2EDN752X [INFINEON]

EiceDRIVER™;
2EDN752X
型号: 2EDN752X
厂家: Infineon    Infineon
描述:

EiceDRIVER™

驱动
文件: 总31页 (文件大小:1180K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EiceDRIVER™  
2EDN752x / 2EDN852x  
Features  
Fast, precise, strong and compatible  
Highly efficient SMPS enabled by 5 ns fast slew rates and 17 ns propagation delay precision for fast MOSFET  
and GaN switching  
1 ns channel-to-channel propagation delay accuracy enables safe use of two channels in parallel  
Two independent 5 A channels enable numerous deployment options  
Industry standard packages and pinout ease system-design upgrades  
The new Reference in Ruggedness  
4.2 V and 8 V UVLO (Under Voltage Lock Out) options ensure instant MOSFET protection under abnormal  
conditions  
-10 V control and enable input robustness delivers crucial safety margin when driving pulse-transformers or  
driving MOSFETs in through hole packaging  
5 A reverse current robustness eliminates the need for output protection circuitry.  
Typical Applications  
Server SMPS  
TeleCom SMPS  
DC-to-DC Converter  
Bricks  
Power Tools  
Industrial SMPS  
Motor Control  
Solar SMPS  
Example Topologies  
Single and interleaved PFC  
LLC, ZVS with pulse transformer  
Synchronous Rectification  
Description  
The 2EDN752x/2EDN852x is an advanced dual-channel driver. It is suited to drive logic and normal level MOSFETs  
and supports OptiMOSTM, CoolMOSTM, Standard Level MOSFETs, Superjunction MOSFETs, as well as IGBTs and  
GaN Power devices.  
Data Sheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
Rev. 2.5  
2018-04-20  
EiceDRIVER™  
2EDN752x / 2EDN852x  
Features  
The control and enable inputs are LV-TTL compatible (CMOS 3.3 V) with an input voltage range from -5 V to +20 V.  
-10 V input pin robustness protects the driver against latch-up or electrical overstress which can be induced by  
parasitic ground inductances. This greatly enhances system stability.  
4.2 V and 8 V UVLO (Under Voltage Lock Out) options ensure instant MOSFET and GaN protection under abnormal  
conditions. Under such circumstances, this UVLO mechanism provides crucial independence from whether and  
when other supervisors circuitries detect abnormal conditions.  
Each of the two outputs is able to sink and source 5 A currents utilizing a true rail-to-rail stage. This ensures very  
low on resistance of 0.7 up to the positive and 0.55 down to the negative rail respectively. Very tight channel  
to channel delay matching, typ. 1 ns, permits parallel use of two channels, leading to a source and sink capability  
of 10 A. Industry leading reverse current robustness eliminates the need for Schottky diodes at the outputs and  
reduces the bill-of-material.  
The pinout of the 2EDN family is compatible with the industry standard. Two different control input options,  
direct and inverted, offer high flexibility. Three package variants, DSO 8-pin, TSSOP 8-pin, WSON 8-pin, allow  
optimization of PCB board space usage and thermal characteristics.  
VDD  
Load1  
M1  
Load2  
2EDN752x /  
2EDN852x  
ENA  
ENB  
OUTA  
VDD  
1
8
Rg1  
2
7
INA  
GND  
INB  
3
6
M2  
Rg2  
5
4
OUTB  
CVDD  
Data Sheet  
2
Rev.2.5  
2018-04-20  
EiceDRIVER™  
2EDN752x / 2EDN852x  
Table of Contents  
Table of Contents  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1
1.1  
1.2  
Product Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Logic Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Package Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2
3
Pin Configuration and Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Input Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Driver Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Undervoltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.1  
4.2  
4.3  
4.4  
4.5  
5
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.1  
5.2  
5.3  
5.4  
6
7
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Typical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
8
Outline Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
PG-DSO-8-60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
PG-TSSOP-8-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
PG-WSON-8-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
8.1  
8.2  
8.3  
9
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Data Sheet  
3
Rev.2.5  
2018-04-20  
EiceDRIVER™  
2EDN752x / 2EDN852x  
Product Versions  
1
Product Versions  
The 2EDN752x / 2EDN852x are available in 2 different logic, 2 different undervoltage lockout and 3 package  
