AHV2812SFES [INFINEON]

HYBRID-HIGH RELIABILITY DC/DC CONVERTER; 混合高可靠性DC / DC转换器
AHV2812SFES
型号: AHV2812SFES
厂家: Infineon    Infineon
描述:

HYBRID-HIGH RELIABILITY DC/DC CONVERTER
混合高可靠性DC / DC转换器

转换器
文件: 总9页 (文件大小:181K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD-94583A  
AHV28XX SERIES  
28V Input, Single, Dual and Triple Output  
HYBRID-HIGH RELIABILITY  
DC/DC CONVERTER  
Description  
The AHV Series of DC/DC converters are designed to  
replace the AHE/ATO family of converters in applications  
requiring compliance to MIL-STD-704A through E, in  
particular the input surge requirement of 80V specified to  
withstand transient input voltage of 80V. No input voltage  
or output power derating is necessary over the full military  
temperature range.  
AHV  
These converters are packaged in an extremely rugged,  
low profile package that meets all requirements of MIL-  
STD-883 and MIL-PRF-38534. Parallel seam weld sealing  
and the use of ceramic pin feed thru seals assure long  
term hermeticity after exposure to extended temperature  
cycling.  
Features  
n 80V Transient Input (100 msec max.)  
n 50V DC Input (Continous)  
n 16V to 40V DC Input Range  
n Single, Dual and Triple Outputs  
n 15W Output Power  
The basic circuit is a push-pull forward topology using  
power MOSFET switches. The nominal switching  
frequency is 500KHz. A unique current injection circuit  
assures current balancing in the power switches. All AHV  
series converters use a single stage LC input filter to  
attenuate input ripple current. A low power 11.5V series  
regulator provides power to an epitaxial CMOS custom  
pulse width modulator integrated circuit. This single  
integrated circuit provides all PWM primary circuit  
functions. Power is transferred from primary to secondary  
through a ferrite core power transformer. An error voltage  
signal is generated by comparing a highly stable reference  
voltage with the converter output voltage and drives the  
PWM through a unique wideband magnetic feedback  
circuit. This proprietary feedback circuit provides an  
extremely wide bandwidth, high gain control loop, with  
high phase margin. The feedback control loop gain is  
insensitive to temperature, radiation, aging, and variations  
in manufacturing. The transfer function of the feedback  
circuit is a function of the feedback transformer turns ratio  
which cannot change when subjected to environmental  
extremes.  
(No Temperature Derating)  
n Low Input / Output Noise  
n Full Military Temperature Range  
n Wideband PWM Control Loop  
n Magnetic Feedback  
n Low Profile Hermetic Package (0.405”)  
n Short Circuit and Overload Protection  
n Constant Switching Frequency (500KHz)  
n True Hermetic Package (Parallel Seam  
Welded, Ceramic Pin Feedthru)  
n Standard Microcircuit Drawings Available  
Manufactured in a facility fully qualified to MIL-PRF-38534,  
these converters are fabricated utilizing DSCC qualified  
processes. For available screening options, refer to device  
screening table in the data sheet. Variations in electrical,  
mechanical and screening can be accommodated.  
Contact IR Santa Clara for special requirements.  
