BTG7050-1EPL [INFINEON]

The BTG7050-1EPL, as part of the PROFET™ Load Guard family, is a single channel smart high-side power switch, providing protection functions and enhanced diagnostic capabilities. It is equipped with adjustable overcurrent limitation to offer high reliability for protecting the system: In case of a short circuit to ground, the PCB traces, connectors, as well as loads, can be protected. Furthermore, the BTG7050-1EPL has a capacitive load switching mode implemented to charge big capacitive loads and to reduce current peaks during switch on of capacitors. By these features, the device addresses different use cases for intelligent power distribution (load supply protection, wire protection and power supply protection) and a broad range of applications.;
BTG7050-1EPL
型号: BTG7050-1EPL
厂家: Infineon    Infineon
描述:

The BTG7050-1EPL, as part of the PROFET™ Load Guard family, is a single channel smart high-side power switch, providing protection functions and enhanced diagnostic capabilities. It is equipped with adjustable overcurrent limitation to offer high reliability for protecting the system: In case of a short circuit to ground, the PCB traces, connectors, as well as loads, can be protected. Furthermore, the BTG7050-1EPL has a capacitive load switching mode implemented to charge big capacitive loads and to reduce current peaks during switch on of capacitors. By these features, the device addresses different use cases for intelligent power distribution (load supply protection, wire protection and power supply protection) and a broad range of applications.

