IDT70T3519S133BC [IDT]

HIGH-SPEED 2.5V 256/128/64K x 36 SYNCHRONOUS DUAL-PORT STATIC RAM WITH 3.3V OR 2.5V INTERFACE; HIGH -SPEED 2.5V一百二十八分之二百五十六/ 64K ×36同步双端口静态3.3V或2.5V接口RAM
IDT70T3519S133BC
型号: IDT70T3519S133BC
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

HIGH-SPEED 2.5V 256/128/64K x 36 SYNCHRONOUS DUAL-PORT STATIC RAM WITH 3.3V OR 2.5V INTERFACE
HIGH -SPEED 2.5V一百二十八分之二百五十六/ 64K ×36同步双端口静态3.3V或2.5V接口RAM

文件: 总28页 (文件大小:431K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED 2.5V  
256/128/64K x 36  
IDT70T3519/99/89S  
SYNCHRONOUS  
DUAL-PORT STATIC RAM  
WITH 3.3V OR 2.5V INTERFACE  
Features:  
– Data input, address, byte enable and control registers  
– Self-timedwriteallowsfastcycletime  
Separate byte controls for multiplexed bus and bus  
matching compatibility  
Dual Cycle Deselect (DCD) for Pipelined Output Mode  
2.5V (±100mV) power supply for core  
LVTTL compatible, selectable 3.3V (±150mV) or 2.5V  
(±100mV) power supply for I/Os and control signals on  
each port  
Industrial temperature range (-40°C to +85°C) is  
available at 166MHz and 133MHz  
Available in a 256-pin Ball Grid Array (BGA), a 208-pin  
Plastic Quad Flatpack (PQFP) and 208-pin fine pitch Ball  
Grid Array (fpBGA)  
Supports JTAG features compliant with IEEE 1149.1  
Due to limited pin count JTAG is not supported on the 208-  
pin PQFP package  
True Dual-Port memory cells which allow simultaneous  
access of the same memory location  
High-speed data access  
– Commercial: 3.4 (200MHz)/3.6ns (166MHz)/  
4.2ns (133MHz)(max.)  
– Industrial: 3.6ns (166MHz)/4.2ns (133MHz) (max.)  
Selectable Pipelined or Flow-Through output mode  
Counter enable and repeat features  
Dual chip enables allow for depth expansion without  
additional logic  
Interrupt and Collision Detection Flags  
Full synchronous operation on both ports  
– 5ns cycle time, 200MHz operation (14Gbps bandwidth)  
– Fast 3.4ns clock to data out  
– 1.5ns setup to clock and 0.5ns hold on all control, data, and  
address inputs @ 200MHz  
FunctionalBlockDiagram  
BE3R  
BE3L  
BE2L  
BE1L  
BE0L  
BE2R  
BE1R  
BE0R  
FT/PIPE  
L
0a 1a  
a
0b 1b  
b
0c 1c  
c
0d 1d  
d
1d 0d  
d
1c 0c  
c
1b 0b  
b
1a 0a  
a
FT/PIPER  
1/0  
1/0  
R/WL  
R/WR  
CE0L  
CE0R  
1
1
CE1R  
CE1L  
0
0
B
B B B  
B
B B B  
1/0  
1/0  
W W W W W W W W  
0
L
1
L
2
L
3
L
3
R
2
1
R
0
R
R
OE  
R
OE  
L
Dout0-8_L  
Dout0-8_R  
Dout9-17_L  
Dout18-26_L  
Dout27-35_L  
Dout9-17_R  
Dout18-26_R  
Dout27-35_R  
,
1d 0d 1c 0c  
1b 0b 1a 0a  
0a 1a 0b 1b  
0c 1c 0d 1d  
d c b a  
0/1  
0/1  
FT/PIPE  
R
FT/PIPE  
L
a bc d  
256/128/64K x 36  
MEMORY  
ARRAY  
I/O0L - I/O35L  
I/O0R - I/O35R  
Din_L  
Din_R  
,
CLK  
R
CLK  
L
(1)  
17R  
(1)  
17L  
A
A
Counter/  
Address  
Reg.  
Counter/  
Address  
Reg.  
A
0L  
REPEAT  
ADS  
A
0R  
REPEAT  
ADS  
CNTEN  
ADDR_R  
ADDR_L  
L
R
R
L
R
CNTEN  
L
TDI  
TCK  
TMS  
TRST  
INTERRUPT  
CE0  
CE1  
R
CE  
0
L
JTAG  
COLLISION  
DETECTION  
LOGIC  
R
CE1  
TDO  
L
R/  
W
L
R/W  
R
COL  
L
COL  
R
INT  
L
INT  
R
(2)  
(2)  
ZZR  
ZZ  
CONTROL  
LOGIC  
ZZ  
L
5666 drw 01  
NOTES:  
1. Address A17 is a NC for the IDT70T3599. Also, Addresses A17 and A16 are NC's for the IDT70T3589.  
2. The sleep mode pin shuts off all dynamic inputs, except JTAG inputs, when asserted. All static inputs, i.e., PL/FTx and OPTx  
APRIL 2004  
and the sleep mode pins themselves (ZZx) are not affected during sleep mode.  
1
DSC 5666/6  
©2004IntegratedDeviceTechnology,Inc.  
IDT70T3519/99/89S  
High-Speed 2.5V 256/128/64K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Description:  
The IDT70T3519/99/89 is a high-speed 256/128/64K x 36 bit tionalorbidirectionaldataflowinbursts.Anautomaticpowerdownfeature,  
synchronous Dual-Port RAM. The memory array utilizes Dual-Port controlled by CE0 and CE1, permits the on-chip circuitry of each port to  
memorycellstoallowsimultaneousaccessofanyaddressfrombothports. enter a very low standby power mode.  
Registersoncontrol,data,andaddressinputsprovideminimalsetupand  
The70T3519/99/89 cansupportanoperatingvoltageofeither3.3V  
holdtimes.Thetiminglatitudeprovidedbythisapproachallowssystems or 2.5V on one or both ports, controllable by the OPT pins. The power  
tobedesignedwithveryshortcycletimes.Withaninputdataregister,the supply for the core of the device (VDD) is at 2.5V.  
IDT70T3519/99/89hasbeenoptimizedforapplicationshavingunidirec-  
6.42  
2
IDT70T3519/99/89S  
High-Speed 2.5V 256/128/64K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Pin Configuration (3,4,5,6,9)  
70T3519/99/89BC  
BC-256(7)  
256-Pin BGA  
Top View(8)  
06/19/02  
A1  
A2  
A3  
A6  
A7  
A8  
A9  
A11  
A12  
A13  
A14  
A4  
A5  
A10  
A15  
A16  
(1)  
NC  
TDI  
NC  
A
11L  
A
8L  
9L  
7L  
BE2L CE1L  
CNTEN  
L
A
5L  
A
2L  
A
0L  
A
17L  
A
14L  
OE  
L
NC  
NC  
B1  
B2  
B3  
B6  
B7  
B9  
CE0L  
B11  
B12  
B13  
B4  
B5  
B8  
B10  
B14  
B15  
B16  
I/O18L NC TDO  
A
12L  
10L  
A
REPEAT  
L
A4L  
A
1L  
NC  
A
15L  
BE3L  
R/W  
L
VDD I/O17L NC  
C1  
C5  
C6  
C2  
C3  
C4  
C7  
C8  
C9  
C10  
C11  
C12  
C13  
C16  
C14  
C15  
(2)  
16L  
I/O18R  
A
13L  
A
I/O19L  
V
SS  
A
BE1L BE0L CLK  
L
ADS  
L
A
6L  
A
3L  
I/O16L  
A
OPT  
L
I/O17R  
D1  
D2  
D6  
DDQL  
D9  
D11  
DDQR  
D3  
D5  
VDDQL  
L
D7  
DDQR  
D8  
D10  
D12  
D13  
D14  
D15  
D16  
D4  
I/O20R I/O19R  
V
VDDQL  
V
VDDQL  
I/O20L  
V
V
DDQR  
VDDQR  
VDD I/O15R I/O15L I/O16R  
PIPE/FT  
E6  
E5  
E7  
E8  
E9  
E10  
E11  
E12  
E13  
E1  
E2  
E3  
E4  
E14  
E16  
E15  
V
DD  
V
DD  
INT  
L
V
SS  
SS  
SS  
V
SS  
V
SS  
V
DD  
V
DD  
V
DDQR  
I/O21R I/O21L I/O22L  
V
DDQL  
I/O13L  
I/O14R  
I/O14L  
F7  
F1 F2 F3  
F5  
F6  
F9  
F10  
F14  
F15  
F16  
F11  
F13  
F4  
F8  
F12  
COL  
L
VDD  
NC  
VSS  
V
SS  
I/O23L I/O22R I/O23R  
G1  
VSS  
VDDQR I/O12R I/O13R I/O12L  
V
VDD  
V
DDQL  
G5  
G2  
G4  
G6  
G8  
G9  
G3  
G7  
G10  
G12  
G13 G14 G15 G16  
G11  
I/O24R  
V
SS  
I/O24L  
V
DDQR  
VSS  
V
V
SS  
SS  
I/O25L  
I/O10L I/O11L I/O11R  
H16  
VSS  
V
SS  
VSS  
V
DDQL  
VSS  
H11  
H12  
H13  
H7  
H8  
H9  
H10  
H14  
H15  
H3  
H4  
H5  
H6  
H1  
H2  
V
SS  
VSS  
VDDQL  
I/O10R  
VSS  
VSS  
V
V
SS  
SS  
I/O9R IO9L  
V
SS  
VSS  
I/O26R  
V
DDQR  
I/O26L I/O25R  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
J13  
J10  
J11  
J12  
J14  
J15  
J16  
I/O27L  
I/O28R I/O27R  
V
DDQL ZZ  
R
V
SS  
V
SS  
VSS  
VSS  
VDDQR  
V
VSS  
ZZ  
L
I/O8R  
I/O7R I/O8L  
K6  
K8  
K10  
K12  
K13  
K5  
K7  
L7  
K9  
K11  
K2  
K4  
K15  
K16  
K1  
K3  
K14  
V
SS  
V
SS  
V
SS  
SS  
VSS  
VDDQR  
I/O29L  
VDDQL  
V
SS  
V
SS  
V
SS  
V
SS  
I/O6L I/O7L  
I/O29R  
I/O28L  
I/O6R  
L8  
M8  
N8  
L11  
L12  
L13  
L3  
L4  
L5  
L6  
L9  
L10  
L15  
L16  
L1  
L2  
L14  
COL  
R
V
SS  
V
SS  
V
DD  
VDDQL  
I/O30R  
V
DDQR  
V
DD  
NC  
V
SS  
V
I/O4R I/O5R  
I/O30L I/O31R  
I/O5L  
M5  
M6  
M7  
M9  
M10  
M11  
M12  
M13  
M1 M2  
M3  
M4  
M16  
M14  
M15  
V
DD  
V
DD INT  
R
V
SS  
V
SS  
V
SS  
V
DD  
VDD  
VDDQL  
I/O32R I/O32L I/O31L  
V
DDQR  
I/O4L  
I/O3R I/O3L  
N12  
N16  
N13  
N4  
N5  
N6  
DDQR  
N7  
N9  
N10  
N11  
N15  
N1  
N2  
N3  
N14  
VDDQL  
VDDQL  
VDD  
I/O2R  
I/O1R  
VDDQR  
V
VDDQL  
VDDQR  
VDDQR  
V
DDQL  
PIPE/FT  
R
I/O33L I/O34R I/O33R  
I/O2L  
P1  
P2  
P3  
P4  
P5  
P7  
P8  
P9  
P10  
P11  
P12  
P14  
P15  
P16  
P6  
P13  
(2)  
A
16R  
I/O35R I/O34L TMS  
A
13R  
A
7R BE1R BE0R CLK  
R
ADS  
R
A
6R  
I/O0L I/O0R I/O1L  
A
10R  
A
3R  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R16  
R1  
R2  
R3  
R4  
R12  
R13  
R14  
R15  
,
A
15R  
A
12R  
A
9R  
BE3R CE0R R/W  
R
REPEAT  
R
NC  
I/O35L NC TRST NC  
A
4R  
A1R OPT  
R
NC  
T2  
T3  
T4  
17R  
T1  
T5  
T8  
T9  
T15  
T16  
T6  
T7  
T10  
T11  
T12  
T13  
T14  
(1)  
A
TCK  
NC  
NC  
A
14R  
BE2R CE1R  
NC  
NC  
A
11R  
A
8R  
OE  
R
CNTEN  
R
A
5R  
A
2R  
A0R  
5666 drw 02d  
NOTES:  
1. Pin is a NC for IDT70T3599 and IDT70T3589.  
2. Pin is a NC for IDT70T3589.  
3. All VDD pins must be connected to 2.5V power supply.  
,
4. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VDD (2.5V), and 2.5V if OPT pin for that port is  
set to VSS (0V).  
5. All VSS pins must be connected to ground supply.  
6. Package body is approximately 17mm x 17mm x 1.4mm, with 1.0mm ball-pitch.  
7. This package code is used to reference the package diagram.  
8. This text does not indicate orientation of the actual part-marking.  
9. Pins A15 and T15 will be VREFL and VREFR respectively for future HSTL device.  
6.42  
3
IDT70T3519/99/89S  
