM7752G  
Pin Configuration  
4
Pin Configuration  
4.1  
Pin Assignment  
OUT1  
OUT1  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
OUT1  
OUT1  
OUT1  
OUT1  
VS  
2
3
OUT1  
OUT1  
GND  
4
5
6
VS  
GND  
GND  
7
VS  
GND  
IN1  
8
VS  
9
IS  
IN2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
INH  
VS  
GND  
GND  
GND  
GND  
OUT2  
OUT2  
OUT2  
OUT2  
VS  
VS  
VS  
OUT2  
OUT2  
OUT2  
OUT2  
Figure 3  
Pin Configuration BTM7752G  
4.2  
Pin Definitions and Functions  
Pins written in bold type need power wiring.  
Pin  
Symbol  
OUT1  
GND  
IN1  
Function  
1..4, 33..36  
Output of first half bridge  
Ground  
5..8, 23..26  
9
Input of first half bridge  
Input of second half bridge  
10  
IN2  
11..14, 29..32 VS  
Supply, all pins to be connected and shorted externally  
Output of second half bridge  
15..22  
27  
OUT2  
INH  
IS  
Inhibit pin, to set device in sleep/stand-by mode  
Current sense and error signal  
28  
Data Sheet  
5
Rev. 2.0, 2010-05-28  
High Current H-Bridge  
BTM7752G  
General Product Characteristics  
5
General Product Characteristics  
5.1  
Absolute Maximum Ratings  
Absolute Maximum Ratings 1)  
Tj = -40 °C to +150 °C; all voltages with respect to ground (unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit Conditions  
Min.  
Max.  
45  
5.1.1  
5.1.2  
Supply voltage  
VS  
-0.3  
V
V
Logic Input Voltage  
VIN1,VIN2, -0.3  
5.5  
VINH  
5.1.3  
HS/LS continuous drain current  
ID(HS)  
ID(LS)  
-4  
4
A
V
TC < 85°C  
switch active  
5.1.4  
Voltage between VS and IS pin  
VS -VIS  
-0.3  
45  
Thermal Maximum Ratings  
5.1.5  
5.1.6  
Junction temperature  
Storage temperature  
Tj  
-40  
-55  
150  
150  
°C  
°C  
Tstg  
ESD Susceptibility  
5.1.7 ESD susceptibility  
HBM2)  
VESD  
kV  
IN1, IN2, IS, INH  
OUT1, OUT2, GND, VS  
-2  
-4  
2
4
1) Not subject to production test, specified by design.  
2) HBM according to EIA/JESD 22-A 114B (1.5 kΩ, 100pF)  
Note:Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Note:Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
Data Sheet  
6
Rev. 2.0, 2010-05-28  
High Current H-Bridge  
BTM7752G  
General Product Characteristics  
Maximum Single Pulse Current  
20  
15  
10  
5
0
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
tpulse [s]  
Figure 4  
BTM7752G Maximum Single Pulse Current (TC = Tj(0) < 85°C)  
This diagram shows the maximum single pulse current that can be driven for a given pulse time tpulse. The  
maximum reachable current may be smaller depending on the current limitation level. Pulse time may be limited  
due to thermal protection of the device.  
5.2  
Functional Range  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
Max.  
5.2.1  
5.2.2  
Supply Voltage Range for  
Normal Operation  
VS(nor)  
VS(ext)  
8
18  
V
V
VS pins shorted  
Extended Supply Voltage Range  
for Operation  
5.5  
28  
VS pins shorted;  
Parameter  
deviations possible;  
1)  
5.2.3  
Junction Temperature  
Tj  
-40  
150  
°C  
1) Overtemperature protection available up to supply voltage VS = 18V.  
Note:Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics table.  
Data Sheet  
7
Rev. 2.0, 2010-05-28  
High Current H-Bridge  
BTM7752G  
General Product Characteristics  
5.3  
Thermal Resistance  
Note:This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go  
to www.jedec.org.  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit Conditions  
Min.  
Typ.  
Max.  
1)  
5.3.1  
Thermal Resistance  
Junction to Soldering Point, Low Side Switch  
RthjSP(LS) = ΔTj(LS)/ Pv(LS)  
RthjSP(LS)  
29  
29  
29  
K/W  
1)  
5.3.2  
5.3.3  
Thermal Resistance  
Junction to Soldering Point, High Side Switch  
RthjSP(HS) = ΔTj(HS)/ Pv(HS)  
RthjSP(HS)  
K/W  
1)  
Thermal Resistance  
RthjSP  
K/W  
Junction to Soldering Point, both switches  
RthjSP= max[ΔTj(HS), ΔTj(LS)] /  
(Pv(HS) + Pv(LS)  
