AFL2814DY [INFINEON]

DC-DC Regulated Power Supply Module, 2 Output, 100W, Hybrid;
AFL2814DY
型号: AFL2814DY
厂家: Infineon    Infineon
描述:

DC-DC Regulated Power Supply Module, 2 Output, 100W, Hybrid

文件: 总12页 (文件大小:212K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AFL2800D Series  
Dual Output, Hybrid - High Reliability  
DC/DC Converters  
DESCRIPTION  
FEATURES  
TheAFLSeriesofDC/DCconvertersfeaturehighpowerdensity  
with no derating over the full military temperature range. This  
series is offered as part of a complete family of converters  
providing single and dual output voltages and operating from  
nominal+28or+270voltinputswithoutputpowerrangingfrom  
80to120watts. Forapplicationsrequiringhigheroutputpower,  
individual converters can be operated in parallel. The internal  
current sharing circuits assure accurate current distribution  
amongtheparalleledconverters.ThisseriesincorporatesLambda  
Advanced Analog’s proprietary magnetic pulse feedback  
technologyprovidingoptimumdynamiclineandloadregulation  
response. This feedback system samples the output voltage at  
thepulsewidthmodulatorfixedclockfrequency,nominally550  
KHz.Multipleconverterscanbesynchronizedtoasystemclock  
inthe500KHzto700KHzrangeortothesynchronizationoutput  
ofoneconverter. Undervoltagelockout,primaryandsecondary  
referencedinhibit,soft-startandloadfaultprotectionareprovided  
on all models.  
n 16To40VoltInputRange  
n ±5,±12,and±15VoltOutputsAvailable  
3
n High Power Density - up to 70 W / in  
n UpTo100WattOutputPower  
n ParallelOperationwithPowerSharing  
n LowProfile(0.380")SeamWeldedPackage  
n CeramicFeedthruCopperCorePins  
n High Efficiency - to 85%  
n FullMilitaryTemperatureRange  
n ContinuousShortCircuitandOverloadProtection  
n OutputVoltageTrim  
n PrimaryandSecondaryReferencedInhibitFunctions  
n Line Rejection> 40dB -DC to50Khz  
n ExternalSynchronizationPort  
These converters are hermetically packaged in two enclosure  
variations, utilizing copper core pins to minimize resistive DC  
losses. Three lead styles are available, each fabricated with  
Lambda Advanced Analog’s rugged ceramic lead-to-package  
seal assuring long term hermeticity in the most harsh  
environments.  
n FaultTolerantDesign  
n SingleOutputVersionsAvailable  
n StandardMicrocircuitDrawingsAvailable  
Manufactured in a facility fully qualified to MIL-PRF-38534,  
theseconvertersareavailableinfourscreeninggradestosatisfy  
a wide range of requirements. The CH grade is fully compliant  
totherequirementsofMIL-H-38534forclassH. TheHBgrade  
is processed and screened to the class H requirement, but may  
notnecessarilymeetalloftheotherMIL-PRF-38534requirements,  
e.g.,elementevaluationandPeriodicInspections(PI)notrequired.  
Both grades are tested to meet the complete group “A” test  
specification over the full military temperature range without  
outputpowerderation. Twogradeswithmorelimitedscreening  
are also available for use in less demanding applications.  
Variations in electrical, mechanical and screening can be  
accommodated. ContactLambdaAdvancedAnalogwithspecific  
requirements.  
SPECIFICATIONS  
AFL28XXD  
ABSOLUTE MAXIMUM RATINGS  
Input Voltage  
-0.5V to 50V  
300°C for 10 seconds  
Soldering Temperature  
Case Temperature  
Operating  
Storage  
-55°C to +125°C  
-65°C to +135°C  
Static Characteristics -55°C T  
+125°C, 160 V 400 unless otherwise specified.  
CASE  
IN  
Group A  
Subgroup  
Parameter  
Test Conditions  
Min  
Nom  
28  
Max  
Unit  
V
INPUT VOLTAGE  
Note 6  