versions.  
Table 1  
Product Versions  
Package  
Type.  
UVLO  
Control Input Part Number  
IC Topside  
Marking Code  
PG-DSO-8-60  
4.2V  
direct  
2EDN7524F  
2EDN7523F  
2EDN8524F  
2EDN8523F  
2N7524AF  
EiceDRIV  
XXHYYWW  
inverted  
direct  
2N7523AF  
EiceDRIV  
XXHYYWW  
8V  
2N8524AF  
EiceDRIV  
XXHYYWW  
inverted  
2N8523AF  
EiceDRIV  
XXHYYWW  
PG-TSSOP-8-1  
4.2V  
8V  
direct  
2EDN7524R  
2EDN7523R  
2EDN8524R  
2EDN8523R  
2N7524  
AR_XXX  
HYYWW  
inverted  
direct  
2N7523  
AR_XXX  
HYYWW  
2N8524  
AR_XXX  
HYYWW  
inverted  
2N8523  
AR_XXX  
HYYWW  
PG-WSON-8-3  
4.2V  
direct  
2EDN7524G  
2EDN7523G  
2N7524  
AG_XXX  
HYYWW  
inverted  
2N7523  
AG_XXX  
HYYWW  
Data Sheet  
4
Rev.2.5  
2018-04-20  
EiceDRIVER™  
2EDN752x / 2EDN852x  
Product Versions  
1.1  
Logic Versions  
The 2 logic versions are indicated by the variable x in the product version 2EDNy52x:  
x=3: inverting input logic  
x=4: non-inverting / direct input logic  
The logic relations between inputs, enable pins and outputs are given in Table 2 for the inverting and non-  
inverting version 2EDNx523 and 2EDNx524. The state of the driving output is defined by the state of the respective  
input, if the enable inputs ENA and ENB are high (or left open). A logic “low” at an enable input or an undervoltage  
lockout event, due to low voltage at VDD, causes the respective output to be low too, regardless of the input signal.  
Functional description is shown in Chapter 3 ( Block Diagram) and Chapter 4 (Input Configurations).  
Table 2  
Logic Table  
Inputs  
Output Inverting  
Output Standard  
ENA  
x
ENB  
x
INA  
INB  
x
UVLO1)  
active  
OUTA  
OUTB  
OUTA  
OUTB  
x
L
L
L
L
L
L
x
x
inactive  
inactive  
inactive  
inactive  
inactive  
inactive  
inactive  
inactive  
inactive  
L
L
L
L
H
H
L
L
L
H
x
x
H
L
L
L
L
L
x
L
H
L
L
H
H
H
H
H
H
L
L
H
L
L
L
x
H
L
L
L
H
L
H
H
H
H
L
H
L
H
H
L
H
H
L
L
L
H
L
L
H
H
H
H
H
L
L
H
1) Inactive means that VDD is above UVLO threshold voltage and release logic to control output stage.  
Active means that UVLO disable active the output stages.  
1.2  
Package Versions  
The logic and UVLO versions are available in 3 different packages.  
a standard PG-DSO-8-60 (designated by “F”)  
a small PG-TSSOP-8-1 (designated by “R”)  
a leadless PG-WSON-8-3 (designated by “G”)  
Drawings can be viewed in Chapter 8 (Outline Dimensions).  
Data Sheet  
5
Rev.2.5  
2018-04-20  
EiceDRIVER™  
2EDN752x / 2EDN852x  
Pin Configuration and Description  
2
Pin Configuration and Description  
The pin configuration for all input versions of 2EDN7524F, 2EDN7523F, 2EDN8524F and 2EDN8523F in the PG-  
DSO-8-60 package is shown in Figure 1. Drawings can be viewed in Chapter 8 (PG-DSO-8-60).  
ENA  
INA  
ENB  
OUTA  
VDD  
1
2
3
4
8
7
6
5
GND  
INB  
OUTB  
Figure 1  
Table 3  
Pin Configuration PG-DSO-8-60, Top View  
Pin Configuration 2EDN7524F, 2EDN7523F, 2EDN8524F and 2EDN8523F in the PG-DSO-8-60  
Package  
Pin Symbol Description  
1
ENA  
Enable input channel A  
Logic input; if ENA is high or left open, OUTA is controlled by INA; ENA low causes OUTA low  
2
INA  
Input signal channel A  
Logic input, controlling OUTA (inverting or non-inverting)  
3
4
GND  
INB  
Ground  
Input signal channel B  
Logic input, controlling OUTB (inverting or non-inverting)  
5
6
7
8
OUTB  
VDD  
Driver output channel B  
Low-impedance output with source and sink capability  
Positive supply voltage  
Operating range 4.5 V/8.6V to 20 V  
OUTA  
ENB  
Driver output channel A  
Low-impedance output with source and sink capability  
Enable input channel B  
Logic Input; if ENB is high or left open, OUTB is controlled by INB; ENB low causes OUTB low  
Data Sheet  
6
Rev.2.5  
2018-04-20  
EiceDRIVER™  
2EDN752x / 2EDN852x  
Pin Configuration and Description  
The pin configuration for all input versions of 2EDN7524R, 2EDN7523R, 2EDN8524R and 2EDN8523R in the PG-  
TSSOP-8-1 package is shown in Figure 2. Drawings can be viewed in Chapter 8 (PG-TSSOP-8-1).  
1
2
3
4
ENA  
INA  
ENB  
OUTA  
VDD  
8
7
6
5
Exposed  
Pad  
GND  
INB  
OUTB  
Figure 2  
Table 4  
Pin Configuration PG-TSSOP-8-1, Top View  
Pin Configuration 2EDN7524R, 2EDN7523R, 2EDN8524R and 2EDN8523R in the PG-TSSOP-8-1  
Package  
Pin Symbol Description  
1
ENA  
Enable input channel A  
Logic input; if ENA is high or left open, OUTA is controlled by INA; ENA low causes OUTA low  
2
INA  
Input signal channel A  
Logic input, controlling OUTA (non-inverting)  
3
4
GND  
INB  
Ground1)  
Input signal channel B  
