1EDB7275F [INFINEON]

采用DSO-8 150mil封装的单通道隔离栅极驱动器集成电路;
1EDB7275F
型号: 1EDB7275F
厂家: Infineon    Infineon
描述:

采用DSO-8 150mil封装的单通道隔离栅极驱动器集成电路

栅极驱动 驱动器
文件: 总33页 (文件大小:975K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EiceDRIVER™ 1EDBx275F  
Single-channel isolated gate driver ICs in 150 mil DSO package  
Description  
EiceDRIVER™ 1EDBx275F is a family of single-channel isolated gate driver ICs, designed to drive Si, SiC and GaN  
power switches.  
1EDBx275F is available in an 8-pin DSO package with 4 mm input-to-output creepage distance; it provides  
isolation by means of on-chip coreless transformer (CT) technology.  
With tight timing specifications, 1EDBx275F is designed for fast-switching medium-to-high power systems.  
Excellent common-mode rejection, low part-to-part skew, fast signal propagation and small package size make  
1EDBx275F a superior alternative to high-side driving solutions using optocouplers or pulse transformers.  
Features  
Single-channel isolated gate driver  
45 ns input-to-output propagation delay with excellent accuracy (+6/-4 ns)  
Separate low impedance source and sink outputs  
Fast clamping of parasitics-induced output overshoots under UVLO conditions  
Fast start-up times and fast recovery after supply glitches  
Optimized UVLO levels (4 V, 8 V, 12 V, 15 V) for Si, SiC and GaN transistors  
High common-mode transient immunity (CMTI > 300 V/ns)  
Available in 8-pin 150mil DSO package  
Fully qualified according JEDEC for industrial applications  
Isolation and safety certificates  
UL 1577 with VISO = 3000 VRMS  
Table 1  
Part number  
1EDB7275F  
EiceDRIVER™ 1EDBx275F Portfolio  
Peak source / sink current  
UVLO ON / OFF  
4.2 V / 3.9 V  
Isolation certification Package  
1EDB8275F  
1EDB6275F  
1EDB9275F  
8.0 V / 7.0 V  
UL 1577  
(VISO = 3000 VRMS  
5 A / 9 A  
PG-DSO-8  
)
12.2 V / 11.5 V  
14.9 V / 14.4 V  
EiceDRIVER™ 1EDBx275F  
Controller  
VDDI  
VDDO  
High-side  
MOSFET  
VDD  
VDDI  
IN+  
VDDO  
Rgon  
PWM  
OUT_SRC  
OUT_SNK  
CVDDI  
CVDDO  
Rgoff  
IN-  
GNDI  
GNDO  
GND  
Input-to-output  
isolation  
Figure 1  
Typical application  
Final Data Sheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
Rev. 2.2  
2021-11-08  
EiceDRIVER™ 1EDBx275F  
Single-channel isolated gate driver ICs in 150 mil DSO package  
Potential Applications  
Server and Telecom switch-mode power supplies (SMPS)  
EV Off-board chargers  
Low-voltage drives and power tools  
Solar micro inverter, solar optimizer  
Industrial power supplies (SMPS, Residential UPS)  
Final Data Sheet  
2
Rev.2.2  
2021-11-08  
EiceDRIVER™ 1EDBx275F  
Single-channel isolated gate driver ICs in 150 mil DSO package  
Table of Contents  
1
Pin configuration and description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2
2.1  
2.2  
2.2.1  
2.2.2  
2.2.3  
2.3  
2.4  
2.5  
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Power supply and Undervoltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Input supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Output supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Driver output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Output active clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
CT communication and input to output data transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3
Electrical characteristics and parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Isolation specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.1  
3.2  
3.3  
3.4  
3.5  
4
5
Timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Layout recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
6
6.1  
6.2  
Application notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Driving 600 V CoolGaNTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Driving 650 V CoolSiCTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
7
Typical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
8
8.1  
8.2  
Package outline dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Device numbers and markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Package PG-DSO-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Final Data Sheet  
3
Rev. 2.2  
2021-11-08  
EiceDRIVER™ 1EDBx275F  
Single-channel isolated gate driver ICs in 150 mil DSO package  
Pin configuration and description  
1
Pin configuration and description  
VDDI  
IN+  
1
2
3
4
8
7
6
5
GNDO  
OUT_SNK  
OUT_SRC  
VDDO  
1EDBx275F  
IN-  
GNDI  
Figure 2  
Table 2  
Pin configuration (top side view)  
Pin description  
Pin Symbol  
Description  
1
2
3
4
5
6
7
8
VDDI  
IN+  
Input-side supply voltage (3 V to 15 V)  
Non-inverting driver input (active high); if IN+ is low or left open, OUT_SNK is low  
Inverting driver input (active low); if IN- is high or left open, OUT_SNK is low  
Input-side ground reference  
IN-  
GNDI  
VDDO  
Output-side supply voltage (up to 20 V)  
OUT_SRC Driver output source, low-impedance switch to VDDO  
OUT_SNK Driver output sink, low-impedance switch to GNDO  
GNDO  
Output-side ground reference  
For package drawing details see Chapter 8 Package outline dimensions.  
Final Data Sheet  
4
Rev.2.2  
2021-11-08  
EiceDRIVER™ 1EDBx275F  
Single-channel isolated gate driver ICs in 150 mil DSO package  
Functional description  
2
Functional description  
2.1  
Block diagram  
A simplified functional block diagram for the EiceDRIVER™ 1EDBx275F is given in Figure 3.  
UVLO  
VDDO  
5
UVLO  
1
2
IN+  
6
7
OUT_SRC  
OUT_SNK  
GNDI  
TX  
RX  
Logic  
Logic  
VDDI  
VDDO  
3
IN-  
Active  
Clamp  
GNDI  
4
8
GNDO  
GNDI  
Figure 3  
Block diagram  
2.2  
Power supply and Undervoltage Lockout (UVLO)  
Due to the isolation between input and output side, two power domains with independent power management  
are required. Undervoltage Lockout (UVLO) functions for both input and output supplies ensure a defined startup  
and robust functionality under all operating conditions.  
2.2.1  
Input supply voltage  
The input die is powered via VDDI and supports a wide supply voltage range from 3 V to 15 V. A ceramic bypass  
capacitor must be placed between VDDI and GNDI in close proximity to the device; a minimum capacitance of  
100 nF is recommended.  
Power consumption to some extent depends on switching frequency, as the input signal is converted into a train  
of repetitive current pulses to drive the coreless transformer. Due to the chosen robust encoding scheme the  
average repetition rate of these pulses and thus the average supply current depends on the  
switching frequency, fsw. However, for fsw < 500 kHz this effect is very small.  
