2ED4820-EM [INFINEON]

48 V smart high-side MOSFET gate driver with SPI for automotive applications;
2ED4820-EM
型号: 2ED4820-EM
厂家: Infineon    Infineon
描述:

48 V smart high-side MOSFET gate driver with SPI for automotive applications

文件: 总45页 (文件大小:1213K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
Features  
Extended supply voltage range: 20 - 70 V  
Two independent high-side gate driver outputs  
1 A pull down, 0.3 A pull up for fast switch off/on  
Device control, configuration and diagnostic via SPI  
Low supply current in sleep mode IBAT_Q < 5 µA  
Supports back-to-back MOSFET topologies (common drain  
and common source)  
One bidirectional high or low-side analog current sense  
interface with configurable gain  
Configurable overcurrent/short circuit protection  
Gate undervoltage lock-out  
Safe state mode (both channels OFF) activated by direct  
input pin  
Package  
Marking  
PG-TSDSO-24  
2ED4820-EM  
Ground loss detection  
Potential applications  
48 V battery protection switch  
48 V input protection switch for DCDC converters, motor control unit etc.  
48 V relay and fuse replacement  
CVBAT  
Low  
Ohmic  
Path  
CVCP  
CCPHL  
CPL  
5V or  
3.3V  
VBAT VCP CPH  
RG  
VDD  
GA  
SA  
CVDD  
RGS  
2ED4820-EM  
MCU  
RProt  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
CSN  
SCLK  
MOSI  
MISO  
Capacitor  
Pre-Charge  
Path  
48V  
Battery  
cells  
RG  
INTERRUPT  
ENABLE  
SAFESTATEN  
GB  
SB  
RGS  
ADC  
CSO  
RFiltCSO  
CFiltCSO  
RPreCh  
RFiltSh  
CFiltSh  
RFiltSh  
ISN  
ISP  
Shunt  
Freewheel.  
diode  
LOAD(s)  
AGND  
GND EP  
CPGND  
Figure 1  
48 V battery main switch application diagram  
Product validation  
Qualified for automotive applications. Product validation according to AEC-Q100 grade 1.  
Datasheet  
www.infineon.com  
Please read the sections "Important notice" and "Warnings" at the end of this document  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
Description  
Description  
2ED4820-EM is a gate driver designed for high current 48 V automotive applications, with powerful gate outputs  
to drive many MOSFETs in parallel in order to minimize the conduction losses. It supports the back-to-back  
configuration, both common source and common drain structures, thanks to its two gate outputs.  
In common source configuration, one gate output can be used to pre-charge highly capacitive loads.  
2ED4820-EM generates the supply for the gate outputs based on an integrated one-stage charge pump  
with external pump and tank capacitors.  
2ED4820-EM comes with an SPI interface, for easy configuration, diagnosis and control.  
Several protection mechanisms are provided:  
Supply under- and overvoltage detection with configurable restart timer  
Charge pump undervoltage detection  
Gate to source undervoltage detection with immediate lock-out to prevent linear mode conduction of the  
MOSFETs  
Configurable drain to source overvoltage detection, which can also be deactivated  
Configurable overcurrent protection based on an analog current sense amplifier compatible for high-side  
or low-side shunt topologies  
Internal overtemperature warning and protection  
An interrupt pin informs the MCU whenever one of these protections is triggered. Status registers can then be  
read by the MCU to understand what was the trigger for the notification.  
The output of the current sense amplifier can be monitored by the MCU to implement additional protections,  
such as wire overtemperature.  
In addition, 2ED4820-EM enables to implement an open load detection mechanism, checking the source  
voltage of the MOSFETs with respect to ground in the OFF state.  
Datasheet  
2
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
Table of contents  
Table of contents  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
1
2
3
General product characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3.1  
3.2  
3.3  
4
4.1  
4.2  
4.2.1  
4.2.2  
4.2.3  
4.2.4  
4.3  
General product description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Operation mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Normal mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Safe state mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Reset behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Electrical characteristics: supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Electrical characteristics: digital IOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Electrical characteristics: charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
4.4  
4.5  
4.6  
5
High-side gate driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Channel activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Channel deactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
MOSFET driver output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5.1  
5.2  
5.3  
6
6.1  
Protection and monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Monitorings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Source voltage monitoring in OFF state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Charge pump voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
SPI address monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Temperature warning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
One time programmable (OTP) memory data corruption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Ground loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Failures detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Failure notification and clearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.1.1  
6.1.2  
6.1.3  
6.2  
6.2.1  
6.2.2  
6.2.3  
6.3  
6.3.1  
Datasheet  
3
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
Table of contents  
6.3.2  
Non-latching failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.3.2.1  
6.3.2.2  
6.3.3  
VBAT overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
VBAT undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Latching failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Blank time and filter time for failures detections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Blank time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Filter time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Drain-source overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Gate-source undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Channel cross-control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
VDD undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
VCP undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
SAFESTATEN activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Overtemperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Current sense amplifier and overcurrent comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Gain configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Current sense position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Current sense output load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Overcurrent detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Electrical characteristics: current sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
INTERRUPT pin control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Electrical characteristics: protection and monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
6.3.3.1  
6.3.3.1.1  
6.3.3.1.2  
6.3.3.2  
6.3.3.3  
6.3.3.4  
6.3.3.5  
6.3.3.6  
6.3.3.7  
6.3.3.8  
6.3.3.9  
6.3.3.9.1  
6.3.3.9.2  
6.3.3.9.3  
6.3.3.9.4  
6.3.3.9.5  
6.4  
6.5  
7
SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Communication start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Communication end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
SPI: electrical characteristics: timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Daisy Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
SPI Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
7.1  
7.2  
7.3  
7.4  
7.5  
8
Register specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
8.1  
Control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
9
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
48 V battery protection switch with low-side current sense and capacitive pre-charge . . . . . . . . .40  
Common drain with high-side current sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Bill of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
9.1  
9.2  
9.3  
10  
Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Datasheet  
4
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
1 Block diagram  
1
Block diagram  
undervoltage and  
overvoltage detection  
ENABLE  
Charge pump  
VDD  
Internal  
supply  
Internal temperature  
warning & shutdown  
VBAT  
VCP  
Control logic  
MOSI  
MISO  
SCLK  
CSN  
16-bit  
SPI  
VDS  
overvoltage  
Ich  
GA  
SA  
VGS  
undervoltage  
OTP  
Idisch  
18V  
VS  
SAFESTATEN  
INTERRUPT  
monitoring  
Diagnostics  
&
protections  
VBAT  
VCP  
MOSFET  
activation  
VDS  
Ich  
overvoltage  
CSA gain  
config  
GB  
SB  
VGS  
undervoltage  
Idisch  
18V  
Overcurrent  
config  
VS  
monitoring  
DVOCTHnH  
* R=2.5kW typ.  
GDIFF x R*  
R*  
R*  
ISN  
ISP  
≥1  
ITrip  
DVOCTHnL  
VREF_BIDIR = VDD/2  
CSO  
EP AGND CPGND GND  
Figure 2  
Block diagram  
Datasheet  
5
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
2 Pin configuration  
2
Pin configuration  
SAFESTATEN  
INTERRUPT  
SCLK  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VBAT  
VCP  
CPH  
CPL  
NC  
2
3
CSN  
4
MOSI  
MISO  
5
6
CPGND  
GA  
ENABLE  
VDD  
7
8
SA  
CSO  
9
NC  
ISN  
10  
11  
12  
SB  
ISP  
GB  
exposed pad  
(bottom)  
AGND  
GND  
Figure 3  
Pin assignment  
Table 1  
Pin definitions and functions  
Pin No. Function  
Symbol  
SAFESTATEN  
INTERRUPT  
SCLK  
Comment  
1
µController  
µController  
SPI  
Watchdog connection for safe state mode  
Interrupt signal output  
2
3
SPI clock input with internal pull-down  
Chip select not with internal pull-up  
Master out slave in with internal pull-down  
Master in slave out  
4
SPI  
CSN  
5
SPI  
MOSI  
6
SPI  
MISO  
7
µController  
Supply  
ENABLE  
VDD  
Switch device ON/OFF with internal pull-down  
Main supply  
8
9
µController  
V-Sensing  
V-Sensing  
Supply  
CSO  
Current sense amplifier output  
Negative input for shunt voltage  
Positive input for shunt voltage  
Analog GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
ISN  
ISP  
AGND  
GND  
Supply  
Common usage ground  
Gate connection  
GB  
Gate connection to channel B  