PC
文件: 总52页 (文件大小:913K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BTG7050-1EPL  
Datasheet  
PROFET Load Guard  
Smart high-side power switch  
Features  
• High-side switch with diagnosis and embedded protection  
• Part of PROFET Load Guard family  
• Switch ON capability while inverse current condition (InverseON)  
• Capacitive load switching mode  
• Green product (RoHS compliant)  
Potential applications  
• Replaces electromechanical relays, fuses and discrete circuits  
• Protection of system supply  
• Main switch for ECU power supply  
• Suitable for driving resistive, inductive and capacitive loads  
• Suitable for driving heating elements  
• Suitable for driving ADAS & AD modules, e.g. cameras, radar, ultrasonic, and LIDAR modules  
• Suitable for driving sub modules, e.g. displays  
Product validation  
Qualified for automotive applications.  
Product validation according to AEC-Q100, Grade 1.  
Description  
The PROFET Load Guard is a Smart High Side Switch, providing protection functions and enhanced diagnosis capabilities. The  
device offers an adjustable current limitation to offer higher reliability for protecting the system. In case of an short circuit to  
ground the PCB traces, connectors, as well as loads, can be protected. Furthermore, the PROFET Load Guard has an capacitive  
load switching mode implemented to charge capacitors.  
VBAT  
ZWIRE  
Optional  
Logic Supply  
CVS  
CVSGND  
T1  
RGND  
GND  
VS  
OCT  
OUT  
VDD  
GPIO  
GPIO  
RIN  
IN  
RDEN  
DEN  
COUT  
CVS2  
DZ2  
Optional  
RES  
ADC  
RADC  
RIS_PROT  
IS  
COUT  
VSS  
CSENSE  
Optional  
Logic GND  
Power GND  
Chassis GND  
Further information in Chapter 9  
Datasheet  
www.infineon.com  
Please read the sections "Important notice" and "Warnings" at the end of this document  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
Description  
Parameter  
Symbol  
VS(OP)  
Values  
3 V  
Minimum operating voltage  
Minimum operating voltage (cranking)  
Maximum operating voltage  
VS(UV)  
2.7 V  
VS  
28 V  
Minimum overvoltage protection (TJ ≥ 25°C)  
Maximum current in sleep mode (TJ ≤ 85°C)  
Maximum operative current  
VDS(CLAMP)_25  
IVS(SLEEP)_85  
IGND(ACTIVE)  
RDS(ON)_25  
RDS(ON)_150  
IL(NOM)  
35 V  
0.5 µA  
4.5 mA  
50 mΩ  
100 mΩ  
3 A  
Typical ON-state resistance (TJ = 25°C)  
Maximum ON-state resistance (TJ = 150°C)  
Nominal load current (TA = 85°C)  
Typical current sense ratio at IL = IL(NOM)  
Adjustable overcurrent limitation  
kILIS  
2030  
ILIM  
0.79 A - 8.86 A  
Diagnostic features  
• Proportional load current sense  
• Open load in ON and OFF state  
• Short circuit to ground and battery  
Protection features  
• Absolute and dynamic temperature protection with restart control  
• Adjustable overcurrent limitation  
• Overvoltage protection  
Type  
Package  
Marking  
BTG7050-1EPL  
PG-TSDSO-14  
7050-1L  
Datasheet  
2
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
Table of contents  
Table of contents  
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1
1.1  
1.2  
Block diagram and terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
2
2.1  
2.2  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin definitions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
3
3.1  
3.2  
3.3  
3.3.1  
3.3.2  
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
PCB setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Thermal impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4
4.1  
I/O pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Digital I/O pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Input pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Diagnosis pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Analog I/O pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Adjustable overcurrent threshold pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Electrical characteristics I/O pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
4.1.1  
4.1.2  
4.2  
4.2.1  
4.3  
5
5.1  
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Operation modes and transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Operation modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Unsupplied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Sleep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Inactive with diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Active with diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Active without diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Capacitive load switching mode with diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Capacitive load switching mode without diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Undervoltage on VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Electrical characteristics power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
5.1.1  
5.1.1.1  
5.1.1.2  
5.1.1.3  
5.1.1.4  
5.1.1.5  
5.1.1.6  
5.1.1.7  
5.1.1.8  
5.2  
5.3  
6
6.1  
6.2  
6.2.1  
6.2.2  
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Output ON-state resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Switching loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Switching resistive loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Switching inductive loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Datasheet  
3
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
Table of contents  
6.2.3  
6.3  
6.3.1  
6.4  
Switching capacitive loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Advanced switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Inverse current behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Electrical characteristics power stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
7
7.1  
7.1.1  
7.2  
7.3  
Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Overcurrent protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Adjustable overcurrent threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Overtemperature protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Protection and diagnosis in case of fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Retry strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Additional protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Reverse polarity protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Loss of battery and loss of load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Loss of ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Electrical characteristics protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
7.3.1  
7.4  
7.4.1  
7.4.2  
7.4.3  
7.4.4  
7.5  
8
8.1  
Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
SENSE signal truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Diagnosis in ON state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Current sense (kILIS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Fault current (IIS(FAULT)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Diagnosis in OFF State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Open load current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
OCT pin fault current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
SENSE timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Electrical characteristics diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
8.1.1  
8.2  
8.2.1  
8.2.2  
8.3  
8.3.1  
8.3.2  
8.4  
8.5  
9
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
Package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
10  
11  
Datasheet  
4
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
1 Block diagram and terms  
1
Block diagram and terms  
1.1  
Block diagram  
VS  
Supply voltage  
monitoring  
Channel  
Overvoltage  
protection  
Voltage sensor  
T
Overtemperature  
Internal power  
supply  
Overvoltage  
clamping  
Gate control  
+
Driver  
Chargepump  
Restart control  
SENSE output  
Overcurrent  
logic  
limitation  
IS  
Capacitive load  
InverseON  
switching  
OUT  
IN  
DEN  
OCT  
Load current sense  
ESD protection  
+
I/O  
Reverse polarity  
protection and  
GND circutry  
GND  
Figure 2  
Block diagram of BTG7050-1EPL  
Datasheet  
5
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
1 Block diagram and terms  
1.2  
Terms  
Figure 3 shows all terms used in this data sheet, with associated convention for positive values.  
IVS  
VSIS  
VDS  
IIN  
VS  
IN  
IDEN  
VIN  
DEN  
IL  
VS  
IIS  
OUT  
VDEN  
IS  
IOCT  
VIS  
OCT  
GND  
VOCT  
VOUT  
IGND  
Figure 3  
Voltage and current convention  
Datasheet  
6
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
2 Pin configuration  
2
Pin configuration  
2.1  
Pin assignment  
GND  
IN  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT  
OUT  
OUT  
n.c.  
DEN  
IS  
VS  
n.c.  
n.c.  
OCT  
RES  
RES  
RES  
exposed pad  
(bottom)  
8
Figure 4  
Pin configuration  
2.2  
Pin definitions and functions  
Table 1  
Pin definition  
Pin  
Symbol  
Function  
EP  
VS (exposed  
pad)  
Supply Voltage  
Battery voltage  
1
2
GND  
Ground  
Ground connection for the internal logic  
IN  
Input Channel  
Digital signal to switch ON the channel ("high" active)  
If not used: Connect with a 10kΩ resistor either to GND pin or to module ground  
3
DEN  
Diagnostic Enable  
Digital signal to enable device diagnosis ("high" active) and to clear the protection  
counter  
If not used: Connect with a 10kΩ resistor either to GND pin or to module ground  
4
7
IS  
SENSE current output  
Analog/digital signal for diagnosis  
If not used: Lef open  
OCT  
Adjustable overcurrent threshold  
A resistor ROCT needs to be connected between OCT pin and GND pin to adjust the  
overcurrent threshold  
If not used: Threshold selection as described in Chapter 7.1.1  
5, 6, 11  
12-14  
n.c.  
Not connected, internally not bonded  
OUT  
Output  
Protected high-side power output channel 1)  
(table continues...)  
Datasheet  
7
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
2 Pin configuration  
Table 1  
(continued) Pin definition  
Pin  
Symbol  
Function  
8-10  
RES  
RESERVED  
It is recommended to connect these pins to VS or with a capacitor COUT to GND  
1) All output pins of the channel must be connected together on the PCB. All pins of the output are internally  
connected together. PCB traces have to be designed to withstand the maximum current which can flow.  
Datasheet  
8
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
3 General product characteristics  
3
General product characteristics  
Absolute maximum ratings  
3.1  
TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Table 2  
Absolute maximum ratings  
Parameter  
Symbol  
Min.  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Max.  
Supply pins  
2)  
Power supply voltage VS  
-0.3  
28  
V
V
PRQ-34  
PRQ-36  
-
2)  
Load dump voltage  
VBAT(LD)  
35  
suppressed load dump  
acc. to ISO16750-2  
(2010). Ri = 2 Ω  
2)  
Supply voltage for  
VBAT(SC)  
0
24  
16  
V
V
PRQ-38  
PRQ-40  
short circuit protection  
Setup acc. to AEC-  
Q100-012  
2)  
Reverse polarity  
voltage  
-VBAT(REV)  
t ≤ 2min  
TA = +25°C  
Setup as described  
in Chapter 9  
2)  
Current through GND  
pin  
IGND  
-50  
50  
mA  
PRQ-44  
RGND according  
to Chapter 9  
Logic & control pins (Digital Input = DI)  
DI = IN, DEN  
2) 1)  
Current through DI pin IDI  
-1  
-1  
2
mA  
mA  
PRQ-47  
PRQ-48  
2) 1)  
Current through DI  
pin - Reverse battery  
condition  
IDI(REV)  
10  
t ≤ 2 min  
Analog & control pin (Analog Input = AI)  
AI = OCT  
2) 1)  
Current through AI pin IAI  
-1  
-1  
2
mA  
mA  
PRQ-60  
PRQ-61  
2) 1)  
Current through AI  
pin - Reverse battery  
condition  
IAI(REV)  
10  
t ≤ 2 min  
(table continues...)  
Datasheet  
9
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
3 General product characteristics  
Table 2  