Logic input, controlling OUTB (non-inverting)  
5
6
7
8
OUTB  
VDD  
Driver output channel B  
Low-impedance output with source and sink capability  
Positive supply voltage  
Operating range 4.5 V/8.6V to 20 V  
OUTA  
ENB  
Driver output channel A  
Low-impedance output with source and sink capability  
Enable input channel B  
Logic Input; if ENB is high or left open, OUTB is controlled by INB; ENB low causes OUTB low  
1) Exposed Pad sink of PG-TSSOP-8-1 packages has to be connected to GND pin.  
Data Sheet  
7
Rev.2.5  
2018-04-20  
EiceDRIVER™  
2EDN752x / 2EDN852x  
Pin Configuration and Description  
The pin configuration for direct input versions of 2EDN7524G and 2EDN7523G in the PG-WSON-8-3 package is  
shown in Figure 3. Drawings can be viewed in Chapter 8 (PG-WSON-8-3).  
ENA 1  
8
7
6
5
ENB  
INA  
GND  
INB  
2
OUTA  
VDD  
Exposed  
Pad  
3
4
OUTB  
Figure 3  
Table 5  
Pin Configuration PG-WSON-8-3, Top View  
Pin Configuration 2EDN7524G and 2EDN7523G in the PG-WSON-8-3 Package  
Pin Symbol Description  
1
ENA  
Enable input channel A  
Logic input; if ENA is high or left open, OUTA is controlled by INA; ENA low causes OUTA low  
2
INA  
Input signal channel A  
Logic input, controlling OUTA (non-inverting)  
3
4
GND  
INB  
Ground1)  
Input signal channel B  
Logic input, controlling OUTB (non-inverting)  
5
6
7
8
OUTB  
VDD  
Driver output channel B  
Low-impedance output with source and sink capability  
Positive supply voltage  
Operating range 4.5 V/8.6V to 20 V  
OUTA  
ENB  
Driver output channel A  
Low-impedance output with source and sink capability  
Enable input channel B  
Logic Input; if ENB is high or left open, OUTB is controlled by INB; ENB low causes OUTB low  
1)Exposed Pad of PG-WSON-8-3 packages has to be connected to GND pin.  
Data Sheet  
8
Rev.2.5  
2018-04-20  
EiceDRIVER™  
2EDN752x / 2EDN852x  
Block Diagram  
3
Block Diagram  
A simplified functional block diagram for the non-inverted / direct version is given in Figure 4. Please refer to the  
functional description section for more details in Chapter 4.  
VDD  
VDD  
VDD  
ENA  
6
1
UVLO  
400k  
Logic A  
OUTA  
7
INA  
2
100k  
GND  
GND  
VDD  
VDD  
400k  
ENB  
INB  
8
4
3
Logic B  
OUTB  
5
100k  
GND  
GND  
GND  
Figure 4  
Block Diagram, direct input, pull-up/pull-down resistor configuration  
Data Sheet  
9
Rev.2.5  
2018-04-20  
EiceDRIVER™  
2EDN752x / 2EDN852x  
Block Diagram  
A simplified functional block diagram for the inverted version is given in Figure 5. Please refer to the functional  
description section for more details in Chapter 4.  
VDD  
VDD  
VDD  
ENA  
6
1
UVLO  
400k  
400k  
VDD  
Logic A  
OUTA  
7
INA  
2
GND  
VDD  
VDD  
VDD  
400k  
400k  
ENB  
INB  
8
4
3
Logic B  
OUTB  
5
GND  
GND  
GND  
Figure 5  
Block Diagram, inverting input, pull-up/pull-down resistor configuration  
Data Sheet  
10  
Rev.2.5  
2018-04-20  
EiceDRIVER™  
2EDN752x / 2EDN852x  
Functional Description  
4
Functional Description  
4.1  
Introduction  
The 2EDN752x / 2EDN852x is a fast dual-channel driver for low-side switches. Two true rail-to-rail output stages  
with very low output impedance and high current capability are chosen to ensure highest flexibility and cover a  
high variety of applications.  
The focus on robustness at the input and output side additionally gives this device a safety margin in critical  
abnormal situations. An extended negative voltage range protects input pins against ground shifts. No current  
flows over the ESD structure in the IC during a negative input level. All outputs are robust against reverse current.  
The interaction with the power MOSFET, even reverse reflected power will be handled by the strong internal  
output stage.  
All inputs are compatible with LV-TTL signal levels. The threshold voltages with a typical hysteresis of 1.1 V are  
kept constant over the supply voltage range.  
Since the 2EDN752x / 2EDN852x aims particularly at fast-switching applications, signal delays and rise/fall times  
have been minimized. Special effort has been made towards minimizing delay differences between the 2  
channels to very low values of typically 1 ns.  
4.2  
Supply Voltage  
The maximum supply voltage is 20 V. This high voltage can be valuable in order to exploit the full current  
capability of 2EDN752x / 2EDN852x when driving very large MOSFETs. The minimum operating supply voltage is  
set by the undervoltage lockout function to a typical default value of 4.2 V or of 8 V. This lockout function protects  
