BSC0924NDI [INFINEON]

极低的栅极和输出电荷,结合极低的导通状态电阻和小体积封装,使 OptiMOS™ 25V 成为要求较高的服务器、数据通信和通信电压调节器解决方案的最佳选择。OptiMOS™ 30V 产品专为满足笔记本电脑的电源管理需求而量身定制,可改善电磁干扰行为,以及延长电池寿命。可用于半桥配置(功率级 5x6);
BSC0924NDI
型号: BSC0924NDI
厂家: Infineon    Infineon
描述:

极低的栅极和输出电荷,结合极低的导通状态电阻和小体积封装,使 OptiMOS™ 25V 成为要求较高的服务器、数据通信和通信电压调节器解决方案的最佳选择。OptiMOS™ 30V 产品专为满足笔记本电脑的电源管理需求而量身定制,可改善电磁干扰行为,以及延长电池寿命。可用于半桥配置(功率级 5x6)

通信 电池 栅 数据通信 服务器 电脑 栅极 调节器
文件: 总14页 (文件大小:745K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BSC0924NDI  
Dual N-Channel OptiMOS™ MOSFET  
Product Summary  
Features  
Q1  
30  
5
Q2  
• Dual N-channel OptiMOS™ MOSFET  
VDS  
30  
3.7  
5.2  
40  
V
• Integrated monolithic Schottky-like diode  
RDS(on),max  
VGS=10 V  
V
GS
=4.5 V  
mW  
• Optimized for high performance Buck converter  
7
Logic level (4.5V rated)  
I
D  
40  
A
• 100% avalanche tested  
• Qualified according to JEDEC1) for target applications  
• Pb-free lead plating; RoHS compliant  
VPhase  
• Halogen-free according to IEC61249-2-22  
Type  
Package  
Marking  
PG-TISON-8  
BSC0924NDI  
0924NDI  
Maximum ratings, at T j=25 °C, unless otherwise specified 2)  
Value  
Parameter  
Symbol Conditions  
Unit  
Q1  
Q2  
I D  
T C=70 °C, VGS=10V  
Continuous drain current  
40  
40  
A
T A=25 °C, VGS=4.5V3)  
T A=70 °C, VGS=4.5V3)  
T A=25 °C, VGS=10V4)  
T C=70 °C  
17  
14  
10  
32  
25  
13  
Pulsed drain current5)  
I D,pulse  
EAS  
160  
160  
Q1: I D=20 A,  
Q2: I D=20 A,  
R GS=25 W  
Avalanche energy, single pulse  
9
10  
mJ  
VGS  
Ptot  
±20  
Gate source voltage  
Power dissipation  
V
T A=25 °C2)  
2.5  
1.0  
2.5  
1.0  
W
T A=25 °C, minimum  
footprint3)  
T j, T stg  
-55 ... 150  
55/150/56  
Operating and storage temperature  
IEC climatic category; DIN IEC 68-1  
°C  
1) J-STD20 and JESD22  
2) One transistor active  
3) Device on 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm2 (one layer, 70 µm thick) copper area for drain connection. PCB is  
vertical in still air.  
4)  
Device mounted on a minimum pad (one layer, 70 µm thick). One transistor active  
See figure 3 for more detailed information.  
5)  
Rev.2.0  
page 1  
2013-07-30  
BSC0924NDI  
Values  
typ.  
Parameter  
Symbol Conditions  
Unit  
min.  
max.  
Thermal characteristics  
R thJC  
Q1  
Q2  
Q1  
Q2  
Q1  
-
-
-
-
4.2  
3.4  
K/W  
Thermal resistance, junction -  
case  
R thJA  
Thermal resistance, junction -  
ambient1)  
6 cm2 cooling area2)  
-
-
-
-
50  
minimal footprint,  
steady state3)  
125  
Q2  
Electrical characteristics, at T j=25 °C, unless otherwise specified  
Static characteristics  
Drain-source breakdown voltage Q1  
V(BR)DSS VGS=0 V, I D=10 mA  
30  
-
-
15  
-
-
-
V
Q2  
Q1  
Q2  
Q1  
Q2  
Q1  
dV(BR)DSS  
/dT j  
I D=10 mA, referenced  
to 25 °C  
Breakdown voltage temperature  
coefficient  
mV/K  
Gate threshold voltage  