High-Speed 2.5V 256/128/64K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Pin Configuration (3,4,5,6,9,10) (con't.)  
06/19/02  
I/O16L  
156  
1
2
3
4
I/O19L  
I/O19R  
I/O20L  
I/O20R  
I/O16R  
155  
I/O15L  
154  
I/O15R  
153  
VSS  
5
VDDQL  
152  
151  
150  
149  
148  
147  
146  
145  
144  
143  
142  
141  
140  
139  
138  
137  
136  
135  
134  
133  
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
V
DDQL  
6
7
8
9
V
SS  
I/O14L  
I/O14R  
I/O13L  
I/O13R  
I/O21L  
I/O21R  
I/O22L  
I/O22R  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
VSS  
V
DDQR  
VDDQR  
VSS  
I/O12L  
I/O12R  
I/O11L  
I/O11R  
I/O23L  
I/O23R  
I/O24L  
I/O24R  
VSS  
V
DDQL  
VDDQL  
VSS  
I/O10L  
I/O10R  
I/O9L  
I/O25L  
I/O25R  
I/O26L  
I/O26R  
I/O9R  
V
V
V
V
V
V
SS  
V
DDQR  
DDQR  
DD  
70T3519/99/89DR  
ZZ  
R
VDD  
(7)  
DD  
VDD  
DR-208  
SS  
V
V
SS  
SS  
SS  
ZZ  
L
V
DDQL  
VDDQL  
208-Pin PQFP  
VSS  
I/O8R  
I/O8L  
I/O7R  
I/O7L  
I/O27R  
I/O27L  
I/O28R  
I/O28L  
(8)  
Top View  
VSS  
V
DDQR  
VDDQR  
VSS  
I/O6R  
I/O6L  
I/O5R  
I/O5L  
I/O29R  
I/O29L  
I/O30R  
I/O30L  
VSS  
V
DDQL  
VDDQL  
VSS  
I/O4R  
I/O4L  
I/O3R  
I/O3L  
I/O31R  
I/O31L  
I/O32R  
I/O32L  
VSS  
V
DDQR  
VDDQR  
VSS  
I/O2R  
I/O2L  
I/O1R  
I/O1L  
I/O33R  
I/O33L  
I/O34R  
I/O34L  
,
5666 drw 02a  
NOTES:  
1. Pin is a NC for IDT70T3599 and IDT70T3589.  
2. Pin is a NC for IDT70T3589.  
3. All VDD pins must be connected to 2.5V power supply.  
4. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VDD (2.5V), and 2.5V if OPT pin for that port is set to Vss (0V).  
5. All VSS pins must be connected to ground supply.  
6. Package body is approximately 28mm x 28mm x 3.5mm.  
7. This package code is used to reference the package diagram.  
8. This text does not indicate orientation of the actual part-marking.  
9. Due to limited pin count, JTAG is not supported in the DR-208 package.  
10. Pins 162 and 99 will be VREFL and VREFR respectively for future HSTL device.  
6.42  
4
IDT70T3519/99/89S  
High-Speed 2.5V 256/128/64K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Pin Configuration (3,4,5,6,9) (con't.)  
01/23/03  
A1  
A2  
A3  
A6  
A7  
A8  
A9  
BE1L  
A11  
A12  
A13  
A14  
A17  
A4  
A10  
A15  
A16  
A5  
(2)  
16L  
I/O19L I/O18L  
V
SS  
A
12L  
A
8L  
CLK  
L
CNTEN  
L
A4L  
A
0L  
V
SS  
TDO  
A
V
DD  
OPT  
L
I/O17L  
COL  
L
B1  
B2  
B3  
B6  
B7  
B9  
CE0L  
B11  
B12  
B13  
B17  
B4  
B5  
B8  
B10  
B14  
B15  
B16  
(1)  
I/O20R  
V
SS I/O18R  
A17L  
A
13L  
A
9L  
ADS  
L
A
5L  
A
1L  
I/O15R  
TDI  
BE2L  
V
SS  
NC  
V
DDQR I/O16L  
C1  
C6  
C2  
C3  
C4  
C5  
C7  
C8  
C9  
C10  
C11  
C12  
C13  
C16  
C14  
C15  
C17  
V
DDQL  
A
14L  
11L  
I/O19R  
V
DDQR PL/FT  
L
INT  
L
A
10L BE3L CE1L  
V
SS R/W  
L
A
6L  
A
2L  
I/O15L  
V
DD I/O16R  
V
SS  
D1  
D2  
D6  
D9  
D11  
REPEATL  
D3  
D5  
D7  
D8  
D10  
D12  
D13  
D14  
D15  
D16  
D17  
D4  
I/O22L  
V
SS  
A
V
DD  
I/O21L  
A
15L  
A
7L BE0L  
OE  
L
A
3L  
V
DD I/O17R  
V
DDQL I/O14L I/O14R  
I/O20L  
E1  
E2  
E3  
E4  
E14  
E16  
E17  
E15  
I/O23L I/O22R  
V
DDQR I/O21R  
I/O12L  
V
SS I/O13L  
I/O13R  
F1  
F2  
F3  
F14  
F15  
F16  
F17  
F4  
V
DDQL I/O23R I/O24L  
VSS I/O12R I/O11L VDDQR  
V
SS  
G1  
G2  
G4  
G14  
G15  
G16  
G3  
G17  
I/O26L  
V
SS  
I/O24R  
I/O9L  
V
DDQL I/O10L  
I/O25L  
I/O11R  
H3  
H4  
H1  
H2  
H16  
H17  
H14  
H15  
70T3519/99/89BF  
BF-208(7)  
V
DDQR I/O25R  
V
DD I/O26R  
V
SS I/O10R  
V
DD I/O9R  
J1  
J2  
J3 J4  
J14  
J15  
J16  
J17  
V
DDQL  
V
DD  
SS  
V
SS  
ZZ  
R
ZZ  
L
V
DD  
V
SS  
VDDQR  
208-Pin fpBGA  
Top View(8)  
K2  
K4  
K15  
K16  
K1  
K3  
K14  
K17  
V
V
SS  
VDDQL I/O8R  
I/O7R  
I/O28R  
I/O27R  
V
SS  
L3  
L4  
L15  
L16  
L17  
L1  
L2  
L14  
V
DDQR I/O27L  
I/O7L  
V
SS  
I/O8L  
I/O29R I/O28L  
I/O6R  
M1  
M2  
M3  
M4  
M16  
M17  
DDQR  
M14  
M15  
VDDQL I/O29L I/O30R  
V
SS  
I/O5R V  
V
SS  
I/O6L  
N16  
N17  
N4  
N15  
N1  
N2  
N3  
N14  
I/O4R I/O5L  
DDQL  
I/O30L  
V
I/O31L  
V
SS I/O31R  
I/O3R  
P12  
P1  
P2  
P3  
P4  
P5  
P7  
P8  
P9  
P10  
P11  
P14  
P15  
P16  
P17  
P6  
P13  
(2)  
A
16R  
I/O32R I/O32L  
V
DDQR I/O35R TRST  
A
12R  
A
8R BE1R  
V
DD CLK  
R
I/O2L I/O3L  
V
SS I/O4L  
CNTEN  
R
A
4R  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R16  
R1  
R2  
R3  
R4  
R12  
R13  
R14  
R17  
R15  
(1)  
A
17R  
A
13R  
A
9R  
BE2R CE0R  
V
SS ADS  
R
R
I/O1R  
V
SS I/O33L I/O34R TCK  
A
5R  
A
1R  
2R  
NC  
V
DDQR  
V
DDQL  
T2  
I/O34L  
T3  
T1  
T4  
T5  
T8  
T9  
T15  
T16  
T17  
T6  
T7  
T10  
T11  
T12  
T13  
T14  
SS  
V
DDQL  
TMS INT  
I/O33R  
R
BE3R CE1R  
I/O0R  
V
SS I/O2R  
A
14R  
A
10R  
V
SS R/W  
A
6R  
A
V
U1  
U2  
U3  
U4  
U5  
U6  
U7  
U17  
U8  
BE0R  
U9  
U10  
U12  
U13  
U14  
DD  
U16  
U15  
V
SS I/O35L PL/FT  
R
COL  
R
A
15R  
A
11R  
A
7R  
I/O1L  
V
DD OE  
R
A3R  
A
0R  
V
I/O0L  
OPT  
R
5666 drw 02c  
NOTES:  
1. Pin is a NC for IDT70T3599 and IDT70T3589.  
2. Pin is a NC for IDT70T3589.  
3. All VDD pins must be connected to 2.5V power supply.  
4. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VDD (2.5V), and 2.5V if OPT pin for that port is  
set to VSS (0V).  
5. All VSS pins must be connected to ground supply.  
6. Package body is approximately 15mm x 15mm x 1.4mm with 0.8mm ball pitch.  
7. This package code is used to reference the package diagram.  
8. This text does not indicate orientation of the actual part-marking.  
9. Pins B14 and R14 will be VREFL and VREFR respectively for future HSTL device.  
6.42  
5
IDT70T3519/99/89S  
High-Speed 2.5V 256/128/64K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
PinNames  
Left Port  
Right Port  
CE0R CE1R  
R/W  
OE  
Names  
Chip Enables (Input)(7)  
CE0L  
R/W  
OE  
,
CE1L  
,
L
R
Read/Write Enable (Input)  
Output Enable (Input)  
L
R
(6)  
(6)  
A
0L - A17L  
A
0R - A17R  
I/O0R - I/O35R  
CLK  
PL/FT  
ADS  
CNTEN  
REPEAT  
BE0R - BE3R  
Address (Input)  
I/O0L - I/O35L  
CLK  
PL/FT  
ADS  
CNTEN  
REPEAT  
BE0L - BE3L  
Data Input/Output  
L
R
Clock (Input)  
L
R
Pipeline/Flow-Through (Input)  
Address Strobe Enable (Input)  
Counter Enable (Input)  
Counter Repeat(3)  
L
R
L
R
L
R
Byte Enables (9-bit bytes) (Input)(7)  
Power (I/O Bus) (3.3V or 2.5V)(1) (Input)  
Option for selecting VDDQX(1,2) (Input)  
Sleep Mode pin(4) (Input)  
Power (2.5V)(1) (Input)  
V
DDQL  
V
DDQR  
R
OPT  
L
OPT  
ZZ  
ZZL  
R
V
V
DD  
SS  
NOTES:  
1. VDD, OPTX, and VDDQX must be set to appropriate operating levels prior to  
applying inputs on the I/Os and controls for that port.  
Ground (0V) (Input)  
TDI(5)  
TDO(5)  
TCK(5)  
TMS(5)  
Test Data Input  
2. OPTX selects the operating voltage levels for the I/Os and controls on that port.  
If OPTX is set to VDD (2.5V), then that port's I/Os and controls will operate at 3.3V  
levels and VDDQX must be supplied at 3.3V. If OPTX is set to VSS (0V), then that  
port's I/Os and address controls will operate at 2.5V levels and VDDQX must be  
supplied at 2.5V. The OPT pins are independent of one another—both ports can  
operate at 3.3V levels, both can operate at 2.5V levels, or either can operate  
at 3.3V with the other at 2.5V.  
Test Data Output  
Test Logic Clock (10MHz) (Input)  
Test Mode Select (Input)  
Reset (Initialize TAP Controller) (Input)  
Interrupt Flag (Output)  
(5)  
TRST  
3. When REPEATX is asserted, the counter will reset to the last valid address loaded  
via ADSX.  
INT  
R
INT  
L
4. The sleep mode pin shuts off all dynamic inputs, except JTAG inputs, when  
asserted. All static inputs, i.e., PL/FTx and OPTx and the sleep mode pins  
themselves (ZZx) are not affected during sleep mode. It is recommended that  
boundry scan not be operated during sleep mode.  
COL  
R
COL  
L
Collision Alert (Output)  
5666 tbl 01  
5. Due to limited pin count, JTAG is not supported in the DR-208 package.  
6. Address A17x is a NC for the IDT70T3599. Also, Addresses A17x and A16x are  
NC's for the IDT 70T3589.  
7. Chip Enables and Byte Enables are double buffered when PL/FT = VIH, i.e., the  
signals take two cycles to deselect.  
6.42  
6
IDT70T3519/99/89S  
High-Speed 2.5V 256/128/64K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
(1,2,3,4)  
Truth Table I—Read/Write and Enable Control  
Byte 3  
I/O27-35  
Byte 2  
I/O18-26  
Byte 1  
I/O9-17  
Byte 0  
I/O0-8  
CLK  
X
CE  
1
R/W  
X
X
X
L
ZZ  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
MODE  
OE  
X
X
X
X
X
X
X
X
X
X
L
CE  
0
BE  
3
BE  
2
BE  
1
BE0  
H
X
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
X
X
X
X
H
H
H
H
L
X
X
H
H
H
L
X
X
H
H
L
X
X
H
L
