AUIRFS3004-7TRR [INFINEON]

Advanced Process Technology Ultra Low On-Resistance; 先进的工艺技术超低导通电阻
AUIRFS3004-7TRR
型号: AUIRFS3004-7TRR
厂家: Infineon    Infineon
描述:

Advanced Process Technology Ultra Low On-Resistance
先进的工艺技术超低导通电阻

晶体 晶体管 开关 脉冲 局域网
文件: 总12页 (文件大小:379K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97704A  
AUTOMOTIVE GRADE  
AUIRFS3004-7P  
HEXFET® Power MOSFET  
Features  
l
l
l
l
l
l
Advanced Process Technology  
D
VDSS  
RDS(on) typ.  
40V  
0.90m  
1.25m  
400A  
Ultra Low On-Resistance  
175°C Operating Temperature  
Fast Switching  
Repetitive Avalanche Allowed up to Tjmax  
Lead-Free, RoHS Compliant  
Automotive Qualified *  
max.  
G
ID  
ID  
(Silicon Limited)  
240A  
S
(Package Limited)  
Description  
Specifically designed for Automotive applications, this  
HEXFET® Power MOSFET utilizes the latest processing  
techniques to achieve extremely low on-resistance per  
silicon area. Additional features of this design are a 175°C  
junction operating temperature, fast switching speed and  
improved repetitive avalanche rating. These features  
combine to make this design an extremely efficient and  
reliable device for use in Automotive applications such as  
Electric Power Steering, Battery Switch, SMPS and other  
heavy loads.  
D
S
S
S
S
S
G
D2Pak 7 Pin  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only; and  
functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-  
maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under  
board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.  
Symbol  
ID @ TC = 25°C  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
Parameter  
Max.  
400  
Units  
A
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)  
280  
240  
1610  
Pulsed Drain Current  
PD @TC = 25°C  
W
380  
Maximum Power Dissipation  
Linear Derating Factor  
2.5  
W/°C  
V
VGS  
EAS  
IAR  
± 20  
290  
Gate-to-Source Voltage  
Single Pulse Avalanche Energy (Thermally limited)  
mJ  
A
Avalanche Current  
See Fig. 14, 15, 22a, 22b  
Repetitive Avalanche Energy  
EAR  
mJ  
2.0  
Peak Diode Recovery  
dv/dt  
TJ  
V/ns  
-55 to + 175  
Operating Junction and  
TSTG  
°C  
Storage Temperature Range  
300  
Soldering Temperature, for 10 seconds (1.6mm from case)  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
0.40  
40  
Units  
°C/W  
RJC  
Junction-to-Case  
RJA  
–––  
Junction-to-Ambient (PCB Mount)  
HEXFET® is a registered trademark of International Rectifier.  
*Qualification standards can be found at http://www.irf.com/  
www.irf.com  
1
11/29/11  
AUIRFS3004-7P  
Static Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
V(BR)DSS/TJ  
RDS(on)  
VGS(th)  
gfs  
Parameter  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Min. Typ. Max. Units  
40 ––– –––  
––– 0.038 ––– V/°C Reference to 25°C, ID = 5mA  
Conditions  
VGS = 0V, ID = 250μA  
V
––– 0.90 1.25  
2.0 ––– 4.0  
1300 ––– –––  
VGS = 10V, ID = 195A  
VDS = VGS, ID = 250μA  
VDS = 10V, ID = 195A  
m  
V
Forward Transconductance  
S
RG  
Internal Gate Resistance  
–––  
2.0  
–––  
20  
μA  
IDSS  
Drain-to-Source Leakage Current  
––– –––  
VDS = 40V, VGS = 0V  
––– ––– 250  
––– ––– 100  
––– ––– -100  
VDS = 40V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
nA VGS = 20V  
VGS = -20V  
Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Symbol  
Parameter  
Min. Typ. Max. Units  
––– 160 240 nC ID = 180A  
DS =20V  
VGS = 10V  
ID = 180A, VDS =0V, VGS = 10V  
ns VDD = 26V  
Conditions  
Qg  
Total Gate Charge  
Qgs  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
Rise Time  
–––  
–––  
–––  
–––  
42  
65  
95  
23  
–––  
–––  
–––  
–––  
V
Qgd  
Qsync  
td(on)  
tr  
––– 240 –––  
––– 91 –––  
ID = 240A  
td(off)  
Turn-Off Delay Time  
Fall Time  
RG = 2.7  
tf  
––– 160 –––  
––– 9130 –––  
––– 2020 –––  
––– 990 –––  
––– 2590 –––  
––– 2650 –––  
VGS = 10V  
Ciss  
Input Capacitance  
pF VGS = 0V  
VDS = 25V  
Coss  
Output Capacitance  
Reverse Transfer Capacitance  
Crss  
ƒ = 1.0 MHz, See Fig. 5  
Coss eff. (ER)  
Coss eff. (TR)  
VGS = 0V, VDS = 0V to 32V , See Fig. 11  
VGS = 0V, VDS = 0V to 32V  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
IS  
D
Continuous Source Current  
––– –––  
A
400  
(Body Diode)  
Pulsed Source Current  
(Body Diode)  
showing the  
integral reverse  
G
ISM  
––– ––– 1610  
A
S
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
––– –––  
1.3  
–––  
–––  
–––  
–––  
–––  
V
TJ = 25°C, IS = 195A, VGS = 0V  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 34V,  
–––  
–––  
–––  
–––  
–––  
49  
51  
37  
41  
3.2  
ns  
IF = 240A  
di/dt = 100A/μs  
Qrr  
Reverse Recovery Charge  
nC  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
A
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
„ ISD 240A, di/dt 740A/μs, VDD V(BR)DSS, TJ 175°C.  