Source connection to channel B  
Not connected  
Source connection SB  
NC  
Source connection SA  
Source connection to channel A  
Gate connection to channel A  
Charge pump GND  
Gate connection  
Supply  
GA  
CPGND  
NC  
Not connected  
ChargePump  
ChargePump  
CPL  
CPH  
Negative terminal of CP capacitor  
Positive terminal of CP capacitor  
(table continues...)  
Datasheet  
6
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
2 Pin configuration  
Table 1  
(continued) Pin definitions and functions  
Pin No. Function  
Symbol  
VCP  
Comment  
23  
24  
ChargePump  
Supply  
Charge pump output / connection buffer capacitor  
VBAT  
E.P.  
48 V supply  
Exposed pad (for cooling purpose only, do not use as electrical  
GND)  
Datasheet  
7
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
3 General product characteristic  
3
General product characteristic  
3.1  
Absolute maximum ratings  
Unless otherwise specified: TJ = -40°C to +150°C; all voltages are referenced to GND.  
Table 2  
Absolute maximum ratings  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
-0.3  
Max.  
105  
1)  
VBAT supply voltage  
VBAT  
V
PRQ-9  
1)  
Gate voltage with respect VGx_S  
to Source  
-0.3  
18  
V
PRQ-11  
1)  
Gate voltage with respect VGx_BAT  
to VBAT  
-80  
18  
V
PRQ-10  
1)  
Gate voltage  
VGx  
-80  
-90  
-90  
VCP  
105  
2
V
PRQ-12  
PRQ-199  
PRQ-92  
1)  
Source voltage  
VSx  
V
1)  
Source voltage with  
respect to VBAT  
VSx_VBAT  
V
1)  
VDD logic supply voltage  
Current sense  
VDD  
-0.3  
5.5  
V
PRQ-98  
1)  
ISP and ISN voltage  
VISP, VISN  
-6  
105  
2
V
PRQ-13  
1)  
ISP and ISN voltage with  
respect to VBAT  
VISP_ISN_VBAT -105  
V
PRQ-542  
1)  
ISP and ISN differential  
VISP_ISN_DIFF -5  
5
V
PRQ-204  
PRQ-97  
voltage  
1)  
CSO voltage  
VCSO  
-0.3  
-0.3  
VDD+0.3 V  
VDD+0.3 V  
Logic  
1)  
1)  
Logic input voltages (SCLK, VSCLK, VCSN  
CSN, MOSI, SAFESTATEN,  
ENABLE)  
,
PRQ-94  
PRQ-96  
VMOSI  
VSAFESTATEN  
VENABLE  
,
,
Logic output voltages  
(MISO, INTERRUPT)  
VMISO  
VINTERRUPT  
,
-0.3  
VDD+0.3 V  
Charge pump  
1)  
1)  
Charge pump voltage  
(VCP)  
VCP  
-0.3  
-0.3  
-0.3  
105  
18  
V
V
PRQ-337  
PRQ-400  
Charge pump voltage  
(VCP) with respect to VBAT  
VCP_VBAT  
1)  
1)  
Charge pump voltage (CPL) VCPL  
VBAT  
V
V
PRQ-95  
Charge pump voltage  
(CPH)  
VCPH  
VBAT-0.3 –  
VCP+0.3  
PRQ-261  
(table continues...)  
Datasheet  
8
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
3 General product characteristic  
Table 2  
(continued) Absolute maximum ratings  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
Max.  
0.3  
1)  
Charge pump ground and VCPGND, VAGND -0.3  
analog ground voltage  
V
PRQ-205  
Temperature  
1)  
Junction temperature  
Storage temperature  
ESD susceptibility  
TJ  
-40  
-55  
150  
150  
°C  
PRQ-17  
PRQ-19  
1)  
TSTG  
°C  
ESD susceptibility at all  
pins (HBM)  
VESD_HBM1  
-2  
2
kV  
kV  
V
1) 2) HBM  
1) 2) HBM  
1) 3) CDM  
1) 3) CDM  
PRQ-20  
ESD susceptibility of VBAT VESD_HBM2  
pin versus GND (HBM)  
-4  
4
PRQ-100  
PRQ-401  
PRQ-414  
ESD susceptibility at all  
pins (CDM)  
VESD_CDM  
VESD_CDM  
-500  
-750  
500  
750  
ESD susceptibility at  
corner pins (CDM) (pins 1,  
12, 13, 24)  
V
1)  
2)  
3)  
Not subject to production test, specified by design.  
ESD susceptibility, human body model "HBM", according to AEC Q100-002  
ESD susceptibility, charged device model "CDM", according to AEC Q100-011  
3.2  
Functional range  
Unless otherwise specified: VBAT and VDD inside the normal operation range; TJ = -40°C to +150°C; all voltages  
are referenced to GND; positive current flowing into pin.  
Table 3  
Functional range  
Symbol  
Parameter  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
24  
Max.  
54  
VBAT supply voltage range VBAT(NORM)  
for normal operation  
V
PRQ-101  
PRQ-102  
PRQ-397  
VBAT extended supply  
voltage range  
VBAT(EXT)  
20  
70  
10  
V
Parameter  
deviations possible  
1)  
VBAT supply transients  
slew rate  
dVBAT/dt  
-10  
V/µs  
Logic supply voltage (VDD) VDD  
3.0  
-10  
5.5  
10  
V
1)  
PRQ-105  
PRQ-398  
VDD logic supply transients dVDD/dt  
slew rate  
V/µs  
SPI logic input voltage  
VSCLK, VCSN  
VMOSI  
,
0
VDD  
V
PRQ-106  
(table continues...)  
Datasheet  
9
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
3 General product characteristic  
Table 3  
(continued) Functional range  
Parameter  
Symbol  
Min.  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Max.  
70  
1)  
Source voltage transients dVSx/dt  
slew rate  
-70  
V/µs  
PRQ-399  
PRQ-107  
Logic input voltage  
VSAFESTATEN  
VENABLE  
,
0
VDD  
V
CSO output current  
ISP, ISN input voltage  
ICSO  
-4  
-2  
0
mA  
V
PRQ-355  
PRQ-508  
VISP, VISN  
VBAT +  
2
1)  
1)  
ISP, ISN common mode  
slew rate  
VSENSE_COMMO -70  
N
70  
V/µs  
V/µs  
°C  
PRQ-491  
PRQ-492  
PRQ-18  
ISP, ISN differential mode VSENSE_DIFFERE -5  
slew rate  
5
NTIAL  
Junction temp  
TJ  
-40  
150  
1)  
Not subject to production test, specified by design.  
3.3  
Thermal resistance  
TJ = -40°C to +150°C.  
Table 4  
Thermal resistance  
Symbol  
Parameter  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
Max.  
1)  
Junction to case, TA =  
-40°C  
RthJC_cold  
4
K/W  
PRQ-99  
1)  
Junction to case, TA = 85°C RthJC_hot  
5
K/W  
PRQ-71  
PRQ-72  
1) 2)  
Junction to ambient, TA = RthJA_cold_2s2p  
-40°C  
38  
31  
K/W  
1) 2)  
Junction to ambient, TA = RthJA_hot_2s2p  
85°C  
K/W  
PRQ-73  
1)  
2)  
Not subject to production test, specified by design.  
Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; the product (chip+package)  
was simulated on a 76.2 × 114.3 × 1.5 mm board with 2 inner copper layers (2 × 70 µm Cu, 2 × 35 µm Cu). Where applicable a  
thermal via array under the exposed pad contacted the first inner copper layer. The device is dissipating 1 W power.  
Datasheet  
10  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
4 General product description  
4
General product description  
4.1  
Power supply  
The device is externally supplied by two pins: VDD and VBAT.  
The gate driver requires multiple power supplies:  
VBAT supplies the charge pump and parts of the gate control block  
VDD supplies SPI interface, internal logic, protection functions as well as the current sense interface  
Internally generated charge pump voltage VCP supplies the gate control block, VDS and VGS detection  
blocks and current sense amplifier  
4.2  
Operation mode  
SLEEP  
Channels OFF  
ENABLE = 1  
AND VDD ON  
ENABLE = 0  
OR VDD OFF  
NORMAL  
Channels’ state defined  
by MOSONCH_(x)  
ENABLE = 0  
OR VDD OFF  
Failure occurs  
OR SAFESTATEN = 0  
Failure flags cleared  
AND SAFESTATEN = 1  
SAFE STATE  
Channels OFF  
Figure 4  
Operation modes overview  
4.2.1  
Normal mode  
The device enters normal mode afer the SPI setup time tSET_SPI, if the microcontroller sets the pin ENABLE to  
high.  
In normal mode, the MOSFET gate driver is enabled and can be configured through the SPI interface, provided  
that the voltages applied to VBAT and VDD are within the operating range.  
4.2.2  
Sleep mode  
The device enters sleep mode if the microcontroller sets the ENABLE pin to low.  
In sleep mode, most of the internal circuitry is deactivated: the current consumption of VBAT and VDD is  
reduced respectively to IVBAT_Q and IVDD_Q  
.
4.2.3  
Safe state mode  
The device will enter safe state if the pin SAFESTATEN is set to low.  
In safe state the external MOSFETs of both channels are deactivated (e.g. switched off).  
Datasheet  
11  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
4 General product description  
To bring the device from safe state back to normal mode, the pin SAFESTATEN has to be set to high and the  
failure flag SAFESTATE must be cleared via SAFESTATE_CL or FAIL_RST_0 together with FAIL_RST_1.  
If the microcontroller sets the ENABLE pin to low, the device enters the sleep mode.  
4.2.4  
Reset behavior  
Afer the ENABLE pin is pulled high or afer an undervoltage event at VDD, the logic content is reset.  
In both cases, the failure flag VDD_UV is set to high to indicate that a reset was performed.  
4.3  
Charge pump  
The charge pump generates the positive supply for the gate control block, for the VGS and VDS comparators and  
for the current sense amplifier.  
VCP_PUMP thresholds define hysteresis control of the charge pump output voltage by activating/deactivating  
charge pumping.  
VCP_READY thresholds flag the microcontroller that the charge pump output voltage is high enough to activate a  
channel.  
VCP_UV thresholds flag a charge pump output under voltage failure. In this case, turning on and protecting a  
channel cannot be ensured any more, so the channels are switched off.  
VCP pulled down  
VCP - VBAT  
externally  
VCP_PUMP_H  
VCP_PUMP_L  
VCP_READY_H  
VCP_READY_L  
VCP_UV_H  
VCP_UV_L  
t
VCP_PUMP  
t
VCP_READY  
t
VCP_UV  
t
t < tVCP_UV_BLK  
Figure 5  
Charge pump operating  
The charge pump is ready to operate according the VCP_PUMP signal when the following condition is fulfilled:  
ENABLE = high AND TSD = low AND VBAT_OV = low AND VCP_UV = low.  
At the first activation of the charge pump, the VCP_UV diagnostic will be blanked for the tVCP_UV_BLK duration in  
order to operate a safe start.  
Datasheet  
12  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
4 General product description  
Note that a triggering of VCP_UV will therefore switch off the charge pump in a latched way.  
The VCP_PUMP signal is controlling the charge pump activity:  
When the charge pump is enabled it is pumping as long as the VCP_PUMP signal is high  
As soon as the VCP - VBAT voltage gets above the VCP_PUMP_H threshold, the VCP_PUMP signal is turned low  
and the charge pump stops pumping  
As soon as the VCP - VBAT voltage gets below the VCP_PUMP_L threshold, the VCP_PUMP signal is turned high  
and the charge pump is pumping  
The VCP_READY bit is set to 1 once the VCP - VBAT voltage gets higher than the VCP_READY_H threshold.  
The VCP_READY bit is set to 0 once the VCP - VBAT voltage gets lower than the VCP_READY_L threshold.  
The VCP_UV bit is set to 0 once the VCP - VBAT voltage gets higher than the VCP_UV_H threshold.  
The VCP_UV bit is set to 1 once the VCP - VBAT voltage gets lower than the VCP_UV_L threshold.  
VCP_UV is blanked for a duration of tVCP_UV_BLK afer charge pump gets enabled (e.g.: afer device enable or  
afer clearing VCP_UV failure flag).  
4.4  
Electrical characteristics: supply  