power MOSFETs from running into linear mode with subsequent high power dissipation.  
4.3  
Input Configurations  
As described in Chapter 1, 2EDN752x / 2EDN852x is available in 2 different configurations with respect to the logic  
configuration of the 4 input pins (input plus enable).  
The enable inputs are internally pulled up to a logic high voltage, i.e. the driver is enabled with these pins left  
open. The direct PWM inputs are internally pulled down to a logic low voltage. This prevents a switch-on event  
during power up and a not driven input condition. Version with inverted PWM input have an internal pull up  
resistor to prevent unwanted switch-on.  
All inputs are compatible with LV-TTL levels and provide a hysteresis of 1.1 V typ. This hysteresis is independent  
of the supply voltage.  
All input pins have a negative extended voltage range. This prevents cross current over single wires during GND  
shifts between signal source (controller) and driver input.  
4.4  
Driver Outputs  
The two rail-to-rail output stages realized with complementary MOS transistors are able to provide a typical 5 A  
of sourcing and sinking current. This driver output stage has a shoot through protection and current limiting  
behavior. After a switching event, current limitation is raised up to achieve the typical current peak for an  
excellent fast reaction time of the following power MOS transistor.  
The output impedance is very low with a typical value below 0.7 for the sourcing p-channel MOS and 0.5 for  
the sinking n-channel MOS transistor. The use of a p-channel sourcing transistor is crucial for achieving true rail-  
to-rail behaviour and avoiding a source follower’s voltage drop.  
Data Sheet  
11  
Rev.2.5  
2018-04-20  
EiceDRIVER™  
2EDN752x / 2EDN852x  
Functional Description  
Gate Drive Outputs held active low in case of floating inputs ENx, INx or during startup or power down once UVLO  
is not exceeded. Under any situation, startup, UVLO or shutdown, outputs are held under defined conditions.  
4.5  
Undervoltage Lockout (UVLO)  
The Undervoltage Lockout function ensures that the output can be switched to its high level only if the supply  
voltage exceeds the UVLO threshold voltage. Thus it can be guaranteed, that the switch transistor is not switched  
on if the driving voltage is too low to completely switch it on, thereby avoiding excessive power dissipation.  
The UVLO level is set to a typical value of 4.2 V / 8 V (with hysteresis). UVLO of 4.2 V is normally used for logic level  
based MOSFETs. For higher level, like standard and high voltage superjunction MOSFETS, an UVLO voltage of  
typical 8 V is available.  
Data Sheet  
12  
Rev.2.5  
2018-04-20  
EiceDRIVER™  
2EDN752x / 2EDN852x  
Characteristics  
5
Characteristics  
The absolute maximum ratings are listed in Table 6. Stresses beyond these values may cause permanent damage  
to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
5.1  
Absolute Maximum Ratings  
Table 6  
Absolute Maximum Ratings  
Symbol  
Parameter  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
-0.3  
-10  
Max.  
22  
Positive supply voltage  
VVDD  
VIN  
V
V
Voltage at pins INA, INB, ENA,  
ENB  
22  
Voltage at pins OUTA, OUTB  
VOUT  
-0.3  
-2  
VVDD+0.3  
VVDD+0.3  
V
Note1)  
Repetitive pulse <200ns2)  
V
Reverse current peak at pins  
OUTA, OUTB  
ISNKREV  
ISRCREV  
-5  
5
Apk  
< 500ns  
Junction temperature  
Storage temperature  
ESD capability  
TJ  
-40  
-55  
150  
150  
1.5  
°C  
°C  
kV  
TS  
VESD  
Charged Device Mode  
(CDM) 3)  
ESD capability  
VESD  
2.5  
kV  
Human Body Model  
(HBM) 4)  
1) Voltage spikes resulting from reverse current peaks are allowed.  
2) Values are verified by characterization on bench.  
3) According to JESD22-C101  
4) According to JESD22-A114  
5.2  
Thermal Characteristics  
Table 7  
Thermal Characteristics  
Symbol  
Parameter  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
Thermal resistance junction- RthJA25  
ambient 1)  
125  
K/W  
K/W  
K/W  
K/W  
K/W  
PG-DSO-8-60, Tamb=25°C  
PG-DSO-8-60, Tamb=25°C  
PG-DSO-8-60, Tamb=25°C  
PG-DSO-8-60, Tamb=25°C  
PG-DSO-8-60, Tamb=25°C  
Thermal resistance junction- RthJC25  
case (top) 2)  
66  
Thermal resistance junction- RthJB25  
board 3)  
62  
Characterization parameter  
junction-top 4)  
ΨthJC25  
16  
Characterization parameter  
junction-board 5)  
ΨthJB25  
55  
Data Sheet  
13  
Rev.2.5  
2018-04-20  
EiceDRIVER™  
2EDN752x / 2EDN852x  
Characteristics  
Table 7  
Thermal Characteristics (continued)  
Symbol  