16  
40  
OUTPUT VOLTAGE  
Vin = 28 Volts, 100% Load  
AFL2805D  
1
1
1
1
1
1
Positive Output  
Negative Output  
Positive Output  
Negative Output  
Positive Output  
Negative Output  
4.95  
-5.05  
11.88  
-12.12  
14.85  
-15.15  
5
-5  
12  
-12  
15  
-15  
5.05  
-4.95  
12.12  
-11.88  
15.15  
-14.85  
V
V
V
V
V
V
AFL2812D  
AFL2815D  
AFL2805D  
AFL2812D  
AFL2815D  
2,3  
2,3  
2,3  
2,3  
2,3  
2,3  
Positive Output  
Negative Output  
Positive Output  
Negative Output  
Positive Output  
Negative Output  
4.90  
-5.10  
11.76  
-12.24  
14.70  
-15.30  
5.10  
-4.90  
12.24  
-11.76  
15.30  
-14.70  
V
V
V
V
V
V
OUTPUT CURRENT  
OUTPUT POWER  
Vin = 16, 28, 40 Volts-Note 6, 11  
AFL2805D  
AFL2812D  
AFL2815D  
Either Output  
Either Output  
Either Output  
12.8  
6.4  
5.3  
A
A
A
Total of Both Outputs. Note 6, 11  
AFL2805D  
AFL2812D  
AFL2815D  
80  
96  
100  
W
W
W
MAXIMUM CAPACITIVE LOAD  
Each Output Note 1  
10,000  
-0.015  
ufd  
OUTPUT VOLTAGE  
Vin = 28 Volts, 100% Load-Note 1,6  
+0.015  
%/°C  
TEMPERATURE COEFFICIENT  
OUTPUT VOLTAGE REGULATION  
Note 10  
Line  
Load  
1,2,3  
1,2,3  
No Load, 50% Load, 100% Load  
Vin = 16, 28, 40 Volts  
-0.5  
-1.0  
+0.5  
+1.0  
%
%
Vin = 16, 28, 40 Volts. Note 12  
Cross  
AFL2805D  
1,2,3  
1,2,3,  
1,2,3  
Positive Output  
Negative Output  
Positive Output  
Negative Output  
Positive Output  
Negative Output  
-1.0  
-8.0  
-1.0  
-5.0  
-1.0  
-5.0  
+1.0  
+8.0  
+1.0  
+5.0  
+1.0  
+5.0  
%
%
%
%
%
%
AFL2812D  
AFL2815D  
OUTPUT RIPPLE VOLTAGE  
Vin = 16, 28, 40 Volts, 100% Load,  
BW = 10MHz  
AFL2805D  
AFL2812D  
AFL2815D  
1,2,3  
1,2,3  
1,2,3  
60  
80  
80  
mVpp  
mVpp  
mVpp  
2
Static Characteristics (continued)  
Group A  
Subgroup  
Parameter  
Test Conditions  
Vin = 28 Volts  
Iout = 0  
Min  
Nom  
Max  
Unit  
INPUT CURRENT  
No Load  
1
2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
80  
100  
5
5
50  
30  
mA  
mA  
mA  
mA  
mA  
mA  
Inhibit 1  
Inhibit 2  
AFL2805D  
Pin 4 Shorted to Pin 2  
Pin 12 Shorted to Pin 8  
AFL2812D, 15D  
INPUT RIPPLE CURRENT  
Vin = 28 Volts, 100% Load  
BW = 10MHz  
AFL2805D  
AFL2812D  
AFL2815D  
1,2,3  
1,2,3  
1,2,3  
60  
60  
60  
mApp  
mApp  
mApp  
CURRENT LIMIT POINT  
Vout - 90% Vnom, Current split equally  
on positive and negative outputs. Note 5  
1
2
3
115  
105  
125  
125  
115  
140  
%
%
%
Expressed as a Percentage  
of Full Rated Load  
LOAD FAULT POWER DISSIPATION  
Overload or Short Circuit  
1,2,3  
Vin = 28 Volts  
33  
W
EFFICIENCY  
Vin = 28 Volts, 100% Load  
AFL2805D  
AFL2812D  
AFL2815D  
1,2,3  
1,2,3  
1,2,3  
78  
80  
81  
81  
84  
85  
%
%
%
ENABLE INPUTS (Inhibit Function)  
Converter Off  
Sink Current  
1,2,3  
1,2,3  
Logical Low, Pin 4 or Pin 12  
Note 1  
Logical High, Pin 4 and Pin 12-Note 9  
Note 1  
-0.5  
2.0  
0.8  
100  
50  
V
uA  
V
Converter On  
Sink Current  
100  
uA  
SWITCHING FREQUENCY  
1,2,3  
500  
550  
600  
KHz  
SYNCHRONIZATION INPUT  
Frequency Range  
1,2,3  
1,2,3  
1,2,3  
500  
2.0  
-0.5  
700  
10  
0.8  
100  
80  
KHz  
V
V
nSec  
%
Pulse Amplitude, Hi  
Pulse Amplitude, Lo  
Pulse Rise Time  
Note 1  
Note 1  
Pulse Duty Cycle  
20  
ISOLATION  
1
Input to Output or Any Pin to Case  
(except Pin 3). Test @ 500VDC  
100  
M
DEVICE WEIGHT  
MTBF  
Slight Variations with Case Style  
85  
gms  
MIL-HDBK-217, AIF @ Tc = 70°C  
300  
KHrs  
3
Dynamic Characteristics -55°CT  
                                                                                             
                                                                                             
+125°C, V = 28 Volts unless otherwise specified.  
IN  
CASE  
Group A  
Subgroups  
Parameter  
Test Conditions  
Min  
Nom  
Max  
Unit  
LOAD TRANSIENT RESPONSE  
AFL2805D  
Note 2, 8  
Positive Output Amplitude  
Recovery  
4,5,6  
4,5,6  
Load Step 50% <=> 100%  
-450  
-450  
450  
200  
mV  
uSec  
Amplitude  
Recovery  
4,5,6  
4,5,6  
Load Step 10% <=> 50%  
10% => 50%  
50% => 10%  
450  
200  
400  
mV  
uSec  
uSec  
AFL2805D  
Negative Output Amplitude  
Recovery  
4,5,6  
4,5,6  
Load Step 50% <=> 100%  
-450  
-450  
450  
200  
mV  
uSec  
Amplitude  
Recovery  
4,5,6  
4,5,6  
Load Step 10% <=> 50%  
10% => 50%  
50% => 10%  
450  
200  
400  
mV  
uSec  
uSec  
AFL2812D  
Positive Output Amplitude  
Recovery  
4,5,6  
4,5,6  
Load Step 50% <=> 100%  
-750  
-750  
750  
200  
mV  
uSec  
Amplitude  
Recovery  
4,5,6  
4,5,6  
Load Step 10% <=> 50%  
10% => 50%  
50% => 10%  
750  
200  
400  
mV  
uSec  
uSec  
AFL2812D  
Negative Output Amplitude  
Recovery  
4,5,6  
4,5,6  
Load Step 50% <=> 100%  
-750  
-750  
750  
200  
mV  
uSec  
Amplitude  
Recovery  
4,5,6  
4,5,6  
Load Step 10% <=> 50%  
10% => 50%  
50% => 10%  
750  
200  
400  
mV  
uSec  
uSec  
AFL2815D  
Positive Output Amplitude  
Recovery  
4,5,6  
4,5,6  
Load Step 50% <=> 100%  
-750  
-750  
750  
200  
mV  
uSec  
Amplitude  
Recovery  
4,5,6  
4,5,6  
Load Step 10% <=> 50%  
10% => 50%  
50% => 10%  
750  
200  
400  
mV  
uSec  
uSec  
AFL2815D  
Negative Output Amplitude  
Recovery  
4,5,6  
4,5,6  
Load Step 50% <=> 100%  
-750  
-750  
750  
200  
mV  
uSec  
Amplitude  
Recovery  
4,5,6  
4,5,6  
Load Step 10% <=> 50%  
10% => 50%  
50% => 10%  
750  
200  
400  
mV  
uSec  
uSec  
LINE TRANSIENT RESPONSE  
Note 1,2,3  
Amplitude  
Recovery  
Vin Step = 16 <=> 40 Volts  
-500  
500  
500  
mV  
uSec  
TURN-ON CHARACTERISTICS  
Note 4  
Overshoot  
Delay  
4,5,6  
4,5,6  
Enable 1,2 on. (Pins 4, 12 high or open)  
250  
10  
mV  
mSec  
0
4
LOAD FAULT RECOVERY  
LINE REJECTION  
Same as Turn On Characteristics.  
MIL-STD-461D, CS101, 30Hz to 50KHz  
Note 1  
40  
50  
dB  
Notes to Specifications:  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
9.  
Parameters not 100% tested but are guaranteed to the limits specified in the table.  
Recovery time is measured from the initiation of the transient to where V  
Line transient transition time 100 µSec.  
has returned to within ±1% of V  
at 50% load.  
OUT  
OUT  
Turn-on delay is measured with an input voltage rise time of between 100 and 500 volts per millisecond.  
Current limit point is that condition of excess load causing output voltage to drop to 90% of nominal.  
Parameterverifiedaspartofanothertest.  
All electrical tests are performed with the remote sense leads connected to the output leads at the load.  
Load transient transition time 10 µSec.  
Enableinputsinternallypulledhigh. Nominalopencircuitvoltage4.0VDC.  
10. Loadcurrentsplitequallybetween+V and-V  
.
out out  
11. Output load must be distributed so that a minimum of 20% of the total output power is being provided by one of the outputs.  
12. Cross regulation measured with load on tested output at 20% while changing the load on other output from 20% to 80%.  
AFL2800D Case Outlines  
Case X  
Case W  
Pin Variation of Case Y  
0.050  
3.000  
2.760  
ø 0.128  
0.050  
0.250  
1.000  
0.250  
1.000  
Ref  
1.260 1.500  
0.200 Typ  
Non-cum  
Pin  
ø 0.040  
Pin  
ø 0.040  
0.220  
0.220  
2.500  
2.800  
0.525  
2.975 max  
0.238 max  
0.42  
0.380  
Max  
0.380  
Max  
Case Y  
Case Z  
Pin Variation of Case Y  
0.050  
1.150  
0.300  
ø
0.140  
0.25 typ  
0.050  
0.250  
0.250  
1.000  
Ref  
1.000  
Ref  
1.500 1.750 2.00  
0.200 Typ  
Non-cum  
Pin  
0.040  
Pin  
ø
ø
0.040  
0.220  
0.220  
0.36  
1.750  
2.500  
0.375  
2.800  
2.975 max  
0.525  
0.238 max  
0.380  
Max  
0.380  
Max  
Tolerances, unless otherwise specified: .XX =  
.XXX =  
±
±
0.010  
0.005  
AFL2800D Pin Designation  
PPiinn NNoo..  
Pin No.  
DDeessiiggnnaattiioonn  
Designation  
1
2
Positive Input  
Input Return  
Case  
3
4
Enable 1  
5
Sync Output  
Sync Input  
6
7
Positive Output  
Output Return  
Negative Output  
Output Voltage Trim  
Share  
8
9
10  
11  
12  
Enable 2  
Available Screening Levels and Process Variations for AFL2800D Series.  
MIL-STD-883  
Method  
No  
Suffix  
ES  
Suffix  
HB  
Suffix  
CH  
Suffix  
Requirement  
Temperature Range  
Element Evaluation  
Internal Visual  
-20 to +85°C  
*
-55°C to +125°C -55°C to +125°C -55°C to +125°C  
MIL-PRF-38534  
2017  
1010  
2001  
1015  
Yes  
Cond B  
500g  
Yes  
Cond C  
Yes  
Cond C  
Temperature Cycle  
Constant Acceleration  
Burn-in  
Cond A  
Cond A  
96hrs @ 125°C  
96hrs @ 125°C  
25°C  
160hrs @ 125°C  
160hrs @ 125°C  
Final Electrical (Group A) MIL-PRF-38534  
25°C  
-55, +25, +125°C -55, +25, +125°C  
Seal, Fine & Gross  
External Visual  
1014  
2009  
*
*
Cond A, C  
Yes  
Cond A, C  
Yes  
Cond A, C  
Yes  
*
Per Commercial Standards  
Part Numbering  
AFL 28 05 D X / CH  
Model  
Screening  
,
ES  
Input Voltage  
Case Style  
W, X, Y, Z  
HB, CH  
28 = 28V  
270 = 270V  
Output Voltage  
05 = 5V, 12 = 12V,  
15 = 15V  
Outputs  
S = Single  
D = Dual  
6
AFL2800D Circuit Description  
Figure I. AFL Dual Output Block Diagram  
Input  
Filter  
Output  
Filter  
1
4
+ Output  
DC Input  
Enable 1  
7
Current  
Sense  
Primary  
Bias Supply  
Output Return  
-Output  
8
9
Output  
Filter  
Sync Output  
5
Share  
Amplifier  
Control  
Share  
11  
Error  
Amp  
& Ref  
Sync Input  
Case  
6
3
2
12 Enable 2  
Trim  
10  
Input Return  
Circuit Operation and Application Information  
Althoughincorporatingseveralsophisticatedanduseful  
ancillary features, basic operation of the AFL2800D  
series can be initiated by simply applying an input  
voltage to pins 1 and 2 and connecting the appropriate  
loads between pins 7, 8, and 9. Of course, operation of  
any converter with high power density should not be  
attempted before secure attachment to an appropriate  
heat dissipator. (See Thermal Considerations, page 9)  
The AFL series of converters employ a forward switched  
mode converter topology. (refer to Figure I.) Operation of  
the device is initiated when a DC voltage whose magnitude  
is within the specified input limits is applied between pins 1  
and 2. If pins 4 and 12 are enabled (at a logical 1 or open)  
the primary bias supply will begin generating a regulated  
housekeeping voltage bringing the circuitry on the primary  
side of the converter to life. Two power MOSFETs used to  
chop the DC input voltage into a high frequency square  
wave, apply this chopped voltage to the power transformer.  
As this switching is initiated, a voltage is impressed on a  
second winding of the power transformer which is then  
rectified and applied to the primary bias supply. When this  
occurs, the input voltage is excluded from the bias voltage  
generator and the primary bias voltage becomes internally  
generated.  
Inhibiting Converter Output  
As an alternative to application and removal of the DC  
voltage to the input, the user can control the converter  
output by providing TTL compatible, positive logic  
signals to either of two enable pins (pin 4 or 12). The  
distinction between these two signal ports is that enable  
1 (pin 4) is referenced to the input return (pin 2) while  
enable 2 (pin 12) is referenced to the output return (pin  
8). Thus, the user has access to an inhibit function on  
either side of the isolation barrier.  
The switched voltage impressed on the secondary output  
transformer windings is rectified and filtered to provide the  
positive and negative converter output voltages. An error  
amplifieronthesecondarysidecomparesthepositiveoutput  
voltage to a precision reference and generates an error signal  
proportional to the difference. This error signal is magneti-  
cally coupled through the feedback transformer into the  
control section of the converter varying the pulse width of  
thesquarewavesignaldrivingtheMOSFETs,narrowingthe  
pulse width if the output voltage is too high and widening it  
if it is too low. These pulse width variations provide the  
necessary corrections to maintain the magnitude of output  
voltage within its’ specified limits.  
Figure II. Enable Input Equivalent Circucuit  
+5.6V  
100K  
1N4148  
Pin 4 or  
Pin 12  
Disable  
290K  
2N3904  
150K  
Pin 2 or  
Pin 8  
Because the primary and secondary sides are coupled by  
magnetic elements, full isolation from input to output is  
achieved.  
7
designated as the master oscillator provides a conve-  
nient frequency source for this mode of operation.  
When external synchronization is not indicated, the  
sync in pin should be left unconnected thereby permit-  
ting the converter to operate at its’ own internally set  
frequency.  
The sync output signal is a continuous pulse train set at  
550 ±50 KHz, with a duty cycle of 15 ±5%. This signal is  
referenced to the input return and has been tailored to be  
compatiblewiththeAFLsyncinputport. Transitiontimes  
are less than 100 ns and the low level output impedance is  
less than 50 ohms. This signal is active when the DC input  
voltage is within the specified operating range and the  
converter is not inhibited. The sync output has adequate  
drive reserve to synchronize at least five additional con-  
verters. A typical connection is illustrated in Figure III.  
Each port is internally pulled “high” so that when not used,  
an open connection on both enable pins permits normal  
converter operation. When their use is desired, a logical  
“lowoneitherportwillshuttheconverterdown. Internally,  
these ports differ slightly in their operation. In use, a low on  
Enable 1 completely shuts down all circuits in the converter,  
whilealowonEnable2shutsdownthesecondarysidewhile  
alteringthecontrollerdutycycletonearzero.Externally,the  
use of either port is transparent to the user save for minor  
differences in idle current. (See specification table).  
Synchronization of Multiple Converters  
When operating multiple converters, system requirements  
often dictate operation of the converters at a common  
frequency. To accommodate this requirement, the AFL  
series converters provide both a synchronization input and  
synchronization output.  
Parallel Operation — Current and Stress Sharing  
Figure III. illustrates the preferred connection scheme for  
operation of a set of AFL converters with outputs operat-  
ing in parallel. Use of this connection permits equal  
The sync input port permits synchronization of an AFL  
converter to any compatible external frequency source  
operating between 500 and 700 KHz. This input signal  
FigureIII.PreferredConnectionforParallelOperation  
1
12  
Power  
Input  
Enable 2  
Vin  
Rtn  
Share  
Trim  
Case  
Enable  
AFL  
1
-
Output  
Return  
Output  
Sync Out  
Sync In  
+
7
6
1
Optional  
Synchronization  
Connection  
Share Bus  
12  
Enable  
2
Vin  
Rtn  
Share  
Trim  
Case  
AFL  
Enable  
1
-
Output  
Return  
Output  
to Negative Load  
to Positive Load  
Sync Out  
Sync In  
+
7
6
1
12  
Enable  
2
Vin  
Rtn  
Share  
Trim  
Case  
AFL  
Enable  
1
-
Output  
Return  
Output  
Sync Out  
Sync In  
+
6
7
(Other Converters)  
current sharing among the members of a set whose load  
current exceeds the capacity of an individual AFL. An  
importantfeatureoftheAFLseriesoperatingintheparallel  
mode is that in addition to sharing the current, the stress  
induced by temperature will also be shared. Thus if one  
should be referenced to the input return and have a  
10% to 90% duty cycle. Compatibility requires  
transition times less than 100 ns, maximum low level of  
+0.8 volts and a minimum high level of +2.0 volts. The  
sync output of another converter which has been  
8
provide similar effectiveness, these alternatives are  
often less convenient and are frequently messy to  
use.  
A conservative aid to estimating the total heat sink  
surface area (AHEAT SINK) required to set the  
maximum case temperature rise (T) above ambi-  
enttemperatureisgivenbythefollowingexpression:  
member of a paralleled set is operating at a higher case  
temperature, the current it provides to the load will be  
reduced as compensation for the temperature induced  
stress on that device.  
When operating in the shared mode, it is important that  
symmetry of connection be maintained as an assurance of  
optimum load sharing performance. Thus, converter  
outputs should be connected to the load with equal lengths  
of wire of the same gauge and should be connected to a  
common physical point, preferably at the load along with  
the converter return leads. All converters in a paralleled set  
must have their share pins connected together. This  
arrangement is diagrammatically illustrated in Figure III.  
showing the output and return pins connected at a star point  
which is located close as possible to the load.  
1.43  
T  
A
HEAT SINK  
3.0  
80P0.85  
where T = case temperature rise above ambient,  
1
Pout  
1  
P = device dissipation in watts =  
Eff  
As an example, assume that it is desired to operate  
an AFL2815D while maintaining the case tempera-  
ture at TC +85°C in an area where the ambient  
temperature is held to a constant +25°C; then  
T = 85 - 25 = 60°C.  
As a consequence of the topology utilized in the current  
sharing circuit, the share pin may be utilized in other  
functions. For applications requiring only a single con-  
verter, the voltage appearing on the share pin may be used  
as a “total current monitor”. The share pin open circuit  
voltageisnominally+1.00vatnoloadandincreaseslinearly  
with increasing total output current to +2.20v at full load.  
Note that the current we refer to here is the total device  
output current, that is, the sum of the positive and negative  
output currents.  
From the Specification Table, the worst case full  
load efficiency for this device is 83% @ 100W; thus  
the power dissipation at full load is given by  
1
P = 100•  
1 = 1000.205 = 20.5W  
(
)
Thermal Considerations  
.83  
Because of the incorporation of many innovative techno-  
logical concepts, the AFL series of converters is capable of  
providing very high output power from a package of very  
small volume. These magnitudes of power density can only  
be obtained by combining high circuit efficiency with  
effective methods of heat removal from the die junctions.  
This requirement has been effectively addressed inside the  
device; but when operating at maximum loads, a significant  
amount of heat will be generated and this heat must be  
conducted away from the case. To maintain the case  
temperature at or below the specified maximum of 125°C,  
this heat must be transferred by conduction to an appropri-  
ateheatdissipaterheldinintimatecontactwiththeconverter  
base-plate.  
and the required heat sink area is  
1.43  
60  
A
HEAT SINK  
=
3.0 = 56.3 in2  
8020.50.85  
Thus, a total heat sink surface area (including fins,  
if any)of56in2 inthisexample,wouldlimitcaserise  
to6Caboveambient. Aflataluminumplate,0.25"  
2
thick and of approximate dimension 4" by 7" (28 in  
per side) would suffice for this application in a still  
airenvironment. Notethattomeetthecriteriainthis  
example, both sides of the plate require unrestricted  
exposure to the +25°C ambient air.  
Since the effectiveness of this heat transfer is dependent on  
theintimacyofthebaseplate-heatsinkinterface,itisstrongly  
recommended that a high thermal conductivity heat trans-  
ferring medium is inserted between the baseplate and  
heatsink. The material most frequently utilized at the  
factory during all testing and burn-in processes is sold  
under the trade name of Sil-PadR 4001 . This particular  
product is an insulator but electrically conductive versions  
are also available. Use of these materials assures maximum  
surface contact with the heat dissipater thereby compensat-  
ing for any minor surface variations. While other available  
types of heat conductive materials and thermal compounds  
Input Filter  
The AFL 2800D series converters incorporate a  
singlestageLCinputfilterwhoseelementsdominate  
the input load impedance characteristic during the  
turn-on sequence. The input circuit is as shown in  
Figure IV.  
1
Sil-Pad is a registered Trade Mark of Bergquist, Minneapolis, MN  
9
Figure IV. Input Filter Circuit  
Note that the nominal magnitude of output voltage resides in  
the middle of the table and the corresponding resistor value  
is set to α. To set the magnitude above nominal, the adjust  
resistor is connected to output return. To set the magnitude  
below nominal, the adjust resistor is connected to the  
positive output. (Refer to Figure V.)  
900nH  
130nH  
Pin 1  
Pin 2  
6
µfd  
11.2 µfd  
Figure V. Connection for Vout Adjustment  
12  
Enable  
2
Undervoltage Lockout  
Share  
Trim  
R ADJ  
Aminimumvoltageisrequiredattheinputoftheconverter  
toinitiateoperation. Thisvoltageissetto14.0± 5volts. To  
preclude the possibility of noise or other variations at the  
input falsely initiating and halting converter operation, a  
hysteresis of approximately 10 volts is incorporated in this  
circuit. Thus if the input voltage droops to 13.0 ± 5 volts,  
the converter will shut down and remain inoperative until  
the input voltage returns to »140 volts.  
-
+
AFL28xxD  
-
Vout  
To  
Loads  
Return  
+
Vout  
7
Connect Radj to + to increase, - to decrease.  
Output Voltage Adjust  
For output voltage settings that are within the limits, but  
between those presented in Table I, it is suggested that the  
resistor values be determined empirically by selection or by  
use of a variable resistor. The value thus determined can  
then be replaced with a good quality fixed resistor for  
permanentinstallation.  
By use of the trim pin (10), the magnitude of output  
voltages can be adjusted over a limited range in either a  
positive or negative direction. Connecting a resistor  
between the trim pin and either the output return or the  
positive output will raise or lower the magnitude of output  
voltage. Thespanofoutputvoltagemagnitudeisrestricted  
to the limits shown in Table I.  
When use of the trim feature is elected, the user should be  
aware that the temperature performance of the converter  
output voltage will be affected by the temperature perfor-  
mance of the resistor selected as the adjustment element and  
therefore, the user is advised to employ resistors with an  
very small temperature coefficient of resistance.  
Table I. Output Voltage Trim Values and Limits  
AFL2805D  
Vout Radj  
5.5  
AFL2812D  
Vout Radj  
AFL2815D  
Vout Radj  
General Application Information  
0
12.5  
12.4  
12.3  
12.2  
12.1  
12.0  
11.7  
0
15.5  
15.4  
15.3  
15.2  
15.1  
15.0  
14.6  
14.0  
13.5  
13.0  
12.917  
0
The AFL2800 series of converters are capable of providing  
large transient currents to user loads on demand. Because  
thenominalinputvoltagerangeinthisseriesisrelativelylow,  
the resulting input current demands will be correspondingly  
large. It is important therefore, that the line impedance be  
kept very low to prevent steady state and transient input  
currents from degrading the supply voltage between the  
voltage source and the converter input. In applications  
requiring high currents and large transients, it is recom-  
mended that the input leads are of adequate size to minimize  
resistive losses. It is also recommended that a good quality  
capacitor of approximately 100µfd be connected directly  
across the input terminals to assure an adequately low  
dynamic impedance at the input. Table I relates nominal  
resistance values for selected wire sizes.  
5.4  
5.3  
12.5K  
33.3K  
75K  
200K  
47.5K  
127K  
285K  
760K  
62.5K  
167K  
375K  
1.0M  
5.2  
5.1  
5.0  
4.9  
190K  
65K  
23K  
2.5K  
0
975K  
288K  
72.9K  
29.9K  
0
1.2M  
325K  
117K  
12.5K  
0
4.8  
11.3  
4.7  
10.8  
10.6  
10.417  
4.6  
4.583  
10  
Table I. Nominal Resistance Of Cu Wire  
reduced to 25% or 31% of that with 20 gauge wire.  
Another potential problem resulting from parasitically  
induced voltage drop on the input lines is with regard to  
the operation of the enable 1 port. The minimum and  
maximum operating levels required to operate this port  
are specified with respect to the input common return  
line at the converter. If a logic signal is generated with  
respect to a ‘common’ that is distant from the con-  
verter, the effects of the voltage drop over the return line  
must be considered when establishing the worst case  
TTL switching levels. These drops will effectively  
impart a shift to the logic levels. In Figure VI, it can be  
seen that referred to system ground, the voltage on the  
input return pin is given by  
Wire Size, AWG  
Resistance per ft  
24 Ga  
22 Ga  
20 Ga  
18 Ga  
16 Ga  
14 Ga  
12 Ga  
25.7 mΩ  
16.2 mΩ  
10.1 mΩ  
6.4 mΩ  
4.0 mΩ  
2.5 mΩ  
1.6 mΩ  
As an example of the effects of parasitic resistance,  
consider an AFL2815D operating at full power of 100  
W. From the specification sheet, this device has a  
minimum efficiency of 83% which represents an input  
power of more than 120 W. If we consider the case  
where line voltage is at its’ minimum of 16 volts, the  
steady state input current necessary for this example  
will be slightly greater than 7.5 amperes. If this device  
were connected to a voltage source with 10 feet of 20  
gauge wire, the round trip (input and return) would  
result in 0.2of resistance and 1.5 volts of drop from  
the source to the converter. To assure 16 volts at the  
input, a source closer to 18 volts would be required. In  
applicationsusingtheparallelingoption,thisdropwillbe  
multiplied by the number of paralleled devices. By  
choosing 14 or 16 gauge wire in this example, the  
parasitic resistance and resulting voltage drop will be  
eRtn = IRtn RP  
Therefore, the logic signal level generated in the system  
must be capable of a TTL logic high plus sufficient  
additional amplitude to overcome eRtn. When the con-  
verter is inhibited, IRtn diminishes to near zero and eRtn  
will then be at system ground.  
Incorporation of a 100 µfd capacitor at the input  
terminals is recommended as compensation for the  
dynamic effects of the parasitic resistance of the  
input cable reacting with the complex impedance of  
the converter input, and to provide an energy reser-  
voir for transient input current requirements.  
Figure VI. Effects of Parasitic Resistance in Input Lead  
R p  
Iin  
Vin  
100  
µfd  
e s o u r c e  
Rtn  
e Rt n  
IRt n  
R p  
Case  
Enable 1  
Sync Out  
Sync In  
System Ground  
11  
AFL2800D to Standard Microcircuit Equivalence Table  
AFL2805D  
AFL2812D  
AFL2815D  
5962-95795*  
5962-95796*  
5962-94724*  
Ø
At time of specification publication, DSCC approval of these  
devices was pending. Consult factory for current status.  
The information in this data sheet has been carefully checked and is believed to be accurate; however no  
responsibility is assumed for possible errors. These specifications are subject to change without notice.  
Ó
9849  
Lambda Advanced Analog  
2270 Martin Avenue  
Santa Clara CA 95050-2781  
(408) 988-4930 FAX (408) 988-2702  
MIL-PRF-38534 Certified  
ISO9001 Registered  
l
LAMBDA ADVANCED ANALOG INC.  
12  

相关型号:

AFL2814DY/CH

DC-DC Regulated Power Supply Module, 2 Output, 100W, Hybrid
INFINEON

AFL2814DY/ES

DC-DC Regulated Power Supply Module, 2 Output, 100W, Hybrid
INFINEON

AFL2814DY/HB

DC-DC Regulated Power Supply Module, 2 Output, 100W, Hybrid
INFINEON

AFL2814DZ

DC-DC Regulated Power Supply Module, 2 Output, 100W, Hybrid
INFINEON

AFL2814DZ/CH

DC-DC Regulated Power Supply Module, 2 Output, 100W, Hybrid
INFINEON

AFL2814DZ/ES

DC-DC Regulated Power Supply Module, 2 Output, 100W, Hybrid
INFINEON

AFL2814DZ/HB

DC-DC Regulated Power Supply Module, 2 Output, 100W, Hybrid
INFINEON

AFL2815D

DC-DC Regulated Power Supply Module, 2 Output, 120W, Hybrid
ANALOGICTECH

AFL2815D

HYBRID-HIGH RELIABILITY DC/DC CONVERTER
INFINEON

AFL2815D/CH

DC-DC Regulated Power Supply Module, 2 Output, 60W, Hybrid
ANALOGICTECH

AFL2815D/HB

DC-DC Regulated Power Supply Module, 2 Output, 60W, Hybrid
ANALOGICTECH

AFL2815DW

ADVANCED ANALOG HIGH RELIABILITY HYBRID DC/DC CONVERTERS
INFINEON