The Undervoltage Lockout function for the input supply VDDI ensures that, as long as VDDI is below UVLO (e.g. in  
startup), no data is transferred to the output side and the gate driver output is held low (Safety Lock-down at  
startup). When VDDI exceeds the UVLO level, the PWM input signal is transferred to the output side. If the output  
side is ready (not in UVLO condition), the output reacts according to the logic input.  
Final Data Sheet  
5
Rev.2.2  
2021-11-08  
EiceDRIVER™ 1EDBx275F  
Single-channel isolated gate driver ICs in 150 mil DSO package  
Functional description  
2.2.2  
Output supply voltage  
The output die is powered via VDDO (up to 20 V). A ceramic bypass capacitor must be placed between VDDO and  
GNDO in close proximity to the device. A minimum capacitance of 20 x Ciss (MOSFET input capacitance) is  
recommended to ensure an acceptable ripple (5% of VDDO) on the supply pin.  
The minimum supply voltage is set by the Undervoltage Lockout (UVLO) function. The gate driver output can be  
switched only, if the output supply voltage (VDDO) exceeds the output-side UVLO. Thus it can be guaranteed that  
the switch transistor is not operated, if the driving voltage is too low to achieve a complete and fast transition to  
the "on" state. Low driving voltage in fact could cause the power MOSFET to enter its saturation (ohmic) region  
with potentially destructive power dissipation; the output UVLO ensures that the switch transistor always stays  
within its Safe Operating Area (SOA). Versions with 4 V, 8 V, 12 V, 15 V UVLO thresholds for the output supply are  
currently available; Table 3 shows the recommended UVLO levels for different Infineon power switch families.  
Table 3  
Recommended 1EDBx275F UVLO levels for typical use-cases  
Switch family  
Switch part number example  
Recommended 1EDBx275F  
Logic level OptiMOSTM  
Normal level OptiMOSTM  
CoolMOSTM  
BSC010N04LS6, BSZ070N08LS5, ..  
1EDB7275F (4 V UVLO)  
BSC040N10NS5, BSZ084N08NS5, .. 1EDB8275F (8 V UVLO)  
IPP60R099C7, IPB60R600P6, ..  
1EDB8275F (8 V UVLO)  
1EDB6275F (12 V UVLO for 15V VGS driving)  
1EDB9275F (15 V UVLO for 18V VGS driving)  
1EDB7275F (4V UVLO)  
650 V CoolSiCTM  
600 V CoolGaNTM  
IMZA65R027M1H, IMW65R107M1H, ..  
IGOT60R070D1, IGLD60R070D1, ..  
2.2.3  
Input stage  
The logic driver output state is equal to the non-inverted or inverted input signal state at pins IN+ or IN-,  
respectively. The non-inverting input IN+ is internally pulled down to a logic low voltage and the inverting input  
is internally pulled up to a logic high voltage. This prevents any switching-on during power-up or in other  
situations with insufficient supply voltage.  
The input is compatible with LV-TTL levels and provide a hysteresis of typically 0.9 V. This hysteresis is  
independent of the supply voltage VDDI  
.
Table 4 shows the IN+, IN- driver logic in case of sufficiently high supply voltage. Otherwise the outputs of the  
driver are determined by the Undervoltage Lockout (UVLO) and Output Active Clamping functionalities as shown  
in Table 5.  
Table 4  
Logic table in case of sufficient bias power  
Inputs Supplies Outputs  
DDI, VDDO  
Note  
IN+  
H
IN-  
L
V
OUT  
H
L
x
H
>UVLOVDDx,on (active)  
The output is disabled via IN- (active low)  
The output is disabled via IN+ (active high)  
L
x
L
2.3  
Driver output  
The rail-to-rail output stage realized with complementary MOS transistors is able to provide a typical 5.4 A  
sourcing and 9.8 A sinking peak current for a 15 V supply. The low on-resistance coming together with high driving  
current is particularly beneficial for fast switching of very large MOSFETs. With a Ron of 0.95 Ω for the sourcing  
pMOS and 0.48 Ω for the sinking nMOS transistor the driver can in most applications be considered as a nearly  
Final Data Sheet  
6
Rev.2.2  
2021-11-08  
EiceDRIVER™ 1EDBx275F  
Single-channel isolated gate driver ICs in 150 mil DSO package  
Functional description  
ideal switch. The p-channel sourcing transistor enables real rail-to-rail behavior without suffering from the  
voltage drop unavoidably associated with nMOS source follower stages.  
In case of floating inputs or insufficient supply voltage not exceeding the UVLO thresholds, the driver output is  
actively clamped to the "low" level (GNDO).  
2.4  
Output active clamping  
The Undervoltage Lockout (UVLO) ensures no driver operation for supplies below the UVLO thresholds. However,  
this is not sufficient to guarantee that the output of the driver is kept low. Transient-induced current on the  
MOSFETs side may pull-up the output node of the driver and the gate voltage causing an unwanted turn-on of the  
switch; this is particularly critical in systems using bootstrapping since, during start-up, the supply of the high-  
side channel is delayed, while the low-side MOSFETs is already switching. In resonant topologies (as LLC), the  
half-bridge switching node may be pulled up after the turn-off of the low-side switch. When this is turned on  
again, the dv/dt induced increase of the high-side gate voltage cannot be clamped by the drivers RDSON,sink if the  
the boostrap supply is not yet available.  
With a fast active clamping circuit in the output stage, EiceDRIVER™ 1EDBx275F ensures safe operation in all  
UVLO situations. This structure allows fast reaction and effective clamping of the output pins (OUT). The exact  
reaction time depends on the output supply (VDDO) and on the output voltage levels; however, already for very low  
supply levels (~1 V), the active clamping is able to react in some tens of ns.  
Undervoltage Lockout together with the Output Active Clamping ensure that the output is actively held low in  
case of unsufficient output-side supply voltage.  
Table 5  
Logic table in case of insufficient supply voltages  
Inputs Supplies  
Output  
OUT  
L
INx  
VDDI  
VDDO  
1.2 V < VDDO< UVLOVDDO,on  
x
> UVLOVDDI,on  
2.5  
CT communication and input to output data transmission  
A coreless transformer (CT) based communication module is used for PWM signal transfer between input and  
output. A proven high-resolution pulse repetition scheme in the transmitter combined with a watchdog timeout  
at the receiver side enables recovery from communication fails and ensures safe system shutdown in failure  
cases.  
Final Data Sheet  
7
Rev.2.2  
2021-11-08  
EiceDRIVER™ 1EDBx275F  
Single-channel isolated gate driver ICs in 150 mil DSO package  
Electrical characteristics and parameters  
3
Electrical characteristics and parameters  
The absolute maximum ratings are listed in Table 6. Stresses beyond these values may cause permanent damage  