Pulse width 400μs; duty cycle 2%.  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
 Calculated continuous current based on maximum allowable junction  
temperature. Bond wire current limit is 240A. Note that current  
limitations arising from heating of the device leads may occur with  
some lead mounting arrangements. (Refer to AN-1140)  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.01mH  
RG = 25, IAS = 240A, VGS =10V. Part not recommended for use  
above this value .  
as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
.
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom  
mended footprint and soldering techniques refer to application note #AN-994.  
‰ Ris measured at TJ approximately 90°C.  
Š RJC value shown is at time zero.  
2
www.irf.com  
AUIRFS3004-7P  
Qualification Information†  
Automotive  
††  
(per AEC-Q101)  
Qualification Level  
Comments: This part number(s) passed Automotive qualification. IR’s  
Industrial and Consumer qualification level is granted by extension of the  
higher Automotive level.  
D2 PAK - 7 Pin  
MSL1  
Class M4 (+/- 800V)†††  
Machine Model  
AEC-Q101-002  
Class H3A (+/- 6000V)†††  
AEC-Q101-001  
Human Body Model  
ESD  
Class C5 (+/- 2000V)†††  
AEC-Q101-005  
Charged Device Model  
Yes  
RoHS Compliant  
†
Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/  
†† Exceptions (if any) to AEC-Q101 requirements are noted in the qualification report.  
††† Highest passing voltage.  
www.irf.com  
3
AUIRFS3004-7P  
1000  
100  
10  
1000  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
TOP  
TOP  
100  
10  
1
BOTTOM  
BOTTOM  
4.5V  
60μs PULSE WIDTH  
60μs PULSE WIDTH  
4.5V  
Tj = 175°C  
Tj = 25°C  
0.1  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
2.0  
1.5  
1.0  
0.5  
I
= 195A  
= 10V  
D
V
GS  
T
= 175°C  
J
T
= 25°C  
J
1
V
= 25V  
DS  
60μs PULSE WIDTH  
0.1  
3
4
5
6
7
8
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
14.0  
100000  
10000  
1000  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 180A  
D
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
12.0  
= C  
rss  
oss  
gd  
= C + C  
V
V
= 32V  
= 20V  
DS  
DS  
ds  
gd  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
C
iss  
C
oss  
C
rss  
100  
0
50  
100  
150  
200  
250  
1
10  
, Drain-to-Source Voltage (V)  
100  
Q , Total Gate Charge (nC)  
V
DS  
G
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
4
www.irf.com  
AUIRFS3004-7P  
1000  
100  
10  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
T
= 175°C  
J
100μsec  
T
= 25°C  
J
1msec  
10msec  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
DC  
V
= 0V  
GS  
0.1  
1
0.0  
0.5  
1.0  
1.5  
2.0  
0
1
10  
100  
V
, Source-to-Drain Voltage (V)  
V
, Drain-to-Source Voltage (V)  
SD  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
420  
360  
300  
240  
180  
120  
60  
50  
48  
46  
44  
42  
40  
Id = 5mA  
Limited By Package  
0
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20 0 20 40 60 80 100120140160180  
T
, Case Temperature (°C)  
T , Temperature ( °C )  
C
J
Fig 9. Maximum Drain Current vs.  
Fig 10. Drain-to-Source Breakdown Voltage  
Case Temperature  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1200  
I
D
TOP  
44A  
80A  
BOTTOM 240A  
1000  
800  
600  
400  
200  
0
-5  
0
5
10 15 20 25 30 35 40 45  
Drain-to-Source Voltage (V)  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
V
DS,  
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
www.irf.com  
5
AUIRFS3004-7P  
1
D = 0.50  
0.1  
0.01  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) i (sec)  
0.00757 0.000006  
J J  
C  
0.06508 0.000064  
0.18313 0.001511  
0.14378 0.009800  
11  
Ci= iRi  
2 2  
33  
44  
0.02  
0.01  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming  j = 25°C and  
Tstart = 150°C.  
1
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
320  
280  
240  
200  
160  
120  
80  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
TOP  
BOTTOM 1.0% Duty Cycle  
= 240A  
Single Pulse  
I
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
D
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
40  
0
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
6
www.irf.com  
AUIRFS3004-7P  
10  
9
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
I = 96A  
F
V
= 34V  
R
T = 25°C  
J
8
T = 125°C  
J
7
6
I
I
I
= 250μA  
= 1.0mA  
= 1.0A  
D
D
D
5
4
3
2
100  
200  
300  
400  
500  
-75 -50 -25  
0
25 50 75 100 125 150175 200  
di /dt (A/μs)  
T , Temperature ( °C )  
F
J
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage vs. Temperature  
140  
12  
I = 96A  
I = 144A  
F
F
11  
V
= 34V  
V
= 34V  
R
R
120  
100  
80  
10  
9
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
8
7
6
60  
5
4
40  
3
20  
2
100  
200  
300  
400  
500  
100  
200  
300  