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z Deselected–Power Down  
High-Z Deselected–Power Down  
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
X
High-Z  
All Bytes Deselected  
Write to Byte 0 Only  
Write to Byte 1 Only  
Write to Byte 2 Only  
Write to Byte 3 Only  
Write to Lower 2 Bytes Only  
Write to Upper 2 bytes Only  
Write to All Bytes  
DIN  
H
H
H
L
L
DIN  
High-Z  
High-Z  
High-Z  
H
H
L
L
DIN  
High-Z  
High-Z  
H
H
L
L
DIN  
High-Z  
High-Z  
H
L
L
High-Z  
DIN  
DIN  
H
L
H
L
L
D
IN  
IN  
DIN  
High-Z  
High-Z  
L
L
L
D
DIN  
DIN  
DIN  
H
H
H
L
H
H
L
H
L
L
H
H
H
H
H
H
H
X
X
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
DOUT  
Read Byte 0 Only  
L
H
H
H
L
DOUT  
High-Z Read Byte 1 Only  
High-Z Read Byte 2 Only  
High-Z Read Byte 3 Only  
L
H
H
L
DOUT  
High-Z  
High-Z  
L
H
H
L
DOUT  
High-Z  
High-Z  
L
H
L
High-Z  
DOUT  
DOUT  
Read Lower 2 Bytes Only  
High-Z Read Upper 2 Bytes Only  
Read All Bytes  
L
H
L
H
L
D
OUT  
OUT  
D
OUT  
OUT  
High-Z  
L
L
L
D
D
DOUT  
DOUT  
H
X
X
X
X
X
X
X
X
X
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z Outputs Disabled  
High-Z Sleep Mode  
X
5666 tbl 02  
NOTES:  
1. "H" = VIH, "L" = VIL, "X" = Don't Care.  
2. ADS, CNTEN, REPEAT = VIH.  
3. OE and ZZ are asynchronous input signals.  
4. It is possible to read or write any combination of bytes during a given access. A few representative samples have been illustrated here.  
(1,2)  
Truth Table II—Address Counter Control  
Previous  
Internal  
Address  
Internal  
Address  
Used  
MODE  
ADS CNTEN REPEAT(6)  
Address  
CLK  
I/O(3)  
I/O (n) External Address Used  
I/O(n+1) Counter Enabled—Internal Address generation  
I/O(n+1) External Address Blocked—Counter disabled (An + 1 reused)  
I/O(n) Counter Set to last valid ADS load  
An  
X
X
An  
An  
L(4)  
X
H
H
D
An + 1  
An + 1  
An  
H
L(5)  
H
D
D
X
An + 1  
X
H
H
X
X
X
L(4)  
D
5666 tbl 03  
NOTES:  
1. "H" = VIH, "L" = VIL, "X" = Don't Care.  
2. Read and write operations are controlled by the appropriate setting of R/W, CE0, CE1, BEn and OE.  
3. Outputs configured in flow-through output mode: if outputs are in pipelined mode the data out will be delayed by one cycle.  
4. ADS and REPEAT are independent of all other memory control signals including CE0, CE1 and BEn  
5. The address counter advances if CNTEN = VIL on the rising edge of CLK, regardless of all other memory control signals including CE0, CE1, BEn.  
6. When REPEAT is asserted, the counter will reset to the last valid address loaded via ADS. This value is not set at power-up: a known location should be loaded  
via ADS during initialization if desired. Any subsequent ADS access during operations will update the REPEAT address location.  
6.42  
7
IDT70T3519/99/89S  
High-Speed 2.5V 256/128/64K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
RecommendedOperating  
(1)  
Temperature and Supply Voltage  
Ambient  
Grade  
Commercial  
Temperature  
0OC to +70OC  
-40OC to +85OC  
GND  
0V  
V
+
+
DD  
2.5V  
2.5V  
100mV  
100mV  
Industrial  
0V  
5666 tbl 04  
NOTES:  
1. This is the parameter TA. This is the "instant on" case temperature.  
RecommendedDCOperating  
Conditions with VDDQ at 2.5V  
Symbol  
Parameter  
Core Supply Voltage  
I/O Supply Voltage(3)  
Ground  
Min.  
2.4  
2.4  
0
Typ.  
2.5  
2.5  
0
Max.  
Unit  
V
V
DD  
DDQ  
SS  
2.6  
2.6  
0
V
V
V
V
Input High Volltage  
(Address, Control &  
Data I/O Inputs)(3)  
____  
V
DDQ + 100mV(2)  
1.7  
1.7  
V
V
V
IH  
IH  
Input High Voltage _  
JTAG  
____  
V
V
DD + 100mV(2)  
Input High Voltage -  
ZZ, OPT, PIPE/FT  
____  
____  
____  
VIH  
VIL  
VIL  
V
DD - 0.2V  
-0.3(1)  
V
DD + 100mV(2)  
V
V
Input Low Voltage  
0.7  
0.2  
Input Low Voltage -  
ZZ, OPT, PIPE/FT  
-0.3(1)  
V
5666 tbl 05a  
NOTES:  
1. VIL (min.) = -1.0V for pulse width less than tCYC/2 or 5ns, whichever is less.  
2. VIH (max.) = VDDQ + 1.0V for pulse width less than tCYC/2 or 5ns, whichever is less.  
3. To select operation at 2.5V levels on the I/Os and controls of a given port, the OPT  
pinforthatportmustbesettoVss(0V), andVDDQX forthatportmustbesuppliedasindicated  
above.  
RecommendedDCOperating  
Conditions with VDDQ at 3.3V  
Symbol  
Parameter  
Core Supply Voltage  
I/O Supply Voltage(3)  
Ground  
Min.  
2.4  
3.15  
0
Typ.  
2.5  
3.3  
0
Max.  
2.6  
3.45  
0
Unit  
V
V
DD  
DDQ  
SS  
V
V
V
V
Input High Voltage  
(Address, Control  
&Data I/O Inputs)(3)  
____  
2.0  
1.7  
V
DDQ + 150mV(2)  
V
V
V
IH  
IH  
_
Input High Voltage  
JTAG  
DD + 100mV(2)  
____  
V
V
Input High Voltage -  
ZZ, OPT, PIPE/FT  
____  
____  
____  
VIH  
VIL  
VIL  
V
DD - 0.2V  
-0.3(1)  
V
DD + 100mV(2)  
V
V
Input Low Voltage  
0.8  
0.2  
Input Low Voltage -  
ZZ, OPT, PIPE/FT  
-0.3(1)  
V
5666 tbl 05b  
NOTES:  
1. VIL (min.) = -1.0V for pulse width less than tCYC/2, or 5ns, whichever is less.  
2. VIH (max.) = VDDQ + 1.0V for pulse width less than tCYC/2 or 5ns, whichever is less.  
3. To select operation at 3.3V levels on the I/Os and controls of a given port, the OPT pin  
for that port must be set to VDD (2.5V), and VDDQX for that port must be supplied as indicated  
above.  
6.42  
8
IDT70T3519/99/89S  
High-Speed 2.5V 256/128/64K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Absolute Maximum Ratings (1)  
Symbol  
Rating  
Commercial  
& Industrial  
Unit  
V
VTERM  
V
DD Terminal Voltage  
-0.5 to 3.6  
(VDD  
)
with Respect to GND  
(2)  
V
(VDDQ  
TERM  
V
DDQ Terminal Voltage  
-0.3 to VDDQ + 0.3  
-0.3 to VDDQ + 0.3  
V
)
with Respect to GND  
(2)  
VTERM  
Input and I/O Terminal  
V
(INPUTS and I/O's)  
Voltage with Respect to GND  
(3)  
T
BIAS  
STG  
JN  
Temperature Under Bias  
Storage Temperature  
Junction Temperature  
-55 to +125  
-65 to +150  
+150  
oC  
oC  
T
T
oC  
IOUT(For VDDQ = 3.3V) DC Output Current  
50  
mA  
IOUT(For VDDQ = 2.5V) DC Output Current  
40  
mA  
5666 tbl 06  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause  
permanent damage to the device. This is a stress rating only and functional operation of the  
device at these or any other conditions above those indicated in the operational sections  
of this specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect reliability.  
2. This is a steady-state DC parameter that applies after the power supply has reached its  
nominal operating value. Power sequencing is not necessary; however, the voltage on  
any Input or I/O pin cannot exceed VDDQ during power supply ramp up.  
3. Ambient Temperature under DC Bias. No AC Conditions. Chip Deselected.  
Capacitance(1)  
(TA = +25°C, F = 1.0MHZ) PQFP ONLY  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions(2)  
IN = 3dV  
OUT = 3dV  
Max. Unit  
CIN  
V
8
pF  
(3)  
OUT  
C
V
10.5  
pF  
5666 tbl 07  
NOTES:  
1. These parameters are determined by device characterization, but are not  
production tested.  
2. 3dV references the interpolated capacitance when the input and output switch  
from 0V to 3V or from 3V to 0V.  
3. COUT also references CI/O.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VDD = 2.5V ± 100mV)  
70T3519/99/89S  
Symbol  
|ILI  
|ILI  
|ILO  
Parameter  
Test Conditions  
DDQ = Max., VIN = 0V to VDDQ  
DD = Max. IN = 0V to VDD  
= VIH or CE = VIL, VOUT = 0V to VDDQ  
OL = +4mA, VDDQ = Min.  
OH = -4mA, VDDQ = Min.  
OL = +2mA, VDDQ = Min.  
OH = -2mA, VDDQ = Min.  
Min.  
Max.  
Unit  
µA  
µA  
µA  
V
___  
|
Input Leakage Current(1)  
V
V
10  
±30  
10  
___  
___  
___  
|
JTAG & ZZ Input Leakage Current(1,2)  
Output Leakage Current(1,3)  
, V  
|
CE  
0
1
V
OL (3.3V) Output Low Voltage(1)  
OH (3.3V) Output High Voltage(1)  
OL (2.5V) Output Low Voltage(1)  
OH (2.5V) Output High Voltage(1)  
I
0.4  
___  
V
I
2.4  
V
___  
V
I
0.4  
V
___  
V
I
2.0  
V
5666 tbl 08  
NOTES:  
1. VDDQ is selectable (3.3V/2.5V) via OPT pins. Refer to p.5 for details.  
2. Applicable only for TMS, TDI and TRST inputs.  
3. Outputs tested in tri-state mode.  
6.42  
9
IDT70T3519/99/89S  
High-Speed 2.5V 256/128/64K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
(3)  
Temperature and Supply Voltage Range  
(VDD = 2.5V ± 100mV)  
70T3519/99/89  
S200  
70T3519/99/89  
S166  
70T3519/99/89  
S133  
Com'l Only(8)  
Com'l  
Com'l  
& Ind  
& Ind(7)  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(4)  
Max.  
Typ.(4)  
320  
320  
175  
175  
250  
250  
5
Max.  
450  
510  
230  
275  
325  
365  
15  
Typ.(4)  
260  
260  
140  
140  
200  
200  
5
Max. Unit  
IDD  
Dynamic Operating  
Current (Both  
Ports Active)  
CE  
L
and CER= VIL,  
S
S
S
S
S
S
S
S
S
S
S
S
375  
525  
370  
450  
190  