to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
3.1  
Absolute maximum ratings  
Table 6  
Absolute maximum ratings  
Symbol  
Parameter  
Values  
Unit Note or Test Condition  
Min.  
-0.3  
Typ.  
Max.  
17  
Input supply voltage  
Output supply voltage  
Voltage at pins IN+, IN-  
VDDI  
VDDO  
VIN  
V
V
V
V
V
V
-0.3  
22  
-0.3  
17  
-5  
transient for 50 ns  
OUT = low, DC  
Voltage at pin OUT_SRC  
Voltage at pin OUT_SNK  
VOUT_SRC  
VDDO-24  
VDDO+0.3  
VDDO+2  
V
DDO-24  
OUT = low,  
transient for 200 ns  
VOUT_SNK  
-0.3  
-2  
24  
24  
V
V
OUT = high, DC  
OUT = high,  
transient for 200 ns  
Reverse current peak at pin  
OUT_SRC  
ISRC_rev  
ISNK_rev  
-5  
5
Apk transient for 500 ns  
Apk transient for 500 ns  
Reverse current peak at pin  
OUT_SNK  
Junction temperature  
Storage temperature  
Soldering temperature  
ESD capability  
TJ  
TSTG  
-40  
-55  
150  
150  
260  
0.5  
°C  
°C  
TSOL  
°C reflow / wave soldering 1)  
VESD_CDM  
kV Charged Device Model  
(CDM) 2)  
VESD_HBM  
2
kV Human Body Model  
(HBM) 3)  
1) according to JESD22A111  
2) according to ESD-CDM: ANSI/ESDA/JEDEC JS-002  
3) according to ESD-HBM: ANSI/ ESDA/JEDEC JS-001 (discharging 100 pF capacitor through 1.5 kΩ resistor)  
Final Data Sheet  
8
Rev.2.2  
2021-11-08  
EiceDRIVER™ 1EDBx275F  
Single-channel isolated gate driver ICs in 150 mil DSO package  
Electrical characteristics and parameters  
3.2  
Thermal characteristics  
Table 7  
Thermal characteristics at TA= 25°C  
Parameter  
Symbol  
Min.  
Values  
Typ.  
116  
Unit Note or Test Condition  
Max.  
Thermal resistance junction-  
ambient 1)  
RthJA25  
RthJC25  
RthJB25  
ΨthJT25  
ΨthJB25  
K/W 200mW output power  
Thermal resistance junction-  
case (top) 2)  
54  
45  
9
K/W  
K/W  
K/W  
K/W  
Thermal resistance junction-  
board 3)  
Characterization parameter  
junction-top 4)  
Characterization parameter  
36  
junction-board 4)  
1) obtained by simulating a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in  
JESD51-2a  
2) obtained by simulating a cold plate test on the package top. No specific JEDEC standard test exists, but a close  
description can be found in the ANSI SEMI standard G30-88  
3) obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in  
JESD51-8  
4) estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining  
Rth, using a procedure described in JESD51-2a (sections 6 and 7)  
3.3  
Operating range  
Table 8  
Operating range  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Min.  
3.0  
Typ.  
Max.  
15  
Input supply voltage  
Output supply voltage  
VDDI  
V
V
V
V
V
V
Min. defined by UVLO  
for 1EDB7275F  
for 1EDB8275F  
for 1EDB6275F  
for 1EDB9275F  
VDDO  
4.5  
20  
8.5  
20  
12.8  
15.5  
-0.3  
20  
20  
Logic input voltage at pins IN+,  
IN-  
VIN  
15  
1)  
Junction temperature  
Ambient temperature  
TJ  
TA  
-40  
-40  
150  
125  
°C  
°C  
1) continuous operation above 125°C may reduce lifetime  
Final Data Sheet  
9
Rev.2.2  
2021-11-08  
EiceDRIVER™ 1EDBx275F  
Single-channel isolated gate driver ICs in 150 mil DSO package  
Electrical characteristics and parameters  
3.4  
Electrical characteristics  
Unless otherwise noted the electrical characteristics are given for VDDI = 3.3 V, VDDO = 12 V (VDDO = 18 V for  
1EDB6275F, 1EDB9275F) and no load.  
Typical values are given at TJ = 25°C. Min. and max. values are the lower and upper limits valid within the full  
operating temperature range.  
Table 9  
Power supply  
Values  
Typ.  
Parameter  
Symbol  
Unit  
Note or Test Condition  
Min.  
Max.  
I
VDDI quiescent current  
IVDDIq  
0.85  
1
mA  
mA  
no switching  
OUT = low, no switching,  
VDDO = 12 V  
-
0.65  
0.72  
0.84  
0.85  
1.0  
OUT = low, no switching,  
VDDO = 18 V  
IVDDO quiescent current  
IVDDOq  
mA  
mA  
OUT = high, no switching,  
VDDO = 12 V  
1.0  
Table 10 Undervoltage Lockout VDDI  
Values  
Note or  
Test Condition  
Parameter  
Symbol  
UVLOVDDI,on  
UVLOVDDI,off  
Unit  
Min.  
Typ.  
Max.  
Undervoltage Lockout (UVLO)  
turn-on threshold VDDI  
2.7  
2.85  
3.0  
V
Undervoltage Lockout (UVLO)  
turn-off threshold VDDI  
2.65  
0.2  
V
V
UVLO threshold hysteresis VDDI UVLOVDDI, hys  
0.15  
0.25  
Table 11 Undervoltage Lockout VDDO for 1EDB7275F (4 V UVLO option)  
Values  
Note or  
Test Condition  
Parameter  
Symbol  
Unit  
Min.  
Typ.  
Max.  
Undervoltage Lockout (UVLO)  
turn on threshold VDDO  
UVLOVDDO, on  
UVLOVDDO, off  
UVLOVDDO, hys  
4.0  
4.2  
4.4  
V
V
V
Undervoltage Lockout (UVLO)  
turn off threshold VDDO  
3.9  
0.3  
UVLO threshold hysteresis  
VDDO  
0.2  
0.4  
Final Data Sheet  
10  
Rev.2.2  
2021-11-08  
EiceDRIVER™ 1EDBx275F  
Single-channel isolated gate driver ICs in 150 mil DSO package  
Electrical characteristics and parameters  
Table 12 Undervoltage Lockout VDDO for 1EDB8275F (8 V UVLO option)  
Values  
Note or  
Test Condition  
Parameter  
Symbol  
Unit  
Min.  
Typ.  
Max.  
Undervoltage Lockout (UVLO)  
turn on threshold VDDO  
UVLOVDDO, on  
UVLOVDDO, off  
UVLOVDDO, hys  
7.6  
8.0  
8.4  
V
V
V
Undervoltage Lockout (UVLO)  
turn off threshold VDDO  
7.0  
1
UVLO threshold hysteresis  
VDDO  
0.7  
1.3  
Table 13 Undervoltage Lockout VDDO for 1EDB6275F (12 V UVLO option)  
Values  
Note or  
Test Condition  
Parameter  
Symbol  
Unit  
Min.  
Typ.  
Max.  
Undervoltage Lockout (UVLO)  
turn on threshold VDDO  
UVLOVDDO, on  
UVLOVDDO, off  
UVLOVDDO, hys  
11.7  
12.2  
12.7  
V
V
V
Undervoltage Lockout (UVLO)  
turn off threshold VDDO  
11.5  
0.7  
UVLO threshold hysteresis  
VDDO  
0.5  
0.9  
Table 14 Undervoltage Lockout VDDO for 1EDB9275F (15 V UVLO option)  
Values  
Note or  
Test Condition  
Parameter  
Symbol  
Unit  
Min.  
Typ.  
Max.  
Undervoltage Lockout (UVLO)  
turn on threshold VDDO  
UVLOVDDO, on  
UVLOVDDO, off  
UVLOVDDO, hys  
14.4  
14.9  
15.4  
V
V
V
Undervoltage Lockout (UVLO)  
turn off threshold VDDO  
14.4  
0.5  
UVLO threshold hysteresis  
VDDO  
0.3  
0.7  
Table 15 Logic inputs IN+, IN-  
Parameter  
Values  
Typ.  
Note or  
Test Condition  
Symbol  
Unit  
Min.  
Max.  
Input voltage threshold for  
transition LH  
VINH  
VINL  
VIN_hys  
IIN+,H  
1.9  
1
2.2  
1.3  
0.9  
40  
2.5  
V
V
Input voltage threshold for  
transition HL  
1.6  
Input voltage threshold  
hysteresis  
V
High-level input leakage  
current at pin IN+  
70  
µA  
IN+ tied to VDDI  
Final Data Sheet  
11  
Rev.2.2  
2021-11-08  
EiceDRIVER™ 1EDBx275F  
Single-channel isolated gate driver ICs in 150 mil DSO package  
Electrical characteristics and parameters  