(continued) Absolute maximum ratings  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Min.  
Max.  
IS pin  
2)  
Voltage at IS pin  
VIS  
-1.5  
VS  
V
PRQ-50  
PRQ-52  
IIS = 10 μA  
2)  
Current through IS Pin IIS  
-25  
IIS(SAT),M mA  
AX  
-
Temperatures  
2)  
Junction temperature TJ  
-40  
-55  
+150  
+150  
°C  
°C  
PRQ-53  
PRQ-54  
-
2)  
Storage temperature  
TSTG  
-
ESD susceptibility  
2)  
ESD Susceptibility all  
pins (HBM)  
VESD(HBM)  
-2  
-4  
2
4
kV  
kV  
PRQ-55  
PRQ-56  
HBM3)  
2)  
ESD Susceptibility  
OUTn vs GND and VS  
connected (HBM)  
VESD(HBM)_OUT  
HBM3)  
2)  
ESD Susceptibility all  
pins (CDM)  
VESD(CDM)  
-500  
-750  
500  
750  
V
V
PRQ-57  
PRQ-58  
CDM4)  
2)  
ESD Susceptibility  
corner pins (CDM) -  
(pins 1, 7, 8, 14)  
VESD(CDM)_CRN  
CDM4)  
Power stage  
2)  
Maximum energy  
dissipation - single  
pulse  
EAS  
12  
mJ  
mJ  
PRQ-766  
PRQ-767  
IL = 2IL(NOM)  
TJ(0) = 150°C  
VS = 28 V  
2)  
Maximum energy  
dissipation - repetitive  
pulse  
EAR  
2.5  
IL = IL(NOM)  
TJ(0) = 85°C  
VS = 13.5 V  
1M cycles  
2)  
Load current  
|IL|  
ILIM,MAX  
A
PRQ-768  
1)  
2)  
3)  
4)  
Maximum VDI to be considered for Latch-Up tests: 5.5 V  
Not subject to production test - specified by design  
ESD susceptibility, Human Body Model “HBM, according to AEC Q100-002  
ESD susceptibility, Charged Device Model “CDM, according to AEC Q100-011  
Datasheet  
10  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
3 General product characteristics  
Notes  
1.  
Stresses above the ones listed here may cause permanent damage to the device. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
Integrated protection functions are designed to prevent IC destruction under fault conditions described in  
the datasheet. Fault conditions are considered as “outside” normal operating range. Protection functions  
are not designed for continuous repetitive operation.  
2.  
3.2  
Functional range  
Table 3  
Functional range  
Symbol  
Parameter  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Min.  
Max.  
20  
1)  
Supply voltage range  
for normal operation  
VS(NOR)  
4
13.5  
V
V
PRQ-66  
1)  
2)  
3)  
Lower extended supply VS(EXT,LOW)  
voltage range for  
operation (normal)  
2.7  
4
PRQ-67  
(parameter deviations  
possible)  
1)  
Upper extended supply VS(EXT,UP)  
voltage range for  
20  
28  
V
PRQ-68  
PRQ-69  
3)  
operation  
(parameter deviations  
possible)  
1)  
Junction temperature TJ  
-40  
+150  
°C  
1)  
2)  
Not subject to production test - specified by design  
In case of VS voltage decreasing refer to the maximum voltage of VS(UV), in case of VS voltage increasing refer to the maximum voltage of  
VS(OP)  
3)  
Protection functions still operative  
Note  
Within the functional or operating range, the IC operates as described in the circuit description. The electrical  
characteristics are specified by the conditions given in the Electrical Characteristics tables.  
3.3  
Thermal resistance  
Thermal resistance  
Symbol  
Table 4  
Parameter  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Min.  
Max.  
7.5  
1)  
2)  
Thermal  
Ψ
4.4  
K/W  
PRQ-623  
JTOP  
characterization  
parameter junction-top  
(table continues...)  
Datasheet  
11  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
3 General product characteristics  
Table 4  
(continued) Thermal resistance  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Min.  
Max.  
8.6  
1)  
2)  
Thermal resistance  
junction-to-case  
RthJC  
5.1  
K/W  
PRQ-624  
simulated at exposed  
pad  
1)  
Thermal resistance  
junction-to-ambient  
RthJA  
33.5  
K/W  
PRQ-625  
2)  
1)  
2)  
Not subject to production test - specified by design  
According to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board; the Product (Chip + Package) was simulated on a 76.2 ×  
114.3 × 1.5 mm board with 2 inner copper layers (2 × 70 µm Cu, 2 × 35 µm Cu). Where applicable a thermal via array under the exposed  
pad contacted the first inner copper layer. Simulation done at TA = 105°C, PDISSIPATION = 1 W  
Note  
This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to  
www.jedec.org.  
3.3.1  
PCB setup  
70 µm modeled (traces, cooling area)  
70 µm, 5% metalization*  
*: means percentual Cu metalization on each layer  
Figure 5  
Figure 6  
1s0p PCB cross section  
70 µm modeled (traces)  
35 µm, 90% metalization*  
35 µm, 90% metalization*  
70 µm, 5% metalization*  
0.25mm ≤ A ≤ 0.5 mm  
*: means percentual Cu metalization on each layer  
2s2p PCB cross section  
Datasheet  
12  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
3 General product characteristics  
PCB 1s0p + 600 mm² cooling  
PCB 2s2p / 1s0p footprint  
Figure 7  
PCB setup for thermal simulations  
Figure 8  
Thermal vias on PCB for 2s2p PCB setup  
Datasheet  
13  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
3 General product characteristics  
3.3.2  
Thermal impedance  
BTG7050-1EPL  
100  
10  
1
2s2p  
1s0p - 600 mm²  
1s0p - 300 mm²  
1s0p - footprint  
0.1  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
Time (s)  
Figure 9  
Typical thermal impedance. PCB setup according to PCB setup  
BTG7050-1EPL  
130  
120  
110  
100  
90  
1s0p - Ta = 105°C  
80  
70  
60  
50  
40  
30  
0
100  
200  
300  
400  
500  
600  
Cooling area (mm²)  
Figure 10  
Thermal resistance on 1s0p PCB with various cooling surfaces  
Datasheet  
14  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
4 I/O pins  
4
I/O pins  
The device has two digital pins for direct control.  
4.1  
Digital I/O pins  
Digital input (DI) pins = IN, DEN  
4.1.1  
Input pins  
The input pin IN activates the output channel. The input circuitry is compatible with a 3.3 V and a 5 V microcontroller.  
The electrical equivalent of the input circuitry is shown in Figure 11. In case the pin is not used, it must be connected  
by a 10 kΩ resistor either to GND pin or to module ground.  
VS  
DI  
VS(CLAMP)  
IDI  
IDI  
ESD  
VDI(CLAMP)  
VDI  
GND  
IGND  
Figure 11  
Input circuitry  
The logic thresholds for “low” and “high” states are defined by parameters VDI(TH) and VDI(HYS). The  
relationship between these two values is shown in Figure 12.  
VDI  
VDI(TH),MAX  
VDI(TH)  
VDI(HYS)  
VDI(TH),MIN  
t
t
Internal channel  
activation signal  
0
x
1
x
0
Figure 12  
Input threshold voltages and hysteresis  
Datasheet  
15  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
4 I/O pins  
4.1.2  
Diagnosis pins  
The Diagnosis Enable (DEN) pin controls the diagnosis circuitry and the protection circuitry. When DEN pin is set to  
“high, the diagnosis is enabled (see Chapter 8.2 for more details). When it is set to “low, the diagnosis is disabled (IS  
pin is set to high impedance). See Figure 12 for more details.  
The transition from “high” to “low” of DEN pin clears the protection latch of the channel depending on the logic state  
of IN pin and DEN pulse length (see Chapter 7.3 for more details).  
4.2  
Analog I/O pins  
Analog input (AI) pins = OCT  
4.2.1  
Adjustable overcurrent threshold pin  
To be able to adjust the overcurrent limitation for the OUT pin, the device offers an OCT pin. The pin needs to be  
connected to device ground via an external resistor ROCT. The adjustable current limit allows the flexibility to adjust  
the overcurrent limitation as defined in Table 10. This improves the reliability of the system by limiting the inrush or  
overload current. The electrical equivalent of the overcurrent pin circuit circuitry is shown in Figure 13.  
VS  
AI decoder  
A
VOCT  
AI  
VS(CLAMP)  
IOCT  
ESD  
VAI(CLAMP)  
GND  
Figure 13  
Adjustable overcurrent threshold pin circuitry  
4.3  
Electrical characteristics I/O pins  
VS = 4 V to 20 V, TJ = -40°C to +150°C  
Unless otherwise specified typical values: VS = 13.5 V, TJ = 25°C  
Digital input (DI) pins = IN, DEN  
Analog input (AI) pins = OCT  
Datasheet  
16  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
4 I/O pins  
Table 5  
Electrical characteristics I/O pins  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Min.  
Max.  
DI pins  
Digital input voltage  
threshold  
VDI(TH)  
0.8  
1.3  
2
V
V
See Figure 11 and  
Figure 12  
PRQ-76  
PRQ-77  
1)  
Digital input clamping VDI(CLAMP1)  
voltage  
7
IDI = 1 mA  
See Figure 11 and  
Figure 12  
Digital input clamping VDI(CLAMP2)  
6.5  
7.5  
0.25  
10  
8.5  
V
IDI = 2 mA  
See Figure  
11 and Figure 12  
1)  
PRQ-78  
PRQ-80  
PRQ-81  
PRQ-82  
voltage  
Digital input hysteresis VDI(HYS)  
V
See Figure 11 and  
Figure 12  
Digital input current  
("high")  
IDI(H)  
2
25  
25  
µA  
µA  
VDI = 2 V  
See Figure 11 and  
Figure 12  
Digital input current  
("low")  
IDI(L)  
2
10  
VDI = 0.8 V  
See Figure 11 and  
Figure 12  
AI pins  
1)  
Analog input clamping VAI(CLAMP1)  
voltage  
7
V
PRQ-88  
IOCT = 1 mA  
See Figure 13  
Analog input clamping VAI(CLAMP2)  
6.5  
7.5  
0.5  
8.5  
V
V
IOCT = 2 mA  
See Figure 13  
1)  
PRQ-630  
PRQ-628  
voltage  
Analog overcurrent  
voltage threshold  
VOCT  
0.44  
0.56  
IOCT,MIN IOCT IOCT,MAX  
INn = "high" or DEN =  
"high"  
1)  
Analog linear  
IOCT  
20  
228  
μA  
μA  
PRQ-89  
PRQ-91  
overcurrent range  
INn = "high" or DEN =  
"high"  
2)  
OCT short to device  
ground detection  
current  
IOCT(SHORT2GND) 320  
DEN = "high"  
INn = "low"  
(table continues...)  
Datasheet  
17  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
4 I/O pins  
Table 5  
(continued) Electrical characteristics I/O pins  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Min.  
Max.  
2)  
OCT open detection  
current  
IOCT(OPEN)  
5
μA  
PRQ-619  
DEN = "high"  
INn = "low"  
1)  
2)  
Not subject to production test - specified by design  
Functional test only  
Datasheet  
18  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
5 Power Supply  
5
Power Supply  
The device is supplied by VS, which is used to supply the internal logic as well as to supply the power output stages.  
In case of an undervoltage condition, the device has an detection circuit, which prevents the activation of the power  
output stage as well as the diagnosis.  
5.1  
Operation modes and transitions  
Operation modes  
5.1.1  
The device has the following operation modes:  
Sleep  
Inactive with diagnosis  
Active with diagnosis  
Active without diagnosis  
Capacitive load switching mode with diagnosis  
Capacitive load switching mode without diagnosis  
The transition between operation modes is determined according to these variables:  
Logic level at IN pin  
PWM signal at IN pin  
Logic level at DEN pin  
The state diagram including the possible transitions is shown in Figure 14. The behavior of the device as well as some  
parameters may change independent from the operation mode of the device. Furthermore, due to the undervoltage  
detection circuitry which monitors VS supply voltage, some changes within the same operation mode can be seen  
accordingly.  
Table 6 shows the correlation between operation modes, VS supply voltage, and the state of the most important  
functions (channel status).  
IN=“low“ & DEN=“low“  
IN=“fVIN(CLS)“ & DEN=“high“  
Power-up  
Unsupplied  
IN=“fVIN(CLS)“ & DEN=“high“  
IN=“low“ & DEN=“high“  
IN=“low“ & DEN=“low“  
IN=“low“ & DEN=“low“  
Inactive with Diag  
Sleep  
IN=“low“ & DEN=“high“  
IN=“fVIN(CLS)“ & DEN=“low“  
IN=“high“ & DEN=“high“  
IN=“low“ & DEN=“low“  
IN=“high“ &  
DEN=“high“  
IN=“low“ &  
DEN=“high“  
IN=“low“ &  
DEN=“low“  
IN=“high“ &  
DEN=“low“  
IN=“fVIN(CLS)“ &  
IN=“high“ &  
IN=“high“ & DEN=“high“  
IN=“high“ & DEN=“low“  
DEN=“high“  
DEN=“low“  
Capacitive Load  
Switching with Diag  
Capacitive Load  
Switching without Diag  
Active with Diag  
Active without Diag  
IN=“high“ &  
DEN=“high“  
IN=“fVIN(CLS)“ &  
DEN=“low“  
IN=“fVIN(CLS)“ & DEN=“high“  
IN=“fVIN(CLS)“ & DEN=“low“  
Figure 14  
Table 6  
Operation mode state diagram  