www.irf.com  
1
12/13/06  
AHV28XX Series  
Specifications (Single Output Models)  
TCASE = -55°C to +125°C, VIN = +28V ± 5% unless otherwise specified  
Absolute Maximum Ratings  
Input voltage  
-0.5V to +50VDC (Continous), 80V (100 msec)  
Power output  
Internally limited, 17.5W typical  
300°C for 10 seconds (1 pin at a time)  
-55°C to +125°C  
Soldering temperature  
Operating case temperature  
Storage case temperature  
-65°C to +135°C  
Condition  
-55°C T +125°C,  
C
Group A  
Subgroups  
AHV2805S  
AHV2812S  
AHV2815S  
V
= 28 V  
±5%, C =0,  
DC L  
IN  
TEST  
SYMBOL  
VOUT  
Min  
Max  
Min  
Max  
Min  
Max  
Units  
unless otherwise specified  
STATIC  
CHARACTERISTICS  
OUTPUT  
Voltage  
VIN = 16, 28, and 40 VDC  
IOUT = 0  
VIN = 16, 28, and 40 VDC  
VIN = 16, 28, and 40 VDC  
BW = DC to 1 MHz  
1
2,3  
1,2,3  
1,2,3  
4.95  
4.90  
0.0  
5.05  
5.10  
3.00  
60  
11.88  
11.76  
0.0  
12.12  
12.24  
1.25  
60  
14.85  
14.70  
0.0  
15.15  
15.30  
1.00  
60  
V
V
A
Current  
IOUT  
VRIP  
Ripple Voltage1  
mVp-p  
Power  
POUT  
VIN = 16, 28, and 40 VDC  
1,2,3  
15  
15  
15  
W
REGULATION  
Line  
VRLINE  
VRLOAD  
V
IN = 16, 28, and 40 VDC  
1
2,3  
1,2,3  
5.0  
25  
50  
30  
60  
120  
35  
75  
150  
IOUT = 0, half load and full load  
VIN = 16, 28, and 40 VDC  
mV  
Load  
IOUT = 0, half load and full load  
INPUT  
Current  
IIN  
IOUT = 0, Inhibit (pin 2) = 0  
OUT = 0, Inhibit (pin 2) = Open  
IOUT = Full load  
1,2,3  
18  
50  
50  
18  
50  
50  
18  
50  
50  
mA  
mA  
mAp-p  
I
Ripple Current  
EFFICIENCY  
IRIP  
EFF  
1,2,3,  
1
IOUT = Full Load  
72  
72  
72  
%
TC = +25°C  
ISOLATION  
ISO  
Input to output or any pin to  
case (except pin 8) at 500  
VDC  
1
100  
100  
100  
MΩ  
TC = +25 C  
No effect on DC performance  
°
Capacitive Load 2,3  
CL  
PD  
FS  
4
1
4
500  
200  
200  
µF  
TC = +25 C  
°
Load Fault  
Power Dissipation  
Overload, TC = +25°C4  
Short Circuit, TC = +25°C  
8.5  
8.5  
8,5  
8.5  
8.5  
8.5  
W
Switching Frequency  
IOUT = Full Load  
450  
550  
450  
550  
450  
550  
KHz  
DYNAMIC  
CHARACTERISTICS  
Step Load Changes  
Output Transient5  
VOTLOAD  
TTLOAD  
50% Load 135 100% Load  
No Load 135 50%  
50% Load 135 100%  
No Load 335 50% Load  
50% Load 335 No lLoad  
4
4
4
4
4
-300  
-500  
+300  
+500  
70  
200  
5.0  
-300  
-750  
+300  
+750  
70  
1500  
5.0  
-300  
-750  
+300  
+750  
70  
1500  
5.0  
mVpk  
mVpk  
µs  
Recovery5,6  
µs  
ms  
Step Line Changes  
Output Transient  
VOTLINE  
TTLINE  
Input step 16 to 40 VDC 3,7  
Input step 40 to 16 VDC 3,7  
Input step 16 to 40 VDC 3,6,7  
Input step 40 to 16 VDC 3,6,7  
4
4
4
4
300  
-1000  
800  
500  
-1500  
800  
500  
-1500  
800  
mVpk  
mVpk  
µs  
Recovery  
800  
800  
800  
µs  
TURN-ON  
Overshoot  
Delay  
Load Fault Recovery  
VTonos  
T on D  
TRLF  
IOUT = OA and Full Load  
4,5,6  
4,5,6  
4,5,6  
550  
10  
10  
750  
10  
10  
750  
10  
10  
mVpk  
ms  
ms  
I
OUT = O and Full Load 8  
VIN = 16 to 40 VDC  
Notes to Specifications (Single Output Models)  
1. Bandwidth guaranteed by design. Tested for 20KHz to 2MHz.  
2. Capacitive load may be any value from 0 to the maximum limit without affecting dc performance. A capacitive load in excess of the maximum limit will not disturb  
loop stability but will interfere with the operation of the load fault detection circuitry, appearing as a short circuit during turn-on.  
3. Parameter shall be tested as part of design characterization and after design or process changes. Thereafter shall be guaranteed to the limits specified.  
4. An overload is that condition with a load in excess of the rated load but less than necessary to trigger the short circuit protection and is the condition of maximum  
power dissipation.  