)
1) 2)  
5.3.4  
Thermal Resistance  
Junction-Ambient  
Rthja  
46  
K/W  
;
1) Not subject to production test, specified by design.  
2) Specified Rthja value is according to Jedec JESD51-2, -7 at natural convection on FR4 2s2p board; The product  
(chip+package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu).  
Transient thermal impedance Zthja  
Figure 5 is showing the typical transient thermal impedance of high side or low side switch of BTM7752G mounted  
according to JEDEC JESD51-7 at natural convection on FR4 2s2p board. The device (chip+package) was  
simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu). For the  
simulation each chip was separately powered with 1W at an ambient temperature Ta of 85°C.  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
High side sw itch / Low side sw itch  
0
0,001  
0,01  
0,1  
1
10  
100  
1000  
tpulse [s]  
Figure 5  
Typical transient thermal impedance of BTM7752G on JESD51-7 2s2p board  
(1W each chip (separately heated), Ta = 85°C, single pulse)  
Data Sheet  
8
Rev. 2.0, 2010-05-28  
High Current H-Bridge  
BTM7752G  
Block Description and Characteristics  
6
Block Description and Characteristics  
6.1  
Supply Characteristics  
VS = 8 V to 18 V, Tj = -40 °C to +150 °C, IL = 0A, VS pins shorted, all voltages with respect to ground, positive  
current flowing into pin (unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Test Conditions  
Min.  
Typ.  
Max.  
General  
6.1.1  
Supply Current  
IS(on)  
5
9.5  
mA  
VINH or VIN1 or VIN2 = 5 V  
DC-mode  
normal operation  
(no fault condition)  
6.1.2  
Quiescent Current  
IS(off)  
5
15  
30  
µA  
µA  
VINH = VIN1 = VIN2 = 0 V  
Tj < 85 °C; 1)  
VINH = VIN1 = VIN2 = 0 V  
1) Not subject to production test, specified by design.  
10  
9
8
7
6
5
4
3
2
1
0
-40  
0
40  
80  
120  
160  
[°C]  
T
Figure 6  
Typical Quiescent Current vs. Junction Temperature (typ. @ VS = 13.5V)  
Data Sheet  
9
Rev. 2.0, 2010-05-28  
High Current H-Bridge  
BTM7752G  
Block Description and Characteristics  
6.2  
Power Stages  
The power stages of the BTM7752G consist of p-channel vertical DMOS transistors for the high side switches and  
n-channel vertical DMOS transistors for the low side switches. All protection and diagnostic functions are located  
in a separate control chip. Both switches, high side and low side, allow active freewheeling and thus minimize  
power dissipation in the forward operation of the integrated diodes.  
The on state resistance RON is dependent on the supply voltage VS as well as on the junction temperature Tj. The  
typical on state resistance characteristics are shown in Figure 7.  
Low Side Switch  
High Side Switch  
16 0  
220  
200  
18 0  
16 0  
14 0  
12 0  
10 0  
80  
14 0  
12 0  
10 0  
80  
60  
40  
20  
0
Tj = 150°C  
T = 150°C  
j
Tj = 25°C  
Tj = -40°C  
Tj = 25°C  
Tj = -40°C  
60  
40  
20  
0
4
8
12  
16  
2 0  
2 4  
2 8  
4
8
12  
16  
20  
24  
28  
VS [V]  
VS [V]  
Figure 7  
Typical On State Resistance vs. Supply Voltage  
Data Sheet  
10  
Rev. 2.0, 2010-05-28  
High Current H-Bridge  
BTM7752G  
Block Description and Characteristics  
6.2.1  
Power Stages - Static Characteristics  
VS = 8 V to 18 V, Tj = -40 °C to +150 °C, VS pins shorted, all voltages with respect to ground, positive current  
flowing into pin (unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Test Conditions  
Min.  
Typ.  
Max.  
High Side Switch - Static Characteristics  
6.2.1  
6.2.2  
6.2.3  
On state high side resistance RON(HS)  
mΩ  
IOUT = 1 A  
VS = 13.5 V  
Tj = 25 °C; 1)  
Tj = 150 °C  
60  
85  
115  
Leakage current high side  
IL(LKHS)  
µA  
V
VINH = VIN1 = VIN2 = 0 V  
VOUT = 0 V  
Tj < 85 °C; 1)  
1
5
Tj = 150 °C  
Reverse diode  
forward-voltage high side 2)  
VDS(HS)  
IOUT = -1 A  
0.9  
0.8  
0.6  
0.8  
Tj = -40 °C; 1)  
Tj = 25 °C; 1)  