235  
250  
310  
15  
mA  
mA  
mA  
mA  
mA  
Outputs Disabled,  
___  
___  
(1)  
IND  
f = fMAX  
I
SB1(6)  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
CE  
L = CER = VIH  
(1)  
COM'L  
IND  
205  
270  
f = fMAX  
___  
___  
SB2(6)  
Standby Current  
(One Port - TTL  
Level Inputs)  
(5)  
I
CE"A" = VIL and CE"B" = VIH  
COM'L  
IND  
300  
375  
Active Port Outputs Disabled,  
___  
___  
(1)  
f=fMAX  
ISB3  
Full Standby Current  
(Both Ports - CMOS  
Level Inputs)  
Both Ports CEL and  
COM'L  
IND  
5
15  
CER > VDDQ - 0.2V, VIN > VDDQ - 0.2V  
___  
___  
or VIN < 0.2V, f = 0(2)  
5
20  
5
20  
SB4(6)  
Full Standby Current  
(One Port - CMOS  
Level Inputs)  
CE"A" < 0.2V and CE"B" > VDDQ - 0.2V(5)  
IN > VDDQ - 0.2V or VIN < 0.2V  
Active Port, Outputs Disabled, f = fMAX  
I
COM'L  
IND  
300  
375  
250  
250  
5
325  
365  
15  
200  
200  
5
250  
310  
15  
V
___  
___  
(1)  
Izz  
Sleep Mode Current  
(Both Ports - TTL  
Level Inputs)  
ZZL = ZZR =  
f=fMAX  
VIH  
COM'L  
IND  
5
15  
(1)  
mA  
___  
___  
5
20  
5
20  
5666 tbl 09  
NOTES:  
1. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency clock cycle of 1/tCYC, using "AC TEST CONDITIONS".  
2. f = 0 means no address, clock, or control lines change. Applies only to input at CMOS level standby.  
3. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
4. VDD = 2.5V, TA = 25°C for Typ, and are not production tested. IDD DC(f=0) = 15mA (Typ).  
5. CEX = VIL means CE0X = VIL and CE1X = VIH  
CEX = VIH means CE0X = VIH or CE1X = VIL  
CEX < 0.2V means CE0X < 0.2V and CE1X > VDD - 0.2V  
CEX > VDD - 0.2V means CE0X > VDD - 0.2V or CE1X - 0.2V  
"X" represents "L" for left port or "R" for right port.  
6. ISB1, ISB2 and ISB4 will all reach full standby levels (ISB3) on the appropriate port(s) if ZZL and/or ZZR = VIH.  
7. 166MHz I-Temp is not available in the BF-208 package.  
8. 200Mhz is not available in the BF-208 and DR-208 packages.  
6.42  
10  
IDT70T3519/99/89S  
High-Speed 2.5V 256/128/64K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
AC Test Conditions (VDDQ - 3.3V/2.5V)  
Input Pulse Levels (Address & Controls)  
Input Pulse Levels (I/Os)  
Input Rise/Fall Times  
GND to 3.0V/GND to 2.4V  
GND to 3.0V/GND to 2.4V  
2ns  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
1.5V/1.25V  
1.5V/1.25V  
Figure 1  
5666 tbl 10  
50  
50Ω  
,
DATAOUT  
1.5V/1.25  
10pF  
(Tester)  
5666 drw 03  
Figure 1. AC Output Test load.  
tCD  
(Typical, ns)  
5666 drw 04  
Capacitance (pF) from AC Test Load  
6.42  
11  
IDT70T3519/99/89S  
High-Speed 2.5V 256/128/64K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the Operating Temperature Range  
(Read and Write Cycle Timing) (2,3) (VDD = 2.5V ± 100mV, TA = 0°C to +70°C)  
70T3519/99/89  
S200  
70T3519/99/89  
S166  
70T3519/99/89  
S133  
Com'l Only(5)  
Com'l  
Com'l  
& Ind(4)  
& Ind  
Symbol  
Parameter  
Min.  
15  
5
Max.  
Min.  
20  
Max.  
Min.  
25  
Max.  
Unit  
ns  
t
CYC1  
CYC2  
CH1  
CL1  
CH2  
CL2  
SA  
HA  
SC  
HC  
SB  
HB  
SW  
HW  
SD  
HD  
SAD  
HAD  
SCN  
HCN  
SRPT  
HRPT  
OE  
Clock Cycle Time (Flow-Through)(1)  
Clock Cycle Time (Pipelined)(1)  
Clock High Time (Flow-Through)(1)  
Clock Low Time (Flow-Through)(1)  
Clock High Time (Pipelined)(2)  
Clock Low Time (Pipelined)(1)  
Address Setup Time  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
6
7.5  
10  
ns  
t
6
8
ns  
t
6
8
10  
ns  
t
2
2.4  
2.4  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
3
ns  
t
2
3
ns  
t
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
ns  
t
Address Hold Time  
ns  
t
Chip Enable Setup Time  
Chip Enable Hold Time  
Byte Enable Setup Time  
Byte Enable Hold Time  
R/W Setup Time  
ns  
t
ns  
t
ns  
t
ns  
t
ns  
t
R/W Hold Time  
ns  
t
Input Data Setup Time  
ns  
t
Input Data Hold Time  
ns  
t
ns  
ADS Setup Time  
t
ns  
ADS Hold Time  
t
ns  
CNTEN Setup Time  
t
ns  
CNTEN Hold Time  
t
ns  
REPEAT Setup Time  
t
0.5  
0.5  
0.5  
ns  
REPEAT Hold Time  
____  
____  
____  
t
Output Enable to Data Valid  
Output Enable to Output Low-Z  
Output Enable to Output High-Z  
Clock to Data Valid (Flow-Through)(1)  
Clock to Data Valid (Pipelined)(1)  
Data Output Hold After Clock High  
Clock High to Output High-Z  
Clock High to Output Low-Z  
Interrupt Flag Set Time  
4.4  
4.4  
4.6  
ns  
(6)  
____  
____  
____  
t
OLZ  
1
1
1
ns  
(6)  
OHZ  
t
1
3.4  
10  
1
3.6  
12  
1
4.2  
15  
ns  
____  
____  
____  
t
CD1  
CD2  
DC  
CKHZ  
ns  
____  
____  
____  
t
3.4  
3.6  
4.2  
ns  
____  
____  
____  
t
1
1
1
1
1
1
ns  
(6)  
t
3.4  
3.6  
4.2  
ns  
(6)  
CKLZ  
____  
____  
____  
t
1
1
1
ns  
____  
____  
____  
t
INS  
INR  
COLS  
COLR  
ZZSC  
ZZRC  
7
7
7
7
7
7
ns  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
Interrupt Flag Reset Time  
Collision Flag Set Time  
Collision Flag Reset Time  
Sleep Mode Set Cycles  
Sleep Mode Recovery Cycles  
ns  
t
3.4  
3.6  
4.2  
ns  
t
3.4  
3.6  
4.2  
ns  
____  
____  
____  
t
2
3
2
3
2
3
cycles  
cycles  
____  
____  
____  
t
Port-to-Port Delay  
Clock-to-Clock Offset  
Clock-to-Clock Offset for Collision Detection  
____  
____  
____  
t
CO  
4
5
6
ns  
tOFS  
Please refer to Collision Detection Timing Table on Page 21  
5666 tbl 11  
NOTES:  
1. The Pipelined output parameters (tCYC2, tCD2) apply to either or both left and right ports when FT/PIPEX = VDD (2.5V). Flow-through parameters (tCYC1, tCD1)  
apply when FT/PIPE = Vss (0V) for that port.  
2. All input signals are synchronous with respect to the clock except for the asynchronous Output Enable (OE), FT/PIPE and OPT. FT/PIPE and OPT should be  
treated as DC signals, i.e. steady state during operation.  
3. These values are valid for either level of VDDQ (3.3V/2.5V). See page 6 for details on selecting the desired operating voltage levels for each port.  
4. 166MHz I-Temp is not available in the BF-208 package.  
5. 200Mhz is not available in the BF-208 and DR-208 packages.  
6. Guaranteed by design (not production tested).  
6.42  
12  
IDT70T3519/99/89S  
High-Speed 2.5V 256/128/64K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Read Cycle for Pipelined Operation  
(FT/PIPE'X' = VIH)(1,2)  
t
CYC2  
tCH2  
tCL2  
CLK  
CE  
0
t
SC  
tHC  
t
SC  
SB  
t
HC  
HB  
(3)  
CE1  
t
SB  
tHB  
t
t
(5)  
BEn  
R/W  
tHW  
tSW  
tSA  
tHA  
ADDRESS(4)  
DATAOUT  
An  
An + 1  
An + 2  
Qn  
An + 3  
(1 Latency)  
t
DC  
tCD2  
Qn + 1  
Qn + 2 (5)  
(1)  
tCKLZ  
t
OHZ  
tOLZ  
(1)  
OE  
tOE  
5666 drw 05  
Timing Waveform of Read Cycle for Flow-through Output  
(FT/PIPE"X" = VIL)(1,2,6)  
tCYC1  
tCH1  
tCL1  
CLK  
CE  
0
tSC  
tHC  
tSC  
tHC  
(3)  
CE1  
tSB  
tHB  
tHB  
BEn  
tSB  
R/W  
tSW  
tHW  
tSA  
tHA  
ADDRESS(4)  
DATAOUT  
An  
An + 1  
An + 2  
An + 3  
tDC  
tCD1  
tCKHZ  
Qn  
Qn + 1  
Qn + 2(5)  
tCKLZ  
tDC  
tOHZ  
tOLZ  
OE(1)  
tOE  
5666 drw 06  
NOTES:  
1. OE is asynchronously controlled; all other inputs depicted in the above waveforms are synchronous to the rising clock edge.  
2. ADS = VIL, CNTEN and REPEAT = VIH.  
3. The output is disabled (High-Impedance state) by CE0 = VIH, CE1 = VIL, BEn = VIH following the next rising edge of the clock. Refer to  
Truth Table 1.  
4. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers  
are for reference use only.  
5. If BEn was HIGH, then the appropriate Byte of DATAOUT for Qn + 2 would be disabled (High-Impedance state).  
6. "x" denotes Left or Right port. The diagram is with respect to that port.  
6.42  
13  
IDT70T3519/99/89S  
High-Speed 2.5V 256/128/64K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
(1,2)  
Timing Waveform of a Multi-Device Pipelined Read  
t
CYC2  
tCH2  
tCL2  
CLK  
ADDRESS(B1)  
CE0(B1)  
tSA tHA  
A6  
A5  
A4  
A3  
A2  
A0  
A1  
tSC tHC  
t
SC  
tHC  
tCD2  
tCD2  
tCKHZ  
tCD2  
Q0  
A2  
Q3  
Q
1
DATAOUT(B1)  
ADDRESS(B2)  
tDC  
tCKLZ  
tDC  
tCKHZ  
tSA tHA  
A6  
A5  
A4  
A3  
A0  
A1  
tSC tHC  
CE0(B2)  
tSC tHC  
tCD2  
tCKHZ  
tCD2  
DATAOUT(B2)  
Q4  
Q2  
tCKLZ  
tCKLZ  
5666 drw 07  
(1,2)  
Timing Waveform of a Multi-Device Flow-Through Read  
t
CYC1  
tCH1  
tCL1  
CLK  
tSA  
tHA  
A6  
A5  
A4  
A3  
A2  
A0  
A1  
ADDRESS(B1)  
tSC  
tHC  
CE0(B1)  
tSC  
tHC  
(1)  
t
CD1  
tCD1  
tCKHZ  
tCD1  
tCD1  
D
0
D
3
D5  
D
1
DATAOUT(B1)  
ADDRESS(B2)  
(1)  
(1)  
(1)  
tDC  
t
CKLZ  
tCKLZ  
tDC  
t
CKHZ  
tSA  
tHA  
A6  
A
5
A4  
A3  
A2  
A
0
A1  
tSC  
tHC  
CE0(B2)  
tSC  
t
HC  
(1)  
(1)  
tCD1  
tCKHZ  
tCD1  
tCKHZ  
D4  
DATAOUT(B2)  
D2  
(1)  
(1)  
t
CKLZ  
tCKLZ  
5666 drw 08  
NOTES:  
1. B1 Represents Device #1; B2 Represents Device #2. Each Device consists of one IDT70T3519/99/89 for this waveform,  
and are setup for depth expansion in this example. ADDRESS(B1) = ADDRESS(B2) in this situation.  
2. BEn, OE, and ADS = VIL; CE1(B1), CE1(B2), R/W, CNTEN, and REPEAT = VIH.  
6.42  
14  
IDT70T3519/99/89S  
High-Speed 2.5V 256/128/64K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
(1,2,4)  
Timing Waveform of Left Port Write to Pipelined Right Port Read  
CLK"A"  
tSW  
tHW  
R/W"A"  
ADDRESS"A"  
DATAIN"A"  
t
SA  
MATCH  
SD HD  
VALID  
tHA  
NO  
MATCH  
t
t
(3)  
CO  
t
CLK"B"  
t
CD2  
R/W"B"  
t
SW  
SA  
t
HW  
HA  
t
t
NO  
ADDRESS"B"  
DATAOUT"B"  
MATCH  
MATCH  
VALID  
tDC  
5666 drw 09  
NOTES:  
1. CE0, BEn, and ADS = VIL; CE1, CNTEN, and REPEAT = VIH.  
2. OE = VIL for Port "B", which is being read from. OE = VIH for Port "A", which is being written to.  
3. If tCO < minimum specified, then data from Port "B" read is not valid until following Port "B" clock cycle (ie, time from write to valid read on opposite port will be  
tCO + 2 tCYC2 + tCD2). If tCO > minimum, then data from Port "B" read is available on first Port "B" clock cycle (ie, time from write to valid read on opposite port  
will be tCO + tCYC2 + tCD2).  
4. All timing is the same for Left and Right ports. Port "A" may be either Left or Right port. Port "B" is the opposite of Port "A"  
(1,2,4)  
Timing Waveform with Port-to-Port Flow-Through Read  
CLK "A"  
tSW  
tHW  
R/W "A"  
ADDRESS "A"  
DATAIN "A"  
CLK "B"  
t
SA  
MATCH  
SD HD  
VALID  
tHA  
NO  
MATCH  
t
t
(3)  
t
CO  
t
CD1  
R/W "B"  
t
HW  
HA  
t
SW  
t
t
SA  
NO  
MATCH  
ADDRESS "B"  
DATAOUT "B"  
MATCH  
t
CD1  
VALID  
VALID  
tDC  
t
DC  
5666 drw 10  
NOTES:  
1. CE0, BEn, and ADS = VIL; CE1, CNTEN, and REPEAT = VIH.  
2. OE = VIL for the Right Port, which is being read from. OE = VIH for the Left Port, which is being written to.  
3. If tCO < minimum specified, then data from Port "B" read is not valid until following Port "B" clock cycle (i.e., time from write to valid read on opposite port will be  
tCO + tCYC + tCD1). If tCO > minimum, then data from Port "B" read is available on first Port "B" clock cycle (i.e., time from write to valid read on opposite port will  
be tCO + tCD1).  
4. All timing is the same for both left and right ports. Port "A" may be either left or right port. Port "B" is the opposite of Port "A".  
6.42  
15  
IDT70T3519/99/89S  
High-Speed 2.5V 256/128/64K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Pipelined Read-to-Write-to-Read  
(OE = VIL)(2)  
tCYC2  
tCH2  
tCL2  
CLK  
CE  
CE  
BE  
0
1
n
t
SC  
tHC  
tSB  
tHB  
tSW tHW  
R/W  
tSW tHW  
ADDRESS(3)  
An + 3  
An + 4  
An  
An +1  
An + 2  
An + 2  
t
SA  
tHA  
t
SD  
t
HD  
DATAIN  
Dn + 2  
tCD2  
tCD2  
(1)  
tCKHZ  
tCKLZ  
Qn + 3  
Qn  
DATAOUT  
READ  
NOP(4)  
WRITE  
READ  
5666 drw 11  
NOTES:  
1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.  
2. CE0, BEn, and ADS = VIL; CE1, CNTEN, and REPEAT = VIH. "NOP" is "No Operation".  
3. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers  
are for reference use only.  
4. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity.  
Timing Waveform of Pipelined Read-to-Write-to-Read ( OE Controlled) (2)  
t
CYC2  
tCH2  
tCL2  
CLK  
CE0  
tSC  
tHC  
CE1  
t
SB  
tHB  
BEn  
tSW tHW  
R/W  
tSW tHW  
ADDRESS(3)  
DATAIN  
An + 4  
An  
An +1  
An + 2  
An + 3  
Dn + 3  
An + 5  
t
SA  
tHA  
t
SD  
tHD  
Dn + 2  
tCD2  
tCD2  
tCKLZ  
(1)  
Qn  
Qn + 4  
DATAOUT  
(4)  
tOHZ  
OE  
READ  
WRITE  
READ  
5666 drw 12  
NOTES:  
1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.  
2. CE0, BEn, and ADS = VIL; CE1, CNTEN, and REPEAT = VIH.  
3. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference  
use only.  
4. This timing does not meet requirements for fastest speed grade. This waveform indicates how logically it could be done if timing so allows.  
6.42  
16  
IDT70T3519/99/89S  
High-Speed 2.5V 256/128/64K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Flow-Through Read-to-Write-to-Read ( OE = VIL)(2)  
t
CYC1  
t
CH1  
tCL1  
CLK  
CE0  
tSC  
tHC  
CE1  
t
SB  
tHB  
BEn  
t
SW tHW  
R/  
W
tSW tHW  
(3)  
An + 4  
An  
An + 3  
An +1  
An + 2  
An + 2  
ADDRESS  
tSA  
tHA  
t
SD  
t
HD  
DATAIN  
Dn + 2  
t
CD1  
t
CD1  
t
CD1  
tCD1  
(1)  
Qn + 3  
Qn  
READ  
Qn + 1  
DATAOUT  
t
DC  
tCKLZ  
tDC  
t
CKHZ  
NOP(5)  
READ  
WRITE  
5666 drw 13  
TimingWaveformof Flow-ThroughRead-to-Write-to-Read(OE Controlled)(2)  
tCYC1  
CH1  
t
tCL1  
CLK  
CE0  
tSC  
tHC  
CE1  
t
SB  
tHB  
BEn  
tSW tHW  
t
SW tHW  
R/  
W
(3)  
An + 5  
An  
An + 4  
An +1  
An + 2  
An + 3  
Dn + 3  
ADDRESS  
DATAIN  
t
SA  
tHA  
t
SD tHD  
Dn + 2  
t
OE  
CD1  
tDC  
t
CD1  
t
CD1  
t
(1)  
Qn + 4  
Qn  
DATAOUT  
t
CKLZ  
t
DC  
t
OHZ  
OE  
READ  
WRITE  
READ  
5666 drw 14  
NOTES:  
1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.  
2. CE0, BEn, and ADS = VIL; CE1, CNTEN, and REPEAT = VIH.  
3. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for  
reference use only.  
4. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity.  
6.42  
17  
IDT70T3519/99/89S  
High-Speed 2.5V 256/128/64K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
(1)  
Timing Waveform of Pipelined Read with Address Counter Advance  
tCYC2  
tCH2  
tCL2  
CLK  
tSA  
tHA  
ADDRESS  
An  
t
SAD tHAD  
ADS  
t
SAD tHAD  
CNTEN  
t
SCN tHCN  
tCD2  
Qn + 2(2)  
Qn + 3  
Qx - 1(2)  
Qx  
Qn + 1  
Qn  
DATAOUT  
tDC  
READ  
EXTERNAL  
ADDRESS  
READ  
WITH  
COUNTER  
COUNTER  
HOLD  
READ WITH COUNTER  
5666 drw 15  
TimingWaveformof Flow-ThroughReadwithAddressCounterAdvance (1)  
t
CYC1  
t
CH1  
tCL1  
CLK  
t
SA  
tHA  
An  
ADDRESS  
tSAD tHAD  
t
SAD  
tHAD  
ADS  
tSCN  
tHCN  
CNTEN  
t
CD1  
Qn + 3(2)  
Qx(2)  
Qn + 4  
Qn + 1  
Qn + 2  
Qn  
DATAOUT  
tDC  
READ  
WITH  
COUNTER  
READ  
EXTERNAL  
ADDRESS  
READ WITH COUNTER  
COUNTER  
HOLD  
5666 drw 16  
NOTES:  
1. CE0, OE, BEn = VIL; CE1, R/W, and REPEAT = VIH.  
2. If there is no address change via ADS = VIL (loading a new address) or CNTEN = VIL (advancing the address), i.e. ADS = VIH and CNTEN = VIH, then  
the data output remains constant for subsequent clocks.  
6.42  
18  
IDT70T3519/99/89S  
High-Speed 2.5V 256/128/64K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write with Address Counter Advance  
(1)  
(Flow-through or Pipelined Inputs)  
tCYC2  
tCH2  
tCL2  
CLK  
tSA  
tHA  
An  
ADDRESS  
INTERNAL(3)  
ADDRESS  
An(7)  
An + 1  
An + 3  
An + 4  
An + 2  
tSAD tHAD  
ADS  
tSCN tHCN  
CNTEN  
tSD tHD  
Dn + 4  
Dn + 1  
Dn + 3  
Dn  
Dn + 1  
Dn + 2  
DATAIN  
WRITE  
EXTERNAL  
ADDRESS  
WRITE  
WITH COUNTER  
WRITE  
COUNTER HOLD  
WRITE WITH COUNTER  
5666 drw 17  
(2,6)  
Timing Waveform of Counter Repeat  
tCYC2  
CLK  
t
SA  
tHA  
An  
ADDRESS  
INTERNAL(3)  
ADDRESS  
An+2  
An+1  
An+2  
An+2  
An  
An  
An+1  
An+2  
tSAD tHAD  
ADS  
tSW tHW  
R/W  
t
SCN tHCN  
CNTEN  
(4)  
REPEAT  
tHRPT  
SRPT  
t
tSD  
tHD  
D3  
D2  
D
0
D1  
DATAIN  
tCD1  
An  
An+1  
An+2  
An+2  
DATAOUT  
,
ADVANCE  
COUNTER  
WRITE TO  
An+2  
ADVANCE  
HOLD  
REPEAT  
READ LAST  
ADS  
ADDRESS  
An  
ADVANCE  
COUNTER  
READ  
WRITE TO  
ADS  
ADDRESS  
An  
ADVANCE  
COUNTER  
READ  
HOLD  
COUNTER  
READ  
COUNTER  
WRITE TO  
An+1  
COUNTER  
WRITE TO  
An+2  
An+1  
An+2  
An+2  
5666 drw 18  
NOTES:  
1. CE0, BEn, and R/W = VIL; CE1 and REPEAT = VIH.  
CE0, BEn = VIL; CE1 = VIH.  
2.  
3. The "Internal Address" is equal to the "External Address" when ADS = VIL and equals the counter output when ADS = VIH.  
4. No dead cycle exists during REPEAT operation. A READ or WRITE cycle may be coincidental with the counter REPEAT cycle: Address loaded by last valid  
ADS load will be accessed. For more information on REPEAT function refer to Truth Table II.  
5. CNTEN = VIL advances Internal Address from ‘An’ to ‘An +1’. The transition shown indicates the time required for the counter to advance. The ‘An +1’Address is  
written to during this cycle.  
6. For Pipelined Mode user should add 1 cycle latency for outputs as per timing waveform of read cycle for pipelined operations.  
6.42  
19  
IDT70T3519/99/89S  
High-Speed 2.5V 256/128/64K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing (2)  
CLK  
L
tSW  
tHW  
R/W  
L
t
SA  
3FFFF  
SC  
t
HA  
ADDRESSL(3)  
CEL(1)  
t
t
HC  
t
INS  
INT  
R
t
INR  
CLKR  
t
SC  
tHC  
CER(1)  
R/WR  
t
SW  
SA  
3FFFF  
t
HW  
t
HA  
t
ADDRESSR(3)  
5666 drw 19  
NOTES:  
1. CE0 = VIL and CE1 = VIH  
2. All timing is the same for Left and Right ports.  