5. Load step transition time between 2µs to 10µs.  
6. Recovery time is measured from the initiation of the transient to where VOUT has returned to within ±1% of VOUT at 50% load.  
7. Input step transition time between 2µs and 10µs.  
8. Turn on delay time measurement is for either a step application of power at input or the removal of a ground signal from the inhinbit pin (pin 2) while power is  
applied to the input. Above 125°C case temperature, derate output power linearly to 0 at 135°C case.  
2
www.irf.com  
AHV28XX Series  
Specifications (Dual Output Models)  
TCASE = -55°C to +125°C, VIN = +28V ± 5% unless otherwise specified  
Absolute Maximum Ratings  
Input voltage  
-0.5V to +50VDC (Continous), 80V (100 msec)  
Internally limited, 17.5W typical  
Power output  
Soldering temperature  
Operating case temperature  
Storage case temperature  
300°C for 10 seconds (1 pin at a time)  
-55°C to +125°C  
-65°C to +135°C  
Condition  
-55 C  
T
+125 C,  
°
±
°
C
Group A  
Subgroups  
AHV2805D  
AHV2812  
AHV281D  
V
= 28 V  
5%, C =0,  
IN  
DC  
L
SYMBOL  
TEST  
Min  
Max  
Min  
Max  
Min  
Max  
Units  
unless otherwise specified  
STATIC  
CHARACTERISTICS  
OUTPUT  
Voltage 1  
VOUT  
IOUT = 0  
1
2,3  
1,2,3  
1,2,3  
±4.95  
±4.90  
0.0  
±5.05  
±5.10  
1500  
60  
±11.88  
±11.76  
0.0  
±12.12  
±12.24  
±14.85  
±14.70  
0.0  
±15.15  
±15.30  
V
V
mA  
Current 1,2  
IOUT  
VRIP  
VIN = 16, 28, and 40 VDC  
VIN = 16, 28, and 40 VDC  
BW = DC to 2 MHz  
625  
500  
±
±
±
Ripple Voltage 1,3  
60  
60  
mVp-p  
Power 1,2,4  
REGULATION  
Line 1,5  
POUT  
VIN = 16, 28, and 40 VDC  
1,2,3  
15  
15  
15  
W
VRLINE  
IOUT  
VRLOAD  
VIN = 16, 28, and 40 VDC  
1
2,3  
1,2,3  
30  
60  
120  
30  
60  
120  
35  
75  
150  
I
OUT = 0, half load and full load  
mV  
Load 1  
VIN = 16, 28, and 40 VDC  
I
OUT = 0, half load and full load  
OUT = 0, Inhibit (pin 2)  
INPUT  
Current  
IIN  
I
1,2,3  
18  
18  
18  
mA  
Tied to input return (pin 10)  
IOUT = 0, Inhibit (pin 2) = Open  
OUT = Full load  
65  
50  
65  
50  
65  
50  
mA  
mAp-p  
Ripple Current 3  
EFFICIENCY  
ISOLATION  
IRIP  
EFF  
I
1,2,3,  
BW = DC to 2MHz  
IOUT = Full Load  
1
1
72  
72  
72  
%
°
TC = +25 C  
M
ISO  
Input to output or any pin to  
case (except pin 8) at 500 VDC,  
100  
100  
100  
°
TC = +25 C  
Capacitive Load 6,7  
CL  
PD  
FS  
No effect on DC performance  
4
1
4
200  
200  
200  
µF  
°
TC = +25 C  
Load Fault  
Power Dissipation  
8
°
Overload, TC = +25 C  
Short Circuit, TC = +25 C  
8,5  
8.5  
8,5  
8.5  
8.5  
8.5  
W
°
Switching Frequency  
IOUT = Full Load  
450  
550  
450  
550  
450  
550  
KHz  
DYNAMIC  
CHARACTERISTICS  
Step Load Changes  
Output Transient 9  
VOTLOAD  
TTLOAD  
50% Load 135 100% Load  
No Load 135 50%  
50% Load 135 100%  
No Load 335 50% Load  
50% Load 335 No lLoad  
4
4
4
4
4
-300  
-500  
+300  
+500  
70  
200  
5.0  
-300  
-500  
+300  
+500  
70  
1500  
5.0  
-300  