Unless otherwise specified: VBAT and VDD inside the normal operation range; TJ = -40°C to +150°C; CSO pin lef  
open; all voltages are referenced to GND; positive current flowing into pin.  
Table 5  
Electrical characteristics: supply  
Symbol Values  
Typ.  
Parameter  
Unit Note or condition  
P-  
Number  
Min.  
Quiescent current consumption, ENABLE = LOW  
Max.  
VBAT supply quiescent  
current  
IBAT_Q  
5
7
µA  
µA  
1) TA ≤ 85°C  
PRQ-112  
PRQ-114  
1)  
VDD logic supply quiescent IDD_Q  
current  
TA ≤ 85°C  
Current consumption, ENABLE = HIGH  
1)  
VBAT supply current  
IBAT_SUP  
10  
mA  
MOSONCH_A = 1; PRQ-27  
MOSONCH_B = 1;  
RGS ≥ 1 MΩ;  
CVCP = 2.2 µF  
VDD logic supply current  
VDD logic supply current  
IDD_SUP  
IDD_SUP  
10  
15  
mA  
mA  
CSA_HSS = 0;  
PRQ-118  
PRQ-543  
CSA_COUTSEL = 0  
1) CSA_HSS = 1;  
CSA_COUTSEL = 1  
1)  
Not subject to production test, specified by characterization.  
4.5  
Electrical characteristics: digital IOs  
Unless otherwise specified: VBAT and VDD inside the normal operation range; TJ = -40°C to +150°C; all voltages  
are referenced to GND; positive current flowing into pin; pull-up resistors connected to VDD, pull-down resistors  
connected to GND.  
Datasheet  
13  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
4 General product description  
Table 6  
Electrical characteristics: digital IOs  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
Max.  
Logic input voltage  
Logic high input voltage  
Logic low input voltage  
VIH  
VIL  
0.7*VDD  
0
VDD  
V
PRQ-30  
PRQ-31  
PRQ-32  
0.7  
V
Logic input threshold  
hysteresis  
VIHY  
100  
mV  
Logic output voltage  
Logic high output voltage VOH  
VDD  
0.4  
-
VDD  
0.2  
-
VDD  
V
V
IO = -1.6 mA  
IO = 1.6 mA  
PRQ-415  
PRQ-416  
level  
Logic low output voltage  
level  
VOL  
0
0.2  
0.4  
Pull-up / -down resistors  
ENABLE pull-down resistor RPD_ENABLE  
30  
30  
40  
40  
40  
50  
50  
50  
kΩ  
kΩ  
kΩ  
PRQ-126  
PRQ-410  
PRQ-409  
SCLK pull-down resistor  
RPD_SCLK  
SAFESTATEN pull-down  
resistor  
RPD_SAFESTATE 30  
N
MOSI pull-down resistor  
RPD_MOSI  
30  
40  
40  
50  
50  
kΩ  
kΩ  
PRQ-411  
PRQ-479  
INTERRUPT pull-down  
resistor  
RPD_INTERRUPT 30  
CSN pull-up resistor  
RPU_CSN  
30  
40  
50  
kΩ  
PRQ-412  
PRQ-413  
SPI interface setup time  
SPI interface setup time  
tSET_SPI  
150  
µs  
4.6  
Electrical characteristics: charge pump  
Unless otherwise specified: VBAT and VDD inside the normal operation range; TJ = -40°C to +150°C; all voltages  
are referenced to GND; positive current flowing into pin.  
Table 7  
Electrical characteristics: charge pump  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
140  
Max.  
172  
Charge pump frequency  
VCP_PUMP  
fCP  
156  
kHz  
PRQ-127  
VCP_PUMP_H threshold  
VCP_PUMP_L threshold  
VCP_PUMP_H  
VCP_PUMP_L  
12.7  
11.7  
14  
13  
1
15  
14  
1.5  
V
V
V
PRQ-343  
PRQ-344  
PRQ-402  
VCP_PUMP hysteresis  
VCP_PUMP_HY 0.5  
(table continues...)  
Datasheet  
14  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
4 General product description  
Table 7  
(continued) Electrical characteristics: charge pump  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
Max.  
VCP_READY  
VCP_READY_H threshold  
VCP_READY_L threshold  
VCP_READY hysteresis  
VCP_UV  
VCP_READY_H  
VCP_READY_L  
VCP_READY_HY 0.38  
10  
11  
11.7  
V
V
V
PRQ-345  
PRQ-346  
PRQ-403  
9.5  
10.5  
0.5  
11.2  
0.62  
VCP_UV_H threshold  
VCP_UV_L threshold  
VCP_UV hysteresis  
VCP_UV Blanking time  
VCP_UV_H  
VCP_UV_L  
VCP_UV_HY  
tVCP_UV_BLK  
5.7  
5.2  
0.25  
2.4  
6.5  
6
7
V
PRQ-347  
PRQ-348  
PRQ-404  
PRQ-494  
6.5  
0.75  
4
V
0.5  
3
V
ms  
Charge pump output current  
Charge pump output  
ICPO  
-10  
mA  
mA  
CCPHL = 220 nF;  
PRQ-349  
PRQ-487  
current capability at VCP  
CPL pulsed current  
|ICPL_PULSE  
|
60  
80  
110  
Datasheet  
15  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
5 High-side gate driver  
5
High-side gate driver  
The high-side gate driver is capable to drive multiple external MOSFETs for high current capability. Two  
independent channels are available, and they can be switched on and off by the SPI register commands. The  
gate drivers are supplied by an internal one-stage charge pump with external capacitors.  
CSN  
ON  
OFF  
command  
command  
MOSONCH_x = 1  
MOSONCH_x = 0  
t
t
tDGDRV_ON  
tDGDRV_OFF  
VGSx  
VCP_PUMP_H  
VCP_PUMP_L  
VGS_LOW  
I(Gx)  
ISINK  
Actual current (example)  
Maximum current capability  
ICHARGE_LOW  
ICHARGE  
t
tMOS_BLKx  
tSINK_MAX  
Figure 6  
Maximum gate driving capability  
5.1  
Channel activation  
The selected channel is activated under the following condition:  
ENABLE = high AND MOSONCH_(x) = high AND SAFESTATEN = high.  
Table 8  
MOSFET activation  
MOSONCH_(x)[0]  
MOSFET activation state  
0
1
MOSFET channel not activated (default)  
MOSFET channel activated  
Datasheet  
16  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
5 High-side gate driver  
When a channel is activated through the SPI interface, its output gate current capability is set to ICHARGE for a  
duration of maximum tMOS_BLKx (MOS blanking time). ICHARGE is active until VGS reaches VCP, so the actual time  
depends on the MOSFETs gate capacitance.  
Once the tMOS_BLKx time expires, the output gate current capability is reduced to maximum ICHARGE_LOW ; the  
actual current delivered by the driver depends on external leakages, coming for example from an external  
pull-down resistor added between gate and source of the MOSFETs.  
5.2  
Channel deactivation  
The channel is deactivated by discharging the external MOSFET's gate if one of the following conditions are  
met:  
MOSONCH_(x) set from high to low  
Pin ENABLE set from high to low  
SAFESTATEN set from high to low  
Note:  
In case of a failure, MOSONCH_(x) is automatically set from high to low, which immediately triggers a  
channel deactivation.  
When a channel is deactivated either due to MOSONCH_(x) or pin SAFESTATEN set from high to low, the output  
gate control pulls a high discharge current, set to ISINK for a duration of maximum tSINK_MAX. ISINK is active until  
VGS is zero, so the actual time depends on the MOSFETs gate capacitance.  
Once tSINK_MAX expires, the output gate control changes to a voltage clamping structure, which limits the gate  
to source voltage (VGS) to maximum VGS_LOW. This clamping structure ensures that the MOSFETs' VGS is below  
VGS(th) to keep them OFF.  
When MOSONCH_(x) is low while ENABLE pin is high, there is a leakage current flowing out of the Sx pins:  
ISx_OFF  
.
When the channels are deactivated due to pin ENABLE set from high to low, the output gate control does not  
pull the high discharge current (ISINK), it immediately changes to the voltage clamping structure with very low  
leakage current on the Sx pins.  
5.3  
MOSFET driver output  
Unless otherwise specified: VBAT and VDD inside the normal operation range; TJ = -40°C to +150°C; all voltages  
are referenced to GND; positive current flowing into pin.  
Table 9  
MOSFET driver output  
Symbol  
Parameter  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
Max.  
-300  
Gate charge current high  
Gate charge current low  
Gate discharge current  
ICHARGE  
mA  
mA  
A
VGx = VSx = 0 V  
PRQ-133  
PRQ-488  
PRQ-134  
PRQ-539  
ICHARGE_LOW -5  
-4  
-2.5  
1.3  
12  
ISINK  
0.9  
1.1  
10  
VGx - VSx = 13 V  
1)  
Gate discharge current  
maximum active time  
tSINK_MAX  
8
µs  
Source current in OFF  
mode  
ISx_OFF  
40  
µA  
V
1) MOSONCH_(x) = 0; PRQ-544  
ENABLE = HIGH  
High level output voltage VGS  
Gx vs. Sx  
VCP_PUM  
P_L  
VCP_PUM  
P_H  
Current between Gx PRQ-135  
and Sx = 1 mA  
(table continues...)  
Datasheet  
17  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
5 High-side gate driver  
Table 9  
(continued) MOSFET driver output  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
Max.  
1.7  
Low level output voltage  
Gx vs. Sx  
VGS_LOW  
V
TJ < 25°C  
PRQ-498  
Current beween Gx  
and Sx = 100 mA  
0 V ≤ VBAT  
VBAT(EXT)_MAX  
0 V ≤ VDD VDD_MAX  
Low level output voltage  
Gx vs. Sx  
VGS_LOW  
1.5  
V
TJ ≥ 25°C  
PRQ-524  
Current between Gx  
and Sx = 100 mA  
0 V ≤ VBAT  
VBAT(EXT)_MAX  
0 V ≤ VDD VDD_MAX  
Gate driver dynamic parameter  
Gate turn-on delay time  
tDGDRV_ON  
3
3
3
µs  
µs  
µs  
Duration between  
CSN goes from low  
to high and gate  
charge current is  
activated  
PRQ-137  
PRQ-139  
PRQ-527  
Gate turn-off delay time  
tDGDRV_OFF  
Duration between  
CSN goes from low  
to high and gate  
dicharge current is  
activated  
Delay time for gate turn-off tDGOFF_SFSTN  
triggered by SAFESTATEN  
Duration between  
SAFESTATEN goes  
from high to  
low and gate  
dicharge current is  
activated  
Gate to source clamped  
voltage  
VGS_TH  
15.5  
19.5  
V
PRQ-476  
Active zener clamping  
Gate zener clamping with VCLAMP_G_VBAT 78  
82  
82  
87  
87  
V
V
I_G = -2.5 mA  
I_G = -2.5 mA  
PRQ-489  
PRQ-490  
respect to VBAT  
Gate zener clamping with VCLAMP_G_GND 78  
respect to GND  
1)  
Not subject to production test, specified by design.  
Datasheet  
18  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
6 Protection and monitoring  
6
Protection and monitoring  
The device provides three sets of features to protect and monitor:  
Monitorings, which give a status to the MCU  
Warnings, which inform the MCU of critical events with limited impact  
Failure detections, which trigger internal actions (channel deactivation mainly) and notify immediately the  
MCU  
6.1  
Monitorings  
6.1.1  
Source voltage monitoring in OFF state  
If the source voltage VSx of a deactivated channel rises above VS_TH, and ENABLE is high, then the appropriate  
flag VSOURCE_(x) is set to 1.  
This warning allows to implement an "open load detection in OFF state", since the voltage on the source pin Sx  
would be pulled up by the leakage of the gate driver if there is no load connected.  
6.1.2  
Charge pump voltage monitoring  
If the charge pump voltage VCP is above VCP_READY_H, then the VCP_READY flag is set to 1.  
6.1.3  
SPI address monitoring  
If the MCU tries to read or write a register with an address which is not available, then the ADD_NOT_AVAIL flag  
is set to 1.  
6.2  
Warnings  
In order to inform the MCU about any warning on the driver, the warning flags will be used and updated by the  
device, which notifies the MCU by setting the INTERRUPT pin to high.  
The warnings are not latched and will be reset, if the condition no longer applies.  
The warnings do not change the state of the output channels.  