3. Address is for internal register, not the external bus, i.e., address needs to be qualified by one of the Address counter control signals.  
Truth Table III — Interrupt Flag (1)  
Left Port  
Right Port  
(2)  
(2)  
(3,4,5)  
(2)  
(2)  
(3,4,5)  
CLK  
L
R/W  
L
L
CE  
L
A
17L-A0L  
CLK  
R
R/W  
R
CE  
R
A
17R-A0R  
Function  
Set Right INT Flag  
Reset Right INT Flag  
Set Left INT Flag  
Reset Left INT Flag  
INT  
X
L
INT  
L
R
L
3FFFF  
X
X
X
X
R
X
X
X
L
X
H
L
L
L
3FFFF  
3FFFE  
X
H
R
X
X
L
X
L
H
3FFFE  
H
X
X
X
L
5666 tbl 12  
NOTES:  
1. INTL and INTR must be initialized at power-up by Resetting the flags.  
2. CE0 = VIL and CE1 = VIH. R/W and CE are synchronous with respect to the clock and need valid set-up and hold times.  
3. A17X is a NC for IDT70T3599, therefore Interrupt Addresses are 1FFFF and 1FFFE.  
4. A17X and A16X are NC's for IDT70T3589, therefore Interrupt Addresses are FFFF and FFFE.  
5. Address is for internal register, not the external bus, i.e., address needs to be qualified by one of the Address counter control signals.  
6.42  
20  
IDT70T3519/99/89S  
High-Speed 2.5V 256/128/64K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Collision Timing(1,2)  
Both Ports Writing with Left Port Clock Leading  
CLK  
L
tOFS  
tSA tHA  
ADDRESS(4)  
L
A
3
A
2
A1  
A0  
tCOLR  
tCOLS  
COL  
L
(3)  
tOFS  
CLK  
R
tSA  
tHA  
(4)  
ADDRESS  
R
A3  
A
2
A0  
A1  
tCOLR  
tCOLS  
COL  
R
5666 drw 20  
NOTES:  
1. CE0 = VIL, CE1 = VIH.  
2. For reading port, OE is a Don't care on the Collision Detection Logic. Please refer to Truth Table IV for specific cases.  
3. Leading Port Output flag might output 3tCYC2 + tCOLS after Address match.  
4. Address is for internal register, not the external bus, i.e., address needs to be qualified by one of the Address counter control signals.  
Collision Detection Timing(3,4)  
tOFS (ns)  
Cycle Time  
NOTES:  
1. Region 1  
(1)  
(2)  
Region 1 (ns)  
Region 2 (ns)  
Both ports show collision after 2nd cycle for Addresses 0, 2, 4 etc.  
2. Region 2  
Leading port shows collision after 3rd cycle for addresses 0, 3, 6, etc.  
while trailing port shows collision after 2nd cycle for addresses 0, 2, 4 etc.  
3. All the production units are tested to midpoint of each region.  
5ns  
6ns  
0 - 2.8  
2.81 - 4.6  
0 - 3.8  
0 - 5.3  
3.81 - 5.6  
5.31 - 7.1  
7.5ns  
4. These ranges are based on characterization of a typical device.  
5666 tbl 13  
Truth Table IV — Collision Detection Flag  
Left Port  
Right Port  
(1)  
(1)  
(2)  
(1)  
(1)  
(2)  
CLK  
L
R/W  
L
CE  
L
A
17L-A0L  
CLK  
R
R/W  
R
CE  
R
A
17R-A0R  
Function  
COL  
H
L
COL  
R
Both ports reading. Not a valid collision.  
No flag output on either port.  
H
H
L
L
MATCH  
MATCH  
MATCH  
MATCH  
H
L
L
MATCH  
MATCH  
MATCH  
MATCH  
H
Left port reading, Right port writing.  
Valid collision, flag output on Left port.  
L
L
L
L
L
L
L
H
Right port reading, Left port writing.  
Valid collision, flag output on Right port.  
H
H
L
L
Both ports writing. Valid collision. Flag  
output on both ports.  
L
L
L
5666 tbl 14  
NOTES:  
1. CE0 = VIL and CE1 = VIH. R/W and CE are synchronous with respect to the clock and need valid set-up and hold times.  
2. Address is for internal register, not the external bus, i.e., address needs to be qualified by one of the Address counter control signals.  
6.42  
21  
IDT70T3519/99/89S  
High-Speed 2.5V 256/128/64K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform - Entering Sleep Mode (1,2)  
R/W  
(3)  
Timing Waveform - Exiting Sleep Mode (1,2)  
An  
An+1  
(5)  
R/W  
OE  
(5)  
Dn  
Dn+1  
DATAOUT  
(4)  
NOTES:  
1. CE1 = VIH.  
2. All timing is same for Left and Right ports.  
3. CE0 has to be deactivated (CE0 = VIH) three cycles prior to asserting ZZ (ZZx = VIH) and held for two cycles after asserting ZZ (ZZx = VIH).  
4. CE0 has to be deactivated (CE0 = VIH) one cycle prior to de-asserting ZZ (ZZx = VIL) and held for three cycles after de-asserting ZZ (ZZx = VIL).  
5. The device must be in Read Mode (R/W High) when exiting sleep mode. Outputs are active but data is not valid until the following cycle.  
6.42  
22  
IDT70T3519/99/89S  
High-Speed 2.5V 256/128/64K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
flag. Athirdcollisionwillgeneratethealertflagasappropriate. Inthe  
eventthatauserinitiatesaburstaccessonbothportswiththesame  
starting address on both ports and one or both ports writing during  
eachaccess(i.e.,imposesalongstringofcollisionsoncontiguous  
clock cycles), the alert flag will be asserted and cleared every other  
cycle.PleaserefertotheCollisionDetectiontimingwaveformonPage  
21C. ollision detection on the IDT70T3519/99/89 represents a  
significantadvanceinfunctionalityovercurrentsyncmulti-ports,which  
havenosuchcapability. Inadditiontothisfunctionalitythe  
IDT70T3519/99/89sustainsthekeyfeaturesofbandwidthand  
flexibility. Thecollisiondetectionfunctionisveryusefulinthecaseof  
burstingdata,orastringofaccessesmadetosequentialaddresses,in  
thatitindicatesaproblemwithintheburst,givingtheusertheoptionof  
eitherrepeatingtheburstorcontinuingtowatchthealertflagtosee  
whetherthenumberofcollisionsincreasesaboveanacceptable  
thresholdvalue.Offeringthisfunctiononchipalsoallowsusersto  
reducetheirneedforarbitrationcircuits, typicallydoneinCPLD’sor  
FPGA’s. This reduces board space and design complexity, and gives  
FunctionalDescription  
TheIDT70T3519/99/89providesatruesynchronousDual-PortStatic  
RAM interface.Registeredinputsprovideminimalset-upandholdtimes  
onaddress, data, andallcriticalcontrolinputs. Allinternalregistersare  
clocked on the rising edge of the clock signal, however, the self-timed  
internalwritepulsewidthisindependentofthecycletime.  
An asynchronous output enable is provided to ease asyn-  
chronousbusinterfacing.Counterenableinputsarealsoprovidedtostall  
the operation of the address counters for fast interleaved  
memoryapplications.  
A HIGHonCE0oraLOWonCE1foroneclockcyclewillpowerdown  
the internal circuitry to reduce static power consumption. Multiple chip  
enablesalloweasierbankingofmultipleIDT70T3519/99/89sfordepth  
expansionconfigurations. Twocyclesarerequiredwith CE0 LOWand  
CE1HIGHtore-activatetheoutputs.  
Interrupts  
If the user chooses the interrupt function, a memory location (mail theusermoreflexibilityindevelopingasolution.  
boxormessagecenter)isassignedtoeachport. Theleftportinterrupt  
flag (INTL) is asserted when the right port writes to memory location  
3FFFE (HEX), where a write is defined as CER = R/WR = VIL per the  
SleepMode  
The IDT70T3519/99/89 is equipped with an optional sleep or low  
Truth Table. The left port clears the interrupt through access of  
addresslocation3FFFEwhen CEL = VIL andR/WL= VIH.Likewise,the  
right port interrupt flag (INTR) is asserted when the left  
port writes to memory location 3FFFF (HEX) and to clear the interrupt  
flag(INTR),therightportmustreadthememorylocation3FFFF(1FFFF  
or 1FFFE for IDT70T3599 and FFFF or FFFE for IDT70T3589). The  
message(36bits)at3FFFEor3FFFF(1FFFFor1FFFEforIDT70T3599  
and FFFF or FFFE for IDT70T3589) is user-defined since it is an  
addressableSRAMlocation.Iftheinterruptfunctionisnotused,address  
locations 3FFFE and 3FFFF (1FFFF or 1FFFE for IDT70T3599 and  
FFFForFFFEforIDT70T3589)arenotusedasmailboxes, butaspart  
of the random access memory. Refer to Truth Table III for the interrupt  
operation.  
power mode on both ports. The sleep mode pin on both ports is  
asynchronous and active high. During normal operation, the ZZ pin is  
pulledlow.WhenZZispulledhigh,theportwillentersleepmodewhere  
it will meet lowest possible power conditions. The sleep mode timing  
diagramshowsthemodes ofoperation:NormalOperation,NoRead/Write  
Allowed and Sleep Mode.  
Fornormaloperationallinputsmustmeetsetupandholdtimesprior  
tosleepand afterrecoveringfromsleep.Clocksmustalsomeetcyclehigh  
and low times during these periods. Three cycles prior to asserting ZZ  
(ZZx=VIH)andthreecyclesafterde-assertingZZ(ZZx=VIL),thedevice  
mustbedisabledviathechipenablepins.Ifawriteorreadoperationoccurs  
duringtheseperiods,thememoryarraymaybecorrupted.Validityofdata  
outfromtheRAMcannotbeguaranteedimmediatelyafterZZisasserted  
(priortobeinginsleep).Whenexitingsleepmode,thedevicemustbein  
Read mode (R/Wx = VIH)when chip enable is asserted, and the chip  
enablemustbevalidforonefullcyclebeforeareadwillresultintheoutput  
ofvaliddata.  
CollisionDetection  
Collision is defined as an overlap in access between the two ports  
resultinginthepotentialforeitherreadingorwritingincorrectdatatoa  
