IDT70825L35PFG [IDT]

Standard SRAM, 8KX16, 35ns, CMOS, PQFP80, TQFP-80;
IDT70825L35PFG
型号: IDT70825L35PFG
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Standard SRAM, 8KX16, 35ns, CMOS, PQFP80, TQFP-80

存储
文件: 总21页 (文件大小:319K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IDT70825S/L  
HIGH-SPEED 8K x 16  
SEQUENTIAL ACCESS  
RANDOM ACCESS MEMORY (SARAM™)  
Integrated Device Technology, Inc.  
FEATURES:  
DESCRIPTION:  
• 8K x 16 Sequential Access Random Access Memory  
The IDT70825 is a high-speed 8K x 16-bit Sequential  
Access Random Access Memory (SARAM). The SARAM  
(SARAM)  
- Sequential Access from one port and standard Random offers a single-chip solution to buffer data sequentially on one  
Access from the other port  
- Separate upper-byte and lower-byte control of the  
Random Access Port  
port, and be accessed randomly (asynchronously) through  
the other port. The device has a Dual-Port RAM based  
architecture with a standard SRAM interface for the random  
(asynchronous) access port, and a clocked interface with  
counter sequencing for the sequential (synchronous) access  
port.  
• High-speed operation  
- 20ns tAA for random access port  
- 20ns tCD for sequential port  
- 25ns clock cycle time  
Fabricated using CMOS high-performance technology,  
this memory device typically operates on less than 900mW of  
power at maximum high-speed clock-to-data and Random  
Access. An automatic power down feature, controlled by CE,  
permits the on-chip circuitry of each port to enter a very low  
standby power mode.  
• Architecture based on Dual-Port RAM cells  
• Electrostatic discharge > 2001V, Class II  
• Compatible with Intel BMIC and 82430 PCI Set  
• Width and Depth Expandable  
• Sequential side  
- Address based flags for buffer control  
- Pointer logic supports two internal buffers  
• Battery backup operation—2V data retention  
• TTL-compatible, single 5V (±10%) power supply  
• Available in 80-pin TQFP and 84-pin PGA  
• Military product compliant to MIL-STD-883.  
• Industrialtemperaturerange(–40°Cto+85°C)isavailable,  
tested to military electrical specifications.  
The IDT70825 is packaged in a 80-pin Thin Plastic Quad  
Flatpack (TQFP) or 84-pin Ceramic Pin Grid Array (PGA).  
Military grade product is manufactured in compliance with the  
latest revision of MIL-STD-883, Class B, making it ideally  
suited to military temperature applications demanding the  
highest level of performance and reliability.  
FUNCTIONAL BLOCK DIAGRAM  
13  
A
0-12  
SCLK  
Random  
Access  
Port  
Sequential  
Access  
Port  
Controls  
1
R
LSB  
2
Controls  
MSB  
8K X 16  
Memory  
Array  
SR
16  
16  
16  
Data  
R
Reg.  
13  
I/O0-15  
Data  
L
SI/O0-15  
13  
Addr  
L
Addr  
R
13  
RST  
13  
Pointer/  
Counter  
13  
13  
Start Address for Buffer #1  
End Address for Buffer #1  
Start Address for Buffer #2  
End Address for Buffer #2  
Flow Control Buffer  
13  
1
2
COMPARATOR  
Flag Status  
3016 drw 01  
The IDT logo is a registered trademark and SARAM is a trademark of Integrated Device Technology, Inc.  
MILITARY AND COMMERCIAL TEMPERATURE RANGES  
OCTOBER 1996  
©1996 Integrated Device Technology, Inc.  
DSC-3016/6  
For latest information contact IDT’s web site at www.idt.com or fax-on-demand at 408-492-8391.  