VGS(th) VDS=VGS, I D=250 µA  
1.2  
2
V
I DSS  
Zero gate voltage drain current  
-
-
-
-
-
-
1
500  
0.1  
-
µA  
VDS=24 V, VGS=0 V,  
T j=25 °C  
Q2  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
Q1  
-
mA  
VDS=24 V, VGS=0 V,  
T j=150 °C  
3
I GSS  
Gate-source leakage current  
VGS=20 V, VDS=0 V  
-
-
100 nA  
R DS(on)  
-
-
5.4  
4.2  
3.8  
2.8  
2.6  
0.9  
65  
7.0  
5.2  
5.0  
3.7  
5.2  
1.8  
-
mW  
Drain-source on-state  
resistance  
VGS=4.5 V, I D=20 A  
-
VGS=10 V, I D=20 A  
-
R G  
Gate resistance  
1.3  
0.5  
32  
W
g fs  
Transconductance  
S
|VDS|>2|I D|R DS(on)max  
,
I D=20 A  
Q2  
36  
71  
-
Rev.2.0  
page 2  
2013-07-30  
BSC0924NDI  
Values  
typ.  
Parameter  
Symbol Conditions  
Unit  
min.  
max.  
Dynamic characteristics  
C iss  
Input capacitance  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
870  
1100  
330  
460  
49  
1160 pF  
1470  
C oss  
Output capacitance  
Reverse transfer capacitance  
Turn-on delay time  
Rise time  
439  
VGS=0 V,  
VDS= 15 V, f =1 MHz  
612  
Crss  
t d(on)  
t r  
-
64  
-
4.7  
3.3  
3.8  
2.8  
17  
ns  
-
-
VDD=15 V,  
VGS=10 V, R G=1.6 W,  
I D=20 A  
-
t d(off)  
Turn-off delay time  
Fall time  
-
15  
-
t f  
3.0  
2.2  
-
-
Gate Charge Characteristics  
Gate to source charge  
Gate to drain charge  
Gate charge total  
Q gs  
Q1  
Q2  
-
-
-
-
-
-
2.4  
2.2  
6.7  
2.8  
2.9  
2.9  
8.5  
2.7  
9
3.2  
2.9  
10  
nC  
Q gd  
Q g  
VDD=15 V,  
I D=30 A,  
VGS=0 to 4.5 V  
Vplateau  
Q gs  
Gate plateau voltage  
Gate to source charge  
Gate to drain charge  
Gate charge total  
-
V
3.9  
3.8  
12.8  
nC  
Q gd  
Q g  
Vplateau  
Q oss  
Gate plateau voltage  
Output charge  
V
Q1  
Q2  
-
-
12  
16  
nC  
VDD=15 V, VGS=0 V  
12  
Rev.2.0  
page 3  
2013-07-30  
BSC0924NDI  
Values  
typ.  
Parameter  
Symbol Conditions  
Unit  
min.  
max.  
Reverse Diode  
I S  
Diode continuous forward current Q1  
Q2  
-
-
30  
40  
A
T C=25 °C  
I S,pulse  
Diode pulse current  
Q1  
Q2  
-
-
-
-
160  
160  
VGS=0 V, I F=20 A,  
T j=25 °C  
VSD  
Diode forward voltage  
Q1  
Q2  
-
-
0.86  
0.56  
1
V
VGS=0 V, I F=3 A,  
T j=25 °C  
0.7  
Q rr  
Reverse recovery charge  
Q1  
Q2  
-
-
5
5
-
-
nC  
VR=15 V, I F=I S,  
diF/dt =100 A/µs  
2) Device on 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm2 (one layer, 70 µm thick) copper area for drain  
connection. PCB is vertical in still air.  
3) device mounted on a minimum pad (one layer, 70 µm thick)  
Rev.2.0  
page 4  
2013-07-30  
BSC0924NDI  
1 Power dissipation (Q1)  
2 Power dissipation (Q2)  
Ptot=f(T A)3)  
Ptot=f(T A)3)  
1.2  
1
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
0
40  
80  
120  
160  
0
40  
80  
120  
160  
TA [°C]  
TA [°C]  
3 Drain current (Q1)  
I D=f(T C)  
4 Drain current (Q2)  
I D=f(T C)  