Table 15 Logic inputs IN+, IN- (cont’d)  
Values  
Note or  
Test Condition  
Parameter  
Symbol  
Unit  
Min.  
Typ.  
Max.  
Low-level input leakage  
current at pin IN-  
IIN-,L  
-55  
-40  
µA  
IN- tied to GNDI  
Input pull-down resistor  
Input pull-up resistor  
RIN,PD  
RIN,PU  
75  
75  
kΩ  
kΩ  
Table 16 Static output characteristics  
Values  
Typ.  
Note or  
Test Condition  
Parameter  
Symbol  
Unit  
Min.  
Max.  
High-level (sourcing) output  
resistance  
Ron_SRC  
0.52  
0.95  
1.70  
ISNK = 50 mA  
V
DDO = 12 V, VOUT = 0 V;  
5
A
A
see Figure 25,  
Figure 26  
Peak sourcing output current 1)  
ISRC_pk  
VDDO = 18 V, VOUT = 0 V;  
see Figure 25,  
Figure 26  
6
Low-level (sinking) output  
resistance  
Ron_SNK  
0.31  
0.48  
-9  
0.88  
A
A
ISRC = 50 mA  
VOUT = VDDO = 12 V; see  
Figure 25, Figure 26  
Peak sinking output current 1)  
ISNK_pk  
VOUT = VDDO = 18 V; see  
Figure 25, Figure 26  
-10  
1) parameter not subject to production test - verified by design / characterization  
Table 17 Dynamic characteristics  
Values  
Note or  
Test Condition  
Parameter  
Symbol  
Unit  
Min.  
Typ.  
Max.  
IN+ /IN- to output propagation  
delay  
tPDon, tPDoff  
41  
45  
51  
ns see Figure 4  
1)  
tPDon,p-p  
tPDoff,p-p  
2
2
ns  
Part-to-part skew  
1)  
ns  
Pulse width distortion  
tPWD  
2
ns see Figure 5  
2)  
|tPDoff - tPDon  
|
VDDO = 12 V, CLOAD  
=
6.5  
8.3  
12  
16  
ns  
ns  
1.8 nF, see Figure 6  
Rise time 3)  
trise  
VDDO = 18 V, CLOAD  
=
1.8 nF, see Figure 6  
Final Data Sheet  
12  
Rev.2.2  
2021-11-08  
EiceDRIVER™ 1EDBx275F  
Single-channel isolated gate driver ICs in 150 mil DSO package  
Electrical characteristics and parameters  
Table 17 Dynamic characteristics (cont’d)  
Values  
Note or  
Test Condition  
Parameter  
Symbol  
Unit  
Min.  
Typ.  
Max.  
VDDO = 12 V, CLOAD  
=
4.5  
8
ns  
ns  
1.8 nF, see Figure 6  
VDDO = 18 V, CLOAD  
1.8 nF, see Figure 6  
Fall time 3)  
tfall  
=
5
9
Minimum input pulse width  
that changes output state  
Input-side start-up time 3)  
Input-side deactivation time 3)  
Output-side start-up time 3)  
tPW  
15  
19  
23  
ns see Figure 7  
µs see Figure 8  
tSTART,VDDI  
tSTOP,VDDI  
tSTART,VDDO  
3
300  
5
ns see Figure 8  
µs see Figure 9  
Output-side deactivation time  
tSTOP,VDDO  
125  
ns see Figure 9  
3)  
Activation time of output  
tCLAMP,OUT  
20  
ns see Figure 10  
clamping in UVLO condition 3)  
1) The parameter gives the difference in propagation delay between different samples switching in the same direction  
under same conditions, including same ambient temperature  
2) The parameter gives the maximum difference between on and off propagation delay shown from the same sample over  
the operating temperature range  
3) parameter not subject to production test - verified by design / characterization  
Table 18 Common Mode Transient Immunity (CMTI)  
Values  
Parameter  
Symbol  
Unit Note or Test Condition  
Min.  
Typ.  
Max.  
V
CM = 1500 V; IN- tied to GNDI,  
IN+ tied to VDDI (logic high inputs)  
CM = 1500 V; IN- tied to GNDI, IN+  
tied to GNDI (logic low inputs)  
CM = 1500 V; IN- tied to GNDI,  
dynamic IN+ (10 MHz square wave)  
|CMStatic,H  
|
300  
V/ns  
V/ns  
V/ns  
Static Common Mode  
Transient Immunity 1) 2)  
V
|CMStatic,L  
|
300  
Dynamic Common Mode  
Transient Immunity 1) 3)  
V
|CMDynamic  
|
300  
1) minimum slew rate of a common mode voltage that is able to cause a wrong output signal  
2) verified by characterization according to VDE0884-11 standard definitions and test-methods  
3) verified by characterization with ground reference for the common mode pulse generator connected to the coupler  
input-side ground to reflect real applications requirements  
Final Data Sheet  
13  
Rev.2.2  
2021-11-08  
EiceDRIVER™ 1EDBx275F  
Single-channel isolated gate driver ICs in 150 mil DSO package  
Electrical characteristics and parameters  
3.5  
Isolation specifications  
This coupler is suitable for rated insulation only within the given safety limiting values. Compliance with the  
safety limiting values shall be ensured by means of suitable protective circuits.  
Table 19 Input-to-output isolation specifications  
Parameter  
Symbol Value Unit Note or Test Condition  
Nominal input-to-output  
clearance 1)  
Shortest distance in air between any  
input pin and any output pin  
CLR  
CRP  
CTI  
4.0  
mm  
Shortest distance over package surface  
mm between any input pin and any output  
pin  
Nominal input-to-output  
creepage 1)  
4.0  
> 400  
< 600  
According to DIN EN 60112 (VDE 0303-  
11)  
Comparative tracking index  
V
Material group  
II  
According to IEC 60112  
Pollution degree  
2
According to IEC 60664-1  
Overvoltage category per  
IEC 60664-1  
I -IV  
I -III  
Rated mains voltage 150 VRMS  
Rated mains voltage 300 VRMS  
I -II  
Rated mains voltage 600 VRMS  
Climatic category  
40/125  
/21  
VTEST = VISO for t = 60 s (qualification);  
Input-to-output isolation  
voltage  
UL1577 2)  
VISO  
VIOTM  
qPD  
3000  
4242  
< 5  
VRMS  
V
TEST = 1.2 x VISO for t = 1 s (100%  
productive tests)  
Maximum rated transient  
isolation voltage  
Vpk VTEST = 1.2 x VIOTM for tini = 1 s  
Method b1  
pC VPD(ini) = 1.2 x VIOTM for tini = 1 s  
VPD(m) = 2065 V for tm = 1 s  
Apparent charge  
VDE0884-11 3)  
Maximum surge isolation  
voltage 4)  
VIOSM  
RIO  
6000  
Vpk VIOSM_TEST = 1.3 x VIOSM  
Isolation resistance input-  
to-output 5) 6)  
1012  
1011  
Ω
Ω
VIO = 500 Vdc for t = 60 s, TA = 25 °C  
VIO = 500 Vdc for t = 60 s, TA = 125 °C  
VIO = 500 Vdc for t = 60 s, TA = TS = 150 °C  
109  
Ω
Capacitance input-to-  
output 5)  
CIO  
1
pF f = 1 MHz  
1) Creepage and clearance requirements depend on the application and related end-equipment isolation standard. Care  
should be taken to keep the required creepage and clearance value on printed-circuit-board level  
2) see certificate number E509502  
3) parameters are tested according to VDE0884-11 specifications but no safety certification is planned  
4) the surge test is performed in insulation oil to determine the intrinsic surge immunity of the insulation barrier  
5) The parameters apply to the product converted in a two terminals device with all terminals on side 1 connected together  
and all terminals on side 2 connected together  
6) parameter verified by characterization on a limited amount of samples previously stressed with a dielectric strength test  
(VISO  
)
Final Data Sheet  
14  
Rev.2.2  
2021-11-08  
EiceDRIVER™ 1EDBx275F  
Single-channel isolated gate driver ICs in 150 mil DSO package  
Electrical characteristics and parameters  