-500  
+300  
+500  
70  
1500  
5.0  
mVpk  
mVpk  
Recovery9,10  
s
s
µ
µ
ms  
Step Line Changes  
Output Transient 7,11  
VOTLINE  
TTLINE  
Input step 16 to 40 VDC  
Input step 40 to 16 VDC  
Input step 16 to 40 VDC  
Input step 40 to 16 VDC  
4
4
4
4
300  
1200  
-1500  
4.0  
1500  
-1500  
4.0  
mVpk  
mVpk  
1000  
4800  
4800  
Recovery 7,10, 11  
s
s
µ
4.0  
4.0  
µ
TURN-ON  
1
Overshoot  
VTonOS  
T on D  
TRLF  
IOUT = O and Full Load  
IOUT = O and Full Load  
4,5,6  
4,5,6  
4,5,6  
550  
10  
10  
600  
10  
10  
600  
10  
10  
mVpk  
ms  
ms  
Delay 1,12  
Load Fault Recovery 7  
For Notes to Specifications, refer to page 5  
www.irf.com  
3
AHV28XX Series  
Specifications (Triple Output Models)  
TCASE = -55°C to +125°C, VIN = +28V ± 5% unless otherwise specified  
Absolute Maximum Ratings  
Input voltage  
-0.5V to +50VDC (Continous), 80V (100 msec)  
Power output  
Internally limited, 17.5W typical  
300°C for 10 seconds (1 pin at a time)  
-55°C to +125°C  
Soldering temperature  
Operating case temperature  
Storage case temperature  
-65°C to +135°C  
Condition  
-55°C T +125°C,  
C
Group A  
Subgroups  
AHV2812T  
AHV2815T  
±
= 28 V 5%, C =0,  
DC L  
V
IN  
unless otherwise specified  
TEST  
SYMBOL  
Min  
Max  
Min  
Max  
Units  
STATIC  
CHARACTERISTICS  
OUTPUT  
Voltage 1  
VOUT  
IOUT = 0 (main)  
1
2,3  
1
4.95  
4.90  
11.88  
11.76  
0.0  
5.05  
5.10  
12.12  
12.24  
4.95  
4.90  
14.85  
14.70  
0.0  
5.05  
5.10  
15.15  
15.30  
V
V
V
V
mA  
mA  
IOUT = 0 (dual)1  
±
±
±
±
±
±
±
±
2,3  
Current 1,2,3  
IOUT  
VRIP  
VIN = 16, 28, and 40 VDC (main)  
1,2,3  
1,2,3  
1,2,3  
2000  
2000  
V
IN = 16, 28, and 40 VDC (dual)1  
0.0  
0.0  
±
±
208  
80  
167  
80  
Ripple Voltage 1,4  
VIN = 16, 28, and 40 VDC  
BW = DC to 2 MHz (main)  
VIN = 16, 28, and 40 VDC  
BW = DC to 2 MHz (main)  
VIN = 16, 28, and 40 VDC (main)  
(+dual)  
mVp-p  
1,2,3  
40  
40  
MVp-p  
Power 1,2,3  
POUT  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
10  
2.5  
2.5  
15  
10  
2.5  
2.5  
15  
W
W
W
W
(-dual)  
(total)  
REGULATION  
Line 1,3  
VRLINE  
VIN = 16, 28, and 40 VDC  
IOUT = 0, 50%, and 100% load (main)  
IOUT = 0, 50%, and 100% load (dual)  
VIN = 16, 28, and 40 VDC  
1,2,3  
25  
25  
±
±
60  
75  
Load 1,3  
VRLOAD  
mV  
IOUT = 0, 50%, and 100% load (main)  
IOUT = 0, 50%, and 100% load (dual)  
50  
50  
±
75  
±
60  
INPUT  
Current  
IIN  
I
OUT = 0, Inhibit (pin 8)  
1,2,3  
1,2,3  
1,2,3  
15  
15  
mA  
mA  
Tied to input return (pin 10)  
IOUT = 0  
Inhibit (pin 2) = open  
IOUT = 2000 mA (main)  
50  
50  
50  
50  
Ripple Current 4  
IRIP  
mAp-p  
±
±
±
208mA ( 12V)  
167mA ( 15V)  
IOUT  
IOUT  
=
=
±
BW = DC to 2MHz  
EFFICIENCY  
EFF  
ISO  
CL  
IOUT = 2000mA (main)  
1
1
72  
72  
%
±
±
±
IOUT  
IOUT  
=
=
208mA ( 12V)  
±
167mA ( 15V)  
ISOLATION  
Input to output or any pin to  
case (except pin 7) at 500 VDC,  
100  
100  
M
°
TC = +25 C  