Parameter  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
Thermal resistance junction- RthJA25  
ambient 1)  
64  
56  
55  
9
K/W  
K/W  
K/W  
K/W  
K/W  
PG-TSSOP-8-1,  
amb=25°C  
PG-TSSOP-8-1,  
amb=25°C  
PG-TSSOP-8-1,  
amb=25°C  
PG-TSSOP-8-1,  
amb=25°C  
PG-TSSOP-8-1,  
amb=25°C  
T
Thermal resistance junction- RthJP25  
case (top) 2)  
T
Thermal resistance junction- RthJB25  
board 3)  
T
Characterization parameter  
junction-top 4)  
ΨthJC25  
T
Characterization parameter  
junction-board 5)  
ΨthJB25  
13  
T
Thermal resistance junction- RthJA25  
ambient 1)  
61  
54  
52  
8
K/W  
K/W  
K/W  
K/W  
K/W  
PG-WSON-8-3,  
Tamb=25°C  
Thermal resistance junction- RthJP25  
case (top) 2)  
PG-WSON-8-3,  
T
amb=25°C  
PG-WSON-8-3,  
amb=25°C  
PG-WSON-8-3,  
amb=25°C  
PG-WSON-8-3,  
amb=25°C  
Thermal resistance junction- RthJB25  
board 3)  
T
Characterization parameter  
junction-top 4)  
ΨthJC25  
T
Characterization parameter  
junction-board 5)  
ΨthJB25  
11  
T
1) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-  
standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.  
2) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No  
specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
3) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to  
control the PCB temperature, as described in JESD51-8.  
4) The characterization parameter junction-top, estimates the junction temperature of a device in a real system and is  
extracted from the simulation data for obtaining Rth, using a procedure described in JESD51-2a (sections 6 and 7).  
5) The characterization parameter junction-board, estimates the junction temperature of a device in a real system and  
is extracted from the simulation data for obtaining Rth, using a procedure described in JESD51-2a (sections 6 and 7).  
5.3  
Operating Range  
Table 8  
Operating Range  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
4.5  
-5  
Max.  
20  
Supply voltage  
VVDD  
VIN  
TJ  
V
Min. defined by UVLO  
Logic input voltage  
Junction temperature  
20  
V
1)  
-40  
150  
°C  
1) Continuous operation above 125 °C may reduce life time.  
Data Sheet  
14  
Rev.2.5  
2018-04-20  
EiceDRIVER™  
2EDN752x / 2EDN852x  
Characteristics  
5.4  
Electrical Characteristics  
Unless otherwise noted, min./max. values of characteristics are the lower and upper limits respectively. They are  
valid within the full operating range. The supply voltage is VVDD= 12 V. Typical values are given at TJ=25°C.  
Table 9  
Power Supply  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
0.5  
Max.  
1.2  
VDD quiescent current  
VDD quiescent current  
IVDDQU1  
IVDDQU2  
0.7  
mA  
mA  
OUT = high, VVDD= 12 V  
OUT = low, VVDD= 12 V  
0.3  
0.48  
0.7  
Table 10 Undervoltage Lockout for Logic Level MOSFET  
Parameter Symbol Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
Undervoltage Lockout (UVLO) UVLOON 3.9  
turn on threshold  
4.2  
3.9  
0.3  
4.5  
V
V
V
Undervoltage Lockout (UVLO) UVLOOFF 3.6  
turn off threshold  
4.2  
UVLO threshold hysteresis  
UVLOHYS  
Table 11 Undervoltage Lockout for Standard and Superjunction MOSFET Version  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
Undervoltage Lockout (UVLO) UVLOON 7.4  
turn on threshold  
8.0  
7.0  
1.0  
8.6  
V
V
V
Undervoltage Lockout (UVLO) UVLOOFF 6.5  
turn off threshold  
7.5  
UVLO threshold hysteresis  
UVLOHYS  
Table 12 Logic Inputs INA, INB, ENA, ENB  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Min.  
Typ.  
Max.  
Input voltage threshold for  
transition LH  
VINH  
VINL  
1.98  
2.1  
2.2  
V
V
Input voltage threshold for  
transition HL  
0.95  
1.02  
1.1  
Input pull up resistor1)  
Input pull down resistor2)  
RINH  
RINL  
400  
100  
kΩ  
kΩ  
1) Inputs with initial high logic level  
2) Inputs with initial low logic level  
Data Sheet  
15  
Rev.2.5  
2018-04-20  
EiceDRIVER™  
2EDN752x / 2EDN852x  
Characteristics  
Table 13 Static Output Caracteristics (see Figure 7)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
High Level (Sourcing) Output RONSRC  
Resistance  
0.35  
0.7  
1.2  
A
ISRC = 50mA  
1)  
High Level (Sourcing) Output ISRCPEAK  
Current  
5.0  
Low Level (Sinking) Output  
Resistance  
RONSNK  
0.28  
0.55  
-5.0  
1.0  
A
ISNK = 50mA  
2)  
Low Level (Sinking) Output  
Current  
ISNKPEAK  
1) Active limited by design at approx. 6.5Apk, parameter is not subject to production test - verified by design /  
characterization, max. power dissipation must be observed  