parameter: VGS≥10 V  
parameter: VGS≥10 V  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
0
40  
80  
120  
160  
0
40  
80  
120  
160  
TC [°C]  
TC [°C]  
Rev.2.0  
page 5  
2013-07-30  
BSC0924NDI  
5 Safe operating area (Q1)  
I D=f(VDS); T C=25 °C; D =0  
parameter: t p  
6 Safe operating area (Q2)  
I D=f(VDS); T C=25 °C; D =0  
parameter: t p  
103  
102  
101  
103  
102  
101  
1 µs  
1 µs  
10 µs  
10 µs  
100 µs  
100 µs  
1 ms  
1 ms  
10 ms  
DC  
10 ms  
DC  
100  
100  
10-1  
10-1  
10-1  
100  
101  
102  
10-1  
100  
101  
102  
VDS [V]  
VDS [V]  
7 Max. transient thermal impedance (Q1)  
Z thJC=f(t p)  
8 Max. transient thermal impedance (Q2)  
Z thJC=f(t p)  
parameter: D =t p/T  
parameter: D =t p/T  
101  
101  
0.5  
100  
0.2  
0.5  
0.1  
0.2  
0.05  
100  
0.02  
0.1  
0.01  
0.05  
10-1  
single pulse  
0.02  
0.01  
single pulse  
10-1  
10-2  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
tp [s]  
tp [s]  
Rev.2.0  
page 6  
2013-07-30  
BSC0924NDI  
9 Typ. output characteristics (Q1)  
I D=f(VDS); T j=25 °C  
10 Typ. output characteristics (Q2)  
I D=f(VDS); T j=25 °C  
parameter: VGS  
parameter: VGS  
160  
400  
10 V  
10 V  
4.5 V  
4 V  
120  
80  
40  
0
300  
4.5 V  
3.5 V  
4 V  
200  
100  
0
3.3 V  
3.5 V  
3.3 V  
3 V  
2.8 V  
3 V  
2.8 V  
0
1
2
3
0
1
2
3
VDS [V]  
VDS [V]  
11 Typ. drain-source on resistance (Q1)  
R DS(on)=f(I D); T j=25 °C  
12 Typ. drain-source on resistance (Q2)  
R DS(on)=f(I D); T j=25 °C  
parameter: VGS  
parameter: VGS  
15  
12  
10  
3 V  
8
3.3 V  
3.3 V  
3 V  
3.5 V  
3.5 V  
9
6
3
0
6
4
2
0
4 V  
4 V  
4.5 V  
5 V  
4.5 V  
5 V  
10 V  
10 V  
0
20  
40  
60  
80  
0
20  
40  
60  
80  
ID [A]  
ID [A]  
Rev.2.0  
page 7  
2013-07-30  
BSC0924NDI  
13 Typ. transfer characteristics (Q1)  
I D=f(VGS); |VDS |>2 | I D| R DS(on)max  
parameter: T j  
14 Typ. transfer characteristics (Q2)  
I D=f(VGS); |VDS |>2 | I D| R DS(on)max  
parameter: T j  
160  
120  
80  
160  
120  
80  
40  
40  
150 °C  
25 °C  
25 °C  
150 °C  
0
0
0
1
2
3
4
0
1
2
3
4
VGS [V]  
VGS [V]  
15 Drain-source on-state resistance (Q1)  
16 Drain-source on-state resistance (Q2)  
R DS(on)=f(T j); I D=20 A; VGS=10 V  
R DS(on)=f(T j); I D=20 A; VGS=10 V  
9
8
7
6
5
4
typ  
3
5
typ  
4
2
1
0
3
2
1
0
-60  
-20  
20  
60  
100  
140  
180  
-60  
-20  
20  
60  
100  
140  
180  
Tj [°C]  
Tj [°C]  
Rev.2.0  
page 8  
2013-07-30  
BSC0924NDI  
17 Typ. gate threshold voltage (Q1)  
18 Typ. gate threshold voltage (Q2)  
VGS(th)=f(T j); VGS=VDS; I D=250 µA  
VGS(th)=f(T j); VGS=VDS; I D=10 mA  
2.8  
2.4  
2
2.8  
2.4  
2
1.6  
1.2  
0.8  
0.4  
0
1.6  
1.2  
0.8  
0.4  
0
-60  
-20  
20  
60  
100  
140  
180  
-60  
-20  
20  
60  
100  
140  
180  
Tj [°C]  
Tj [°C]  
19 Typ. capacitances (Q1)  
20 Typ. capacitances (Q2)  