Table 20 Safety limiting values  
Parameter  
Symbol Value Unit Note or Test Condition  
Maximum input power dissipation  
Maximum output power dissipation  
PS_I  
40  
mW  
mW  
TA = 25 C, TJ = 150 °C  
PS_O  
1380  
Maximum ambient safety  
temperature  
Ts  
150  
°C TS = TJ,max  
Final Data Sheet  
15  
Rev.2.2  
2021-11-08  
EiceDRIVER™ 1EDBx275F  
Single-channel isolated gate driver ICs in 150 mil DSO package  
Timing diagrams  
4
Timing diagrams  
Figure 4 illustrates the input-to-output propagation delays as observed at the capacitively loaded output.  
VINH  
IN- (low)  
IN-  
VINL  
VINH  
IN+  
IN+ (high)  
VINL  
90%  
90%  
OUT  
OUT  
10%  
10%  
tPDon  
tPDoff  
tPDoff  
tPDon  
Figure 4  
Input-to-output propagation delays (inverting and non-inverting case)  
Figure 5 illustrates the pulse width distortion. It depicts the duty cycle distortion of the signal observed at the  
driver output due to the mismatch between on and off propagation delay.  
IN+  
tPWD  
OUT  
tPDon  
tPDoff  
Figure 5  
Pulse width distortion (unloaded output)  
Figure 6 illustrates the rise and fall time as observed at the capacitively loaded output.  
90%  
10%  
90%  
10%  
OUT  
tfall  
trise  
Figure 6  
Rise and fall times  
Final Data Sheet  
16  
Rev.2.2  
2021-11-08  
EiceDRIVER™ 1EDBx275F  
Single-channel isolated gate driver ICs in 150 mil DSO package  
Timing diagrams  
Figure 7 illustrates the behavior of the deglitch filter that suppresses input pulses with duration shorter than  
tPWmin  
.
IN- (low)  
VINH  
VINH  
IN+  
VINL  
VINL  
t
PW > tPWmin  
tPW < tPWmin  
OUT  
Figure 7  
Minimum pulse that changes the output state  
Figure 8 illustrates the input supply UVLO behavior. It depicts the reaction time to UVLO events when VDDI crosses  
the UVLO thresholds during rising or falling transitions (power-up, power-down, supply noise).  
High logic level  
IN+  
Low logic level  
IN-  
High level ( > UVLOVDDO,on )  
VDDO  
VDDI  
OUT  
UVLOVDDI,on  
UVLOVDDI,off  
tSTART,VDDI  
tSTOP,VDDI  
Figure 8  
VDDI UVLO behavior, start-up and deactivation time (unloaded output)  
Figure 9 illustrates the output supply UVLO behavior. It depicts the reaction time to UVLO events when VDDO  
crosses the UVLO thresholds during rising or falling transitions (power-up, power-down, supply noise).  
IN+ high  
IN- low  
VDDI > UVLOVDDI,on  
UVLOVDDO,on  
UVLOVDDO,off  
VDDO  
OUT  
tSTART,VDDO  
tSTOP,VDDO  
Figure 9  
VDDO UVLO behavior, start-up and deactivation time (unloaded output)  
Final Data Sheet  
17  
Rev.2.2  
2021-11-08  
EiceDRIVER™ 1EDBx275F  
Single-channel isolated gate driver ICs in 150 mil DSO package  
Timing diagrams  
Figure 10 illustrates tCLAMP,OUT, the time required to clamp potential output induced overshoots in UVLO  
condition (VDDO < UVLOVDDO,on).  
VDDO  
OUT  
1.2V  
tCLAMP,OUT  
Figure 10 Activation time of output clamping in UVLO conditions (unloaded output)  
Final Data Sheet  
18  
Rev.2.2  
2021-11-08  
EiceDRIVER™ 1EDBx275F  
Single-channel isolated gate driver ICs in 150 mil DSO package  
Layout recommendation  
5
Layout recommendation  
For any fast-switching power system the PCB layout is crucial to achieve optimum performance. Among the many  
existing rules, recommendations, guidelines, tips and tricks, the ones of highest importance are listed as follow.  
Use low-ESR decoupling capacitances (CVDDI, CVDDO) and place them as close as possible to the driver to  
support high peak currents during switching and to ensure stable supply voltages for the driver. The use of  
PCB planes at ground potential is also recommended to further reduce the inductance to ground.  
Minimize the gate loop inductance by placing the driver as close as possible to the driven transistor and by  
ensuring that the gate traces are always placed on top of a PCB plane at ground (GNDO) potential. Minimizing  
the power loop inductance is the key measure to limit voltage overshoots and enable fast switching.  
In case of boostrapping, minimize the boostrap loop inductance to ensure reliable operation and fast  
bootstrap charge. The boostrap capacitor is, in fact, charged every cycle through the bootstrap diode and the  
turned-on low-side transistor and the loop is subject to potential high peak charging currents. When this is not  
possible, use a split bootstrap capacitor with one part placed in some distance of the driver to avoid induced  
noise; if big enough, this acts as a stable supply for the high-side driver decoupling capacitance (placed close  
to the driver).  
Pay attention to keep any source of noise (like half-bridge high-current switching traces) away from the driver  
to avoid any coupling capacitance.  
According to the application requirements, pay attention to keep the needed input-to-output clearance and  
creepage on PCB level. To fully benefits from the isolation capabilities of the driver, any trace or plane below  
the device must be strictly avoided.  
Connect the driver ground pin to proper PCB planes to reduce the junction-to-board resistance and support  
the spread of heat outside the driver  
A layout recommendation for EiceDRIVER™ 1EDBx275F is given in Figure 11.  
CVDDI  
1EDBx275F  
RSNK  
RSRC  
GNDI  
VDDO  
Figure 11 Layout recommendation  
Final Data Sheet  
19  
Rev.2.2  
2021-11-08  
EiceDRIVER™ 1EDBx275F  
Single-channel isolated gate driver ICs in 150 mil DSO package  
Application notes  
6
Application notes  
Note: The following information is given as a hint for the implementation of the device only and shall not be regarded  
as a description or warranty of a certain functionality, condition or quality of the device.  
Due to the input-to-output isolation, EiceDRIVER™ 1EDBx275F is best suited for use as high-side driver. In  
particular, the combination with EiceDRIVER™ 1EDNx550B (single-channel gate driver with true differential  
inputs), is best suited for half-bridge driving due to perfect matching in timing performances and output  
capability.  
By making use of the drivers inverting and non-inverting inputs, shoot-through protection can be implemented  
as depicted in Figure 12; any undesired overlap of low-side and high-side PWM signals is not propagated at the  
transistors input.  
This solution is preferable compared to dual-channel gate drivers in case of high-power or high-frequency  
designs; here minimizing the gate loop may become a critical requirement that can be more easily fulfilled by  
using single-channel solutions.  
VBUS  
EiceDRIVER™ 1EDBx275F  
Controller  
VDD  
VDD  
VDDI  
IN+  
VDDO  
OUT_SRC  
OUT_SNK  
GNDO  
Rgon  
Rgoff  
PWM1  