Operation mode, device function and VS voltage  
Operation mode  
Function  
Channels  
Diagnosis  
VS > VS(OP)  
VS < VS(OP)  
OFF  
Sleep  
OFF  
OFF  
OFF  
(table continues...)  
Datasheet  
19  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
5 Power Supply  
Table 6  
(continued) Operation mode, device function and VS voltage  
Operation mode  
Function  
Channels  
Diagnosis  
Channels  
Diagnosis  
Channels  
Diagnosis  
Channels  
Diagnosis  
Channels  
Diagnosis  
VS > VS(OP)  
VS < VS(OP)  
OFF  
Inactive with diagnosis  
OFF  
ON  
ON  
ON  
ON  
OFF  
ON  
ON  
ON  
OFF  
OFF  
Active with diagnosis  
OFF  
OFF  
Active without diagnosis  
OFF  
OFF  
Capacitive load switching mode with  
diagnosis  
OFF  
OFF  
Capacitive load switching mode without  
diagnosis  
OFF  
OFF  
5.1.1.1  
Unsupplied  
In this state the device supply voltage is below the undervoltage threshold VS(UV)  
.
5.1.1.2  
Power-up  
The power-up transition is entered when the supply voltage (VS) is applied to the device. The supply rises until it  
exceeds the undervoltage threshold VS(OP)  
.
5.1.1.3  
Sleep  
The device is in sleep mode when digital input (DI) pins are set to "low". While in sleep mode the current consumption  
is at IVS(SLEEP). Overtemperature, overload protection and undervoltage mechanism are disabled. The device can go  
in sleep mode only if the protection is not active (nRESTART(CR) = 0, TJ < TJ(ABS) and (TJ - TJ(REF)) < TJ(DYN) (including  
hysteresis)), see Chapter 7.3.  
5.1.1.4  
Inactive with diagnosis  
The device is in inactive with diagnosis mode while DEN pin is set to “high” and input pins are set to “low. The  
channels are OFF, therefore open load in OFF diagnosis is possible. Depending on the load condition, either a  
fault current IIS(FAULT) or an open load in OFF current IIS(OLOFF) may be present at IS pin. During such condition, the  
current consumption of the device is increased.  
5.1.1.5  
Active with diagnosis  
Active with diagnosis mode is the normal operation mode of the device. The device enters active with diagnosis mode  
for the channel when IN = "high" and DEN = "high", in this condition the output is switched ON with diagnosis. Device  
current consumption is specified by parameter IGND(ACTIVE)  
.
5.1.1.6  
Active without diagnosis  
The device is in active without diagnosis mode when IN = "high" and DEN = "low", in this condition the output is  
switched ON without diagnosis.  
5.1.1.7  
Capacitive load switching mode with diagnosis  
The device has a capacitive load switching mode implemented to drive capacitive loads. The capacitive load  
switching mode with diagnosis can be activated with IN = "fVIN(CLS)" and DEN = "high", in this condition the output is  
switched ON with diagnosis. Device current consumption is specified by parameter IGND(ACTIVE)  
.
Datasheet  
20  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
5 Power Supply  
5.1.1.8  
Capacitive load switching mode without diagnosis  
The device is in capacitive load switching mode without diagnosis when IN = "fVIN(CLS)" and DEN = "low", in this  
condition the output is switched ON without diagnosis.  
5.2  
Undervoltage on VS  
Between VS(OP) and VS(UV) the undervoltage mechanism is triggered.  
The power output stage follows the input logic as long as VS > VS(OP)  
.
If the device is Active or in Capacitive Load Switching Mode, with or without Diagnosis and the supply voltage VS drops  
below the undervoltage threshold VS(UV), the internal logic switches OFF the output channel.  
VS  
VS(OP)  
VS(HYS)  
VS(UV)  
t
INn  
t
VOUTn  
t
Figure 15  
VS undervoltage behavior  
5.3  
Electrical characteristics power supply  
VS = 4 V to 20 V, TJ = -40°C to +150°C  
Unless otherwise specified typical values: VS = 13.5 V, TJ = 25°C  
Typical resistive loads connected to the outputs for testing (unless otherwise specified):  
BTG7050-1EPL: RL = 4.7 Ω  
Table 7  
Electrical characteristics power supply  
Parameter  
Symbol  
Values  
Unit  
Note or condition  
P-  
Number  
Min.  
Typ.  
Max.  
VS pin  
Power supply  
undervoltage  
shutdown  
VS(UV)  
1.8  
2.2  
2.7  
V
VS decreasing  
INn = “high”  
PRQ-98  
From 0 ≤ VDS ≤ 0.5 V to  
VDS VS  
See Figure 15  
(table continues...)  
Datasheet  
21  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
5 Power Supply  
Table 7  
(continued) Electrical characteristics power supply  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Min.  
2.1  
Max.  
Power supply  
minimum operating  
voltage  
VS(OP)  
2.5  
3
V
VS increasing  
INn = “high”  
PRQ-99  
From VDS VS to  
0 ≤ VDS ≤ 0.5 V  
See Figure 15  
1)  
Power supply  
undervoltage  
shutdown hysteresis  
VS(HYS)  
0.3  
V
PRQ-100  
PRQ-101  
PRQ-776  
VS(OP) - VS(UV)  
See Figure 15  
1)  
Breakdown voltage  
between GND and VS  
pins in reverse battery  
-VS(REV)  
16  
30  
V
IGND(REV) = 7 mA  
TJ = 150°C  
1)  
Power supply current IVS(SLEEP)_85  
consumption in sleep  
mode with loads at TJ  
≤ 85°C  
0.03  
0.5  
μA  
VS = 20 V  
VOUT = 0 V  
IN = DEN = “low”  
TJ ≤ 85°C  
Power supply current IVS(SLEEP)_150  
consumption in sleep  
mode with loads at TJ  
= 150°C  
3.5  
14  
μA  
VS = 20 V  
VOUT = 0 V  
IN = DEN = “low”  
TJ = 150°C  
PRQ-777  
Operating current in  
active with diagnosis  
mode  
IGND(ACTIVE)  
3.7  
1.8  
4.5  
2.2  
mA  
mA  
VS = 20 V  
IN = DEN = “high”  
PRQ-778  
PRQ-779  
Operating current in  
inactive with diagnosis  
mode  
IGND(INACTIVE)  
VS = 20 V  
INn = "low"  
DEN = “high”  
IOCT = IOCT,MAX  
1)  
Not subject to production test - specified by design  
Datasheet  
22  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
6 Power Stage  
6
Power Stage  
The high-side power stages are built using a N-channel vertical power MOSFET with charge pump.  
6.1  
Output ON-state resistance  
The ON-state resistance RDS(ON) depends mainly on junction temperature TJ. Figure 16, shows the variation  
of RDS(ON) across the whole TJ range. The value “2” on the y-axis corresponds to the maximum RDS(ON) measured  
at TJ = 150°C.  
RDS(ON) variation over TJ  
2.20  
2.00  
1.80  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
Reference value:  
"2" = RDS(ON),MAX @ 150  
Typical  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
Junction Temperature (°C)  
Figure 16  
RDS(ON) variation factor  
The behavior in reverse polarity is described in Chapter 7.4.1.  
6.2  
Switching loads  
6.2.1  
Switching resistive loads  
When switching resistive loads, the switching times and slew rates shown in Figure 17 can be considered.  
The switching energy values EON and EOFF are proportional to load resistance and times tON and tOFF  
.
Datasheet  
23  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
6 Power Stage  
INn  
VIN(TH)  
VIN(HYS)  
t
VOUTn  
90% of VS  
tON  
tOFF(DELAY)  
70% of VS  
70% of VS  
30% of VS  
(dV/dt)OFF  
(dV/dt)ON  
30% of VS  
10% of VS  
tON(DELAY)  
tOFF  
t
t
PDMOS  
EON  
EOFF  
Figure 17  
Switching a resistive load  
6.2.2  
Switching inductive loads  
When switching OFF inductive loads with high-side switches, the voltage VOUT drops below ground potential, because  
the inductance intends to continue driving the current. To prevent the destruction of the device due to overvoltage, a  
voltage clamp mechanism is implemented. The clamping structure limits the output voltage so that VDS VDS(CLAMP)  
Chapter 6.2.2 shows a concept drawing of the implementation.  
.
The clamping structure is active in all operation modes listed in Chapter 5.1.  
VS  
VSIS(CLAMP)  
VDS(CLAMP)  
VDS  
VS(CLAMP)  
VS  
IS  
IL  
OUT  
GND  
VOUT  
Figure 18  
Output clamping concept  
During demagnetization of inductive loads, energy has to be dissipated in the device. The energy can be calculated  
with:  
Datasheet  
24  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
6 Power Stage  
V V  
R · I  
S
DS CLAMP  
L
L
L
(1)  
E = V  
·
· ln 1 −  
+ I  
·
DS CLAMP  
L
R
V V  
R
L
S
DS CLAMP  
L
The maximum energy the device can sustain is limited by the thermal design. Please refer to Table 2 for the maximum  
allowed values of EAS (single pulse energy) and EAR (repetitive energy).  
6.2.3  
Switching capacitive loads  
When fVIN(CLS) is applied the device enters CLS mode afer tON_CLS(DELAY) as shown in Figure 19. A pumping mode is  
applied to charge the capacitor while the overcurrent limitation is active using the overcurrent limitation setting as  
set by the OCT pin, as shown in Figure 20. During CLS mode, protection and diagnosis functions are active.  
fVIN(CLS)  
INn  
VIN(TH)  
VIN(HYS)  
t
nACT  
0
nCLS(ACT)x = 1  
0
t
VOUT  
90% of VS  
tON  
tOFF_CLS(DELAY) tOFF(DELAY)  
70% of VS  
30% of VS  
70% of VS  
(dV/dt)ON  
(dV/dt)OFF  
30% of VS  
10% of VS  
tON_CLS(DELAY) tON(DELAY)  
tOFF  
t
Figure 19  
Switching a capacitive load  
When the device is in CLS mode, the dynamic overtemperature protection is reduced to TJ(DYN)_CLS with continuous  
restart.  
A transition from CLS mode to Active mode is performed automatically when VDS VDS(OLOFF)  
.
On the contrary, when VDS > VDS(OLOFF), the CLS mode has to be lef afer a maximum time of tCLSx by setting input to  
"low" or "high".  
A transition from capacitive load switching mode to active mode shall be performed only if there is no short circuit at  
the output. To distinguish between short circuit and normal load, a current sense measurement must be performed  
before leaving. If the current measurement delivers an expected value, the transition from CLS mode to active mode  
may be performed. If the current measurement delivers an open load value (no output current), it has to be assumed  
that there is either an open load or a short circuit at the output. Additionally, a short circuit condition could be  
excluded by an external voltage measurement at the output.  
Datasheet  
25  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
6 Power Stage  
INn  
tCLSx  
t
t
VOUTn  
VDS(OLOFF)  
IL  
ILIM(ADJ)  
IL  
t
t
t
nACT  
0
nCLS(ACT)x = 1  
0
Operation  
Mode  
SLEEP  
Capacitive Load Switching Mode  
ACTIVE  
Figure 20  
Capacitive load switching activations  
6.3  
Advanced switching characteristics  
Inverse current behavior  
6.3.1  
When VOUT > VS, a current IL(INV) flows into the power output transistor (see Figure 21). This condition is known as  
“Inverse Current.  
If the channel is in OFF state, the current flows through the intrinsic body diode generating high power losses,  
therefore, an increase of overall device temperature. This may lead to a switch OFF of unaffected channels due to  
overtemperature. If the channel is in ON state, RDS(INV) can be expected and power dissipation in the output stage is  
comparable to normal operation in RDS(ON)  
.
During inverse current condition, the channel remains in ON or OFF state as long as |-IL| < |-IL(INV)|.  
The feature of InverseON allows to switch ON the channel during Inverse Current condition as long as |-IL| < |-IL(INV)|,  
see Figure 22.  
Datasheet  
26  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
6 Power Stage  
VS  
Power stage  
control  
INV  
Comp.  
Device logic  
-ILn  
VOUT > VS  
OUTn  
GND  
Figure 21  
Inverse current circuitry  
CASE 1 : Power stage is on  
Power stage control  
CASE 2 : Power stage is off  
Power stage control  
„high“  
„low“  
IL  
t
t
IL  
t
t
NORMAL  
NORMAL  
NORMAL  
NORMAL  
INVERSE  
ON  
INVERSE  
OFF  
Power stage  
Power stage  
t
t
CASE 3 : Switch on during inverse current  
Power stage control  
CASE 4 : Switch off during inverse current  
Power stage control  
„low“  
„high“  
„high“  
„low“  
IL  
IL  
t
t
t
t
NORMAL  
NORMAL  
NORMAL  
NORMAL  
INVERSE  
INVERSE  
Power stage  
Power stage  
OFF  
ON  
ON  
OFF  
t
t
Figure 22  
InverseON - Channel behavior in case of applied inverse current  
6.4  
Electrical characteristics power stage  
VS = 4 V to 20 V, TJ = -40°C to +150°C  