C =f(VDS); VGS=0 V; f =1 MHz  
C =f(VDS); VGS=0 V; f =1 MHz  
104  
103  
102  
101  
104  
Ciss  
Ciss  
103  
Coss  
Coss  
102  
Crss  
Crss  
101  
0
10  
20  
30  
0
10  
20  
30  
VDS [V]  
VDS [V]  
Rev.2.0  
page 9  
2013-07-30  
BSC0924NDI  
21 Forward characteristics of reverse diode (Q1) 22 Forward characteristics of reverse diode (Q2)  
I F=f(VSD  
)
I F=f(VSD)  
parameter: T j  
parameter: T j  
103  
103  
150 °C  
102  
101  
100  
102  
101  
100  
25 °C  
150 °C  
25 °C  
100 °C  
-55 °C  
10-1  
0
10-1  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
0.2  
0.4  
0.6  
0.8  
1
VSD [V]  
VSD [V]  
23 Avalanche characteristics (Q1)  
24 Avalanche characteristics (Q2)  
I AS=f(t AV); R GS=25 W  
parameter: T j(start)  
I AS=f(t AV); R GS=25 W  
parameter: T j(start)  
102  
102  
25 °C  
101  
101  
25 °C  
100 °C  
100 °C  
125 °C  
125 °C  
100  
100  
100  
101  
102  
103  
100  
101  
102  
103  
tAV [µs]  
tAV [µs]  
Rev.2.0  
page 10  
2013-07-30  
BSC0924NDI  
25 Typ. gate charge (Q1)  
VGS=f(Q gate); I D=20 A pulsed  
parameter: VDD  
26 Typ. gate charge (Q2)  
VGS=f(Q gate); I D=20 A pulsed  
parameter: VDD  
10  
10  
15 V  
8
8
15 V  
24 V  
6 V  
6 V  
24 V  
6
6
4
2
4
2
0
0
0
0
2
4
6
8
10  
12  
14  
12  
Qgate [nC]  
24  
Qgate [nC]  
27 Drain-source breakdown voltage (Q1)  
28 Typ. drain-source leakage current (Q2)  
I DSS=f(VDS ); VGS=0 V  
VBR(DSS)=f(T j); I D=1 mA  
parameter: T j  
10-2  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
10-3  
125 °C  
10-4  
100 °C  
75 °C  
10-5  
25 °C  
10-6  
-60  
-20  
20  
60  
100  
140  
180  
0
5
10  
15  
20  
25  
Tj [°C]  
VDSj [V]  
Rev.2.0  
page 11  
2013-07-30  
BSC0924NDI  
PG-TISON  
Rev.2.0  
page 12  
2013-07-30  
BSC0924NDI  
PG-TISON  
Rev.2.0  
page 13  
2013-07-30  
BSC0924NDI  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2012 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of  
conditions or characteristics. With respect to any examples or hints given herein, any typical  
values stated herein and/or any information regarding the application of the device,  
Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind,  
including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please  
contact the nearest Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information  
on the types in question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with  
the express written approval of Infineon Technologies, if a failure of such components can  
reasonably be expected to cause the failure of that life-support device or system or to affect  
the safety or effectiveness of that device or system. Life support devices or systems are  
intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user  
or other persons may be endangered.  
Rev.2.0  
page 14  
2013-07-30  