Capacitive Load 6,7  
No effect on DC performance  
4
500  
200  
500  
200  
°
µ
F
TC = +25 C (main)  
(dual)  
Load Fault  
Power Dissipation 3  
PD  
FS  
1
1
8.5  
8.5  
8.5  
8.5  
W
5
°
Overload, TC = +25 C  
°
Short Circuit, TC = +25 C  
Switching Frequency 1  
IOUT = 2000mA (main)  
4
450  
550  
450  
550  
KHz  
±
±
±
208mA ( 12V)  
167mA ( 15V)  
IOUT  
IOUT  
=
=
±
For Notes to Specifications, refer to page 5  
4
www.irf.com  
AHV28XX Series  
Specifications (Triple Output Models) - continued  
Condition  
-55°C T +125°C,  
C
Group A  
Subgroups  
AHV2812T  
AHV2815T  
V
= 28 V  
±5%, C =0,  
DC L  
IN  
TEST  
DYNAMIC  
SYMBOL  
Min  
Max  
Min  
Max  
Units  
unless otherwise specified  
CHARACTERISTICS  
Step Load Changes  
Output Transient 9  
VOTLOAD  
TTLOAD  
50% Load 135 100% Load  
No Load 135 50%  
50% Load 135 100%  
No Load 335 50% Load  
50% Load 335 No lLoad  
4
4
4
4
4
-300  
-400  
+300  
+400  
100  
2000  
5.0  
-300  
-400  
+300  
+400  
100  
2000  
5.0  
mVpk  
mVpk  
Recovery 9,10  
µ
s
s
µ
ms  
Step Line Changes  
Output Transient  
VOTLINE  
TTLINE  
Input step 16 to 40 VDC  
Input step 40 to 16 VDC  
Input step 16 to 40 VDC  
Input step 40 to 16 VDC  
4
4
4
4
1200  
-1500  
4.0  
1200  
-1500  
4.0  
mVpk  
mVpk  
Recovery 7,10, 11  
µ
s
s
4.0  
4.0  
µ
TURN-ON  
Overshoot 1  
Delay 1,12  
VTonOS  
T on D  
TRLF  
4
4
4
750  
15  
15  
750  
15  
15  
mVpk  
ms  
ms  
±
OUT = o and 625mA  
OUT = o and 625mA  
I
I
±
Load Fault Recovery 7  
Notes to Specifications (Triple Output Models)  
1. Tested at each output.  
2. Parameter guaranteed by line and load regulation tests.  
3. At least 25% of the total power should be taken from the (+5V) main output.  
4. Bandwidth guaranteed by design. Tested for 20KHz to 2MHz.  
5. An overload is that condition with a load in excess of the rated load but less than that necessary to trigger the short circuit  
protection and is the condition of maximum power dissipation.  
6. Capacitive load may be any value from 0 to the maximum limit without affecting dc performance. A capacitive load in excess of the  
maximum limit will not disturb loop stability but may interfere with the operation of the load fault detection circuitry, appearing as a  
short circuit during turn-on.  
7. Parameter shall be tested as part of design characterization and after design or process changes. Thereafter parameters shall be  
guaranteed to the limits specified.  
8. Above 125°C case temperature, derate output power linearly to 0 at 135°C case.  
9. Load step transition time between 2µs and 10µs.  
10. Recovery time is measured from the initiation of the transient to where VOUT has returned to within ±1% of VOUT at 50% load.  
11. Input step transition time between 2µs and 10µs.  
12. Turn on delay time measurement is for either a step application of power at input or the removal of a ground signal from the inhibit  
pin (pin 8) while power is applied to the input.  