Unless otherwise specified typical values: VS = 13.5 V, TJ = 25°C  
Datasheet  
27  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
6 Power Stage  
Typical resistive loads connected to the outputs for testing (unless otherwise specified):  
BTG7050-1EPL: RL = 4.7 Ω  
Table 8  
Electrical characteristics power stage  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Min.  
Max.  
Voltages  
Drain to source  
clamping voltage at TJ  
= -40°C  
VDS(CLAMP)_-40  
33  
36.5  
38  
42  
V
V
IL = 5 mA  
TJ = -40°C  
See Chapter 6.2.2  
1)  
PRQ-110  
PRQ-111  
Drain to source  
clamping voltage at TJ  
≥ 25°C  
VDS(CLAMP)_25  
35  
44  
IL = 5 mA  
TJ ≥ 25°C  
See Chapter 6.2.2  
Timings  
Switch-ON delay  
tON(DELAY)  
tOFF(DELAY)  
tON  
10  
10  
50  
30  
70  
130  
160  
210  
220  
µs  
µs  
µs  
µs  
VS = 13.5 V  
PRQ-112  
PRQ-113  
PRQ-114  
PRQ-115  
VOUT = 10% VS  
IOCT = IOCT,MAX  
See Figure 17  
Switch-OFF delay  
Switch-ON time  
50  
VS = 13.5 V  
VOUT = 90% VS  
IOCT = IOCT,MAX  
See Figure 17  
130  
100  
VS = 13.5 V  
VOUT = 90% VS  
IOCT = IOCT,MAX  
See Figure 17  
Switch-OFF time  
CLS activation delay  
tOFF  
VS = 13.5 V  
VOUT = 10% VS  
IOCT = IOCT,MAX  
See Figure 17  
tON_CLS(DELAY)  
tOFF_CLS(DELAY)  
ΔtSW  
10  
70  
40  
25  
200  
90  
µs  
µs  
µs  
VS = 13.5 V  
IOCT = IOCT,MAX  
See Figure 19  
PRQ-664  
PRQ-665  
PRQ-116  
CLS de-activation  
delay  
20  
VS = 13.5 V  
IOCT = IOCT,MAX  
See Figure 19  
Switch-ON/OFF  
Matching - tON - tOFF  
-60  
90  
VS = 13.5V  
IOCT = IOCT,MAX  
(table continues...)  
Datasheet  
28  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
6 Power Stage  
Table 8  
(continued) Electrical characteristics power stage  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Min.  
Max.  
Voltage slope  
Switch-ON slew rate  
(dV/dt)ON  
(dV/dt)OFF  
Δ(dV/dt)SW  
0.16  
0.27  
-0.27  
0
0.39  
V/µs  
V/µs  
V/µs  
VS = 13.5 V  
IOCT = IOCT,MAX  
VOUT = 30% to 70% of VS  
PRQ-117  
PRQ-118  
PRQ-119  
Switch-OFF slew rate  
-0.39  
-0.15  
-0.16  
0.15  
VS = 13.5V  
IOCT = IOCT,MAX  
VOUT = 70% to 30% of VS  
Slew rate matching -  
(dV/dt)ON + (dV/dt)OFF  
VS = 13.5V  
IOCT = IOCT,MAX  
CLS mode  
2)  
Input frequency  
for capacitive load  
switching mode  
activation  
fVIN(CLS)  
22  
30  
38  
kHz  
PRQ-353  
PRQ-354  
DCVIN(CLS) = 50%  
2)  
Duty cycle for  
capacitive load  
switching mode  
activation  
DCVIN(CLS)  
30%  
50%  
70%  
fVIN(CLS) = 30 kHz  
2)  
Maximum time in CLS tCLS1  
25  
ms  
PRQ-355  
PRQ-813  
PRQ-812  
PRQ-814  
mode  
See Chapter 6.2.3  
2)  
Maximum time in CLS tCLS2  
mode  
90  
ms  
See Chapter 6.2.3  
2)  
Maximum number of  
CLS mode activations  
nCLS_ACT1  
nCLS_ACT2  
500  
50  
kcycles  
kcycles  
See Chapter 6.2.3  
2)  
Maximum number of  
CLS mode activations  
See Chapter 6.2.3  
Output characteristics  
2)  
ON-state resistance at RDS(ON)_25  
50  
mΩ  
mΩ  
mΩ  
PRQ-793  
PRQ-794  
PRQ-795  
TJ = 25°C  
TJ = 25°C  
ON-state resistance at RDS(ON)_150  
TJ = 150°C  
100  
110  
TJ = 150°C  
IL = 2 A  
ON-state resistance in RDS(ON)_CRANK_15  
TJ = 150°C  
VS = 3.1 V  
IL = 1 A  
cranking at TJ = 150°C  
0
(table continues...)  
Datasheet  
29  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
6 Power Stage  
Table 8  
(continued) Electrical characteristics power stage  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Min.  
Max.  
2)  
ON-state resistance in RDS(INV)_25  
inverse current at TJ =  
25°C  
50  
mΩ  
PRQ-796  
TJ = 25°C  
VS = 13.5 V  
IL = -2 A  
See Figure 21  
ON-state resistance in RDS(INV)_150  
inverse current at TJ =  
150°C  
110  
mΩ  
TJ = 150°C  
VS = 13.5 V  
IL = -2 A  
PRQ-797  
See Figure 21  
2)  
Nominal load current IL(NOM)_85  
per channel at TA =  
85°C  
3
A
PRQ-798  
PRQ-799  
TA = 85°C  
TJ ≤ 150°C  
2)  
Output leakage current IL(OFF)_85  
at TJ ≤ 85°C  
0.01  
0.5  
μA  
VOUT = 0 V  
IN = "low"  
TA ≤ 85°C  
Output leakage current IL(OFF)_150  
1.2  
3
4
μA  
VOUT = 0 V  
IN = "low"  
TA = 150°C  
2)  
PRQ-800  
PRQ-801  
at TJ = 150°C  
Inverse Current  
Capability  
IL(INV)  
A
VS < VOUT  
IN = "high"  
See Figure 21  
Voltages  
Drain source diode  
voltage  
|VDS(DIODE)  
|
550  
1.2  
700  
mV  
mJ  
IL = -190 mA  
TJ = 150°C  
2)  
PRQ-802  
PRQ-803  
Switch-ON energy  
EON  
VS = 20V  
See Figure 17  
2)  
Switch-OFF energy  
EOFF  
1.25  
mJ  
PRQ-804  
VS = 20V  
See Figure 17  
1)  
2)  
Tested at TJ = 150°C  
Not subject to production test - specified by design  
Datasheet  
30  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
7 Protection  
7
Protection  
The device is protected against overload, overtemperature and overvoltage.  
Overtemperature and overload protection are operational in all operation modes, except when in sleep mode.  
Overload protection is not active during inverse current condition.  
Overtemperature and overload protection during inverse current condition is inactive on the channel which is in  
inverse condition.  
Overvoltage protection is active in all operation modes.  
7.1  
Overcurrent protection  
7.1.1  
Adjustable overcurrent threshold  
The device is protected in case of overload and short circuit to ground.  
The device offers an adjustable overcurrent limitation range from ILIM,MIN to ILIM,MAX. This feature offers  
protection against overstress for the load as well as for the power output stage. In case of DMOS temperature  
increase exceeding the device safe operating environment, overtemperature and dynamic temperature protection  
mechanism will be triggered as shown in Figure 24 and Figure 25.  
For the adjustment of the current limitation for both output channels, the following equation can be considered:  
I
− ∆ I  
LIM  
LIM  
I
= k  
· I  
+ ∆ I  
were,  
I
=
(2)  
(3)  
LIM  
ILIOCT  
OCT  
LIM  
OCT  
k
ILIOCT  
To select the proper resistor value ROCT connected between the OCT pin and device ground, the following equation  
can be considered:  
V
I
· k  
OCT  
ILIOCT  
R
=
OCT  
− ∆ I  
LIM  
LIM  
In case of an OCT pin open with the current not exceeding IOCT(OPEN) the device will set the current limit value to  
ILIMOCT(OPEN). In case of an OCT pin short to ground with the current exceeding IOCT(SHORT2GND) the device will set the  
current limit value to ILIMOCT(SHORT2GND). The behavior of how IOCT is related to ILIM is described in Figure 23. However,  
due to the maximum rating of the allowed current through OCT pin IOCT, it is not recommended to shorten the OCT  
pin to device GND. In the case of reverse battery condition, this could lead to violations of the maximum ratings,  
therefore IAI(REV) needs to be considered.  
Datasheet  
31  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
7 Protection  
ILIM  
ILIM,MAX  
ILIMOCT(SHORT2GND)  
ILIM03  
kILIOCT03  
ILIM02  
kILIOCT02  
ILIM01  
kILIOCT01  
ILIM,MIN  
ILIMOCT(OPEN)  
IOCT(OPEN) IOCT,MIN  
IOCT,MAX IOCT(SHORT2GND)  
IOCT  
Figure 23  
Adjustable overcurrent limitation behavior  
7.2  
Overtemperature protection  
The device incorporates both an absolute (TJ(ABS)) and a dynamic (TJ(DYN)) temperature protection circuitry for each  
channel.  
An increase in junction temperature TJ above either one of the two thresholds (TJ(ABS) or TJ(DYN)) switches OFF  
the overheated channel. The affected channel will perform automatic restart attempts. The channel remains  
switched OFF until the junction temperature has reached the restart condition described in Table 9 according to  
Chapter 7.3.1. If the number of automatic restart attempts exceeds nRESTART(CR),TYP, the affected channel latches OFF  
to prevent destruction. The behavior is shown in Figure 24 and Figure 25. TJ(REF) is the reference temperature used for  
dynamic temperature protection.  
Datasheet  
32  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
7 Protection  
INn  
t
t
DEN  
IL  
ILIM  
t
t
TJ  
TJ(ABS)  
tIS(FAULT)_D  
IIS  
IIS(FAULT)  
IIS = IL / kILIS  
IL / kILIS  
IIS < IIS(SAT),Min  
t
t
Internal  
counter  
0
1
Figure 24  
Overtemperature protection (absolute)  
INn  
t
t
DEN  
IL  
ILIM  
t
t
TJ  
TJ(ABS)  
TJ(REF)  
tIS(FAULT)_D  
IIS  
IIS(FAULT)  
IL / kILIS  
t
t
Internal  
counter  
0
1
2
Figure 25  
Overtemperature protection (dynamic)  
When the overtemperature protection circuitry allows the channel to be switched ON again, the retry strategy  
described in Chapter 7.3 is followed.  
7.3  
Protection and diagnosis in case of fault  
Any event that triggers overtemperature protection has two consequences:  
Datasheet  
33  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
7 Protection  
The affected channel switches OFF according to Chapter 7.3.1.  
If the diagnosis is active for the affected channel, a current IIS(FAULT) is provided by IS pin (see Chapter 8.2.2 for  
further details).  
The channel can be switched ON again if all the protection mechanisms fulfill the “restart” conditions described  
in Table 9 and nRESTART(CR) < nRESTART(CR),typ  
.
Table 9  
Protection "restart" condition  
Switch OFF event  
Fault condition  
"Restart" condition  
Overtemperature TJ TJ(ABS) or (TJ - TJ(REF)) ≥ TJ(DYN)  
TJ < TJ(ABS) and (TJ - TJ(REF)) < TJ(DYN) (including hysteresis)  
7.3.1  
Retry strategy  
When IN is set to “high, the power output stage is switched ON. If a fault condition is detected the power output stage  
is switched OFF. The device will apply the restart strategy and return to normal operation or latches OFF if the fault  
remains to be present afer nRESTART(CR),TYP  
.
The device has an internal retry counter nRESTART(CR) (one for each channel) to maximize the robustness in case of  
fault.  
The channel is allowed to switch ON for nRESTART(CR) times before switching OFF. Afer nRESTART(CR),TYP consecutive  
“restart” cycles, the channel latches OFF. To de-latch the power output stage and reset the internal counter it is  
necessary to set the input pin to “low” for a time longer than tDELAY(CR)  
.
If the fault is no longer present and tDELAY(CR) is observed the device will enter normal operation. In case the fault is  
still present, the device will trigger again the retry strategy.  
The retry strategy is shown in Figure 26.  
INn  
t
Short  
circuit to  
ground  
t
IL  
ILIM  
t
Internal  
temperature  
protection  
t
t
t
tDELAY(CR)  
Internal  
counter  
0
1
2
3
4
5
6
nRESTART(CR) +1  
0
DEN  
IIS(FAULT)  
IIS  
IL / kILIS  
t
tsIS(DIAG)  
tsIS(DIAG)  
Figure 26  
Retry strategy timing diagram  
It is possible to “force” a reset of the internal counter without waiting for tDELAY(CR) by applying a pulse (rising edge  
followed by a falling edge) to the DEN pin while IN pin is “low. The pulse applied to DEN pin must have a duration  
longer than tDEN(CR) to ensure a reset of the internal counter.  
The timings are shown in Figure 27.  
Datasheet  
34  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
7 Protection  
INn  
t
t
Short  
circuit to  
ground  
IL  
ILIM  
t
t
t
t
Internal  
temperature  
protection  
Internal  
counter  
0
1
2
3
4
5
6
nRESTART(CR) +1  
0
1
2
3
4
5
6
nRESTART(CR) +1  
0
DEN  
tDEN(CR)  
IIS(FAULT)  
tDEN(CR)  
IIS(FAULT)  
tDEN(CR)  
IIS(FAULT)  
IIS  
IL / kILIS  
t
tsIS(DIAG)  
Figure 27  
Retry strategy timing diagram with forced reset  
7.4  
Additional protection  
7.4.1  
Reverse polarity protection  
In reverse polarity condition (also known as reverse battery), power dissipation is caused by the intrinsic body diode  
of the DMOS channel. Each ESD diode of the logic contributes to total power dissipation. The reverse current through  
the output stages must be limited by the connected loads. The current through digital input pins has to be limited by  
an external resistor (please refer to the absolute maximum ratings listed in Table 2 and to Application Information in  
Chapter 9).  
7.4.2  
Overvoltage protection  
In the case of supply voltages between VS(EXT,UP) and VBAT(LD), the output transistors are still operational and follow the  
input pin.  
In addition to the output clamp for inductive loads as described in Chapter 6.2.2, there is a clamp mechanism  
available for overvoltage protection for the logic and the output channels, monitoring the voltage between VS and  
GND pins (VS(CLAMP)).  
7.4.3  
Loss of battery and loss of load  
The loss of connection to the battery or the load does not influence device robustness as long as load and wire  
harness are purely resistive. In case of driving an inductive load, the energy stored in the inductance must be handled.  
The device can handle the inductivity of the wire harness up to 10 µH with IL(NOM)_85.  
In case of applications where currents and/or the aforementioned inductivity are exceeded, an external suppressor  
diode (like diode DZ2 shown in Chapter 9) is recommended to handle the energy and to provide a well-defined path  
for the load current.  
Datasheet  
35  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
7 Protection  
7.4.4  
Loss of ground  
It is recommended to have a resistor connected between any digital input pin and the microcontroller to ensure a  
channel switch OFF in case of a loss of device ground event (as described in Chapter 9).  
Note  
In case any digital input pin is pulled to ground (either by a resistor or active) a parasitic ground path is present, which  
could keep the device operational during a loss of device ground.  
7.5  
Electrical characteristics protection  
VS = 4 V to 20 V, TJ = -40°C to +150°C  
Unless otherwise specified typical values: VS = 13.5 V, TJ = 25°C  
Typical resistive loads connected to the outputs for testing (unless otherwise specified):  
BTG7050-1EPL: RL = 4.7 Ω  
Table 10  
Electrical characteristics protection  
Parameter  
Symbol  
Values  
Typ.  
175  
Unit  
Note or condition  
P-  
Number  
Min.  
150  
Max.  
200  
1) 2)  
Thermal shutdown  
temperature (absolute)  
TJ(ABS)  
°C  
K
PRQ-174  
PRQ-356  
PRQ-357  
PRQ-177  
See Figure 24  
3)  
Thermal shutdown  
hysteresis (absolute)  
THYS(ABS)  
TJ(DYN)  
30  
80  
40  
See Figure 24  
3)  
Thermal shutdown  
temperature (dynamic)  
K
See Figure 24  
3)  
Thermal shutdown  
temperature (dynamic)  
in capacitive load  
switching mode  
TJ(DYN)_CLS  
K
Power supply clamping VS(CLAMP)_-40  
33  
35  
36.5  
38  
42  
44  
V
V
IVS = 5 mA  
TJ = -40°C  
See Chapter 6.2.2  
2)  
PRQ-179  
PRQ-184  
voltage at TJ = -40°C  
Power supply clamping VS(CLAMP)_25  
voltage at TJ ≥ 25°C  
IVS = 5 mA  
TJ ≥ 25°C  
See Chapter 6.2.2  
1)  
Automatic restarts in  
case of fault afer  
counter reset  
nRESTART(CR)  
tDELAY(CR)  
tDEN(CR)  
6
PRQ-186  
PRQ-188  
PRQ-190  
See Figure 26  
1)  
Counter reset delay  
time afer fault  
condition  
40  
50  
70  
100  
100  
150  
ms  
µs  
See Figure 26  
3)  
Minimum DEN pulse  
duration for counter  
reset  
See Figure 27  
(table continues...)  
Datasheet  
36  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
7 Protection  
Table 10  
(continued) Electrical characteristics protection  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Min.  
Max.  
Adjustable overcurrent limitation  
3)  
Adjustable overcurrent ILIM(ACCURACY)  
limitation accuracy  
(low)  
-22.5%  
+22.5%  
PRQ-633  
0.79 A ≤ ILIM < 1.67 A  
VDS = 3 V  
3)  
Adjustable overcurrent ΔILIM01  
limitation d-factor  
(low)  
Adjustable overcurrent kILIOCT01  
limitation k-factor  
(low)  
0.102  
34449  
A
PRQ-646  
PRQ-658  
PRQ-644  
0.79 A ≤ ILIM < 1.67 A  
3)  
0.79 A ≤ ILIM < 1.67 A  
3)  
Adjustable overcurrent ILIM(ACCURACY)  
limitation accuracy  
(medium)  
-16%  
+16%  
1.67 A ≤ ILIM < 3.27 A  
VDS = 3 V  
3)  
Adjustable overcurrent ΔILIM02  
limitation d-factor  
(medium)  
-0.042  
37301  
A
PRQ-647  
PRQ-659  
PRQ-634  
1.67 A ≤ ILIM < 3.27 A  
3)  
Adjustable overcurrent kILIOCT02  
limitation k-factor  
1.67 A ≤ ILIM < 3.27 A  
(medium)  
3)  
Adjustable overcurrent ILIM(ACCURACY)  
limitation accuracy  
(high)  
-18%  
+18%  
3.27 A ≤ ILIM ≤ 8.86 A  
VDS = 3 V  
3)  
Adjustable overcurrent ΔILIM03  
limitation d-factor  
(high)  
Adjustable overcurrent kILIOCT03  
limitation k-factor  
(high)  
-0.374  
40512  
0.74  
A
PRQ-648  
PRQ-660  
PRQ-661  
PRQ-662  
3.27 A ≤ ILIM ≤ 8.86 A  
3)  
3.27 A ≤ ILIM ≤ 8.86 A  
4)  
Current limitation  
value in case OCT pin  
open  
ILIMOCT(OPEN)  
0.52  
0.97  
11.5  
A
A
IOCT IOCT(OPEN)  
4)  
Current limitation  
ILIMOCT(SHORT2GND 7.45  
9.48  
value in case OCT pin  
short to device ground  
)
IOCT IOCT(SHORT2GND)  
1)  
2)  
3)  
4)  
Functional test only  
Tested at TJ = 150°C only  
Not subject to production test - specified by design  
Tested at TJ = -40°C only  
Datasheet  
37  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
8 Diagnosis  
8
Diagnosis  
For the purpose of diagnosis, the device provides a proportional sense current signal (IIS) at pin IS. In case of  
disabled diagnostic (DEN pin set to “low”), IS pin becomes high impedance.  
A sense resistor RSENSE must be connected between IS pin and module ground if the current sense diagnosis is used.  
RSENSE value has to be higher than 820 Ω (or 400 Ω when a central Reverse Battery protection is present on the battery  
feed) to limit the power losses in the sense circuitry.  
A typical value is RSENSE = 1.2 kΩ.  
Due to the internal connection between IS pin and VS supply voltage, it is not recommended to connect the IS pin to  
the sense current output of other devices, if they are supplied by a different battery feed.  
See Figure 28 for details as an overview.  
VS  
Channel  
T
Overtemperature  
IS Pin Control  
Internal Counters  
Logic  
IN  
OUT  
DEN  
IL / kILIS  
+
VDS(kILIS_EN)  
MUX  
+
IIS(FAULT)  
VDS(OLOFF)  
IIS(OLOFF)  
MUX  
IS  
Figure 28  
Diagnosis block diagram  
8.1  
Overview  
Table 11 gives a quick reference to the state of the IS pin during the device operation.  
Table 11  
SENSE signal as a function of application condition  
Operation mode  
Input level  
DEN level  
VOUT  
Diagnostic output  
Normal operation  
LOW/OFF  
HIGH  
~ GND  
Z
IIS(FAULT) if nRESTART(CR) > 0  
(table continues...)  
Datasheet  
38  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
8 Diagnosis  
Table 11  
(continued) SENSE signal as a function of application condition  
Operation mode  
Input level  
DEN level  
VOUT  
Diagnostic output  
Short circuit to GND  
~ GND  
Z
IIS(FAULT) if nRESTART(CR) > 0  
Thermal shutdown  
temperature (absolute)  
Z
IIS(FAULT)  
Thermal shutdown  
temperature (dynamic)  
Z
IIS(FAULT)  
Short circuit to VS  
= VS  
IIS(OLOFF)  
IIS(FAULT) if nRESTART(CR) > 0  
Open load  
< VS - VDS(OLOFF)  
Z
1)  
1)  
> VS - VDS(OLOFF)  
< VS - VDS(OLOFF)  
> VS - VDS(OLOFF)  
IIS(OLOFF) or IIS(FAULT)  
if nRESTART(CR) > 0 for both cases  
Overcurrent pin fault  
IIS(OCT_PIN_FAULT)  
IIS(OLOFF) or IS(FAULT)  
if nRESTART(CR) > 0 for both cases  
IS(OLOFF) or IS(FAULT) if nRESTART(CR) > 0  
IIS = IL / kILIS  
IIS(FAULT)  
I
Inverse current  
~ VINV = VOUT > VS  
I
Normal operation  
Short circuit to GND  
HIGH/ON or  
CLS  
< VS - VDS(kILIS_EN)  
~ GND  
Z
Thermal shutdown  
temperature (absolute)  
IIS(FAULT)  
Thermal shutdown  
temperature (dynamic)  
Z
IIS(FAULT)  
Short circuit to VS  
Open load  
= VS  
IIS < IL / kILIS  
IIS = IIS(EN)  
IIS = IIS(EN)  
IIS(FAULT)  
2)  
~ VS  
Inverse current  
Current limitation  
Underload  
~ VINV = VOUT > VS  
< VS  
3)  
~ VS  
IIS(EN) < IIS < IL(NOM) / kILIS  
All conditions  
n.a.  
LOW  
n.a.  
Z
1) With additional pull up resistor  
2) The output current has to be smaller than IL(OL)  
3) The output current has to be higher than IL(OL)  
8.1.1  
SENSE signal truth table  
Diagnosis can be activated or deactivated using the DEN pin, Table 12.  
Datasheet  
39  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
8 Diagnosis  
Table 12  
Diagnostic truth table  
DEN  
IS  
"low"  
"high"  
Z
SENSE output  
8.2  
Diagnosis in ON state  
A current proportional to the load current (IIS = IL/kILIS) is provided at pin IS when the following conditions are fulfilled:  
The power output stage is switched ON with VDS < VDS(kILIS_EN)  
The diagnosis is enabled for that channel  
No fault (as described in Chapter 7.3) is present or was present and not cleared yet (see Chapter 8.2.2 for further  
details)  
As long as a fault is present or was present and not cleared yet a current IIS(FAULT) is provided at IS pin.  
8.2.1  
Current sense (kILIS)  
IIS increases linearly with IL output current until it reaches the saturation current IIS(SAT). In case of open load at  
the output stage (IL close to 0 A), the maximum sense current IIS(EN) (no load, diagnosis enabled) is specified. This  
condition is shown in Figure 29. The center line represents the ideal kILIS, while the outer lines show the behavior of  
a typical product. An external RC filter between IS pin and microcontroller ADC input pin is recommended to reduce  
signal ripple and oscillations (a minimum time constant of 1 µs for the RC filter is recommended). The kILIS factor is  
specified with limits that take into account effects due to temperature, supply voltage, and manufacturing process.  
IIS  
IIS(OL)  
IIS(EN)  
IL(OL)_4u  
IL  
Figure 29  
Current sense ratio in open load at ON condition  
8.2.2  
Fault current (IIS(FAULT))  
In case a fault is present and DEN is set to “high, a current IIS(FAULT) is provided.  
Datasheet  
40  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
8 Diagnosis  
The following situations may occur:  
If the channel is ON and the number of restarts is less than “nRESTART(CR),TYP, the current IIS(FAULT) is provided for a  
time tIS(FAULT)_D afer the channel is allowed to restart, and thereafer IIS = IL/kILIS (as shown in Figure 30). During a  
restart cycle the current IIS(FAULT) is provided each time the channel diagnosis is checked.  
If the channel is ON and the number of restarts is equal to “nRESTART(CR),TYP, the current IIS(FAULT) is provided  
until the internal counter is reset. The internal counter can be cleared either by INn = "low" for tDELAY(CR) or by  
INn = "low" and DEN pin pulse for tDEN(CR), as described in Chapter 7.3.1.  
While the channel is OFF and the internal counter value is not reset, the current IIS(FAULT) is provided.  
INn  
t
IL  
ILIM  
t
Internal  
counter  
0
1
2
0
t
t
DEN  
tIS(FAULT)_D  
tDEN(CR)  
IIS(FAULT)  
IIS  
IIS(FAULT)  
IL / kILIS  
t
Figure 30  
IIS(FAULT) at load switching  
Figure 31 adds the behavior of SENSE signal to the timing diagram seen in Figure 26, while Figure 32 shows the  
relation between IIS = IL/kILIS, IIS(SAT) and IIS(FAULT)  
.
Datasheet  
41  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
8 Diagnosis  
INn  
t
t
Short  
circuit to  
ground  
IL  
ILIM  
t
t
t
t
Internal  
temperature  
protection  
tDELAY(CR)  
Internal  
counter  
0
1
2
3
4
5
6
nRESTART(CR) +1  
0
DEN  
IIS(FAULT)  
IIS(FAULT)  
IIS(FAULT)  
IIS  
IL / kILIS  
t
tsIS(DIAG)  
tsIS(DIAG)  
tsIS(DIAG)  
tsIS(DIAG)  
Figure 31  
SENSE behavior in fault condition  
IIS  
IIS(SAT),MAX  
IIS(FAULT),MAX  
IIS(SAT)  
IIIS(FAULT)  
IIS(SAT),MIN  
IIS(FAULT),MIN  
IL / kILIS  
IL  
Figure 32  
SENSE behavior - overview  
8.3  
Diagnosis in OFF State  
When a power output stage is in OFF state, the device can measure the output voltage and compare it with a  
threshold voltage. In this way, using some additional external components (a pull-down resistor and a switchable  
pull-up current source), it is possible to detect if the load is missing or if there is a short circuit to battery. If  
a fault condition was detected by the device (the internal counter has a value different from the reset value, as  
described in Chapter 8.2.2 a current IIS(FAULT) is provided by IS pin each time the channel diagnosis is checked  
also in OFF state. Additionally, the device can measure if the OCT pin is open IOCT(OPEN) or shorted to device  