6.2.1  
Temperature warning  
The OT_WARNING is set to 1 if the overtemperature warning threshold TJW is reached and exceeded.  
6.2.2  
One time programmable (OTP) memory data corruption  
The device embeds an OTP to store internal settings, used to trim internal blocks for full specification  
compliance. These settings are written during manufacturing and this memory cannot be accessed by SPI.  
The MEM_FAIL flag is set to 1 if OTP data is corrupted or if OTP readout failed. In this case all affected trimmings  
are set to default values, therefore parameter deviations are possible. OTP is checked and read out right afer  
the device is enabled.  
Note:  
OTP cannot be read in case of a not connected ground pin.  
6.2.3  
Ground loss  
In case of a voltage difference between 2 ground pins (whether GND, AGND or CPGND) higher than VGND_LOSS  
,
the corresponding LOG_(x) warning flags will be set to 1. This is typically the case for not connected ground  
pins.  
Disconnecting AGND will trigger LOG_A and LOG_CP flags  
Datasheet  
19  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
6 Protection and monitoring  
Disconnecting CPGND will trigger LOG_CP and LOG_D flags  
Disconnecting DGND will trigger LOG_A and LOG_D flags  
6.3  
Failures detection  
Failures detection is provided to implement protections for the external MOSFETs and eventually for the load.  
There are two types of failures detected by the gate driver:  
Latching failures, which require to be cleared before the gate driver can operate again. This category is split  
into two sub-categories:  
-
Latching failures for which clearing the flag will automatically turn the channel on again. They include:  
-
-
-
Undervoltage on the charge pump  
Undervoltage on gate-source voltage ( VGS = [VGx-VSx] )  
Overvoltage on drain-source voltage ( VDS = [VBAT-VSx] ), when VDS(x)_SS_[0] = 0 to enable the  
protection  
-
Latching failures for which an SPI command has to follow the flag clearing in order to turn the channel  
on again. They include :  
-
-
-
-
Undervoltage on VDD  
SAFESTATEN pin activation  
Overtemperature shut down  
Overcurrent  
Non-latching failures, which do not need to be cleared: once the failure source is gone, the gate driver can  
operate again afer a configurable delay. They include:  
-
-
Overvoltage on VBAT  
Undervoltage on VBAT  
6.3.1  
Failure notification and clearing  
In case of failure detection, the FAILURE flag is set to high, the INTERRUPT pin is set to high and the  
corresponding channel(s) is (are) deactivated automatically by setting register bit MOSONCH_(x) to 0 (except  
for drain-source failure detection when it is disabled through the VDS(x)_SS register).  
A latching failure can only be cleared when the failure is not present anymore, except for VCP_UV, VGSTH_(x)  
and VDSTRIP_(x).  
6.3.2  
Non-latching failures  
The non-latching failures do not need to be reset: the gate driver activates the MOSFET again, if the failure does  
not exist anymore.  
6.3.2.1  
VBAT overvoltage  
If VBAT exceeds VBAT_OV_OFF, the FAILURE bit and VBAT_OV flag are set to 1.  
If the VBAT gets lower than VBAT_OV_ON, then the restart will be done afer tOV_RESTART  
.
While the device is in auto-restart duration, none of the channels can be activated by the µC.  
Table 10  
VBAT overvoltage auto-restart time  
VBAT overvoltage auto-restart time (typical): tOV_RESTART  
VBATOVARST[1:0]  
00  
01  
10  
11  
10 µs (default)  
50 µs  
200 µs  
1 ms  
Datasheet  
20  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
6 Protection and monitoring  
VBAT  
VBAT  
VBAT_OV_OFF  
VBAT_OV_ON  
VBAT_UV_ON  
VBAT_UV_OFF  
t
t
t
CHANNELS  
ACTIVATION  
CHANNELS  
ACTIVATION  
t
tOV_RESTART  
tUV_RESTART  
Figure 7  
VBAT overvoltage and undervoltage auto-restart time diagrams  
6.3.2.2  
VBAT undervoltage  
If VBAT gets lower than VBAT_UV_OFF, the FAILURE bit and VBAT_UV flag are set to 1.  
If the VBAT gets higher than VBAT_UV_ON, then the restart will be done afer tUV_RESTART  
.
While the device is in auto-restart duration, none of the channels can be activated by the µC.  
Table 11  
VBAT undervoltage auto-restart time  
VBATUVARST[1:0]  
VBAT undervoltage auto-restart time tUV_RESTART (typical)  
00  
01  
10  
11  
1 ms (default)  
5 ms  
20 ms  
50 ms  
6.3.3  
Latching failures  
Once a latching failure (except VDD_UV) has been detected, a reset can be operated either by toggling ENABLE,  
VDD (Chapter 4.2.4), or by an SPI command.  
6.3.3.1  
Blank time and filter time for failures detections  
Blank time  
6.3.3.1.1  
Both drain-source and gate-source failure detections are inherently triggered at the turn-on of a channel.  
Turning on a MOSFET implies a transient phase where the gate-source voltage is rising and drain-source voltage  
is decreasing before they reach their steady state.  
Both failure detections have therefore to be temporary blanked at turn-on, which is the purpose of the  
configurable blank time: tMOS_BLKx. Its value is configured for each channel independently, based on the  
MOSFETs characteristics (total CGS mainly).  
Note:  
As described in Chapter 5.1, tMOS_BLKx also defines the maximum duration of the ICHARGE current.  
Datasheet  
21  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
6 Protection and monitoring  
MOSONCH_(x)  
‘1'  
‘0'  
t
V
GSx = VGx - VSx  
VCP_PUMP_H  
VCP_PUMP_L  
VGS_TH_RIS  
Miller plateau  
t
t
t
GS_TH_RIS < tMOS_BLKx  
VGSTH_(x)  
‘1'  
‘0'  
V
DSx = VBAT - VSx  
VBAT  
VDSTHx  
t
t
DSTHx < tMOS_BLKx  
VDSTRIP_(x)  
‘1'  
‘0'  
Figure 8  
Blank time at MOSFET turn-on  
A configurable blank time for the drain-source and gate-source failure detections is applied at the turn-on of the  
selected channel. During the blank time tMOS_BLKx, a drain-source or gate-source overvoltage failure is masked.  
Table 12  
MOSFET voltage blank time  
MOSFET voltage blank time (typical) tMOS_BLKx  
MOSBLK_(x)_[1:0]  
00  
01  
10  
11  
10 µs (default)  
20 µs  
50 µs  
100 µs  
Datasheet  
22  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
6 Protection and monitoring  
6.3.3.1.2  
Filter time  
Both drain-source and gate-source failure detections may be wrongly triggered due to noisy signals on the  
monitored pins. A configurable filter time is therefore provided for each channel independently, which applies  
for the two failure detections: tMOS_FLTx  
.
Table 13  
MOSFET voltage filter time  
MOSFET voltage filter time (typical) tMOS_FLTx  
MOSFLT_(x)_[1:0]  
00  
01  
10  
11  
0.5 µs  
1 µs (default)  
2 µs  
5 µs  
6.3.3.2  
Drain-source overvoltage  
The drain to source voltage of activated channel(s) is continuously monitored in order to protect high-side  
MOSFETs against a short circuit to ground during ON-state.  
If a channel is activated and the VBAT (drain) to VSx (source) voltage VDS exceeds VDSTHx for longer than the  
filter time tMOS_FLTx afer the blanking time tMOS_BLKx, the bit FAILURE and the VDSTRIP_(x) bit are set to 1 and  
the register bit MOSONCH_(x) is set to 0 if the VDS(x)_SS bit is set to 0.  
Otherwise (VDS(x)_SS bit is set to 1) only the bit FAILURE and the VDSTRIP_(x) bit are set to 1 and the register  
bit MOSONCH_(x) is still set to 1.  
Each channel has a dedicated threshold that can be selected by the register VDSTH_(x).  
When VDS(x)_SS bit is set to 0 and the VDSTRIP_(x) failure flag is cleared, the selected channel immediately  
turns on again. If the VDS of the channel is still above VDSTHx for longer than the filter time tMOS_FLTx afer the  
blanking time tMOS_BLKx (e.g. the failure cause is still present), the channel is disabled again.  
Table 14  
Drain-source overvoltage threshold  
VDSTH_(x)_[2:0]  
Positive drain-source overvoltage  
Negative drain-source overvoltage  
threshold  
threshold (typical) VDSTHx  
000  
001  
010  
011  
100  
101  
110  
111  
100 mV  
-100 mV  
-150 mV  
150 mV  
200 mV (default)  
250 mV  
- 200 mV (default)  
-250 mV  
300 mV  
-300 mV  
400 mV  
- 400 mV  
500 mV  
- 500 mV  
600 mV  
- 600 mV  
Table 15  
Drain-source channel de-activation condition  
Drain-source channel condition  
VDS(x)_SS_[0]  
0
1
Channel is de-activated in case of drain-source overvoltage  
Channel is not de-activated in case of drain-source overvoltage (default)  
Datasheet  
23  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
6 Protection and monitoring  
6.3.3.3  
Gate-source undervoltage  
The device reports a gate-source undervoltage failure if the following conditions are both met:  
Afer expiration of the configured blank time tMOS_BLKx  
If the gate-source voltage is less than the threshold VGS_TH(x) for the selected channel for a duration longer  
than the configured filter time tMOS_FLTx  
In case of gate-source undervoltage failure, the bit FAILURE and the bit VGSTH_(x) are set to 1.  
When the VGSTH_(x) flag is cleared, the selected channel automatically turns on again. If the VGS of the channel  
is still below VGS_TH_RIS for longer than the filter time tMOS_FLTx afer the blanking time tMOS_BLKx (e.g. the  
failure cause is still present), the channel is disabled again.  
6.3.3.4  
Channel cross-control  
While activating both channels, VGSTH_(x) and VDSTRIP_(x) failures related to one channel may or may not  
affect the other channel. This cross-control between the 2 channels is programmable by SPI.  
While the CHCRCTRL bit is set to 1, any of the following failures will deactivate the channels A (CHA) and B (CHB)  
according this overview:  
In case of VGSTH_(x) = 1 -> CHA = OFF and CHB = OFF  
In case of VDSTRIP_A = 1, VDSA_SS = 0 and VDSB_SS = 0 -> CHA = OFF and CHB = OFF  
In case of VDSTRIP_A = 1, VDSA_SS = 1 and VDSB_SS = 0 -> CHA = Keep previous state (ON) and CHB = OFF  
In case of VDSTRIP_A = 1, VDSA_SS = 0 and VDSB_SS = 1 -> CHA = OFF and CHB = Keep previous state  
In case of VDSTRIP_A = 1, VDSA_SS = 1 and VDSB_SS = 1 -> CHA = Keep previous state (ON) and CHB =  
Keep previous state  
In case of VDSTRIP_B = 1, VDSA_SS = 0 and VDSB_SS = 0 -> CHA = OFF and CHB = OFF  
In case of VDSTRIP_B = 1, VDSA_SS = 1 and VDSB_SS = 0 -> CHA = Keep previous state and CHB = OFF  
In case of VDSTRIP_B = 1, VDSA_SS = 0 and VDSB_SS = 1 -> CHA = OFF and CHB = Keep previous state (ON)  
In case of VDSTRIP_B = 1, VDSA_SS = 1 and VDSB_SS = 1 -> CHA = Keep previous state and CHB = Keep  
previous state (ON)  
If the CHCRCTRL bit is set to 0, only the faulty channel will be treated.  
Table 16  
Channel cross-control  
Channel cross-control status  
CHCRCTRL[0]  
0
1
Cross-control deactivated  