2) Active limited by design at approx. -6.5Apk, parameter is not subject to production test - verified by design /  
characterization, max. power dissipation must be observed  
Table 14 Dynamic Characteristics (see Figure 6, Figure 7, Figure 8 and Figure 9)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
Input/Enable to output  
propagation delay  
TPDlh  
15  
17  
23  
ns  
ns  
ns  
CLOAD= 1.8 nF, VVDD= 12 V;  
low to high transition at  
Input/Enable  
Input/Enable to output  
propagation delay  
TPDhl  
15  
19  
23  
2
CLOAD= 1.8 nF, VVDD= 12 V  
high to low transition at  
Input/Enable  
Input/Enable to output  
propagation delay mismatch  
between the two channels on  
the same IC  
delta tPD  
Rise Time  
Fall Time  
TRISE  
TFAll  
TPW  
5.3  
4.5  
6
10 1)  
10 1)  
10 1)  
ns  
ns  
ns  
CLOAD= 1.8 nF, VVDD= 12 V  
CLOAD= 1.8 nF, VVDD= 12 V  
CLOAD= 1.8 nF, VVDD= 12 V  
Minimum input pulse width  
that changes output state  
1) Parameter verified by design, not 100% tested in production.  
Data Sheet  
16  
Rev.2.5  
2018-04-20  
EiceDRIVER™  
2EDN752x / 2EDN852x  
Timing Diagrams  
6
Timing Diagrams  
Figure 6 shows the definition of rise, fall and delay times for the inputs of the non-inverting / direct version (with  
Enable pin high or open).  
ENx (high)  
VIN H  
VINL  
VIN H  
VINL  
INx  
90%  
10%  
OUT  
TRIS E  
TFAL L  
TPDON  
TPDOF F  
Figure 6  
Propagation delay, rise and fall time, non-inverted  
Figure 7 shows the definition of rise, fall and delay times for the inputs of the inverting version (with enable pins  
high or open).  
(high)  
ENx  
VINH  
VIN L  
INx  
VINH  
VINL  
90%  
10%  
OUT  
TRIS E  
TFAL L  
TPDON  
TPDOF F  
Figure 7  
Propagation delay, rise and fall Time, inverted  
Figure 8 illustrates the undervoltage lockout function.  
UVLOON  
UVLOOFF  
VDD  
OUT  
Figure 8  
UVLO behaviour, input ENx and INx drives OUTx normally high  
Data Sheet  
17  
Rev.2.5  
2018-04-20  
EiceDRIVER™  
2EDN752x / 2EDN852x  
Timing Diagrams  
Figure 9 illustrates the minimum input pulse width that changes output state.  
ENx (high)  
VIN H  
VINL  
VIN H  
VIN L  
INx  
TPW  
90%  
OUTx  
Figure 9  
TPW, minimum input pulse width that changes output state  
Data Sheet  
18  
Rev.2.5  
2018-04-20  
EiceDRIVER™  
2EDN752x / 2EDN852x  
Typical Characteristics  
7
Typical Characteristics  
UVLO ON/OFF  
vs  
TEMPERATURE  
UVLO HYSTERESIS  
vs  
TEMPERATURE  
4.5  
4.3  
4.1  
3.9  
3.7  
0.4  
0.35  
0.3  
on value  
off value  
0.25  
0.2  
Inx, ENx high  
Indication Outx  
Inx, ENx high  
Indication Outx  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
T junction [°C]  
T junction [°C]  
Figure 10 Undervoltage lockout 2ED7x (4.2V)  
UVLO ON/OFF  
vs  
TEMPERATURE  
UVLO HYSTERESIS  
vs  
TEMPERATURE  
1.05  
1
8.8  
on value  
off value  
8.4  
8
0.95  
0.9  
7.6  
7.2  
6.8  
6.4  
Inx, ENx high  
Indication Outx  
Inx, ENx high  
Indication Outx  
0.85  
-50  
0
50  
100  
150  
-50  
0
50  
T junction [°C]  
100  
150  
T junction [°C]  
Figure 11 Undervoltage lockout 2ED8x (8V)  
Data Sheet  
19  
Rev.2.5  
2018-04-20  
EiceDRIVER™  
2EDN752x / 2EDN852x  
Typical Characteristics  
INPUT THRESHOLD INx to OUTx  
INx HYSTERESIS  
vs  
vs  
TEMPERATURE  
TEMPERATURE  
1.2  
1.1  
1
typ ON threshold  
typ OFF threshold  
2.5  
2
1.5  
1
VDD=12V  
VDD=12V  
100 150  
0.9  
0.5  
-50  
0
50  
100  
150  
-50  
0
50  
T junction [°C]  
T junction [°C]  
Figure 12 Input (INx) characteristic  
INPUT THRESHOLD ENx to OUTx  
ENx HYSTERESIS  
vs  
TEMPERATURE  
vs  
TEMPERATURE  
1.2  
1.1  
1
typ ON threshold  
typ OFF threshold  
2.5  
2
1.5  
1
VDD=12V  
VDD=12V  
0.5  
0.9  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
T junction [°C]  
T junction [°C]  
Figure 13 Input (ENx) characteristic  
Data Sheet  
20  
Rev.2.5  
2018-04-20  
EiceDRIVER™  
2EDN752x / 2EDN852x  
Typical Characteristics  
VINx to OUTx PROPAGATIONDELAY  
VINx to OUTx PROPAGATIONDELAY  
vs  
vs  
TEMPERATURE  
TEMPERATURE  
25  
22.5  
20  
25  
22.5  
20  
typ input rise-up  
typ input rise-up  
typ input fall-down  
typ input fall-down  
17.5  
15  
17.5  
15  
VDD=12V  
Input 5V  
VDD=12V  
Input 3.3V  
12.5  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
T junction [°C]  
T junction [°C]  
Figure 14 Propagation delay (INx) on different input logic levels (see Figure 6)  
VINx to OUTx PROPAGATIONDELAY  
VENx to OUTx PROPAGATIONDELAY  
vs  
vs  
TEMPERATURE  
TEMPERATURE  
25  
22.5  
20  
25  
22.5  
20  
typ input rise-up  
typ input rise-up  
typ input fall-down  