Tj = 150 °C  
Low Side Switch - Static Characteristics  
6.2.4  
6.2.5  
6.2.6  
On state low side resistance RON(LS)  
mΩ  
µA  
V
IOUT = -1 A  
VS = 13.5 V  
Tj = 25 °C; 1)  
Tj = 150 °C  
90  
150  
180  
Leakage current low side  
-IL(LKLS)  
VINH = VIN1 = VIN2 = 0 V  
VOUT = VS  
Tj < 85 °C; 1)  
1
3
Tj = 150 °C  
Reverse diode  
forward-voltage low side 2)  
VSD(LS)  
IOUT = 1 A  
0.9  
0.8  
0.6  
0.8  
Tj = -40 °C; 1)  
Tj = 25 °C; 1)  
Tj = 150 °C  
1) Not subject to production test, specified by design.  
2) Due to active freewheeling diode is conducting only for a few µs.  
Data Sheet  
11  
Rev. 2.0, 2010-05-28  
High Current H-Bridge  
BTM7752G  
Block Description and Characteristics  
6.2.2  
Switching Times  
IN  
t
tdf(HS) tf(HS)  
tdr(HS)  
tr(HS)  
VOUT  
90%  
90%  
ΔVOUT  
ΔVOUT  
40%  
40%  
t
Figure 8  
Definition of switching times high side (Rload to GND)  
IN  
t
tdf(LS)  
tf(LS)  
tdr(LS) tr(LS)  
VOUT  
60%  
60%  
ΔVOUT  
ΔVOUT  
10%  
10%  
t
Figure 9  
Definition of switching times low side (Rload to VS)  
Due to the timing differences for the rising and the falling edge there will be a slight difference between the length  
of the input pulse and the length of the output pulse. It can be calculated using the following formulas:  
ΔtHS = (tdr(HS) + 0.2 tr(HS)) - (tdf(HS) + 0.8 tf(HS)  
ΔtLS = (tdf(LS) + 0.2 tf(LS)) - (tdr(LS) + 0.8 tr(LS)).  
)
Data Sheet  
12  
Rev. 2.0, 2010-05-28  
High Current H-Bridge  
BTM7752G  
Block Description and Characteristics  
6.2.3  
Power Stages - Dynamic Characteristics  
VS = 13.5V, Tj = -40 °C to +150 °C, RLoad = 12 Ω, VINH = 5V, VS pins shorted, all voltages with respect to ground,  
positive current flowing into pin (unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Test Conditions  
Min.  
Typ.  
Max.  
High Side Switch Dynamic Characteristics  
6.2.7  
6.2.8  
Rise-time of HS  
Slew rate HS on  
tr(HS)  
0.35  
0.7  
9.6  
1.05  
µs  
ΔVOUT  
/
V/µs  
tr(HS)  
6.2.9  
Switch on delay time HS  
tdr(HS)  
tf(HS)  
3
5
8
µs  
6.2.10 Fall-time of HS  
6.2.11 Slew rate HS off  
0.35  
0.7  
9.6  
1.05  
µs  
-ΔVOUT  
/
V/µs  
tf(HS)  
6.2.12 Switch off delay time HS  
tdf(HS)  
1.5  
3.5  
5.5  
µs  
Low Side Switch Dynamic Characteristics  
6.2.13 Rise-time of LS  
6.2.14 Slew rate LS off  
tr(LS)  
0.4  
0.8  
8.4  
1.2  
µs  
ΔVOUT  
/
V/µs  
tr(LS)  
6.2.15 Switch off delay time LS  
6.2.16 Fall-time of LS  
tdr(LS)  
tf(LS)  
1.5  
0.35  
3.5  
0.8  
8.4  
5.5  
1.2  
µs  
µs  
6.2.17 Slew rate LS on  
-ΔVOUT  
/
V/µs  
tf(LS)  
6.2.18 Switch on delay time LS  
tdf(LS)  
2.5  
5
7.5  
µs  
6.3  
Protection Functions  
The device provides integrated protection functions. These are designed to prevent IC destruction under fault  
conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range.  
Protection functions are not to be used for continuous or repetitive operation, with the exception of the current  
limitation (Chapter 6.3.4). Overvoltage, overtemperature and overcurrent are indicated by a fault current IIS(LIM) at  
the IS pin as described in the paragraph “Status Flag Diagnosis with Current Sense Capability” on Page 17  
and Figure 13.  
In the following the protection functions are listed in order of their priority. Overvoltage lock out overrides all other  
error modes.  
6.3.1  
Overvoltage Lock Out  
To assure a high immunity against overvoltages (e.g. load dump conditions) the device shuts both lowside  
MOSFETs off and turns both highside MOSFET on, if the supply voltage VS is exceeding the over voltage  
protection level VOV(OFF). The IC operates in normal mode again with a hysteresis VOV(HY) if the supply voltage  
decreases below the switch-on voltage VOV(ON). This behavior of the BTM7752G will lead to freewheeling in  
highside during over voltage.  
Data Sheet  
13  
Rev. 2.0, 2010-05-28  
High Current H-Bridge  
BTM7752G  
Block Description and Characteristics  
6.3.2  
Undervoltage Shut Down  
To avoid uncontrolled motion of the driven motor at low voltages the device shuts off (both outputs are tri-state),  
if the supply voltage VS drops below the switch-off voltage VUV(OFF). In this case all latches will be reset. The IC  
becomes active again with a hysteresis VUV(HY) if the supply voltage rises above the switch-on voltage VUV(ON)  
.
6.3.3  
Overtemperature Protection  
The BTM7752G is protected against overtemperature by integrated temperature sensors. Each half bridge, which  
consists of one high side and one low side switch, is protected by one temperature sensor located in the high side  
switch. Both temperature sensors function independently. A detection of overtemperature through temperature  
sensor leads to a shut down of both switches in the half bridge. This state is latched until the device is reset by a  
low signal with a minimum length of treset simultaneously at the INH pin and both IN pins, provided that its  
temperature has decreased at least the thermal hysteresis ΔT in the meantime.  
Overtemperature protection is available up to supply voltage VS = 18V.  
For sufficient over temperature protection please consider also operation below the limitations outlined in Figure  
4 and Figure 5.  
Repetitive use of the overtemperature protection might reduce lifetime.  
6.3.4  
Current Limitation  
The current in the bridge is measured in all four switches. As soon as the current in forward direction in one switch  
is reaching the limit ICLx, this switch is deactivated for tCLS. In case of INH = 5V (high) the other switch of the same  
half bridge is activated for the same time (tCLS). During that time all changes at the related IN pin are ignored.  
However, the INH pin can still be used to switch all MOSFETs off. After tCLS the switches return to their initial  
setting. The error signal at the IS pin is reset after 1.5 * tCLS if no overcurrent state is detected in the meantime.  
Unintentional triggering of the current limitation by short current spikes (e.g. inflicted by EMI coming from the  
motor) is suppressed by internal filter circuitry. Due to thresholds and reaction delay times of the filter circuitry the  
effective current limitation level ICLx depends on the slew rate of the load current di/dt as shown in Figure 11.  
IL  
tCLS  
1.5*tCLS  
ICLx  
ICLx0  
O
t
IIS  
IIS(l i m )  
O
t
Figure 10 Timing Diagram Current Limitation and Current Sense  
Data Sheet  
14  
Rev. 2.0, 2010-05-28  
High Current H-Bridge  
BTM7752G  
Block Description and Characteristics  
Low Side Switch  
High Side Switch  
14  
13  
12  
14  
T = -40°C  
T = -40°C  
j
j
13  
ICLL0  
ICLH0  
Tj = 25°C  
Tj = 25°C  
Tj = 150°C  
Tj = 150°C  
12  
11  
10  
11  
10  
0
50  
100  
150  
0
50  
100  
150  
dIL/dt [A/ms]  
dIL/dt [A/ms]  
Figure 11 Current Limitation Level vs. Current Slew Rate dIL/dt  
Low Side Switch  
High Side Switch  
16  
15  
14  
13  
12  
11  
10  
9
16  
15  
14  
13  
12  
11  
10  
9
Tj = -40°C  
T = 25°C  
j
Tj = 25°C  
Tj = 150°C  
Tj = -40°C  
Tj = 150°C  
8
8
6
10  
14  
18  
22  
26  
6
10  
14  
18  
22  
26  
VS [V]  
VS [V]  
Figure 12 Typical Current Limitation Detection Levels vs. Supply Voltage  
In combination with a typical inductive load, such as a motor, this results in a switched mode current limitation.  
This method of limiting the current has the advantage that the power dissipation in the BTM7752G is much smaller  
than by driving the MOSFETs in linear mode. Therefore it is possible to use the current limitation for a short time  
without exceeding the maximum allowed junction temperature (e.g. for limiting the inrush current during motor start  
up). However, the regular use of the current limitation is allowed as long as the specified maximum junction  
temperature is not exceeded. Exceeding this temperature can reduce the lifetime of the device.  
Data Sheet  
15  
Rev. 2.0, 2010-05-28  
High Current H-Bridge  
BTM7752G  
Block Description and Characteristics  
6.3.5  
Short Circuit Protection  
The device provides embedded protection functions against  
output short circuit to ground  
output short circuit to supply voltage  
short circuit of load  
The short circuit protection is realized by the previously described current limitation in combination with the over-  
temperature shut down (see Chapter 6.3.3) of the device.  
6.3.6  
Electrical Characteristics - Protection Functions  
VS = 8 V to 18 V, Tj = -40 °C to +150 °C, VS pins shorted, all voltages with respect to ground, positive current  
flowing into pin (unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Test Conditions  
Min.  
Typ.  
Max.  
Over Voltage Lock Out  
6.3.1  
6.3.2  
6.3.3  
Switch-ON voltage  
Switch-OFF voltage  
ON/OFF hysteresis  
VOV(ON)  
VOV(OFF)  
VOV(HY)  
27.8  
28  
V
V
V
Vs decreasing  
30  
Vs increasing  
1)  
0.2  
Under Voltage Shut Down  
6.3.4  
6.3.5  
6.3.6  
Switch-ON voltage  
Switch-OFF voltage  
ON/OFF hysteresis  
VUV(ON)  
VUV(OFF)  
VUV(HY)  
5.5  
5.4  
V
V
V
VS increasing  
4.0  
VS decreasing  
1)  
0.2  
Thermal Shut Down  
1); VS 18 V  
6.3.7  
6.3.8  
6.3.9  
Thermal shut down junction TjSD  
temperature  
155  
153  
175  
200  
190  
°C  
°C  
1)  
Thermal switch on junction  
temperature  
TjSO  
1)  
1)  
Thermal hysteresis  
ΔT  
8
7
°C  
6.3.10 Reset pulse at INH and IN pin treset  
µs  
(INH, IN1 and IN2 low)  
Current Limitation  
6.3.11 Current limitation detection ICLH0  
8
12  
16  
A
VS = 13.5 V  
level high side  
6.3.12 Current limitation detection ICLL0  
8
12  
16  
A
VS = 13.5 V  
level low side  
6.3.13 Shut off time for HS and LS tCLS  
50  
100  
200  
µs  
VS = 13.5 V, Tj = 25 °C  
1) Not subject to production test, specified by design.  
Data Sheet  
16  
Rev. 2.0, 2010-05-28  
High Current H-Bridge  
BTM7752G  
Block Description and Characteristics  
6.4  
Control and Diagnostics  
Input Circuit  
6.4.1  
The control inputs INx and INH consist of TTL/CMOS compatible schmitt triggers with hysteresis which control the  
integrated gate drivers for the MOSFETs. To set the device in stand-by mode, INH and INx pins need to be all  
connected to GND. When the INH is high, in each half bridge one of the two power switches (HSx or LSx) is  
switched on, while the other power switch is switched off, depending on the status of the INx pin. When INH is low,  
a high INx signal will turn the corresponding highside switches on. This provides customer the possibility to switch  
on one high side switch while keeping the other switches off and therefore to do an open load detection together  
with external circuitry (see also Chapter 7 - Application Information). A low on all INx and INH signal will turn off  
both power switches. To drive the logic inputs no external driver is needed, therefore the BTM7752G can be  
interfaced directly to a microcontroller.  
6.4.2  
Dead Time Generation  
In bridge applications it has to be assured that the highside and lowside MOSFET are not conducting at the same  
time, connecting directly the battery voltage to GND. This is assured by a circuit in the driver IC, which senses the  
status of the MOSFETs to ensure that the high or low side switch can be switched on only if the corresponding  
low or high side switch is completely turned off.  
6.4.3  
Status Flag Diagnosis with Current Sense Capability  
The status pin IS is used as a combined current sense and error flag output. In normal operation (current sense  
mode), a current source is connected to the status pin, which delivers a current proportional to the forward load  