相关型号:

BSC0925ND

极低的栅极和输出电荷,结合极低的导通状态电阻和小体积封装,使 OptiMOS™ 25V 成为要求较高的服务器、数据通信和通信电压调节器解决方案的最佳选择。OptiMOS™ 30V 产品专为满足笔记本电脑的电源管理需求而量身定制,可改善电磁干扰行为,以及延长电池寿命。可用于半桥配置(功率级 5x6)
INFINEON

BSC093N04LS G

OptiMOS™ 40V 是交换模式电源 (SMPS)中的同步整流的理想之选,例如服务器和台式机。此外,这些器件可用于电机控制变器和快速开关直流-直流转换器等广泛工业应用。
INFINEON

BSC093N04LSG

OptiMOS3 Power-Transistor
INFINEON

BSC093N15NS5

英飞凌新推出的 OptiMOS™5 150 V 功率 MOSFET 特别适合叉车和电动脚踏车等低压驱动器以及通信和太阳能应用。新产品突破性地降低了 R DS(on)(与 SuperSO8 中的下一个理想替代品相比高达 25%)和 Q rr,而不影响 FOM gd 和 FOM OSS,从而在优化系统效率的同时有效减少设计工作量。此外,超低反向恢复电荷(在 SuperSO8 中,Q rr = 26 nC)提高了换流坚固性。
INFINEON

BSC093N15NS5ATMA1

Power Field-Effect Transistor, 87A I(D), 150V, 0.0093ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TDSON-8
INFINEON

BSC093N15NS5SC

OptiMOS™ 5 power MOSFETs 150 V in SuperSO8 DSC (dual-side cooling) package offer all thermal management benefits of dual-side cooling solutions with industry-standard footprint.
INFINEON

BSC094N03S

OptiMOS2 Power-Transistor
INFINEON

BSC094N03SG

OptiMOS2 Power-Transistor
INFINEON

BSC094N03SGAUMA1

Power Field-Effect Transistor, 14.6A I(D), 30V, 0.0094ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, GREEN, PLASTIC, TDSON-8
INFINEON

BSC094N03SG_09

OptiMOS™2 Power-Transistor
INFINEON

BSC094N06LS5

英飞凌OptiMOS™ 5 功率 MOSFET 逻辑电平特别适用于无线充电、适配器和电信应用。该器件栅极电荷 (Q g) 低,降低开关损耗,而不影响导通损耗。改进品质因数,支持在高开关频率下运行。此外,逻辑电平驱动提供低栅极阈值电压 (V GS(th)),使 MOSFET 能够由 5V 驱动并且直接由微控制器驱动。
INFINEON

BSC096N10LS5

逻辑电平 OptiMOS™ 5 100V 功率 MOSFET提供低栅极电荷,可在不影响导通损耗的情况下减少开关损耗。采用 SuperS08 封装的 OptiMOS™ 5(BSC096N10LS5)功率 MOSFET 可在高开关频率下运作,并且其栅极阈值电压低,因此 MOSFET 可直接由微控制器驱动。它可用于 充电器、 适配器 和 电信等应用
INFINEON