typ input fall-down  
17.5  
15  
17.5  
15  
VDD=12V  
Input 3.3V  
VDD=12V  
Enable 5V  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
T junction [°C]  
T junction [°C]  
Figure 15 Propagation delay (ENx) on different input logic levels (see Figure 6)  
Data Sheet  
21  
Rev.2.5  
2018-04-20  
EiceDRIVER™  
2EDN752x / 2EDN852x  
Typical Characteristics  
OUTx RISE/FALLTIME 10%- 90%  
vs  
TEMPERATURE  
6.5  
6
typ turn-on  
typ turn-off  
5.5  
5
4.5  
4
VDD=12V  
OUTx with 1.8nF load  
3.5  
-50  
0
50  
100  
150  
T junction [°C]  
Figure 16 Rise / fall times with load on output (see Figure 6)  
Data Sheet  
22  
Rev.2.5  
2018-04-20  
EiceDRIVER™  
2EDN752x / 2EDN852x  
Typical Characteristics  
CURRENT CONSUMPTION  
CURRENT CONSUMPTION  
vs  
vs  
OPERATING SUPPLYVDD  
TEMPERATURE  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
OUTx High  
OUTx Low  
0.8  
0.6  
0.4  
0.2  
OUTx High  
VDD=12V  
Tj=25°C  
ENx floating (VDD)  
ENx NC  
OUTx Low  
0
10  
VDD [V]  
20  
-50  
0
50  
100  
150  
T junction [°C]  
CURRENT CONSUMPTION  
vs  
FREQUENCY  
50  
40  
30  
20  
10  
0
Tamb 25°C  
Input 50%@3.3V  
Device self-heating  
Load 1.8nF serial  
VDD 4,5V  
VDD 12V  
VDD 20V  
0
250  
500  
Frequency [kHz]  
750  
1000  
Figure 17 Power consumption related to temperature, supply voltage and frequency  
Data Sheet  
23  
Rev.2.5  
2018-04-20  
EiceDRIVER™  
2EDN752x / 2EDN852x  
Typical Characteristics  
REVERSECURRENT @OUTx  
with OUTx HIGH  
REVERSECURRENT @OUTx  
with OUTx LOW  
vs REVERSEVOLTAGE  
vs REVERSEVOLTAGE  
-1.5  
-3.0  
-4.5  
-6.0  
-7.5  
7.5  
6.0  
4.5  
3.0  
1.5  
0.0  
Test Conditions:  
Tj = 25°C,  
1µs negative Pulse  
fsw = 1kHz  
VDD = 12V  
TestConditions:  
Tj = 25°C,  
1µs positive Pulse  
fsw = 1kHz  
2.5 W  
10 W  
VDD = 12V  
5 W  
7.5 W  
5 W  
7.5 W  
2.5 W  
10 W  
0.75  
1.00  
1.25  
1.50  
1.75  
2.00  
-2.25  
-2.00  
-1.75  
-1.50  
VOUT [V]  
-1.25  
-1.00  
-0.75  
VOUT [V] - VDD  
Figure 18 Output OUTx with reverse current and resulting power dissipation  
Data Sheet  
24  
Rev.2.5  
2018-04-20  
EiceDRIVER™  
2EDN752x / 2EDN852x  
Outline Dimensions  
8
Outline Dimensions  
Notes  
1. For further information on package types, recommendation for board assembly, please go to:  
http://www.infineon.com/cms/en/product/technology/packages/.  
8.1  
PG-DSO-8-60  
Figure 19 PG-DSO-8-60 outline  
Figure 20 PG-DSO-8-60 footprint  
Data Sheet  
25  
Rev.2.5  
2018-04-20  
EiceDRIVER™  
2EDN752x / 2EDN852x  
Outline Dimensions  
0.3  
8
1.75  
2.1  
6.4  
Figure 21 PG-DSO-8-60 packaging  
8.2  
PG-TSSOP-8-1  
Figure 22 PG-TSSOP-8-1 outline  
Data Sheet  
26  
Rev.2.5  
2018-04-20  
EiceDRIVER™  
2EDN752x / 2EDN852x  
Outline Dimensions  
Figure 23 PG-TSSOP-8-1 footprint  
Figure 24 PG-TSSOP-8-1 packaging  
Data Sheet  
27  
Rev.2.5  
2018-04-20  
EiceDRIVER™  
2EDN752x / 2EDN852x  
Outline Dimensions  
8.3  
PG-WSON-8-3  
%27720 9,(:  
ꢂ[  
ꢉꢊꢉꢍ  
ꢉꢊꢉꢅ  
$
&
% &  
ꢉꢊꢈsꢉꢊꢉꢅ  
&
ꢉꢊꢉꢂ  
&
ꢋ[  
6($7,1*  
&23/$1$5,7<  
3/$1(  
$
ꢁꢊꢀꢅsꢉꢊꢀ  
ꢉꢊꢀ  
$ &  
ꢁ[  
ꢉꢊꢀ  
%
ꢉꢊꢀ &  
,1'(;  
0$5.,1*  
,1'(; 0$5.,1*  
ꢆ/$6(5('ꢇ  
ꢉꢊꢂ 0$;ꢊ  
ꢉꢊꢌꢅ  
$// ',0(16,216 $5( ,1 81,76 00  
7+( '5$:,1* ,6 ,1 &203/,$1&( :,7+ ,62 ꢀꢁꢂ ꢃ 352-(&7,21 0(7+2' ꢀ >  
@
Figure 25 PG-WSON-8-3 outline  
ꢉꢊꢈꢁꢅ  
ꢉꢊꢌꢅ  
ꢉꢊꢈꢁꢅ  
ꢂ [ ꢉꢊꢈ  
ꢂ [ ꢉꢊꢈ  
ꢉꢊꢌꢅ  
ꢉꢊꢀ  
ꢁꢊꢀꢅ  
ꢄ [ ꢉꢊꢋꢁ  
FRSSHU  
VROGHU PDVN  
VWHQFLO DSHUWXUHV  
$// ',0(16,216 $5( ,1 81,76 00  
Figure 26 PG-WSON-8-3 footprint  
Data Sheet  
28  
Rev.2.5  
2018-04-20  
EiceDRIVER™  
2EDN752x / 2EDN852x  
Outline Dimensions  
3,1 ꢀ  
,1'(; 0$5.,1*  
ꢉꢊꢈ  
ꢈꢊꢈꢅ  
ꢀꢊꢀꢅ  
$// ',0(16,216 $5( ,1 81,76 00  
7+( '5$:,1* ,6 ,1 &203/,$1&( :,7+ ,62 ꢀꢁꢂ ꢃ 352-(&7,21 0(7+2' ꢀ >  
@
Figure 27 PG-WSON-8-3 packaging  
Data Sheet  
29  
Rev.2.5  
2018-04-20  
EiceDRIVER™  
2EDN752x / 2EDN852x  
Revision History  
9
Revision History  
Page/ Item  
Subjects (major changes since previous revision)  
Responsible  
Rev. 2.5, 2018-04-20  
29  
Update package diagram for PG-WSON  
Vincent Zhang  
Rev. 2.4, 2017-08-18  
updated from version 2.3  
correct typo (VOUT [V] - VDD),  
add detail for test condition (VDD = 12V) Figure 18  
Tobias Gerber  
Tobias Gerber  
24  
13  
add min. voltage reference for OUTA, OUTB in reverse current condition.  
(Note 1) Table 6  
Data Sheet  
30  
Rev.2.5  
2018-04-20  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2018-04-20  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2018 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
a written document signed by  
Document reference  