current flowing through the active high side switch. If the high side switch is inactive or the current is flowing in the  
reverse direction no current will be driven except for a marginal leakage current IIS(LK). If both high side switches  
are in on state, the IS provides the sense current of the high side switch, which has been turned on first. To reset  
this assignment both inputs IN1 and IN2 has to be set to low and both high side switches has to be off.  
The external resistor RIS determines the voltage per output current. E.g. with the nominal value of 3.1k for the  
current sense ratio kILIS = IL / IIS, a resistor value of RIS = 1kΩ leads to VIS = (IL / 3.1A)V. In case of a fault condition  
the status output is connected to a current source which is independent of the load current and provides IIS(lim)  
.
The maximum voltage at the IS pin is determined by the choice of the external resistor and the supply voltage. In  
case of current limitation the IIS(lim) is activated for 1.5 * tCLS  
.
Normal operation:  
current sense mode  
Fault condition:  
error flag mode  
VS  
VS  
ESD-ZD  
ESD-ZD  
IS  
IS  
IIS~ ILoad  
Sense  
output  
logic  
Sense  
output  
logic  
VIS  
VIS  
RIS  
RIS  
I
I
IS(lim)  
IS(lim)  
Figure 13 Sense current and fault current  
Data Sheet  
17  
Rev. 2.0, 2010-05-28  
High Current H-Bridge  
BTM7752G  
Block Description and Characteristics  
[mA]  
IIS  
IIS(lim)  
Current Sense Mode  
(High Side)  
Error Flag Mode  
ICLx  
[A]  
IL  
Figure 14 Sense Current vs. Load Current  
Data Sheet  
18  
Rev. 2.0, 2010-05-28  
High Current H-Bridge  
BTM7752G  
Block Description and Characteristics  
6.4.4  
Truth Table  
Device State  
Inputs  
Outputs  
Mode  
INH IN1 IN2 HS1 LS1 HS2 LS2 IS  
Normal operation  
0
1
1
1
1
0
0
0
X
0
0
0
1
1
0
1
1
X
0
0
1
0
1
1
0
1
X
OFF OFF OFF OFF 0  
OFF ON OFF ON  
OFF ON ON OFF CSHS21)  
ON OFF OFF ON CS HS11)  
ON OFF ON OFF CS 2)  
OFF OFF ON OFF CS HS21) Enable Open-load detection  
ON OFF OFF OFF CS HS11) Enable Open-load detection  
ON OFF ON OFF CS 2)  
Stand-by mode, reset  
0
Open-Load detection  
mode  
Over-voltage (OV)  
Under-voltage (UV)  
ON OFF ON OFF 1  
Shut-down of LSS, HSS  
activated, error detected  
X
0
1
X
X
1
X
0
X
1
X
0
X
0
OFF OFF OFF OFF 0  
OFF OFF OFF OFF 0  
OFF OFF OFF OFF 1  
UV lockout, reset  
Overtemperature or  
short circuit of HSS or  
LSS 3)  
Stand-by mode, reset of latch  
X
X
1
Shut-down with latch, error  
detected  
Current limitation  
mode half bridge 1  
X
ON OFF X  
X
X
X
1
1
1
Short Circuit in LS1 detected,  
half bridge 2 operates in normal  
mode  
1
1
X
OFF ON  
X
Short Circuit in HS1 detected,  
half bridge 2 operates in normal  
mode  
0
1
1
X
0
OFF OFF X  
Short Circuit in HS1 detected  
Current limitation  
mode half bridge 2  
X
X
X
X
X
X
X
ON OFF 1  
Short Circuit in LS2 detected,  
half bridge 1 operates in normal  
mode  
1
X
1
OFF ON  
1
Short Circuit in HS2 detected,  
half bridge 1 operates in normal  
mode  
0
X
1
OFF OFF 1  
Short Circuit in HS2 detected  
1) Previous current sense assignment to be reset by IN1=IN2=low and both high side switches off (see Chapter 6.4.3).  
2) When both high side switches are in on state, the CS provides the sense signal for the high side switch, which has been  
turned on first.  
3) In short circuit of HSS or LSS, the junction temperature will arise and as soon as the over temperature shut down threshold  
is reached the device will shut down and latch the status. Short circuit of HSS and LSS itself won’t be detected as failure.  
Inputs:  
Switches  
Status Flag IS:  
0 = Logic LOW  
1 = Logic HIGH  
X = 0 or 1  
OFF = switched off  
ON = switched on  
X = switched on or off  
CS = Current sense mode  
1 = Logic HIGH (error)  
Data Sheet  
19  
Rev. 2.0, 2010-05-28  
High Current H-Bridge  
BTM7752G  
Block Description and Characteristics  
6.4.5  
Electrical Characteristics - Control and Diagnostics  
VS = 8 V to 18 V, Tj = -40 °C to +150 °C, VS pins shorted, all voltages with respect to ground, positive current  
flowing into pin (unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit Test Conditions  
Min.  
Typ.  
Max.  
Control Inputs (IN and INH)  
6.4.1  
6.4.2  
High level threshold voltage VINH(H)  
,
1.6  
1.4  
2
V
V
INH, IN1, IN2  
VIN1(H), VIN2(H)  
Low level threshold voltage VINH(L)  
,
1.1  
INH, IN1, IN2  
VIN1(L), VIN2(L)  
1)  
6.4.3  
6.4.4  
Input voltage hysteresis  
Input current  
VINHHY,VINHY  
200  
30  
mV  
µA  
IINH(H)  
IIN1(H), IIN2(H)  
IINH(L)  
,
200  
VIN1,VIN2,VINH = 5.5 V  
6.4.5  
Input current  
,
25  
125  
µA  
VIN1, VIN2, VINH = 0.4 V  
IIN1(L), IIN2(L)  
Current Sense  
6.4.6  
Current sense ratio in static kILIS  
on-condition  
kILIS = IL / IIS  
103  
RIS = 1 kΩ  
IL = 6 A  
IL = 2 A  
IL = 1 A  
2
1.7  
1.5  
3.1  
3.1  
3.1  
4.2  
4.6  
5
6.4.7  
6.4.8  
6.4.9  
Differential Current sense  
ratio in static on-condition  
dkILIS = dIL /dIIS  
dkILIS  
103  
mA  
RIS = 1 kΩ  
2
3.1  
5
4.2  
7
IL > 0.5 A  
1)  
Maximum analog sense  
current - Sense current in  
fault condition  
IIS(lim)  
4.25  
VS = 13.5 V  
RIS = 1 kΩ  
Isense leakage current  
IISL  
IISH  
1
1
µA  
µA  
VIN1 = VIN2 = 0 V,  
no error detected  
6.4.10 Isense leakage current,  
active high side switch  
100  
VIN1 or VIN2 = 5 V  
IL = 0 A  
1) Not subject to production test, specified by design.  
Data Sheet  
20  
Rev. 2.0, 2010-05-28  
High Current H-Bridge  
BTM7752G  
Application Information  
7
Application Information  
Note:The following information is given as a hint for the implementation of the device only and shall not be  
regarded as a description or warranty of a certain functionality, condition or quality of the device.  
Microcontroller  
XC866  
Voltage Regulator  
Reverse Polarity  
Protection  
I/O  
Reset  
Vdd  
WO  
I
TLE  
RO  
Q
4278G  
VS  
DZ1  
10V  
CQ  
22µF  
D
GND  
R1  
10kΩ  
e.g.  
IPD50P03P4L-11  
Vss  
CD  
47nF  
I/O  
I/O  
I/O  
I/O I/O  
I/O  
VS  
VS  
BTM7752G  
CSc  
CS  
HS1  
INH  
HS2  
RINH  
4.7kΩ  
IN1  
IN2  
OUT1  
OUT2  
RIN1  
4.7kΩ  
M
RIN2  
4.7kΩ  
LS1  
IS  
LS2  
GND  
GND  
RIS  
1kΩ  
RD1  
RD2  
Figure 15 Application Diagram  
Note:This is a very simplified example of an application circuit. The function must be verified in the real application.  
7.1  
Application and Layout Considerations  
Due to the fast switching times for high currents, special care has to be taken during the PCB layout. Stray  
inductances have to be minimized in the power bridge design as it is necessary in all switched high power bridges.  
The BTM7752G has no separate pin for power ground and logic ground. Therefore it is recommended to ensure  
that the offset between power ground and logic ground pins of the device is minimized. It is also  
necessary to ensure that all VS pins are at the same voltage level. Therefore the VS pins need to be  
shorted together. Voltage differences between the VS pins may cause parameter deviations (such as reduced  
current limits and current sense ratio (kilis)) up to a latched shutdown of the device with error signal on the IS pin,  
similar to overtemperature shutdown.  
Due to the fast switching behavior of the device in current limitation mode or overvoltage lock out a low ESR  
electrolytic capacitor Cs of at least 100 µF from VS to GND is recommended. This prevents destructive voltage  
peaks and drops on VS. This is recommended for both PWM and non PWM controlled applications. The value of  
the capacitor must be verified in the real application.  
In addition a ceramic capacitor Csc from VS to GND close to each device is recommended to provide current for  
the switching phase via a low inductance path and therefore reducing noise and ground bounce. A reasonable  