Notes to Specifications (Dual Output Models)  
1. Tested at each output.  
2. Parameter guaranteed by line and load regulation tests.  
3. Bandwidth guaranteed by design. Tested for 20KHz to 2MHz.  
4. Total power at both outputs.  
5. When operating with unbalanced loads, at least 25% of the load must be on the positive output to maintain regulation.  
6. Capacitive load may be any value from 0 to the maximum limit without affecting dc performance. A capacitive load in excess of the  
maximum limit will not disturb loop stability but may interfere with the operation of the load fault detection circuitry, appearing as a  
short circuit during turn-on.  
7. Parameter shall be tested as part of design characterization and after design or process changes. Thereafter parameters shall be  
guaranteed to the limits specified.  
8. An overload is that condition with a load in excess of the rated load but less than that necessary to trigger the short circuit  
protection and is the condition of maximum power dissipation.  
9. Load step transition time between 2µs and 10µs.  
10. Recovery time is measured from the initiation of the transient to where VOUT has returned to within ±1% of VOUT at 50% load.  
11. Input step transition time between 2µs and 10µs.  
12. Turn on delay time measurement is for either a step application of power at input or the removal of a ground signal from the inhibit  
pin (pin 2) while power is applied to the input.  
13. Above 125°C case temperature, derate output power linearly to 0 at 135°C.  
www.irf.com  
5
AHV28XX Series  
Application Information  
Inhibit Function  
EMI Filter  
Connecting the inhibit pin (Pin 2 of single and dual models,  
pin 8 of triple models) to the input return (pin 10) will cause  
the converter to shutdown and operate in a low power  
standby mode. Power consumption in this mode is calculated  
by multiplying Vin times the input current inhibited, typically  
225mW at Vin equal to 28V. The input current inhibited is  
relatively constant with changes in Vin. The open circuit  
inhibit pin voltage is typically 11.5V and can be conveniently  
driven by an open collector driver. An internal pull-up resistor  
enables the user to leave this pin floating if the inhibit function  
is not used in their particular application. All models use  
identical inhibit internal circuits. Forcing inhibit pin to any  
voltage between 0V and 6V will assure the converter is  
inhibited. The input current to this pin is 500µA maximum at  
Vpin2 = to 0V. The converter can be turned on by opening  
Pin 2 or forcing a voltage from 10V to 50V. Inhibit pin current  
from 10V to 50V is less than ± 50µA.  
An optional EMI filter ( AFC461) will reduce the input ripple  
current to levels below the limits imposed by MIL-STD-  
461 CEO3.  
The output voltage of the AHV28XXS can be adjusted  
upward by connecting a resistor between the Output  
Adjust (Pin 3) and the Output Common (Pin 4) as shown  
in Table 1.  
Table 1: Output Adjustment Resistor Values  
* Resistance (Ohms)  
Pin 3 to 4  
Output Voltage Increase (%)  
5V  
12V  
15V  
None  
390 K  
145 K  
63 K  
22 K  
0
0
0
0
+1.0%  
+2.0%  
+3.1%  
+4.1%  
+5.0%  
+1.6%  
+3.2%  
+4.9%  
+6.5%  
+7.9%  
+1.7%  
+3.4%  
+5.1%  
+6.8%  
+8.3%  
* Output Adjust (Single Output Models Only)  
Standard Microcircuit Drawing Equivalence Table  
Standard Microcircuit  
Drawing Number  
5962-91773  
Vendor Cage  
IR Standard  
Part Number  
AHV2805S  
AHV2812S  
AHV2815S  
AHV2812D  
AHV2812T  