specific address. For the specific cases: (a) Both ports reading - no  
dataiscorrupted,lost,orincorrectlyoutput,sonocollisionflagisoutput  
on either port. (b) One port writing, the other port reading - the end  
result of the write will still be valid. However, the reading port might  
capturedatathatisinastateoftransitionandhencethereadingport’s  
collisionflagisoutput. (c)Bothportswriting-thereisariskthatthetwo  
portswillinterferewitheachother, andthedatastoredinmemorywill  
not be a valid write from either port (it may essentially be a random  
combinationofthetwo). Therefore,thecollisionflagisoutputonboth  
DuringsleepmodetheRAMautomaticallydeselectsitself.TheRAM  
disconnectsitsinternalclockbuffer.Theexternalclockmaycontinuetorun  
withoutimpactingtheRAMssleepcurrent(IZZ).Alloutputswillremainin  
high-Zstatewhileinsleepmode.Allinputsareallowedtotoggle.TheRAM  
will not be selected and will not perform any reads or writes.  
ports. Please refer to Truth Table IV for all of the above cases.  
The alert flag (COLX) is asserted on the 2nd or 3rd rising clock  
edgeoftheaffectedportfollowingthecollision,andremainslowfor  
onecycle. PleaserefertoCollisionDetectionTimingtableonPage21.  
Duringthatnextcycle,theinternalarbitrationisengagedinresetting  
thealertflag(thisavoidsaspecificrequirementonthepartoftheuser  
toresetthealertflag). Iftwocollisionsoccuronsubsequentclock  
cycles,thesecondcollisionmaynotgeneratetheappropriatealert  
6.42  
23  
IDT70T3519/99/89S  
High-Speed 2.5V 256/128/64K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Depth andWidth Expansion  
The IDT70T3519/99/89 features dual chip enables (refer to Truth  
Table I) in order to facilitate rapid and simple depth expansion with no  
requirements for external logic. Figure 4 illustrates how to control the  
various chip enables in order to expand two devices in depth.  
The IDT70T3519/99/89 can also be used in applications requiring  
expandedwidth,asindicatedinFigure4.Throughcombiningthecontrol  
signals, the devices can be grouped as necessary to accommodate  
applicationsneeding72-bitsorwider.  
A18/A17/A16  
IDT70T3519/99/89  
IDT70T3519/99/89  
CE0  
CE0  
CE1  
CE1  
V
DD  
VDD  
Control Inputs  
Control Inputs  
IDT70T3519/99/89  
IDT70T3519/99/89  
CE1  
CE1  
CE0  
CE0  
BE,  
R/W,  
Control Inputs  
Control Inputs  
OE,  
CLK,  
Figure 4. Depth and Width Expansion with IDT70T3519/99/89  
ADS,  
REPEAT,  
CNTEN  
,
5666 drw 23  
NOTE:  
1. A18 is for IDT70T3519, A17 is for IDT70T3599, A16 is for IDT70T3589.  
6.42  
24  
IDT70T3519/99/89S  
High-Speed 2.5V 256/128/64K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
JTAGTimingSpecifications  
t
JCYC  
t
JR  
t
JF  
t
JCL  
tJCH  
TCK  
Device Inputs(1)/  
TDI/TMS  
t
JDC  
tJS  
tJH  
Device Outputs(2)/  
TDO  
t
JRSR  
t
JCD  
TRST  
,
5666 drw 24  
t
JRST  
Figure 5. Standard JTAG Timing  
NOTES:  
1. Device inputs = All device inputs except TDI, TMS, and TRST.  
2. Device outputs = All device outputs except TDO.  
JTAG AC Electrical  
Characteristics(1,2,3,4)  
70T3519/99/89  
Max. Units  
Symbol  
Parameter  
JTAG Clock Input Period  
JTAG Clock HIGH  
JTAG Clock Low  
JTAG Clock Rise Time  
JTAG Clock Fall Time  
JTAG Reset  
Min.  
100  
40  
____  
____  
____  
t
JCYC  
JCH  
JCL  
JR  
JF  
JRST  
JRSR  
JCD  
JDC  
JS  
JH  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
40  
3(1)  
____  
t
3(1)  
____  
t
____  
t
50  
____  
t
JTAG Reset Recovery  
JTAG Data Output  
JTAG Data Output Hold  
JTAG Setup  
50  
____  
t
25  
____  
t
0
____  
____  
t
15  
15  
t
JTAG Hold  
ns  
5666 tbl 15  
NOTES:  
1. Guaranteed by design.  
2. 30pF loading on external output signals.  
3. Refer to AC Electrical Test Conditions stated earlier in this document.  
4. JTAG operations occur at one speed (10MHz). The base device may run at  
any speed specified in this datasheet.  
6.42  
25  
IDT70T3519/99/89S  
High-Speed 2.5V 256/128/64K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Identification Register Definitions  
Instruction Field  
Value  
Description  
Revision Number (31:28)  
0x0  
Reserved for version number  
0x330(1)  
0x33  
1
IDT Device ID (27:12)  
Defines IDT part number  
IDT JEDEC ID (11:1)  
Allows unique identification of device vendor as IDT  
Indicates the presence of an ID register  
ID Register Indicator Bit (Bit 0)  
5666 tbl 16  
NOTE:  
1. Device ID for IDT70T3599 is 0x331. Device ID for IDT70T3589 is 0x332.  
ScanRegisterSizes  
Register Name  
Bit Size  
Instruction (IR)  
Bypass (BYR)  
4
1
Identification (IDR)  
32  
Boundary Scan (BSR)  
Note (3)  
5666 tbl 17  
SystemInterfaceParameters  
Instruction  
Code  
Description  
EXTEST  
0000  
Forces contents of the boundary scan cells onto the device outputs(1).  
Places the boundary scan register (BSR) between TDI and TDO.  
BYPASS  
IDCODE  
1111  
Places the bypass register (BYR) between TDI and TDO.  
0010  
Loads the ID register (IDR) with the vendor ID code and places the  
register between TDI and TDO.  
0100  
Places the bypass register (BYR) between TDI and TDO. Forces all  
device output drivers to a High-Z state except COLx & INTx outputs.  
HIGHZ  
Uses BYR. Forces contents of the boundary scan cells onto the device  
outputs. Places the bypass register (BYR) between TDI and TDO.  
CLAMP  
0011  
0001  
SAMPLE/PRELOAD  
Places the boundary scan register (BSR) between TDI and TDO.  
SAMPLE allows data from device inputs(2) to be captured in the  
boundary scan cells and shifted serially through TDO. PRELOAD allows  
data to be input serially into the boundary scan cells via the TDI.  
RESERVED  
PRIVATE  
0101, 0111, 1000, 1001,  
1010, 1011, 1100  
Several combinations are reserved. Do not use codes other than those  
identified above.  
0110,1110,1101  
For internal use only.  
5666 tbl 18  
NOTES:  
1. Device outputs = All device outputs except TDO.  
2. Device inputs = All device inputs except TDI, TMS, and TRST.  
3. The Boundary Scan Descriptive Language (BSDL) file for this device is available on the IDT website (www.idt.com), or by contacting your local  
IDT sales representative.  
6.42  
26  
IDT70T3519/99/89S  
High-Speed 2.5V 256/128/64K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
OrderingInformation  
XXXXX  
A
999  
A
A
IDT  
Device  
Type  
Power Speed  
Package  
Process/  
Temperature  
Range  
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
Blank  
I
BC  
DR  
BF  
256-pin BGA (BC-256)  
208-pin PQFP (DR-208)  
208-pin fpBGA (BF-208)  
Commercial Only(2)  
200  
166  
133  
Commercial & Industrial(1) Speed in Megahertz  
Commercial & Industrial  
S
Standard Power  
9Mbit (256K x 36) 2.5V Synchronous Dual-Port RAM  
4Mbit (128K x 36) 2.5V Synchronous Dual-Port RAM  
2Mbit (64K x 36) 2.5V Synchronous Dual-Port RAM  
70T3519  
70T3599  
70T3589  
5666 drw 25  
NOTES:  
1. 166MHz I-Temp is not available in the BF-208 package.  
2. 200Mhz is not available in the BF-208 and DR-208 packages.  
IDT Clock Solution for IDT70T3519/99/89 Dual-Port  
Dual-Port I/O Specitications  
Clock Specifications  
Input Duty  
IDT  
PLL  
Clock Device  
IDT  
Non-PLL  
Clock Device  
IDT Dual-Port  
Part Number  
Input  
Capacitance  
Maximum  
Jitter  
Voltage  
2.5  
I/O  
Cycle  
Requirement  
Frequency Tolerance  
5T9010  
5T905, 5T9050  
5T907, 5T9070  
70T3519/99/89  
LVTTL  
8pF  
40%  
200  
75ps  
5T2010  
5666 tbl 19  
6.42  
27  
IDT70T3519/99/89S  
High-Speed 2.5V 256/128/64K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
DatasheetDocumentHistory:  
01/23/03:  
01/30/03:  
04/25/03:  
InitialDatasheet  
Page 1 Corrected 208-pin package from TQFP to PQFP  
Page 11 Added Capacitance Derating drawing  
Page12ChangedtINS andtINR specsinACElectricalCharacteristicstable  
Page10 UpdatedpowernumbersinDCElectricalCharacteristicstable  
11/11/03:  
Page12 AddedtOFS symbolandparametertoACElectricalCharacteristicstable  
Page21 UpdatedCollisionTimingwaveform  
Page22 AddedCollisionDetectionTimingtableandfootnotes  
Page26 UpdatedHIGHZfunctioninSystemInterfaceParameterstable  
Page 27 Added IDT Clock Solution table  
03/30/04:  
04/22/04:  
Page 22 & 23 Clarified Sleep Mode Text and Waveforms  
Page 1 & 27 Removed Preliminary status  
Page 6 Added another sentence to footnote 4 to recommend that boundary scan not be operated during sleep mode  
CORPORATE HEADQUARTERS  
2975StenderWay  
Santa Clara, CA 95054  
for SALES:  
for Tech Support:  
831-754-4613  
DualPortHelp@idt.com  
800-345-7015 or 408-727-5166  
fax: 408-492-8674  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
6.42  
28  