ground IOCT(SHORT2GND). In case of an fault condition on the OCT pin IIS(OCT_PIN_FAULT) is provided. Figure 33 shows the  
relationship between IIS(OLOFF), IIS(FAULT) and IIS(OCT_PIN_FAULT) as functions of VDS. The three currents do not overlap  
making it always possible to differentiate between open load in OFF, OCT pin fault and fault condition.  
Datasheet  
42  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
8 Diagnosis  
IIS  
IIS(FAULT)  
IIS(OLOFF)  
IIS(OCT_PIN_FAULT)  
VDS(OLOFF)  
VDS  
Figure 33  
IIS in OFF state  
8.3.1  
Open load current  
In OFF state, while DEN pin is set to “high, the VDS voltage is compared with a threshold voltage VDS(OLOFF). When the  
diagnosis is active and VDS VDS(OLOFF), a current IIS(OLOFF) is provided by IS pin. If the load is properly connected and  
there is no short circuit to battery, VDS ~ VS, therefore, VDS > VDS(OLOFF) the IS pin is set to high impedance.  
It is necessary to wait a time tIS(OLOFF)_D between the falling edge of the input pin and the sensing at pin IS for Open  
Load in OFF diagnosis to allow the internal comparator to settle. In Figure 34 the timings for an Open Load detection  
are shown - the load is always disconnected.  
INn  
t
DEN  
t
tIS(OLOFF)_D  
~ VS  
VOUT  
VDS(OLOFF)  
Load connected  
t
t
IIS  
IIS(OLOFF)  
IIS(OL)_4u  
Figure 34  
Open load in OFF timings - load disconnection  
8.3.2  
OCT pin fault current  
When the device is in Inactive with Diagnosis mode and the OCT pin is open or shorted to device ground  
and VDS VDS(OLOFF), a current IIS(OCT_PIN_FAULT) is provided by IS pin. Figure 33 shows IIS(OCT_PIN_FAULT) as a function over  
VDS  
.
Datasheet  
43  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
8 Diagnosis  
8.4  
SENSE timings  
Figure 35 and Figure 36 show the timing during settling tsIS(ON) and disabling tsIS(OFF) of the SENSE (including the case  
of load change). As a proper signal cannot be established before the load current is stable (therefore before tON),  
t
= t  
+ t  
(4)  
sIS DIAG  
sIS ON  
ON  
INn  
DEN  
IL  
OFF  
ON  
OFF  
t
t
tOFF  
t
t
tsIS(OFF)  
tsIS(OFF)  
tsIS(LC)  
tsIS(ON)  
IIS  
tsIS(DIAG)  
Figure 35  
SENSE settling/disabling timing  
INn  
DEN  
IL  
OFF  
ON  
OFF  
t
t
tsIS(LC)_SLC  
t
t
tsIS(ON)_SLC  
tsIS(ON)  
IIS  
Figure 36  
SENSE timing with small load current  
8.5  
Electrical characteristics diagnosis  
VS = 4 V to 20 V, TJ = -40°C to +150°C  
Unless otherwise specified typical values: VS = 13.5 V, TJ = 25°C  
Typical resistive loads connected to the outputs for testing (unless otherwise specified):  
BTG7050-1EPL: RL = 4.7 Ω  
Datasheet  
44  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
8 Diagnosis  
Table 13  
Electrical characteristics diagnosis  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Min.  
4.4  
Max.  
15  
1)  
SENSE saturation  
current  
IIS(SAT)  
mA  
PRQ-215  
VS = 6 V to 20 V  
RSENSE = 1.2 kΩ  
See Figure 32  
SENSE leakage current IIS(OFF)  
when disabled  
0.01  
0.2  
0.5  
2
µA  
µA  
DEN = "low"  
IL IL(NOM)  
VIS = 0 V  
1)  
PRQ-219  
PRQ-221  
SENSE leakage current IIS(EN)_85  
when enabled at TJ ≤  
85°C  
TJ ≤ 85°C  
DEN = "high"  
IL = 0 A  
See Figure 29  
SENSE leakage current IIS(EN)_150  
when enabled at TJ =  
150°C  
0.2  
2
µA  
TJ = 150°C  
DEN = "high"  
IL = 0 A  
PRQ-223  
See Figure 29  
1)  
Saturation voltage in  
kILIS operation (VS-  
VIS)  
VSIS_k  
0.5  
0.5  
1
1
V
V
PRQ-226  
PRQ-682  
VS = 5 V  
IN = DEN = “high”  
1)  
Saturation voltage in  
open load at OFF  
diagnosis (VS-VIS)  
VSIS_OL  
VS = 5 V  
IN = "low"  
DEN = "high"  
1)  
Saturation voltage in  
fault diagnosis (VS-VIS)  
VSIS_F  
0.5  
0.5  
1
1
V
V
PRQ-684  
PRQ-686  
VS = 5 V  
IN = "low"  
DEN = "high"  
counter > 0  
1)  
Saturation voltage in  
OCT pin fault diagnosis  
(VS-VIS)  
VSIS_OCT_F  
VS = 5 V  
IN = "low"  
DEN = "high"  
IOCT  
= IOCT(SHORT2GND) or IOCT(  
OPEN)  
(table continues...)  
Datasheet  
45  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
8 Diagnosis  
Table 13  
(continued) Electrical characteristics diagnosis  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Min.  
33  
Max.  
42  
Power supply to IS pin VSIS(CLAMP)_-40  
clamping voltage at TJ  
=-40°C  
36.5  
V
IIS = 1mA  
TJ = -40°C  
See Chapter 6.2.2  
2)  
PRQ-294  
Power supply to IS pin VSIS(CLAMP)_25  
clamping voltage at TJ  
≥ 25°C  
35  
38  
44  
V
PRQ-296  
IIS = 1 mA  
TJ ≥ 25°C  
See Chapter 6.2.2  
SENSE fault current  
IIS(FAULT)  
IIS(OLOFF)  
4.4  
1.9  
5.5  
2.5  
10  
mA  
mA  
See Chapter 8  
See Chapter 8  
PRQ-298  
PRQ-306  
SENSE open load in  
OFF current  
3.5  
SENSE OCT pin FAULT IIS(OCT_PIN_FAULT) 0.2  
1.2  
1.7  
mA  
µs  
See Figure 33  
PRQ-621  
PRQ-308  
in OFF current  
1)  
SENSE delay time  
at channel switch  
ON afer last fault  
condition  
tIS(FAULT)_D  
500  
See Figure 30  
SENSE open load in  
OFF delay time  
tIS(OLOFF)_D  
70  
185  
300  
µs  
VDS < VDS(OLOFF) from  
INn falling edge to  
IIS = IIS(OLOFF),MIN 0.9  
PRQ-310  
DEN = “high”  
nRESTART(CR) = 0  
See Figure 34  
1)  
VDS threshold for kILIS VDS(kILIS_EN)  
0.8  
1.3  
1.2  
1.8  
1.4  
2.3  
V
V
PRQ-809  
PRQ-313  
enable  
Open load VDS  
detection threshold in  
OFF state  
VDS(OLOFF)  
See Chapter 8.3  
SENSE settling time  
with nominal load  
current stable  
tsIS(ON)  
5
20  
60  
µs  
µs  
IL = IL(NOM) from DEN  
rising edge to IIS = IL/  
(kILIS,MAX @ IL) 0.9  
PRQ-315  
PRQ-317  
See Figure 35  
1)  
SENSE settling time  
with small load current  
stable  
tsIS(ON)_SLC  
IL = IL01 from DEN rising  
edge to IIS = IL/(kILIS,MAX  
@ IL) 0.9  
See Figure 36  
(table continues...)  
Datasheet  
46  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
8 Diagnosis  
Table 13  
(continued) Electrical characteristics diagnosis  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-  
Number  
Min.  
Max.  
20  
1)  
SENSE disable time  
tsIS(OFF)  
5
µs  
PRQ-319  
IL = IL(NOM)  
From DEN falling edge  
to IIS = IIS(OFF)  
See Figure 35  
1)  
SENSE settling time  
tsIS(LC)  
5
20  
µs  
µs  
PRQ-321  
PRQ-323  
afer load change  
from IL = IL(NOM)/2 to IL =  
IL(NOM)  
See Figure 35  
1)  
SENSE settling time  
afer load change with  
small load current  
tsIS(LC)_SLC  
250  
400  
DEN = "high" from load  
change to IIS = IL/(kILIS  
@ IL) from IL(NOM) to IL01  
See Figure 36  
Open load output  
current at IIS = 4 µA  
IL(OL)_4u  
2
9.5  
17  
mA  
IIS = IIS(OL) = 4 µA  
PRQ-580  
PRQ-585  
PRQ-588  
PRQ-590  
PRQ-594  
PRQ-598  
PRQ-601  
PRQ-604  
Current sense ratio at kILIS02  
IL =IL02  
-26%  
2230  
+26%  
+23.5%  
+20%  
+10%  
+9.5%  
+6%  
IL02 = 20 mA  
IL04 = 50 mA  
IL05 = 100 mA  
IL08 = 250 mA  
IL11 = 1 A  
Current sense ratio at kILIS04  
IL =IL04  
-23.5% 2030  
Current sense ratio at kILIS05  
IL =IL05  
-20%  
-10%  
2030  
2030  
Current sense ratio at kILIS08  
IL =IL08  
Current sense ratio at kILIS11  
IL =IL11  
-9.5% 2030  
Current sense ratio at kILIS13  
IL =IL13  
-6%  
-5%  
2030  
2030  
IL13 = 2 A  
Current sense ratio at kILIS15  
IL =IL15  
+5%  
IL15 = 4 A  
1)  
2)  
Not subject to production test - specified by design  
Tested at TJ = 150°C  
Datasheet  
47  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
9 Application information  
9
Application information  
Note:  
The following information is given as a hint for the implementation of the device only and shall not be  
regarded as a description or warranty of a certain functionality, condition or quality of the device.  
VBAT  
ZWIRE  
Optional  
Logic Supply  
CVS  
CVSGND  
T1  
RGND  
GND  
VS  
OCT  
OUT  
VDD  
GPIO  
GPIO  
RIN  
IN  
RDEN  
DEN  
COUT  
CVS2  
DZ2  
Optional  
RES  
ADC  
RADC  
RIS_PROT  
IS  
COUT  
VSS  
CSENSE  
Optional  
Logic GND  
Power GND  
Chassis GND  
Figure 37  
Table 14  
Application diagram  
Suggested component values  
Value Purpose  
Reference  
RIN  
4.7 kΩ  
Protection of the microcontroller during overvoltage and reverse polarity.  
Necessary to switch OFF the output during loss of ground  
RDEN  
ROCT  
4.7 kΩ  
Protection of the microcontroller during overvoltage and reverse polarity.  
Necessary to switch OFF the output during loss of ground  
2.2 kΩ - 25 kΩ  
Adjustable overcurrent limitation resistor connected to device ground.  
Protection of the device during overvoltage and reverse polarity  
RPD  
ROL  
47 kΩ  
Output polarization (pull-down). Ensures polarization of the outputs to  
distinguish between open load and short to VS in OFF diagnosis  
1.5 kΩ  
Output polarization (pull-up). Ensure polarization of the output during open load  
in OFF diagnosis  
COUT  
T1  
10 nF  
Protection of the output during ESD events and BCI  
Switch the battery voltage for open load in OFF diagnosis  
Filtering of voltage spikes on the battery line  
BC 807  
100 nF  
CVS  
(table continues...)  
Datasheet  
48  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
9 Application information  
Table 14  
(continued) Suggested component values  
Purpose  
Reference  
CVSGND  
DZ2  
Value  
47 nF  
Buffer capacitor for fast transient  
33V TVS Diode  
Transient voltage suppressor diode. Protection during overvoltage and in case of  
loss of battery while driving an inductive load  
CVS2  
Filtering/buffer capacitor located at VBAT connector  
RSENSE  
RIS_PROT  
1.2 kΩ  
SENSE resistor  
4.7 kΩ  
Protection during overvoltage, reverse polarity, loss of ground Value to be tuned  
according to microcontroller specifications  
DZ1  
7 V Z-Diode  
Protection of microcontroller during overvoltage  
RADC  
4.7 kΩ  
Protection of microcontroller ADC input during overvoltage, reverse polarity, loss  
of ground. Value to be tuned according to microcontroller specifications  
CSENSE  
RGND  
220 pF  
Sense signal filtering. A time constant (RADC CSENSE) longer than 1 µs is  
recommended  
47 Ω  
Protection in case of overvoltage and loss of battery while driving inductive  
loads  
Please contact us for information regarding the pin behavior assessment  
For further information you may contact http://www.infineon.com  
Datasheet  
49  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
10 Package outlines  
10  
Package outlines  
Figure 38  
PG-TSDSO-14 dual small outline package dimensions  
Figure 39  
PG-TSDSO-14 dual small outline footprint dimensions  
Note:  
To meet the world-wide customer requirements for environmentally friendly products and to be  
compliant with government regulations the device is available as a green product. Green products are  
RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC  
J-STD-020).  
Further information on packages https://www.infineon.com/packages  
Datasheet  
50  
Rev.1.00  
2022-09-20  
BTG7050-1EPL  
Datasheet  
11 Revision history  
11  
Revision history  
Table 15  
Revision history  
Date of release  
Document  
version  
Description of changes  
Rev.1.00  
2022-09-20  
Initial Datasheet  
Datasheet  
51  
Rev.1.00  
2022-09-20  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
Edition 2022-09-20  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
Important notice  
Warnings  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer’s compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer’s products and any use of the product of  
Infineon Technologies in customer’s applications.  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
Except as otherwise explicitly approved by Infineon  
Technologies in  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or  
any consequences of the use thereof can reasonably  
be expected to result in personal injury.  
a written document signed by  
©
2022 Infineon Technologies AG  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Document reference  
IFX-yhc1639672556452  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to such  
application.  