CVDDI  
Q1  
IN-  
Cboot  
GND  
GNDI  
Dboot  
Rboot  
EiceDRIVER™ 1EDNx550B  
Rin1  
Rin2  
PWM2  
IN+  
IN-  
VDD  
Rgon  
Rgoff  
OUT_SRC  
Q2  
GND  
OUT_SNK  
CVDDO  
Rc  
Figure 12 Typical application circuit for half-bridge driving  
The high CMTI of 300 V/ns, in conjunction with the ability to drive 4-pin Kelvin source transistors, makes the  
combination 1EDBx275F, 1EDNx550B ideal to drive GaN and SiC power switches.  
6.1  
Driving 600 V CoolGaNTM  
Figure 13 depicts a 1EDB7275F typical use case driving Infineon´s 600V GaN power switches (CoolGaNTM). The  
example shows a soft-switching topology; here, due to acceptable switching speed, unipolar driving is possible  
without risk of false triggering of the devices due to switching induced overshoots.  
Details of component dimensioning can be found in the EiceDRIVER™ 1EDi-GaN product family datasheet.  
Final Data Sheet  
20  
Rev.2.2  
2021-11-08  
EiceDRIVER™ 1EDBx275F  
Single-channel isolated gate driver ICs in 150 mil DSO package  
Application notes  
400V  
D
EiceDRIVER™ 1EDB7275F  
Controller  
VDD  
8V  
560  
VDDI  
IN+  
VDDO  
OUT_SRC  
OUT_SNK  
GNDO  
10  
2
1.8n  
IGT60R070  
G
PWM1  
SS  
100n  
IN-  
220n  
S
GND  
GNDI  
D
2.2  
EiceDRIVER™ 1EDN7550B  
33k  
33k  
560  
PWM2  
IN+  
IN-  
VDD  
OUT_SRC  
OUT_SNK  
10  
2
IGT60R070  
1.8n  
G
SS  
GND  
2.2μ  
S
10  
Figure 13 Typical application circuit for 600 V CoolGaNTM driving  
6.2  
Driving 650 V CoolSiCTM  
Figure 14 depicts a typical use case for Infineon´s 650 V SiC MOSFETs (CoolSiCTM) in a so-called “totem-pole”  
PFC. It consists of a 48mΩ SiC half-bridge driven by 1EDB9275F and 1EDN9550B EiceDRIVERTM; the diode  
functions indicated in the power path are usually realized with low-RDS(on) MOSFETs operating as synchronous  
rectifiers. 3.3 kW of power can be handled at very high efficiency (above 99%).  
Considering a typical 18 V gate-to-source voltage driving, EiceDRIVERTM 1EDB9275F and 1EDN9550B offer an  
output UVLO level fitting for 650 V CoolSiCTM. With a typical UVLOVDDO,off of 14.4 V, those drivers ensure that even  
in an unsupplied case the transistor (e.g. IMZA65R048M1H in a 3.3 kW totem-pole PFC) stays within the Safe  
Operating Area (SOA) with acceptable power dissipation.  
In Figure 14 a Schottky diode at the CoolSiCTM gate is recommended to clamp switching induced undershoots on  
the gate terminal which may cause a potential drift in the gate threshold voltage Vgs,th over lifetime.  
EiceDRIVER™ 1EDB9275F  
Controller  
VDD  
3.3V  
VDDI  
IN+  
VDDO  
OUT_SRC  
OUT_SNK  
GNDO  
6.8  
PWM1  
IMZA65R048M1  
100n  
IN-  
6.8  
220n  
GND  
GNDI  
Vin  
AC  
2.2  
EiceDRIVER™ 1EDN9550B  
18V  
6.8  
33k  
33k  
PWM2  
IN+  
IN-  
VDD  
OUT_SRC  
OUT_SNK  
IMZA65R048M1  
GND  
6.8  
2.2ꢀ  
Figure 14 Typical application circuit for 650 V CoolSiCTM driving  
Final Data Sheet  
21  
Rev.2.2  
2021-11-08  
EiceDRIVER™ 1EDBx275F  
Single-channel isolated gate driver ICs in 150 mil DSO package  
Typical characteristics  
7
Typical characteristics  
VDDI = 3.3 V, VDDO = 12 V, TA = 25°C, fsw= 1MHz, no load unless otherwise noted.  
1,2  
1,1  
1,0  
0,9  
0,8  
4.0  
3.0  
2.0  
1.0  
0.0  
VDDI = 3.3V  
VDDI = 5V  
VDDI = 8V  
VDDI = 12V  
VDDI = 15V  
VDDI = 17V  
square wave input  
fsw = 100 KHz  
fsw = 1MHz  
fsw = 3MHz  
no switching  
-50  
0
50  
100  
150  
-50  
50  
150  
Tj [°C]  
Tj [°C]  
Typical IVDDIq quiescient  
current vs. temperature  
Typical IVDDI switching  
current vs. temperature  
Figure 15 Input-side supply current IVDDI (quiescient and switching current) with temperature  
4,0  
no switching  
fsw = 100 kHz  
fsw = 1 MHz  
fsw = 3 MHz  
3,0  
2,0  
1,0  
0,0  
static or square wave input  
2
6
10  
VDDI [V]  
14  
18  
Typical IVDDI current vs.  
input-supply voltage VDDI  
Figure 16 Input-side supply current IVDDI (quiescient and switching current) with VDDI  
Final Data Sheet  
22  
Rev.2.2  
2021-11-08  
EiceDRIVER™ 1EDBx275F  
Single-channel isolated gate driver ICs in 150 mil DSO package  
Typical characteristics  
1,6  
1,0  
0,8  
0,6  
0,4  
VDDO = 5V  
VDDO = 8V  
VDDO = 12V  
VDDO = 18V  
OUT HIGH  
VDDO = 5V  
VDDO = 8V  
VDDO = 12V  
VDDO = 18V  
OUT LOW  
1,4  
1,2  
1,0  
0,8  
0,6  
0,4  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Tj [°C]  
Tj [°C]  
Typical IVDDOq quiescient  
current(OUT low) vs. temperature  
Typical IVDDOq quiescient  
current(OUT high) vs. temperature  
Figure 17 Output-side supply current IVDDOq (quiescent current) with temperature  
1,2  
OUT HIGH  
OUT LOW  
1,0  
0,8  
0,6  
0,4  
5
8
11  
14  
17  
20  
VDDO [V]  
Typical IVDDOq quiescient current  
vs. output-supply voltage VDDO  
Figure 18 Output-side supply current IVDDOq (quiescient current) with VDDO  
Final Data Sheet  
23  
Rev.2.2  
2021-11-08  
EiceDRIVER™ 1EDBx275F  
Single-channel isolated gate driver ICs in 150 mil DSO package  
Typical characteristics  
14  
12  
10  
8
no load, VDDO = 12V,  
square wave input  
fsw = 100KHz  
fsw = 1MHz  
fsw = 3MHz  
VDDO = 4.5V  
VDDO = 8V  
VDDO = 12V  
VDDO = 20V  
no load, TA = 25°C,  
square wave input  
50  
40  
30  
20  
10  
0
6
4
2
0
-50  
50  
Tj [°C]  
150  
0
2
4
6
8
10  
fsw [MHz]  
Typical IVDDO switching current vs.  
temperature  
Typical IVDDO switching current vs.  
frequency  
Figure 19 Output-side supply current IVDDO (switching current without load) with temperature  
2.0  
1.5  
1.0  
0.5  
0.0  
40  
30  
20  
10  
0
VDDO = 5V  
VDDO = 12V  
VDDO = 20V  
VDDO = 5V  
VDDO = 12V  
VDDO = 20V  
square wave input,  
TA = 25°C, fsw = 100KHz,  
series resistance RS = 0 Ω  
square wave input,  
TA = 25°C, fsw = 1KHz,  
series resistance RS = 0 Ω  
0
5
10  
0
5
10  
Cload [nF]  
Cload [nF]  
Typical IVDDO current vs. capacitive  
load (1 KHz frequency)  
Typical IVDDO current vs. capacitive  
load (100 KHz frequency)  
Figure 20 Output-side supply current IVDDO (switching current with load) with temperature  
Final Data Sheet  
24  
Rev.2.2  
2021-11-08  
EiceDRIVER™ 1EDBx275F  
Single-channel isolated gate driver ICs in 150 mil DSO package  
Typical characteristics  
3.0  
ON threshold  
OFF threshold  
UVLO on  
UVLO off  
2.5  
2.0  
1.5  
1.0  
0.5  
2.9  
2.7  
2.5  
-50  
0
50  
100  
150  
-50  
0
50  
Tj [°C]  
100  
150  
Tj [°C]  
Typical Undervoltage Lockout  
thresholds VDDI vs. temperature  
Typical input voltage thresholds vs.  
temperature  
Figure 21 Logic input thresholds and VDDI UVLO thresholds with temperature  
4.5  
4.3  
4.1  
3.9  
3.7  
8.8  
8.4  
8.0  
7.6  
7.2  
6.8  
6.4  
UVLO on  
UVLO off  
UVLO on  
UVLO off  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Tj [°C]  
Tj [°C]  
Typical Under Voltage Lockout VDDO  
thresholds vs. temperature (4 V version)  
Typical Under Voltage Lockout VDDO  
thresholds vs. temperature (8 V version)  
Figure 22 VDDO UVLO thresholds (4 V, 8 V options) with temperature  
Final Data Sheet  
25  
Rev.2.2  
2021-11-08  
EiceDRIVER™ 1EDBx275F  
Single-channel isolated gate driver ICs in 150 mil DSO package  
Typical characteristics  
Figure 23  
VDDO UVLO thresholds (12 V, 15 V options) with temperature  
2.0  
1.5  
1.0  
0.5  
0.0  
50  
Ron_src  
Ron_snk  
ON  
OFF  
48  
45  
43  
40  
-50  
0
50  
Tj [°C]  
100  
150  
-50  
0
50  
Tj [°C]  
100  
150  
Typical output resistance vs.  
temperature  
Typical propagation  
delay vs. temperature  
Figure 24 Output resistance and propagation delay with temperature  
Final Data Sheet  
26  
Rev.2.2  
2021-11-08  
EiceDRIVER™ 1EDBx275F  
Single-channel isolated gate driver ICs in 150 mil DSO package  
Typical characteristics  
16  
VDDO = 5 V  
VDDO = 12 V  
VDDO = 20 V  
VDDO = 5 V  
VDDO = 12 V  
VDDO = 20 V  
TA = 25°C,  
LOAD =150nF,  
RS = 0.1 Ω  
8
6
4
2
0
14  
12  
10  
8
C
6
4
TA = 25°C, CLOAD =150nF,  
series resistance RS = 0.1 Ω  
2
0
0
5
10  
15  
20  
0
5
10  
15  
20  
VOUT [V]  
VOUT [V]  
Typical sourcing output  
current vs. output voltage  
Typical sinking output  
current vs. output voltage  
Figure 25 Source and sink current with output voltage  
12  
ISRC_pk  
ISNK_PK  
10  
8
6
4
VDDO = 12V, TA = 25°C,  
CLOAD =150nF,  
series resistance RS = 0.1 Ω  
2
0
4
8
12  
16  
20  
VDDO [V]  
Typical peak output current  
vs. supply voltage  
Figure 26 Peak source and sink current with supply voltage  
Final Data Sheet  
27  
Rev.2.2  
2021-11-08  
EiceDRIVER™ 1EDBx275F  
Single-channel isolated gate driver ICs in 150 mil DSO package  
Typical characteristics  
10  
8
14  
12  
10  
8
VDDO = 5 V  
VDDO = 12 V  
VDDO = 20 V  
VDDO = 5 V  
VDDO = 12 V  
VDDO = 20 V  
6
4
6
2
4
CLOAD =150nF,  
series resistance RS = 0.1 Ω  
CLOAD =150nF,  
series resistance RS = 0.1 Ω  
0
2
-50  
0
50  
Tj [°C]  
100  
150  
-50  
0
50  
Tj [°C]  
100  
150  
Typical peak sourcing output  
current vs. temperature  
Typical peak sinking output  
current vs. temperature  
Figure 27 Peak source and sink current with temperature  
50  
30  
20  
10  
0
VDDO = 5V  
VDDO = 12V  
VDDO =20V  
VDDO = 5V  
VDDO = 12V  
VDDO = 20V  
40  
30  
20  
10  
TA = 25°C,  
series resistance Rs = 0  
TA = 25°C,  
series resistance Rs = 0 Ω  
Ω
0
0
3
5
8
10  
0
3
5
8
10  
Cload [nF]  
Cload [nF]  
Typical rise time vs.  
capacitive load  
Typical fall time vs.  
capacitive load  
Figure 28 Rise and fall times with capacitive load  
Final Data Sheet  
28  
Rev.2.2  
2021-11-08  
EiceDRIVER™ 1EDBx275F  
Single-channel isolated gate driver ICs in 150 mil DSO package  
Typical characteristics  
2.5  
Rise time  
Fall time  
2.0  
1.5  
1.0  
0.5  
0.0  
VDDO = 12V,  
no load  
-50  
0
50  
TJ [°C]  
100  
150  
Typical rise and fall times  
vs. temperature (no load)  
Figure 29 Rise and fall times with temperature  
Final Data Sheet  
29  
Rev.2.2  
2021-11-08  
EiceDRIVER™ 1EDBx275F  
Single-channel isolated gate driver ICs in 150 mil DSO package  
Package outline dimensions  
8
Package outline dimensions  
8.1  
Device numbers and markings  
Table 21 Device numbers and markings  
Part number  
1EDB6275F  
1EDB7275F  
1EDB8275F  
1EDB9275F  
Orderable part number (OPN)  
Device marking  
1B6275A  
1EDB6275FXUMA1  
1EDB7275FXUMA1  
1EDB8275FXUMA1  
1EDB9275FXUMA1  
1B7275A  
1B8275A  
1B9275A  
8.2  
Package PG-DSO-8  
0.33-0.08  
+0.17 x 45°  
1.27  
C
+0.45  
0.8  
3 x 1.27 = 3.81  
-0.4  
0.1 8x  
1)  
4-0.2  
+0.08 2)  
0.41  
-0.06  
A
M
0.25  
D C 8x  
0.2  
6
M
0.25  
A
8
1
5
4
D
1)  
5-0.2  
Index Marking  
1) Does not include plastic or metal protrusion  
2) Does not include dambar protrusion of 0.127 max. in excess of the lead width dimension  
PG-DSO-8-41, -42, -51, -53, -58-PO V06  
Figure 30 PG-DSO-8 outline1)  
1) Dimensions in mm  
Final Data Sheet  
30  
Rev.2.2  
2021-11-08  
EiceDRIVER™ 1EDBx275F  
Single-channel isolated gate driver ICs in 150 mil DSO package  
Package outline dimensions  
0.65  
1.27  
0.65  
1.27  
Stencil apertures  
Copper  
Solder mask  
PG-DSO-8-41, -42, -51, -53, -58-FP V01  
Figure 31 PG-DSO-8 footprint  
8
0.3  
Index  
Marking  
6.4  
1.75  
2.1  
PG-DSO-8-41, -42, -51, -53, -58-TP V09  
Figure 32 PG-DSO-8 packaging  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with  
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-  
free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
Further information on packages  
https://www.infineon.com/packages  
Final Data Sheet  
31  
Rev.2.2  
2021-11-08  
EiceDRIVER™ 1EDBx275F  
Single-channel isolated gate driver ICs in 150 mil DSO package  
Revision history  
Page or Item  
Rev. 2.2, 2021-11-04  
Front page  
Subjects (major changes since previous revision)  
Editorial updates  
Table 16  
Output current values are rounded  
Fixed typo (OUT does not follow VDDI shape)  
Fixed typo (OUT_SRC and OUT_SNK flipped)  
Figure 8  
Figure 11  
Updated typical application circuit for 650 V CoolSiCTM updated with the new  
Figure 14  
1EDN9550B EiceDRIVERTM to drive the low-side MOSFET  
Added new VDDI data points for typical input-side quiescient current IVDDIq vs.  
temperature  
Figure 15  
Figure 16  
Figure 17  
Added typical input-side current IVDDI vs. VDDI  
Added new VDDO data points for typical output-side quiescient current IVDDOq  
vs. temperature  
Figure 18  
Added typical output-side quiescient current IVDOq vs. VDDO  
Rev. 2.2, 2021-11-08  
Removed “UL1577 certification pending” because certification has been  
issued  
Whole document  
Table 1, Table 3, Table 21  
Table 1, Table 21  
Table 7  
Added 1EDB6275F 12 V UVLO variant  
Modified UVLO values for 1EDB9275F  
Fixed typo in RthJB25  
Table 17  
Increased propagation delay max (49ns 51ns)  
Added pollution degree, climatic category and emulated VDE0884-11  
parameters  
Table 19  
Table 20  
Added safety limiting values table  
Updated VDDO UVLO vs. temperature graph for 1EDB9275F, added graph for  
1EDB6275F  
Table 23  
Rev. 2.0, 2020-04-08  
Final datasheet created  
Final Data Sheet  
32  
Rev.2.2  
2021-11-08  
Please read the Important Notice and Warnings at the end of this document  
Trademarks of Infineon Technologies AG  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2021-11-08  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2021 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
Document reference  
EiceDRIVER™ 1EDBx275F  

相关型号:

1EDC05I12AH

1200 V单边高侧栅极驱动器IC,具有UL认证的电流隔离、短路箝位和独立的汇/源输出
INFINEON

1EDC05I12AHXUMA1

Buffer/Inverter Based Peripheral Driver, 1.3A, PDSO8, DSO-8
INFINEON

1EDC10I12MH

1200 V单边高侧栅极驱动器IC,具有UL认证的电流隔离、有源米勒箝位和短路箝位
INFINEON

1EDC20H12AH

Single channel IGBT gate driver IC in wide body package
INFINEON

1EDC20H12AHXUMA1

Buffer/Inverter Based Peripheral Driver, 4A, PDSO8, DSO-8
INFINEON

1EDC20I12AH

Single channel IGBT gate driver IC in wide body package
INFINEON

1EDC20I12MH

1200 V单边高侧栅极驱动器IC,具有UL认证的电流隔离、有源米勒箝位和短路箝位
INFINEON

1EDC30I12MH

1200 V单边高侧栅极驱动器IC,具有UL认证的电流隔离、有源米勒箝位和短路箝位
INFINEON

1EDC40I12AH

1200 V单边高侧栅极驱动器IC,具有UL认证的电流隔离、短路箝位和独立的汇/源输出
INFINEON

1EDC60H12AH

Single channel IGBT gate driver IC in wide body package
INFINEON

1EDC60I12AH

Single channel IGBT gate driver IC in wide body package
INFINEON

1EDF5673F

GaN EiceDRIVER™IC具有出色的稳健性和效能,非常适合驱动GaN HEMT
INFINEON