Cross-control activated (default)  
6.3.3.5  
VDD undervoltage  
If the VDD voltage falls below the VDD_UV_ON threshold, the device is reset. When VDD comes back above the  
VDD_UV_ON threshold, VDD_UV bit is set to 1.  
6.3.3.6  
VCP undervoltage  
The VCP_UV bit and the FAILURE bit are set to 1 as soon as the (VCP - VBAT) voltage gets lower than the VCP_UV_L  
threshold. The charge pump is immediately disabled.  
When the failure flag VCP_UV is cleared, the charge pump immediately restarts. If the (VCP - VBAT) voltage is  
still below VCP_UV_H afer the startup blanking time tVCP_UV_BLK, (e.g. the failure cause is still present), the charge  
pump is disabled again.  
6.3.3.7  
SAFESTATEN activation  
Once the SAFESTATEN signal is set to low, the FAILURE bit is set to 1.  
Datasheet  
24  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
6 Protection and monitoring  
6.3.3.8  
Overtemperature  
If the internal temperature sensor reaches TJSD, the gate drivers are latched off, the charge pump and the  
current sense amplifier are deactivated and the TSD and FAILURE flags are set to 1.  
6.3.3.9  
Current sense amplifier and overcurrent comparator  
Current sense amplifier is used for monitoring the voltage drop across the shunt resistor as a sensor for the load  
current. If overcurrent is detected, this will switch off both channels.  
Current sense comparator and amplifier are active under the following condition:  
ENABLE = high AND VCP_UV = low AND VBAT_UV = low AND VBAT_OV = low AND TSD = low AND VDD > VDD_UV_ON.  
6.3.3.9.1  
Gain configuration  
The differential gain of the current sense amplifier is configurable by the configuration bits CSAG_(x).  
Table 17  
Configuration of the current sense amplifier gain  
CSAG[2:0]  
000  
Current sense amplifier gain GDIFF (typical)  
10 V/V  
001  
15 V/V  
010  
20 V/V  
011  
25 V/V  
100  
31.5 V/V  
35 V/V (default)  
40 V/V  
101  
110  
111  
47.7 V/V  
6.3.3.9.2  
Current sense position  
In order to adjust the internal circuitry to the proper shunt position (high-side or low-side), the CSA_HSS needs  
to be set.  
While the CSA_HSS bit is set to 0, the internal circuitry is optimized for a current sense in low-side position.  
If the CSA_HSS bit is set to 1, the internal circuitry is optimized for a current sense in high-side position.  
Table 18  
Current sense position adjustment  
Current sense position  
CSA_HSS[0]  
0
1
Shunt is in low-side position (default)  
Shunt is in high-side position  
6.3.3.9.3  
Current sense output load  
In order to adjust to the amount of output charge connected to the CSO pin, some internal circuitry can be  
activated.  
While the CSA_COUTSEL bit is set to 1, the internal circuitry is optimized for an external load capacitance higher  
than 100 pF.  
If the CSA_COUTSEL bit is set to 0, the internal circuitry is optimized for an external load capacitance lower than  
100 pF.  
Datasheet  
25  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
6 Protection and monitoring  
Table 19  
Current sense output load adjustment  
Current sense output charge  
CSA_COUTSEL[0]  
0
1
Output load < 100 pF (default)  
Output load > 100 pF  
6.3.3.9.4  
Overcurrent detection  
A comparator at CSO detects overcurrent conditions.  
If the CSA output is out of the range between threshold voltages ΔVOCTHxL and ΔVOCTHxH configured in  
OCTH, all channels are switched off and the bits FAILURE and ITRIP are set to 1 if at least one channel was in ON  
state.  
VDD  
DVOCTH2H  
+0.2*VDD  
=
DVOCTH3H  
+0.25*VDD  
=
DVOCTH4H  
+0.3*VDD  
=
DVOCTH1H  
+0.1*VDD  
DVOCTH1L  
=
VREF_BIDIR  
0.5*VDD  
=
=
DVOCTH2L  
-0.2*VDD  
=
DVOCTH3L  
-0.25*VDD  
=
DVOCTH4L =  
-0.3*VDD  
-0.1*VDD  
OCTH_[1:0]  
"00"  
"01"  
"10"  
"11"  
Figure 9  
Overcurrent detection thresholds  
6.3.3.9.5  
Electrical characteristics: current sense  
Unless otherwise specified: VBAT and VDD inside the normal operation range; TJ = -40°C to +150°C; all voltages  
are referenced to GND; positive current flowing into pin.  
Datasheet  
26  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
6 Protection and monitoring  
Table 20  
Electrical characteristics: current sense  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
-1.4  
Max.  
1.4  
Input offset voltage  
VOFFSET  
0
mV  
PRQ-52  
Integrated output noise  
voltage at CSO pin  
VCSO_NOISE  
5
mVrm 1) ISP shorted to  
s
PRQ-262  
ISN; all gain settings;  
output open (no  
load at CSO)  
PSRR - Power supply  
rejection ratio VCP  
PSRR  
tSET  
60  
7
dB  
µs  
DC up to 1 kHz  
PRQ-63  
Settling time to 98%  
Duration between  
CSN goes from low  
to high and signal  
at CSO pin is settled  
(98% of final value)  
PRQ-222  
Reference voltage for  
bidirectional CSA  
VREF_BIDIR  
-2%  
1.2  
-5  
VDD/2  
1.5  
+2%  
1.8  
5
V
PRQ-228  
PRQ-505  
PRQ-392  
1)  
Digital glitch filter time for tITRIP_FLT  
ITRIP  
µs  
µA  
ISP, ISN leakage current  
while off  
ISP_OFF  
,
ENABLE = 0; VISP =  
ISN_OFF  
VISN; 0 V ≤ VISN,VISP ≤  
VBAT  
Common mode rejection ratio  
CMRR - common mode  
rejection ratio @ Gain = 10  
V/V  
CMRR10  
75  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
DC up to 1 kHz  
DC up to 1 kHz  
DC up to 1 kHz  
DC up to 1 kHz  
DC up to 1 kHz  
DC up to 1 kHz  
DC up to 1 kHz  
PRQ-64  
CMRR - common mode  
rejection ratio @ Gain = 15  
V/V  
CMRR15  
CMRR20  
CMRR25  
CMRR31.5  
CMRR35  
CMRR40  
77  
PRQ-148  
PRQ-149  
PRQ-150  
PRQ-210  
PRQ-211  
PRQ-212  
CMRR - common mode  
rejection ratio @ Gain = 20  
V/V  
81  
CMRR - common mode  
rejection ratio @ Gain = 25  
V/V  
83  
CMRR - common mode  
rejection ratio @ Gain =  
31.5 V/V  
83  
CMRR - common mode  
rejection ratio @ Gain = 35  
V/V  
85.5  
86  
CMRR - common mode  
rejection ratio @ Gain = 40  
V/V  
(table continues...)  
Datasheet  
27  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
6 Protection and monitoring  
Table 20  
(continued) Electrical characteristics: current sense  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
88.5  
Max.  
CMRR - common mode  
rejection ratio @ Gain =  
47.7 V/V  
CMRR47.7  
dB  
DC up to 1 kHz  
PRQ-213  
Current sense amplifier differential gain  
Current sense amplifier  
GDIFF10  
GDIFF15  
GDIFF20  
GDIFF25  
GDIFF31.5  
GDIFF37.7  
GDIFF40  
GDIFF47.7  
9.8  
10  
10.2  
15.3  
20.4  
25.5  
32.13  
35.7  
40.8  
48.65  
V/V  
V/V  
V/V  
V/V  
V/V  
V/V  
V/V  
V/V  
Test condition: CSAG PRQ-53  
= (000)  
differential gain 10 V/V  
Current sense amplifier  
differential gain 15 V/V  
14.7  
19.6  
24.5  
30.87  
34.3  
39.2  
46.75  
15  
Test condition: CSAG PRQ-77  
= (001)  
Current sense amplifier  
differential gain 20 V/V  
20  
Test condition: CSAG PRQ-78  
= (010)  
Current sense amplifier  
differential gain 25 V/V  
25  
Test condition: CSAG PRQ-79  
= (011)  
Current sense amplifier  
differential gain 31.5 V/V  
31.5  
35  
Test condition: CSAG PRQ-206  
= (100)  
Current sense amplifier  
differential gain 35 V/V  
Test condition: CSAG PRQ-207  
= (101)  
Current sense amplifier  
differential gain 40 V/V  
40  
Test condition: CSAG PRQ-208  
= (110)  
Current sense amplifier  
differential gain 47.7 V/V  
47.7  
Test condition: CSAG PRQ-209  
= (111)  
Current sense bandwidth  
Low gain current sense  
bandwidth  
fBW_LOW  
200  
150  
kHz Max output current PRQ-388  
capability = 4 mA,  
cload between 10  
pF and 400 pF,  
CSAG[2:0] from '000'  
to '110'  
High gain current sense  
bandwidth  
fBW_HIGH  
kHz Max output current PRQ-389  
capability = 4 mA,  
cload between 10  
pF and 400 pF,  
CSAG[2:0]='111'  
Overcurrent thresholds  
Overcurrent threshold  
1 high relative to  
VREF_BIDIR  
ΔVOCTH1H  
ΔVOCTH1L  
0.095* 0.105* 0.115*  
VDD VDD VDD  
V
V
OCTH = (00)  
OCTH = (00)  
PRQ-531  
PRQ-532  
Overcurrent threshold 1  
low relative to VREF_BIDIR  
-0.115* -0.105* -0.095*  
VDD  
VDD  
VDD  
(table continues...)  
Datasheet  
28  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
6 Protection and monitoring  
Table 20  
(continued) Electrical characteristics: current sense  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
Max.  
Overcurrent threshold  
2 high relative to  
VREF_BIDIR  
ΔVOCTH2H  
0.199* 0.210* 0.221*  
VDD VDD VDD  
V
OCTH = (01)  
PRQ-533  
Overcurrent threshold 2  
low relative to VREF_BIDIR  
ΔVOCTH2L  
-0.214* -0.203* -0.192*  
VDD VDD VDD  
V
V
OCTH = (01)  
OCTH = (10)  
PRQ-534  
PRQ-535  
Overcurrent threshold  
3 high relative to  
VREF_BIDIR  
ΔVOCTH3H  
0.243* 0.254* 0.265*  
VDD VDD VDD  
Overcurrent threshold 3  
low relative to VREF_BIDIR  
ΔVOCTH3L  
ΔVOCTH4H  
ΔVOCTH4L  
-0.265* -0.254* -0.243*  
VDD VDD VDD  
V
V
OCTH = (10)  
OCTH = (11)  
PRQ-536  
PRQ-537  
Overcurrent threshold  
4 high relative to  
VREF_BIDIR  
0.293* 0.304* 0.315*  
VDD VDD VDD  
Overcurrent threshold 4  
low relative to VREF_BIDIR  
-0.315* -0.304* -0.293*  
VDD VDD VDD  
V
OCTH = (11)  
PRQ-538  
1)  
Not subject to production test, specified by design.  
6.4  
INTERRUPT pin control  
The INTERRUPT pin is set high and latched if one of the following occurs:  
FAILURE bit is set to 1  
OT_WARNING is set to 1  
GEN_INTERRUPT flag is set to 1 (for testing the interrupt signal connection to controller)  
GND_LOSS bit is set to 1  
MEM_FAIL bit is set to 1  
Once the INTERRUPT signal has been set high due to a failure or a warning flag, it can be cleared either by:  
Reading the corresponding failure bit via SPI  
Setting the INT_CLEAN bit to 1  
If the INTERRUPT signal has been set high via the GEN_INTERRUPT bit, it can be cleared only by setting  
GEN_INTERRUPT back to 0. INT_CLEAN will not remove that interrupt in this case.  
6.5  
Electrical characteristics: protection and monitoring  
Unless otherwise specified: VBAT and VDD inside the normal operation range; TJ = -40°C to +150°C; all voltages  
are referenced to GND; positive current flowing into pin.  
Datasheet  
29  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
6 Protection and monitoring  
Table 21  
Electrical characteristics: protection and monitoring  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
Max.  
MOS voltage blank time  
1)  
MOS voltage blank time 1 tMOS_BLK1  
MOS voltage blank time 2 tMOS_BLK2  
MOS voltage blank time 3 tMOS_BLK3  
MOS voltage blank time 4 tMOS_BLK4  
MOS voltage monitoring filter time  
8
10  
12  
µs  
µs  
µs  
µs  
Start: gate charge PRQ-152  
current is activated  
1)  
16  
40  
80  
20  
24  
Start: gate charge PRQ-153  
current is activated  
1)  
50  
60  
Start: gate charge PRQ-154  
current is activated  
1)  
100  