AHV2815T  
Code  
52467  
52467  
52467  
52467  
52467  
52467  
5962-92112  
5962-92113  
5962-92114  
5962-92115  
5962-92116  
6
www.irf.com  
AHV28XX Series  
Figure 1. (Single Output) Block Diagram  
5 +Vout  
EMI  
Filter  
Output  
4
1
Return  
+Input  
8
Drive 1  
Case  
Pulse Width  
Modulator  
Error  
Amp &  
Ref  
FB  
2
Enable  
Input  
3 VADJ  
Drive 2  
Input  
Return  
10  
Figure 2. (Dual Output) Block Diagram  
3
4
5
+Vout  
EMI  
Filter  
Output  
Return  
1
+Input  
Regulator  
-Vout  
Drive 1  
2
Enable  
Input  
Pulse Width  
Modulator  
FB  
Error Amp  
& Reference  
8
Drive 2  
Case  
Input  
Return  
10  
Figure 3. (Triple Output) Block Diagram  
5
+Vout  
Regulator  
4
2
-Vout  
+Input  
EMI  
Filter  
1
+5 Vout  
Enable  
Input  
Output  
Return  
Drive 1  
Drive 2  
3
8
Pulse  
Width  
7
Case  
Modulator  
Error Amp  
& Reference  
FB  
Input  
Return  
10  
www.irf.com  
7
AHV28XX Series  
Mechnical Outlines  
Single and Dual Output Model  
0.050  
Typical  
0.800  
0.040 D  
X
0.26 L Pins  
2.110  
Max  
4 X 0.400  
=1.600  
2.880  
Max  
2.560  
Ø 0.162  
2 Holes  
Typical  
0.405  
Max  
1.110  
Triple Output Model  
1.000  
2.700  
Max  
2.360  
1.95  
0.410  
Max  
1.345  
Pin Designation  
Pin #  
Single Output  
Dual Output  
Triple Output  
1
2
+ Input  
Enable Input  
Output Adjust *  
Output Return  
+ Output  
+ Input  
Enable Input  
+ Output  
Output Return  
- Output  
+ Input  
+ 5VDC Output  
Output Return  
3
4
- Dual Output (12/15VDC)  
+ Dual Output (12/15VDC)  
NC  
5
6
NC  
NC  
7
NC  
NC  
Case Ground  
Enable Input  
NC  
8
Case Ground  
NC  
Case Ground  
NC  
9
10  
Input Return  
Input Return  
Input Return  
* Output Adjust (Single Output Models Only)  
8
www.irf.com  
AHV28XX Series  
Device Screening  
Requirement  
MIL-STD-883 Method No Suffix  
ES  
HB  
CH  
Temperature Range  
Element Evaluation  
Non-Destructive  
Bond Pull  
-20°C to +85°C -55°C to +125°C  
-55°C to +125°C -55°C to +125°C  
MIL-PRF-38534  
2023  
N/A  
N/A  
N/A  
Class H  
N/A  
N/A  
N/A  
N/A  
Internal Visual  
Temperature Cycle  
Constant Acceleration  
PIND  
2017  
1010  
Yes  
Cond B  
500 Gs  
N/A  
Yes  
Cond C  
3000 Gs  
N/A  
Yes  
Cond C  
3000 Gs  
N/A  
N/A  
N/A  
2001, Y1 Axis  
2020  
N/A  
Burn-In  
1015  
N/A  
48 hrs@hi temp 160 hrs@125°C 160 hrs@125°C  
Final Electrical  
( Group A )  
MIL-PRF-38534  
& Specification  
MIL-PRF-38534  
1014  
25°C  
25°C  
-55°C, +25°C,  
+125°C  
N/A  
-55°C, +25°C,  
+125°C  
10%  
PDA  
N/A  
Cond A  
N/A  
N/A  
Cond A, C  
N/A  
Seal, Fine and Gross  
Radiographic  
External Visual  
Notes:  
Cond A, C  
N/A  
Cond A, C  
N/A  
2012  
2009  
Yes  
Yes  
Yes  
 Best commercial practice  
‚ Sample tests at low and high temperatures  
ƒ -55°C to +105°C for AHE, ATO, ATW  
Part Numbering  
AHV 28 15 T F /CH  
Screening Level  
Model  
(Please refer to Screening Table)  
No Suffix, ES, HB, CH  
Input Voltage  
Nominal  
28 = 28V  
Package Style  
F = Flange  
Output Voltage  
Single – 05 = 5V, 12 =12V, 15 =15V  
Dual – 05 = ±5V,12 = ±12V, 15 = ±15V  
Triple – 12 = 5V, ±12V  
Output  
S = Single  
D = Dual  
T = Triple  
15 = 5V, ±15V  
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 252-7105  
IR SANTA CLARA: 2270 Martin Av., Santa Clara, California 95050, Tel: (408) 727-0500  
Visit us at www.irf.com for sales contact information.  
Data and specifications subject to change without notice.12/2006  
www.irf.com  
9

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY