AUIRFS4010TRR [INFINEON]

暂无描述;
AUIRFS4010TRR
型号: AUIRFS4010TRR
厂家: Infineon    Infineon
描述:

暂无描述

晶体 晶体管 功率场效应晶体管 开关 脉冲 局域网
文件: 总13页 (文件大小:662K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96396A  
AUTOMOTIVE GRADE  
AUIRFS4010  
Features  
AUIRFSL4010  
l
Advanced Process Technology  
UltraLowOn-Resistance  
HEXFET® Power MOSFET  
l
l
l
l
l
l
D
S
175°COperatingTemperature  
Fast Switching  
VDSS  
RDS(on) typ.  
100V  
3.9m  
4.7m  
180A  
Repetitive Avalanche Allowed up to Tjmax  
Lead-Free,RoHSCompliant  
Automotive Qualified *  
G
max.  
ID  
Description  
D
D
Specifically designed for Automotive applications, this  
HEXFET® Power MOSFET utilizes the latest processing  
techniques to achieve extremely low on-resistance per  
siliconarea. Additionalfeaturesofthisdesign area175°C  
junctionoperatingtemperature, fastswitchingspeedand  
improved repetitive avalanche rating . These features  
combine to make this design an extremely efficient and  
reliable device for use in Automotive applications and a  
wide variety of other applications.  
S
S
D
G
G
D2Pak  
AUIRFS4010  
TO-262  
AUIRFSL4010  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Stressesbeyondthoselistedunder“AbsoluteMaximumRatings”maycausepermanentdamagetothedevice.Thesearestress  
ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications  
is not implied.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. Thethermal  
resistanceandpowerdissipationratingsaremeasuredunderboardmountedandstillairconditions.Ambienttemperature(TA)  
is 25°C, unless otherwise specified.  
Parameter  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
Max.  
180  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
127  
A
720  
PD @TC = 25°C  
375  
W
Maximum Power Dissipation  
Linear Derating Factor  
2.5  
W/°C  
V
VGS  
EAS  
IAR  
± 20  
318  
Gate-to-Source Voltage  
mJ  
A
Single Pulse Avalanche Energy (Thermally Limited)  
Avalanche Current  
See Fig. 14, 15, 22a, 22b  
EAR  
mJ  
Repetitive Avalanche Energy  
Peak Diode Recovery  
31  
dv/dt  
TJ  
V/ns  
-55 to + 175  
Operating Junction and  
TSTG  
°C  
Storage Temperature Range  
Soldering Temperature, for 10 seconds (1.6mm from case)  
300  
Thermal Resistance  
Parameter  
Typ.  
–––  
Max.  
0.40  
40  
Units  
RθJC  
Junction-to-Case  
°C/W  
Rθ  
–––  
Junction-to-Ambient (PCB Mount)  
JA  
HEXFET® is a registered trademark of International Rectifier.  
*Qualification standards can be found at http://www.irf.com/  
www.irf.com  
1
11/1/11  
AUIRFS/SL4010  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Min. Typ. Max. Units  
100 ––– –––  
––– 0.10 ––– V/°C Reference to 25°C, ID = 5mA  
Conditions  
VGS = 0V, ID = 250μA  
V
V
/ T  
(BR)DSS Δ  
Δ
J
RDS(on)  
–––  
2.0  
3.9  
4.7  
4.0  
VGS = 10V, ID = 106A  
VDS = VGS, ID = 250μA  
VDS = 25V, ID = 106A  
m
V
Ω
VGS(th)  
–––  
gfs  
RG  
IDSS  
Forward Transconductance  
189 ––– –––  
S
Internal Gate Resistance  
Drain-to-Source Leakage Current  
–––  
2.0  
–––  
20  
Ω
––– –––  
V
V
DS = 100V, VGS = 0V  
μA  
––– ––– 250  
––– ––– 100  
––– ––– -100  
DS = 100V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
VGS = 20V  
GS = -20V  
nA  
V
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
Parameter  
Total Gate Charge  
Min. Typ. Max. Units  
––– 143 215  
Conditions  
Qg  
ID = 106A  
DS = 50V  
VGS = 10V  
Qgs  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
Rise Time  
–––  
–––  
–––  
–––  
–––  
38  
50  
93  
21  
86  
–––  
–––  
–––  
–––  
–––  
V
nC  
Qgd  
Qsync  
ID = 106A, VDS =0V, VGS = 10V  
VDD = 65V  
td(on)  
tr  
ID = 106A  
ns  
td(off)  
Turn-Off Delay Time  
Fall Time  
––– 100 –––  
––– 77 –––  
R = 2.7  
Ω
G
VGS = 10V  
tf  
Ciss  
Input Capacitance  
––– 9575 –––  
––– 660 –––  
––– 270 –––  
––– 757 –––  
––– 1112 –––  
VGS = 0V  
Coss  
Output Capacitance  
Reverse Transfer Capacitance  
V
DS = 50V  
Crss  
ƒ = 1.0MHz See Fig.5  
pF  
Coss eff. (ER)  
Coss eff. (TR)  
V
V
GS = 0V, VDS = 0V to 80V See Fig.11  
GS = 0V, VDS = 0V to 80V  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
D
IS  
Continuous Source Current  
MOSFET symbol  
––– ––– 180  
A
(Body Diode)  
Pulsed Source Current  
(Body Diode)  
showing the  
integral reverse  
G
ISM  
––– ––– 720  
S
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
––– –––  
1.3  
–––  
–––  
V
TJ = 25°C, IS = 106A, VGS = 0V  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 85V,  
–––  
–––  
72  
81  
ns  
IF = 106A  
di/dt = 100A/μs  
Qrr  
Reverse Recovery Charge  
––– 210 –––  
––– 268 –––  
nC  
A
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
–––  
5.3  
–––  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Repetitive rating; pulse width limited by max. junction  
temperature.  
‚ Limited by TJmax, starting TJ = 25°C, L = 0.057mH  
RG = 25Ω, IAS = 106A, VGS =10V. Part not recommended for use  
above this value .  
ƒ ISD 106A, di/dt 1319A/μs, VDD V(BR)DSS, TJ 175°C.  
„ Pulse width 400μs; duty cycle 2%.  
Coss eff. (TR) is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
† Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
.
‡ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom  
mended footprint and soldering techniques refer to application note #AN-994.  
ˆ Rθ is measured at TJ approximately 90°C.  
‰ RθJC value shown is at time zero.  
2
www.irf.com  
AUIRFS/SL4010  
Qualification Information†  
Automotive  
††  
(per AEC-Q101)  
Comments:  
This part  
number(s) passed  
Qualification Level  
Automotive qualification. IR’s Industrial and  
Consumer qualification level is granted by  
extension of the higher Automotive level.  
MSL1  
N/A  
3L-D2 PAK  
3L-TO-262  
Moisture Sensitivity Level  
Class M4(+/- 800V )†††  
Machine Model  
(per AEC-Q101-002)  
Class H3A(+/- 6000V )†††  
(per AEC-Q101-001)  
ESD  
Human Body Model  
Class C5(+/- 2000V )†††  
(per AEC-Q101-005)  
Charged Device Model  
Yes  
RoHS Compliant  
Qualification standards can be found at International Rectifier’s web site: http//www.irf.com/  
Exceptions (if any) to AEC-Q101 requirements are noted in the qualification report.  
††  
††† Highest passing voltage  
www.irf.com  
3
AUIRFS/SL4010  
1000  
100  
10  
1000  
VGS  
15V  
10V  
8.0V  
7.0V  
5.0V  
4.5V  
4.3V  
4.0V  
VGS  
15V  
10V  
8.0V  
7.0V  
5.0V  
4.5V  
4.3V  
4.0V  
TOP  
TOP  
100  
10  
1
BOTTOM  
BOTTOM  
60μs PULSE WIDTH  
Tj = 25°C  
60μs PULSE WIDTH  
Tj = 175°C  
4.0V  
4.0V  
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
2.5  
2.0  
1.5  
1.0  
0.5  
1000  
100  
10  
I
= 106A  
= 10V  
D
V
GS  
T
= 175°C  
J
T
= 25°C  
= 50V  
J
1
V
DS  
60μs PULSE WIDTH  
0.1  
2
3
4
5
6
7
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
100000  
10000  
1000  
14.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
C
C
C
+ C , C  
SHORTED  
ds  
iss  
gs  
gd  
I = 106A  
D
= C  
12.0  
rss  
oss  
gd  
V
V
= 80V  
= 50V  
DS  
DS  
= C + C  
ds  
gd  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
C
iss  
C
oss  
C
rss  
100  
1
10  
100  
1000  
0
25 50 75 100 125 150 175 200 225  
V
, Drain-to-Source Voltage (V)  
Q , Total Gate Charge (nC)  
G
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
4
www.irf.com  
AUIRFS/SL4010  
10000  
1000  
100  
10  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
T
= 175°C  
J
1msec  
100μsec  
10msec  
T
= 25°C  
J
DC  
1
Tc = 25°C  
Tj = 175°C  
V
= 0V  
GS  
Single Pulse  
0.1  
1.0  
1
10  
100  
1000  
0.2  
0.6  
1.0  
1.4  
1.8  
V
, Drain-to-Source Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
130  
125  
120  
115  
110  
105  
100  
95  
200  
Id = 5mA  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
-60 -40 -20 0 20 40 60 80 100120140160180  
25  
50  
75  
100  
125  
150  
175  
T , Temperature ( °C )  
J
Fig 10. Drain-to-Source Breakdown Voltage  
T
, Case Temperature (°C)  
C
Fig 9. Maximum Drain Current vs.  
Case Temperature  
4.0  
1400  
I
D
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1200  
1000  
800  
600  
400  
200  
0
TOP  
12.5A  
17A  
BOTTOM 106A  
0
20  
V
40  
60  
80  
100  
120  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
Drain-to-Source Voltage (V)  
DS,  
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
www.irf.com  
5
AUIRFS/SL4010  
1
D = 0.50  
0.1  
0.01  
0.20  
0.10  
0.05  
0.02  
0.01  
R1  
R1  
R2  
R2  
Ri (°C/W) τi (sec)  
τ
0.17537  
0.000343  
J τJ  
τ
τ
Cτ  
1 τ1  
Ci= τi/Ri  
τ
0.22547  
0.006073  
2τ2  
0.001  
0.0001  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔTj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
1
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔΤ j = 25°C and  
Tstart = 150°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
350  
300  
250  
200  
150  
100  
50  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 22a, 22b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1.0% Duty Cycle  
= 106A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
0
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
Starting T , Junction Temperature (°C)  
EAS (AR) = PD (ave)·tav  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
6
www.irf.com  
AUIRFS/SL4010  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
35  
30  
25  
20  
15  
10  
5
I = 70A  
F
V
= 85V  
R
T = 25°C  
J
T = 125°C  
J
I
I
I
= 250μA  
= 1.0mA  
= 1.0A  
D
D
D
0
-75 -50 -25  
0
25 50 75 100 125 150 175  
0
200  
400  
600  
800  
1000  
T , Temperature ( °C )  
di /dt (A/μs)  
J
F
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage vs. Temperature  
1100  
35  
I = 70A  
I = 106A  
F
F
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
V
= 85V  
30  
25  
20  
15  
10  
5
V
= 85V  
R
R
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
di /dt (A/μs)  
F
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
1100  
I = 106A  
F
V
1000  
900  
800  
700  
600  
500  
400  
300  
200  
= 85V  
R
T = 25°C  
J
T = 125°C  
J
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
F
Fig. 20 - Typical Stored Charge vs. dif/dt  
www.irf.com  
7
AUIRFS/SL4010  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
CircuitLayoutConsiderations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dtcontrolledbyRG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
InductorCurrent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
Ω
0.01  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
PulseWidth ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50KΩ  
.2μF  
12V  
.3μF  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
8
www.irf.com  
AUIRFS/SL4010  
D2Pak Package Outline (Dimensions are shown in millimeters (inches))  
D2Pak Part Marking Information  
PartNumber  
AUFS4010  
DateCode  
Y= Year  
WW= Work Week  
A= Automotive, Lead Free  
IRLogo  
YWWA  
XX or XX  
LotCode  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
www.irf.com  
9
AUIRFS/SL4010  
TO-262 Package Outline ( Dimensions are shown in millimeters (inches))  
TO-262 Part Marking Information  
PartNumber  
AUFSL4010  
DateCode  
Y= Year  
WW= Work Week  
A= Automotive, Lead Free  
IRLogo  
YWWA  
XX or XX  
LotCode  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
10  
www.irf.com  
AUIRFS/SL4010  
D2Pak (TO-263AB) Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
1.85 (.073)  
11.60 (.457)  
11.40 (.449)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
TRL  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
www.irf.com  
11  
AUIRFS/SL4010  
Ordering Information  
Base part  
Package Type  
Standard Pack  
Form  
Complete Part Number  
Quantity  
AUIRFSL4010  
AUIRFS4010  
TO-262  
D2Pak  
Tube  
Tube  
50  
50  
AUIRFSL4010  
AUIRFS4010  
Tape and Reel Left  
Tape and Reel Right  
800  
800  
AUIRFS4010TRL  
AUIRFS4010TRR  
12  
www.irf.com  
AUIRFS/SL4010  
IMPORTANTNOTICE  
Unlessspecificallydesignatedfortheautomotivemarket, InternationalRectifierCorporationanditssubsidiaries(IR)reserve  
the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services  
at any time and to discontinue any product or services without notice. Part numbers designated with the “AU” prefix follow  
automotive industry and / or customer specific requirements with regards to product discontinuance and process change  
notification. All products are sold subject to IR’s terms and conditions of sale supplied at the time of order acknowledgment.  
IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR’s  
standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this  
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily  
performed.  
IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products  
and applications using IR components. To minimize the risks with customer products and applications, customers should  
provideadequatedesignandoperatingsafeguards.  
Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is  
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with  
alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation.  
Information of third parties may be subject to additional restrictions.  
Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or  
service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive  
business practice. IR is not responsible or liable for any such statements.  
IRproductsarenotdesigned, intended, orauthorizedforuseascomponentsinsystemsintendedforsurgicalimplantintothe  
body,orinotherapplicationsintendedtosupportorsustainlife,orinanyotherapplicationinwhichthefailureoftheIRproduct  
could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such  
unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees,  
subsidiaries, affiliates, anddistributorsharmlessagainstallclaims, costs, damages, andexpenses, andreasonableattorney  
feesarisingoutof,directlyorindirectly,anyclaimofpersonalinjuryordeathassociatedwithsuchunintendedorunauthorized  
use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product.  
OnlyproductscertifiedasmilitarygradebytheDefenseLogisticsAgency(DLA)oftheUSDepartmentofDefense,aredesigned  
and manufactured to meet DLA military specifications required by certain military, aerospace or other applications. Buyers  
acknowledge and agree that any use of IR products not certified by DLA as military-grade, in applications requiring military  
gradeproducts,issolelyattheBuyer’sownriskandthattheyaresolelyresponsibleforcompliancewithalllegalandregulatory  
requirements in connection with such use.  
IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR  
productsaredesignatedbyIRascompliantwithISO/TS16949requirementsandbearapartnumberincludingthedesignation  
“AU”. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be  
responsible for any failure to meet such requirements.  
For technical support, please contact IR’s Technical Assistance Center  
http://www.irf.com/technical-info/  
WORLDHEADQUARTERS:  
101 N. Sepulveda Blvd., El Segundo, California 90245  
Tel:(310)252-7105  
www.irf.com  
13  

相关型号:

AUIRFS4115

Power Field-Effect Transistor,
INFINEON

AUIRFS4115-7P

Power Field-Effect Transistor,
INFINEON

AUIRFS4115-7TRL

Power Field-Effect Transistor,
INFINEON

AUIRFS4115TRL

Power Field-Effect Transistor,
INFINEON

AUIRFS4127

Advanced Process Technology
INFINEON

AUIRFS4127TRL

Power Field-Effect Transistor,
INFINEON

AUIRFS4127_15

Advanced Process Technology
INFINEON

AUIRFS4310

HEXFET Power MOSFET
INFINEON

AUIRFS4310TRL

HEXFET Power MOSFET
INFINEON

AUIRFS4310TRR

HEXFET Power MOSFET
INFINEON

AUIRFS4310Z

暂无描述
INFINEON

AUIRFS4310ZTRL

暂无描述
INFINEON