value for this capacitor would be about 470 nF.  
Data Sheet  
21  
Rev. 2.0, 2010-05-28  
High Current H-Bridge  
BTM7752G  
Application Information  
It is recommended to do the freewheeling in the low side path to ensure a proper function and avoid unintended  
overtemperature detection and shutdown. For proper operation it is also recommended to put a pull-down resistor  
RDx on each output OUTx to GND with a value in the range of e.g. 1...10 kΩ. These resistors can also be used for  
open load detection.  
Considerations for Open Load Detection Mode  
As mentioned in Chapter 6.4.1 both high side switches can be switched on independently while all other switches  
are off. This will be realized by setting the corresponding IN signal to high while INH and the other IN are low.  
Device State  
Inputs  
Outputs  
Mode  
INH IN1 IN2 HS1 LS1 HS2 LS2 IS  
Open-Load detection  
mode  
0
0
0
0
1
1
1
0
1
OFF OFF ON  
OFF CS HS21) HS2 active  
OFF OFF OFF CS HS11) HS1 active  
OFF ON both HSx are active  
OFF CS2)  
ON  
ON  
1) Previous current sense assignment to be reset by IN1=IN2=low and both high side switches off (see Chapter 6.4.3)  
2) When both high side switches are in on state, the CS provides the sense signal for the high side switch, which has been  
turned on at first.  
Together with the recommended pull-down resistors on the outputs OUTx to GND this provides the possibility to  
do an open load detection in H-bridge configuration.  
In case of one high side is active while the other half bridge is off (HS off and LS off) a current of up to 2mA will  
be sourced out of the OUT of the high ohmic half bridge. This has to be considered while choosing the right value  
of the pull-down resistor.  
Data Sheet  
22  
Rev. 2.0, 2010-05-28  
High Current H-Bridge  
BTM7752G  
Package Outlines  
8
Package Outlines  
0.35 x 45˚  
1)  
7.6-0.2  
0.65  
C
0.1  
36x  
C
0.2  
0.7  
SEATING PLANE  
17 x 0.65 = 11.05  
0.3  
10.3  
D
2)  
0.08  
0.33  
M
0.17  
C A-B D 36x  
A
36  
19  
Ejector Mark  
Depth 0.2 MAX.  
1
18  
1)  
B
12.8-0.2  
Index Marking  
1) Does not include plastic or metal protrusion of 0.15 max. per side  
2) Does not include dambar protrusion of 0.05 max. per side  
PG-DSO-36-20, -29, -34, -43, -44-PO V05  
1.67  
Footprint  
9.73  
HLGF1145  
Figure 16 PG-DSO-36-29 (Plastic Green Dual Small Outline Package)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with  
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e  
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further information on alternative packages, please visit our website:  
Dimensions in mm  
http://www.infineon.com/packages.  
Data Sheet  
23  
Rev. 2.0, 2010-05-28  
High Current H-Bridge  
BTM7752G  
Revision History  
9
Revision History  
Revision  
Date  
Changes  
Initial version Data Sheet  
2.0  
2010-05-28  
Data Sheet  
24  
Rev. 2.0, 2010-05-28  
Edition 2010-05-28  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2010 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  

相关型号:

BTM7752GXUMA1

Half Bridge Based Peripheral Driver, 12A, PDSO36, GREEN, PLASTIC, DSO-36
INFINEON

BTM7755G

High Current H-Bridge Trilith IC 3G
INFINEON

BTM7810K

TrilithIC
INFINEON

BTM7810KAUMA1

Half Bridge Based Peripheral Driver, 42A, PSSO15, GREEN, PLASTIC, TO263, 15 PIN
INFINEON

BTM7811K

TrilithIC
INFINEON

BTM7811KAUMA1

Half Bridge Based Peripheral Driver, 14A, PSSO15, GREEN, PLASTIC, TO263, 15 PIN
INFINEON

BTMA

Bi-directional Integrated TAP Monitor Arrays
OPLINK

BTMA-S0135

Bi-directional Integrated TAP Monitor Arrays
OPLINK

BTMA04020531111

Bi-directional Integrated TAP Monitor Arrays
OPLINK

BTMA04020531112

Bi-directional Integrated TAP Monitor Arrays
OPLINK

BTMA040205311H1

Bi-directional Integrated TAP Monitor Arrays
OPLINK

BTMA040205311H2

Bi-directional Integrated TAP Monitor Arrays
OPLINK