相关型号:

IDT70T3519S133BC8

Dual-Port SRAM, 256KX36, 15ns, CMOS, PBGA256, 17 X 17 MM, 1.40 MM HEIGHT, 1 MM PITCH, BGA-256
IDT

IDT70T3519S133BCG

Dual-Port SRAM, 256KX36, 15ns, CMOS, PBGA256, 17 X 17 MM, 1.40 MM HEIGHT, 1 MM PITCH, GREEN, BGA-256
IDT

IDT70T3519S133BCGI

Dual-Port SRAM, 256KX36, 15ns, CMOS, PBGA256, 17 X 17 MM, 1.40 MM HEIGHT, 1 MM PITCH, GREEN, BGA-256
IDT

IDT70T3519S133BCGI8

Multi-Port SRAM, 256KX36, 15ns, CMOS, PBGA256
IDT

IDT70T3519S133BCI

HIGH-SPEED 2.5V 256/128/64K x 36 SYNCHRONOUS DUAL-PORT STATIC RAM WITH 3.3V OR 2.5V INTERFACE
IDT

IDT70T3519S133BCI8

Dual-Port SRAM, 256KX36, 15ns, CMOS, PBGA256, 17 X 17 MM, 1.40 MM HEIGHT, 1 MM PITCH, BGA-256
IDT

IDT70T3519S133BF

HIGH-SPEED 2.5V 256/128/64K x 36 SYNCHRONOUS DUAL-PORT STATIC RAM WITH 3.3V OR 2.5V INTERFACE
IDT

IDT70T3519S133BFG

暂无描述
IDT

IDT70T3519S133BFGI

Dual-Port SRAM, 256KX36, 15ns, CMOS, PBGA208, 15 X 15 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, GREEN, FPBGA-208
IDT

IDT70T3519S133BFI

HIGH-SPEED 2.5V 256/128/64K x 36 SYNCHRONOUS DUAL-PORT STATIC RAM WITH 3.3V OR 2.5V INTERFACE
IDT

IDT70T3519S133BFI8

Dual-Port SRAM, 256KX36, 15ns, CMOS, PBGA208, 15 X 15 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, FPBGA-208
IDT

IDT70T3519S133DR

HIGH-SPEED 2.5V 256/128/64K x 36 SYNCHRONOUS DUAL-PORT STATIC RAM WITH 3.3V OR 2.5V INTERFACE
IDT