相关型号:

BTG7050-2EPL

The BTG7050-2EPL, as part of the PROFET™ Load Guard family, is a dual channel smart high-side power switch, providing protection functions and enhanced diagnostic capabilities. It is equipped with adjustable overcurrent limitation to offer high reliability for protecting the system: In case of a short circuit to ground, the PCB traces, connectors, as well as loads, can be protected. Furthermore, the BTG7050-2EPL has a capacitive load switching mode implemented to charge big capacitive loads and to reduce current peaks during switch on of capacitors. By these features, the device addresses different use cases for intelligent power distribution (load supply protection, wire protection and power supply protection) and a broad range of applications.
INFINEON

BTGPS1

NICAD BACKUP BATTERY 1.2V
ETC

BTGSC1-10.000MHZ-G

Series - Fundamental Quartz Crystal, 10MHz Nom, HC49/US, 2 PIN
CALIBER

BTGSC1-10.000MHZ-V

Series - Fundamental Quartz Crystal, 10MHz Nom, HC49/US, 2 PIN
CALIBER

BTGSC1-14.999MHZ-TR

Series - Fundamental Quartz Crystal, 14.999MHz Nom, HC49/US, 2 PIN
CALIBER

BTGSC1-4.999MHZ-G

Series - Fundamental Quartz Crystal, 4.999MHz Nom, HC49/US, 2 PIN
CALIBER

BTGSC1-4.999MHZ-L

Series - Fundamental Quartz Crystal, 4.999MHz Nom, HC49/US, 3 PIN
CALIBER

BTGSC1-4.999MHZ-SP

Series - Fundamental Quartz Crystal, 4.999MHz Nom, HC49/US, 2 PIN
CALIBER

BTGSC1-8.000MHZ-G1

Series - Fundamental Quartz Crystal, 8MHz Nom, HC49/US, 2 PIN
CALIBER

BTGSC3-24.576MHZ-G1

Series - 3Rd Overtone Quartz Crystal, 24.576MHz Nom, HC49/US, 2 PIN
CALIBER

BTGSC3-29.999MHZ-L3

Series - 3Rd Overtone Quartz Crystal, 29.999MHz Nom, HC49/US, 3 PIN
CALIBER

BTGSC3-29.999MHZ-TR

Series - 3Rd Overtone Quartz Crystal, 29.999MHz Nom, HC49/US, 2 PIN
CALIBER