400  
500  
di /dt (A/μs)  
di /dt (A/μs)  
F
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
180  
I = 144A  
F
V
160  
140  
120  
100  
80  
= 34V  
R
T = 25°C  
J
T = 125°C  
J
60  
40  
20  
100  
200  
300  
400  
500  
di /dt (A/μs)  
F
Fig. 20 - Typical Stored Charge vs. dif/dt  
www.irf.com  
7
AUIRFS3004-7P  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
 Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
Pulse Width µs  
Duty Factor   
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50K  
.2F  
12V  
.3F  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
8
www.irf.com  
AUIRFS3004-7P  
D2Pak - 7 Pin Package Outline  
Dimensions are shown in millimeters (inches)  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
www.irf.com  
9
AUIRFS3004-7P  
D2Pak - 7 Pin Part Marking Information  
Part Number  
AUS3004-7P  
Date Code  
Y= Year  
WW= Work Week  
A= Automotive, LeadFree  
IR Logo  
YWWA  
XX or XX  
Lot Code  
D2Pak - 7 Pin Tape and Reel  
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
10  
www.irf.com  
AUIRFS3004-7P  
Ordering Information  
Base part number  
Package Type  
Standard Pack  
Form  
Complete Part Number  
Quantity  
75  
AUIRFS3004-7P  
D2Pak 7 Pin  
Tube  
AUIRFS3004-7P  
AUIRFS3004-7TRL  
AUIRFS3004-7TRR  
Tape and Reel Left  
Tape and Reel Right  
800  
800  
www.irf.com  
11  
AUIRFS3004-7P  
IMPORTANT NOTICE  
Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make  
corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or  
services without notice. Part numbers designated with the “AU” prefix follow automotive industry and / or customer specific requirements with regards  
to product discontinuance and process change notification. All products are sold subject to IR’s terms and conditions of sale supplied at the time of order  
acknowledgment.  
IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR’s standard warranty. Testing  
and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government  
requirements, testing of all parameters of each product is not necessarily performed.  
IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR  
components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards.  
Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all  
associatedwarranties, conditions, limitations, andnotices. Reproductionofthisinformationwithalterationsisanunfairanddeceptivebusinesspractice.  
IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.  
Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and  
any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any  
such statements.  
IRproductsarenotdesigned, intended, orauthorizedforuseascomponentsinsystemsintendedforsurgicalimplantintothebody, orinotherapplications  
intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses,  
and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized  
use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product.  
Only products certified as military grade by the Defense Logistics Agency (DLA) of the US Department of Defense, are designed and manufactured  
to meet DLA military specifications required by certain military, aerospace or other applications. Buyers acknowledge and agree that any use of IR  
products not certified by DLA as military-grade, in applications requiring military grade products, is solely at the Buyer’s own risk and that they are  
solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR  
as compliant with ISO/TS 16949 requirements and bear a part number including the designation “AU”. Buyers acknowledge and agree that, if they use  
any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements.  
For technical support, please contact IR’s Technical Assistance Center  
http://www.irf.com/technical-info/  
WORLD HEADQUARTERS:  
101 N. Sepulveda Blvd., El Segundo, California 90245  
Tel: (310) 252-7105  
12  
www.irf.com  

相关型号:

AUIRFS3004TRL

Advanced Process Technology Ultra Low On-Resistance
INFINEON

AUIRFS3004TRR

Advanced Process Technology Ultra Low On-Resistance
INFINEON

AUIRFS3006

Power Field-Effect Transistor, 195A I(D), 60V, 0.0025ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, D2PAK-3
INFINEON

AUIRFS3006-7P

HEXFETPower MOSFET
INFINEON

AUIRFS3006-7TRL

HEXFETPower MOSFET
INFINEON

AUIRFS3006-7TRR

HEXFETPower MOSFET
INFINEON

AUIRFS3006TRL

Power Field-Effect Transistor, 195A I(D), 60V, 0.0025ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, D2PAK-3
INFINEON

AUIRFS3006TRR

Power Field-Effect Transistor, 195A I(D), 60V, 0.0025ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, ROHS COMPLIANT, PLASTIC, D2PAK-3
INFINEON

AUIRFS3107

Advanced Process Technology
INFINEON

AUIRFS3107-7P

HEXFETPower MOSFET
INFINEON

AUIRFS3107-7TRL

HEXFETPower MOSFET
INFINEON

AUIRFS3107-7TRR

HEXFETPower MOSFET
INFINEON