相关型号:

2EDN8523F

Buffer/Inverter Based Peripheral Driver,
INFINEON

2EDN8523R

Highly efficient SMPS enabled by 5 ns fast slew rates and 17 ns propagation delay precision for fast MOSFET and GaN switching
INFINEON

2EDN8524F

Buffer/Inverter Based Peripheral Driver,
INFINEON

2EDN8524FXTMA1

Buffer/Inverter Based Peripheral Driver, PDSO8, DSO-8
INFINEON

2EDN8524G

Buffer/Inverter Based Peripheral Driver
INFINEON

2EDN8524GXTMA1

Buffer/Inverter Based Peripheral Driver, PDSO8, WSON-8
INFINEON

2EDN8524R

Highly efficient SMPS enabled by 5 ns fast slew rates and 17 ns propagation delay precision for fast MOSFET and GaN switching
INFINEON

2EDN852X

EiceDRIVER™
INFINEON

2EDR7259X

The EiceDRIVER™ 2EDR7259X is a reinforced isolated gate driver IC for control over the mandatory safe isolation barrier in SMPS. The strong 5 A/9 A source/sink dual-channel gate driver comes with a very high 150 V/ns CMTI (common mode transient immunity) for robust operation with CoolGaN™ GIT HEMTs and high-power switching noise environment.
INFINEON

2EDR8259X

The EiceDRIVER™ 2EDR8259X is a reinforced isolated gate driver IC for control over the mandatory safe isolation barrier in SMPS. The strong 5 A/9 A source/sink dual-channel gate driver comes with a very high 150 V/ns CMTI (common mode transient immunity) for robust operation with CoolMOS™, CoolGaN™ GIT HEMTs and high-power switching noise environment.
INFINEON

2EDS8165H

快速、稳健、双通道、增强隔离 MOSFET 栅极驱动器,具有准确稳定定时
INFINEON

2EDS8165HXUMA2

MOSFET Driver,
INFINEON