120  
Start: gate charge PRQ-155  
current is activated  
1)  
MOS voltage filter time 1  
MOS voltage filter time 2  
MOS voltage filter time 3  
MOS voltage filter time 4  
tMOS_FLT1  
tMOS_FLT2  
tMOS_FLT3  
tMOS_FLT4  
0.4  
0.8  
1.6  
4
0.5  
1
0.6  
1.2  
2.4  
6
µs  
µs  
µs  
µs  
PRQ-295  
1)  
PRQ-296  
1)  
2
PRQ-297  
1)  
5
PRQ-298  
Drain to source monitoring threshold  
Positive drain to source  
monitoring threshold 1  
VDSTH_1_POS 80  
VDSTH_1_NEG -120  
VDSTH_2_POS 120  
VDSTH_2_NEG -180  
VDSTH_3_POS 160  
VDSTH_3_NEG -240  
VDSTH_4_POS 200  
VDSTH_4_NEG -300  
VDSTH_5_POS 240  
VDSTH_5_NEG -360  
VDSTH_6_POS 320  
100  
-100  
150  
-150  
200  
-200  
250  
-250  
300  
-300  
400  
120  
-80  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
PRQ-82  
PRQ-417  
PRQ-83  
PRQ-418  
PRQ-84  
PRQ-419  
PRQ-85  
PRQ-420  
PRQ-86  
PRQ-421  
PRQ-87  
Negative drain to source  
monitoring threshold 1  
Positive drain to source  
monitoring threshold 2  
180  
-120  
240  
-160  
300  
-200  
360  
-240  
480  
Negative drain to source  
monitoring threshold 2  
Positive drain to source  
monitoring threshold 3  
Negative drain to source  
monitoring threshold 3  
Positive drain to source  
monitoring threshold 4  
Negative drain to source  
monitoring threshold 4  
Positive drain to source  
monitoring threshold 5  
Negative drain to source  
monitoring threshold 5  
Positive drain to source  
monitoring threshold 6  
(table continues...)  
Datasheet  
30  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
6 Protection and monitoring  
Table 21  
(continued) Electrical characteristics: protection and monitoring  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
Max.  
-320  
Negative drain to source  
monitoring threshold 6  
VDSTH_6_NEG -480  
VDSTH_7_POS 400  
VDSTH_7_NEG -600  
VDSTH_8_POS 480  
VDSTH_8_NEG -720  
-400  
mV  
mV  
mV  
mV  
mV  
PRQ-422  
PRQ-88  
PRQ-423  
PRQ-89  
PRQ-424  
Positive drain to source  
monitoring threshold 7  
500  
600  
Negative drain to source  
monitoring threshold 7  
-500  
600  
-400  
720  
Positive drain to source  
monitoring threshold 8  
Negative drain to source  
monitoring threshold 8  
-600  
-480  
Gate to source monitoring threshold  
Gate to source  
undervoltage threshold  
rising  
VGS_TH_RIS  
VGS_TH_FAL  
VGS_UV_HYS  
5.8  
7
8.5  
7.4  
900  
V
PRQ-144  
PRQ-495  
PRQ-496  
Gate to source  
undervoltage threshold  
falling  
5.65  
100  
6.6  
400  
V
Gate to source  
mV  
undervoltage threshold  
hysteresis  
Source overvoltage threshold  
VSx overvoltage threshold VS_TH  
VBAT undervoltage  
3.5  
5
6.5  
V
PRQ-145  
VBAT_UV switch OFF  
voltage  
VBAT_UV_OFF  
VBAT_UV_ON  
VBAT_UV_HYS  
17.5  
18  
18.5  
19  
19.5  
20  
V
V
V
PRQ-23  
PRQ-24  
PRQ-431  
VBAT_UV switch ON  
voltage  
VBAT_UV hysteresis  
0.3  
0.5  
0.7  
VBAT overvoltage  
VBAT_OV switch ON  
voltage  
VBAT_OV_ON  
VBAT_OV_OFF  
VBAT_OV_HYS  
70  
71  
0.5  
72  
73  
1
74  
75  
2
V
V
V
PRQ-119  
PRQ-26  
VBAT_OV switch OFF  
voltage  
VBAT_OV hysteresis  
PRQ-432  
VBAT undervoltage auto-restart duration  
1)  
Undervoltage auto-restart tUV_RESTART1 0.8  
time 1  
1
1.2  
ms  
PRQ-309  
(table continues...)  
Datasheet  
31  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
6 Protection and monitoring  
Table 21  
(continued) Electrical characteristics: protection and monitoring  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
Max.  
1)  
Undervoltage auto-restart tUV_RESTART2  
4
5
6
ms  
PRQ-310  
PRQ-311  
PRQ-312  
time 2  
1)  
Undervoltage auto-restart tUV_RESTART3 16  
time 3  
20  
50  
24  
60  
ms  
1)  
Undervoltage auto-restart tUV_RESTART4 40  
time 4  
ms  
VBAT overvoltage auto-restart duration  
1)  
Overvoltage auto-restart  
time 1  
tOV_RESTART1 10  
tOV_RESTART2 40  
tOV_RESTART3 160  
tOV_RESTART4 0.8  
13  
50  
200  
1
16  
µs  
PRQ-299  
PRQ-301  
PRQ-302  
PRQ-303  
1)  
Overvoltage auto-restart  
time 2  
60  
µs  
1)  
Overvoltage auto-restart  
time 3  
240  
1.2  
µs  
1)  
Overvoltage auto-restart  
time 4  
ms  
Temperature warning and shutdown  
1)  
Thermal warning junction TJW  
110  
155  
130  
175  
10  
150  
195  
°C  
PRQ-48  
PRQ-49  
PRQ-405  
PRQ-406  
temperature  
1)  
Thermal shutdown  
junction temperature  
TJSD  
°C  
1)  
Thermal warning  
hysteresis  
TJW_HYS  
TJSD_HYS  
K
1)  
Thermal shutdown  
hysteresis  
10  
K
VDD undervoltage  
VDD_UV switch ON voltage VDD_UV_ON  
2.8  
0.5  
V
V
PRQ-120  
PRQ-507  
Ground loss  
Ground loss  
|VGND_LOSS  
|
0.18  
0.3  
1)  
Not subject to production test, specified by design.  
Datasheet  
32  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
7 SPI  
7
SPI  
The device provides a SPI communication slave which uses the input lines SCLK, CSN and MOSI and the output  
line MISO.  
The SPI uses a 16-bit protocol which transfers the MSB first and provides a daisy chain capability with other  
16-bit SPI devices.  
Any 16-bit data transfer starts by a falling edge on CSN.  
While CSN is low, the incoming data on MOSI is sampled on the falling edge of SCLK while the outgoing data on  
MISO is shifed out on the rising edge of SCLK.  
Each 16-bit data transfer is terminated by a rising edge on CSN.  
The SPI includes a modulo 16 counter ensuring that data is taken only when a multiple of 16 bit has been  
transferred.  
In case a wrong number of bit is transferred, or a wrong number of clock cycles is propagated, the SPI interface  
will generate a transmission error and it will not accept the data that has been just sent.  
The system microcontroller selects the device by means of the CSN pin.  
If CSN is high, the SPI ignores any signals at the SCLK and MOSI pins and forces the pin MISO into a high  
impedance state.  
tCSN(LEAD)  
tSCLK(P)  
tCSN(LAG)  
tCSN(TD)  
CSN  
VIH,min  
VIL, max  
t
t
t
t
tSCLK(H) tSCLK(L)  
SCLK  
VIH,min  
VIL, max  
tSI(SU) tSI(H)  
MOSI  
VIH,min  
VIL, max  
tSO(DIS)  
tSO(EN)  
tSO(V)  
MISO  
VOH,min  
VOL, max  
Figure 10  
SPI timings  
7.1  
Communication start  
While CSN is low, data transfer can take place.  
If CSN changes from high to low and SCLK is low for tCSN LEAD or longer:  
The SPI transfers the information requested in the previous communications into the shif buffer  
The pin MISO changes from high impedance state to low state within tSO(EN)  
The modulo16 counter starts counting SCLK clocks  
Note:  
CSN has to be kept low during the transfer of the whole communication frame.  
If SCLK changes from low to high while CSN is low:  
The MISO signals the bit shifed out of the shif buffer (first clock the MSB) afer tSO(V)  
If SCLK changes from high to low while CSN is low:  
The data bits are shifed for one position to the MSB direction  
Datasheet  
33  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
7 SPI  
The MOSI signal is read into the shif buffer (at the LSB position) within tSI(H)  
The modulo 16 counter is increased by 1  
The SPI MOSI input has to be valid tSI(SU) before the falling edge of SCLK.  
The clock circles with write, read and shif function have to be repeated, until the whole frame is read into the  
shif buffer (e.g. 16 repetitions for one SPI buffer).  
7.2  
Communication end  
If CSN rises from low to high and the SCLK is low since tCSN(LAG), the value of the modulo 16 counter is checked.  
If the modulo 16 counter signals a multiple (1,2,3...) of 16 SCLK clocks, the shif buffer data is executed as  
command (e.g. writing into the addressed register) within tCSN(TD)  
.
MISO signals switches to high impedance within tSO(DIS) afer CSN went high.  
The SPI interface is ready to start a new transfer with a CSN to low transition if the time tCSN(TD) elapsed afer the  
CSN went high.  
7.3  
SPI: electrical characteristics: timings  
Unless otherwise specified: VBAT and VDD inside the normal operation range; TJ = -40°C to +150°C.  
Table 22  
SPI electrical characteristics: timings  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
400  
Max.  
1)  
Transfer delay time  
Enable lead time  
tCSN(TD)  
tCSN(LEAD)  
tCSN(LAG)  
tSO(EN)  
ns  
PRQ-370  
PRQ-371  
PRQ-372  
PRQ-373  
PRQ-374  
PRQ-375  
PRQ-376  
1)  
200  
200  
ns  
1)  
Enable lag time  
ns  
1)  
Output enable time  
Output disable time  
Serial clock high time  
Serial clock low time  
SPI frequency  
100  
100  
150  
150  
ns  
ns  
ns  
ns  
Cload = 100 pF  
Cload = 100 pF  
1)  
1)  
1)  
tSO(DIS)  
tSCLK(H)  
tSCLK(L)  
90  
90  
1)  
1)  
1)  
1)  
1)  
Serial clock frequency  
Serial input setup time  
Serial input hold time  
Serial output valid time  
SCLK duty cycle  
fSCLK  
0.5  
20  
20  
5
MHz  
ns  
PRQ-377  
PRQ-426  
PRQ-427  
PRQ-428  
PRQ-478  
tSI(SU)  
tSI(H)  
ns  
tSO(V)  
DCSCLK  
100  
50  
150  
53  
ns  
Cload = 100 pF  
47  
%
1)  
Not subject to production test, specified by design.  
Datasheet  
34  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
7 SPI  
7.4  
Daisy Chain  
Device 1  
Device 2  
SPI  
Device 3  
SPI  
MOSI  
MISO MOSI  
MISO MOSI  
MISO  
SPI  
MOSI  
MCSN  
MCLK  
MISO  
Figure 11  
Daisy chain capability  
The SPI of the device provides daisy chain capability for modulo 16 bit SPI devices. In this configuration several  
devices are activated by the same CSN signal, called MCSN. The MOSI line of one device is connected with the  
MISO line of another device (see Figure 11), in order to build a chain. The end of the chain is connected to the  
input of the microcontroller, the output of the microcontroller to the beginning of the chain. The master device  
provides the master clock MCLK which is connected to the SCLK line of each device in the chain.  
The microcontroller must set the MCSN to low and start the communication with a multiple of 16 bit data, the  
multiplier is the number of chained devices. The first data sent goes to the last devices (device 3 in Figure 11)  
with the last bit transferred. Afer the communication is finished the MCSN must go to high again.  
Note:  
A wrong number of master serial clocks will generate a transmission error from all devices in the  
chain.  
7.5  
SPI Protocol  
SI  
frame A  
frame B  
frame C  
previous  
response  
response to  
frame A  
response to  
frame B  
SO  
Figure 12  
Command response sequence  
The SPI protocol provides the answer to a command frame only with the next transmission triggered by the  
microcontroller.  
The relationship between MOSI and MISO content during SPI communication is shown in Figure 12.  
MOSI line represents the frame sent from the microcontroller and MISO line is the answer provided by the gate  
driver SPI. The “previous response” means that the frame sent back depends on the command frame sent from  
the microcontroller before.  
The responses of write commands are deterministic and are reporting the default diagnosis register.  
The responses of a read command are the required register.  
In case of transmission error the default response is the diagnosis register with the transmission error bit set to  
1.  
The SPI word is 16 bit wide and is structured according to the following tables.  
Datasheet  
35  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
8 Register specification  
Word from microcontroller:  
Read/Write  
Address  
Data  
R/W  
A6/nu A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
Response from SPI interface :  
Trans ERROR  
TER  
Address  
Data  
A6/nu A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
A6..A0 are used to address a register, D7..D0 are data.  
Note: Bit A6 is reserved for future use (default value 0).  
The microcontroller can access to the SPI registers using the 16 bit word as described below.  
Write procedure :  
Set MSB to 1 (read/write bit)  
Addressing the register using A [6...0]  
Preparing the data in Data [7 ... 0]  
Read procedure:  
Set MSB to 0 (read/write bit)  
Addressing the register using A [6...0]  
Data bits are don't care  
Any communication of the microcontroller with the SPI interface is responded by the SPI interface.  
In any case the response will report the transmission error bit TER as MSB representing the validity of the  
previous communication.  
Table 23  
TER bit  
TER bit  
Communication status  
1
0
Error in the previous communication  
No error in the previous communication  
Afer a reset as described in Chapter 4.2.4, the TER bit in the response to the first command is set high, to inform  
the master that this is the first communication.  
Beside the TER bit, the response to a microcontroller communication contains:  
In case of a write command: the standard diagnosis (address 00000b).  
In case of a read command: the data in the addressed register. In this case, the answer will contain both the  
address of the register and the data there contained.  
The answer is on the next frame, as explained in Figure 12.  
The first response afer power on is by default the standard diagnosis register content. Within the information  
the VDD_UV is set to 1 in order to inform about the power off situation before the communication.  
8
Register specification  
8.1  
Control registers  
Datasheet  
36  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
8 Register specification  
Datasheet  
37  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
8 Register specification  
Table 24  
Bit descriptions  
Bit Bit name  
Register  
Name  
Description  
STDIAG  
7
6
5
4
3
2
FAILURE  
Main failure indication, 1 when there is a failure  
Charge pump is ready  
VCP_READY  
MEM_FAIL  
OT_WARNING  
TSD  
Error in the memory, trimming not possible (flag cannot be cleaned)  
Temperature warning  
Chip in overtemperature (latched)  
VDD_UV  
VDD undervoltage propagated in the first command and indicates  
an under voltage event  
1
0
7
6
5
4
3
2
1
0
VBAT_UV  
VBAT_OV  
VCP_UV  
VBAT undervoltage failure (not latched)  
VBAT overvoltage failure (not latched)  
Charge pump undervoltage  
CHDIAG  
ITRIP  
Overcurrent failure (latched)  
VGSTH_B  
VDSTRIP_B  
VSOURCE_B  
VGSTH_A  
VDSTRIP_A  
VSOURCE_A  
LOG_A  
Gate-source undervoltage - channel B (latched)  
Drain to source overvoltage - channel B (latched)  
Source overvoltage - channel B  
Gate-source undervoltage - channel A (latched)  
Drain to source overvoltage - channel A (latched)  
Source overvoltage - channel A  
DIAG  
4
3
2
1
Loss of ground connection on AGND  
Loss of ground connection on GND  
Loss of ground connection on CPGND  
Address not available  
LOG_D  
LOG_CP  
ADD_NOT_AVAIL  
SAFESTATEN  
CHCRCTRL  
0
7
Reflection of the SAFESTATEN pin  
Channel cross control activation  
MOS_CHS_CT  
RL  
6
5
4
3
2
1
0
7
ITRIP_CL  
Clear ITRIP flag  
VGSTH_B_CL  
VDSB_CL  
Clear VGS flag channel B  
Clear VDS flag channel B  
Switch on channel B  
MOSONCH_B  
VGSTH_A_CL  
VDSA_CL  
Clear VGS flag channel A  
Clear VDS flag channel A  
Switch on channel A  
MOSONCH_A  
VCP_UC_CL  
FAILURE  
CLEAN  
Clear charge pump undervoltage failure  
5
4
SAFESTATE_CL  
INT_CLEAN  
TSD_CL  
Clear Safestate failure  
Clear interrupt  
3
2
Clear overtemperature failure  
Clear VDD undervoltage failure  
VDD_UV_CL  
(table continues...)  
Datasheet  
38  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
8 Register specification  
Table 24  
(continued) Bit descriptions  
Bit Bit name Description  
Register  
Name  
1
0
7
VBATUV_CL  
VBATOV_CL  
VDSB_SS  
Clear VBAT overvoltage failure  
Clear VBAT undervoltage failure  
VDSTHA_B  
VDS channel B safe state on when 1. VDS safe state off when 0.  
Drain-source overvoltage threshold channel B  
VDS channel A safe state on when 1. VDS safe state off when 0.  
Drain-source overvoltage threshold channel A  
MOS voltage blank time channel B  
[6:4] VDSTH_B  
VDSA_SS  
[2:0] VDSTH_A  
3
MOSFLTBLKA_ [7:6] MOSBLK_B  
B
[5:4] MOSFLT_B  
[3:2] MOSBLK_A  
[1:0] MOSFLT_A  
MOS voltage filter time channel B  
MOS voltage blank time channel A  
MOS voltage filter time channel A  
CSAG_OCTH  
6
CSA_COUTSEL  
Configures the current sense amplifier output stage depending on  
the output capacitor  
5
CSA_HSS  
Control signal to select the CSA configuration LSS or HSS (or  
bidirectional)  
[4:3] OCTH  
[2:0] CSAG  
Overcurrent detection thresholds  
Current sense amplifier gain GDIFF  
VBAT undervoltage auto-restart time  
VBAT overvoltage auto-restart time  
Reset Fails registers 1  
VBATOVUVRST [3:2] VBATUVARST  
[1:0] VBATOVARST  
RESETS  
5
FAIL_RST_1  
SFT_RST_1  
4
2
1
0
7
6
5
4
3
2
1
0
Sofꢀare Reset 1  
GEN_INTERRUPT Generate interrupt signal  
FAIL_RST_0  
SFT_RST_0  
SPARE_7  
SPARE_6  
SPARE_5  
SPARE_4  
SPARE_3  
SPARE_2  
SPARE_1  
SPARE_0  
Reset Fails registers 0  
Sofꢀare Reset 0  
SPARE_REG  
Spare register bit 7  
Spare register bit 6  
Spare register bit 5  
Spare register bit 4  
Spare register bit 3  
Spare register bit 2  
Spare register bit 1  
Spare register bit 0  
Datasheet  
39  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
9 Application information  
9
Application information  
9.1  
48 V battery protection switch with low-side current sense and  
capacitive pre-charge  
CVBAT  
Low  
Ohmic  
Path  
CVCP  
CCPHL  
CPL  
5V or  
3.3V  
VBAT VCP CPH  
RG  
VDD  
GA  
SA  
CVDD  
RGS  
2ED4820-EM  
MCU  
RProt  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
CSN  
SCLK  
MOSI  
MISO  
Capacitor  
Pre-Charge  
Path  
48V  
Battery  
cells  
RG  
INTERRUPT  
ENABLE  
SAFESTATEN  
GB  
SB  
RGS  
ADC  
CSO  
RFiltCSO  
CFiltCSO  
RPreCh  
RFiltSh  
CFiltSh  
RFiltSh  
ISN  
ISP  
Shunt  
Freewheel.  
diode  
LOAD(s)  
AGND  
GND EP  
CPGND  
Figure 14  
48 V battery protection switch application diagram  
Datasheet  
40  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
9 Application information  
9.2  
Common drain with high-side current sense  
RFiltSh  
CFiltSh  
Shunt  
CVCP  
CCPHL  
CPL  
RFiltSh  
ISP ISN VCP CPH  
5V or  
3.3V  
VDD  
CSO  
SA  
CVDD  
RGS  
RG  
GA  
ADC  
VBAT  
RFiltCSO  
CFiltCSO  
CVBAT  
2ED4820-EM  
RG  
MCU  
GB  
SB  
RProt  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
CSN  
48V  
SCLK  
MOSI  
MISO  
Battery  
cells  
RGS  
INTERRUPT  
ENABLE  
SAFESTATEN  
Freewheel.  
diode  
LOAD(s)  
AGND  
GND EP  
CPGND  
Figure 15  
Common drain with high-side current sense application diagram  
9.3  
Bill of material  
Supply pins have to be decoupled with ceramic capacitors, positioned as follows:  
CVBAT close to VBAT and AGND pins  
CVDD close to VDD and GND pins  
CVCP close to VCP and VBAT pins  
Table 25  
Bill of material  
Reference  
RProt  
Value  
1.0 kΩ  
1.0 µF  
Purpose  
Protection of the microcontroller  
CVDD  
Supply decoupling; on layout, located close to the VDD & GND  
pins  
CVBAT  
CVCP  
4.7 µF + 220 nF  
Supply decoupling; on layout, located close to the VBAT & AGND  
pins  
2.2 µF  
Charge pump output capacitor - value depends on number of  
MOSFETs to drive  
CCPHL  
RG  
220 nF  
10.0 Ω  
150.0 kΩ  
10.0 Ω  
Charge pump capacitor  
Gate protection resistor  
RGS  
Gate to source pull-down resistor  
Power resistor limiting the capacitor pre-charge current  
RPreCh  
(table continues...)  
Datasheet  
41  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
9 Application information  
Table 25  
(continued) Bill of material  
RFiltCSO  
10.0 kΩ  
10 nF  
4.7 Ω  
1 µF  
Protection of the microcontroller and low pass filter on current  
sense output  
CFiltCSO  
RFiltSh  
CFiltSh  
Low pass filter on current sense output - value depends on  
bandwidth required  
Filter to cancel the inductive part of the shunt - value depends on  
Shunt  
Filter to cancel the inductive part of the shunt - value depends on  
Shunt  
Datasheet  
42  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
10 Package  
10  
Package  
Figure 16  
Package dimensions  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with  
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e.  
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
Datasheet  
43  
Rev. 1.10  
2022-12-20  
EiceDRIVERAPD 2ED4820-EM  
48 V smart high-side MOSFET gate driver with SPI  
Revision history  
Revision history  
Document  
Date of  
Description of changes  
version  
release  
Rev.1.10  
Rev.1.00  
2022-12-20  
2021-07-23  
Updated Block diagram, Figure 2  
Added PRQ-544 in Chapter 5.3  
Improved CMRR performance Chapter 6.3.3.9.5 → PRQ-64, PRQ-148,  
PRQ-149, PRQ-150, PRQ-210, PRQ-211, PRQ-212, PRQ-213  
Datasheet creation  
Datasheet  
44  
Rev. 1.10  
2022-12-20  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
Edition 2022-12-20  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
Important notice  
Warnings  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer’s compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer’s products and any use of the product of  
Infineon Technologies in customer’s applications.  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or  
any consequences of the use thereof can reasonably  
be expected to result in personal injury.  
©
2022 Infineon Technologies AG  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Document reference  
IFX-wrl1623741697453  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to such  
application.  

相关型号:

2EDB7259Y

The EiceDRIVER™ 2EDB7259Y is a dual-channel isolated gate driver IC with floating outputs. The strong 5 A/9 A source/sink dual-channel gate driver comes with a very high 150 V/ns CMTI (common mode transient immunity) for robust operation with CoolMOS™, CoolGaN™ GIT HEMTs in high-power switching noise environment.
INFINEON

2EDF7175F

Fast, robust, dual-channel, functional and reinforced isolated MOSFET gate-driver
INFINEON

2EDF7175FXUMA2

MOSFET Driver,
INFINEON

2EDF7235K

Fast, robust, dual-channel, functional and reinforced isolated MOSFET gate-driver
INFINEON

2EDF7275F

Fast, robust, dual-channel, functional and reinforced isolated MOSFET gate-driver
INFINEON

2EDF7275FXUMA1

Half Bridge Based MOSFET Driver,
INFINEON

2EDF7275FXUMA2

MOSFET Driver,
INFINEON

2EDF7275K

Fast, robust, dual-channel, functional and reinforced isolated MOSFET gate-driver
INFINEON

2EDF7275KXUMA1

Half Bridge Based MOSFET Driver,
INFINEON

2EDF7275KXUMA2

MOSFET Driver,
INFINEON

2EDF8275F

快速稳健的双通道增强隔离型 MOSFET 栅极驱动器,具备精确稳定时序
INFINEON

2EDF9275F

快速稳健的双通道功能隔离 MOSFET 栅极驱动器,具备精确稳定时序
INFINEON