6.31  
1
IDT70825S/L  
HIGH-SPEED 8K x 16 SEQUENTIAL ACCESS RANDOM ACCESS MEMORY  
MILITARY AND COMMERCIAL TEMPERATURE RANGES  
PIN CONFIGURATIONS(1,2)  
INDEX  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
60  
SI/O  
SI/O  
1
0
A
A
A
A
A
A
A
A
A
A
V
V
A
A
CMD  
CE  
LB  
UB  
R/W  
OE  
11  
10  
9
1
59  
58  
57  
56  
55  
54  
2
GND  
N/C  
SCE  
SR/W  
RST  
3
8
4
7
5
6
6
5
7
SLD  
53  
52  
51  
50  
49  
48  
47  
4
8
SSTRT  
2
3
9
IDT70825  
PN80-1  
SSTRT  
1
2
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
GND  
GND  
CNTEN  
SOE  
SCLK  
GND  
CC  
CC  
1
TQFP  
TOP  
(3)  
VIEW  
0
46  
45  
44  
EOB  
2
EOB  
1
43  
42  
41  
V
CC  
I/O  
0
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
3016 drw 02  
63  
66  
61  
60  
58  
55  
54  
48  
46  
45  
42  
51  
11  
10  
09  
08  
07  
06  
05  
04  
03  
02  
01  
CNTEN  
SSTRT2  
SR/W  
V
CC  
NC  
I/O  
1
EOB  
1
GND  
GND  
GND NC  
64  
62  
59  
56  
49  
47  
44  
43  
40  
50  
I/O  
2
NC  
EOB  
2
SOE RST  
SCE SI/O  
0
SI/O1  
SI/O  
3
I/O  
0
SLD  
67  
65  
57  
53  
41  
39  
52  
SSTRT  
1
GND  
SCLK GND  
VCC  
I/O  
3
SI/O  
2
69  
68  
38  
37  
I/O  
4
VCC  
SI/O  
4
SI/O  
5
72  
75  
76  
71  
73  
33  
35  
34  
I/O  
7
I/O  
6
GND  
SI/O  
8
GND  
SI/O  
7
IDT70825  
G84-3  
70  
74  
32  
31  
36  
I/O  
9
I/O  
5
I/O  
8
SI/O9  
SI/O10  
29  
SI/O  
6
84-PIN PGA  
TOP VIEW  
(3)  
77  
78  
28  
30  
I/O10 I/O11  
V
CC  
V
CC  
SI/O12  
SI/O11  
79  
80  
26  
27  
I/O12  
I/O13  
SI/O14  
23  
SI/O13  
81  
83  
7
11  
12  
25  
CMD  
I/O14 NC  
V
CC  
A2  
NC SI/O15  
82  
1
2
4
5
8
10  
14  
17  
20  
22  
24  
OE  
LB  
A
4
A
7
A
10  
A
12  
GND  
A
0
1
V
CC  
GND  
I/O15  
84  
3
6
9
15  
13  
16  
18  
19  
21  
NC R/W  
A8  
UB  
CE  
A
A
5
A
3
A
6
A
9
A11  
A
B
C
D
E
F
G
H
J
K
L
3016 drw 03  
INDEX  
NOTES:  
1. All VCC pins must be connected to power supply.  
2. All GND pins must be connected to ground supply.  
3. This text does not indicate orientation of the actual part-marking.  
6.31  
2
IDT70825S/L  
HIGH-SPEED 8K x 16 SEQUENTIAL ACCESS RANDOM ACCESS MEMORY  
MILITARY AND COMMERCIAL TEMPERATURE RANGES  
PIN DESCRIPTIONS: RANDOM ACCESS PORT  
SYMBOL NAME  
I/O(1)  
DESCRIPTION  
A0-A12  
Address Lines  
I
I
I
Address inputs to access the 8192-word (16 bit) memory array.  
Random access data inputs/outputs for 16-bit wide data.  
I/O0-I/O15 Inputs/Outputs  
CE  
Chip Enable  
When CE is LOW, the random access port is enabled. When CE is HIGH, the random access  
port is disabled into power-down mode and the I/O outputs are in the high-impedance state. All  
data is retained during CE = VIH, unless it is altered by the sequential port. CE and CMD may not  
be LOW at the same time.  
CMD  
R/W  
Control Register  
Enable  
I
I
When CMD is LOW, Address lines A0-A2, R/W, and inputs/outputs I/O0-I/O11, are used to  
access the control register, the flag register, and the start and end of buffer registers. CMD and  
CE may not be LOW at the same time.  
Read/Write Enable  
Output Enable  
If CEis LOW and CMD is HIGH, data is written into the array when R/W is LOW and read out of the  
array when R/W is HIGH. If CE is HIGH and CMD is LOW, R/W is used to access the buffer com-  
mand registers. CE and CMD may not be LOW at the same time.  
OE  
I
I
When OE is LOW and R/W is HIGH, I/O0-I/O15 outputs are enabled. When OE is HIGH, the I/O  
outputs are in the high-impedance state.  
LB,UB  
Lower Byte, Upper  
Byte Enables  
When LB is LOW, I/O0-I/O7 are accessible for read and write operations. When LB is HIGH, I/O0-  
I/O7 are tri-stated and blocked during read and write operations. UB controls access for I/O8-  
I/O15 in the same manner and is asynchronous from LB.  
VCC  
Power Supply  
Ground  
Seven +5V power supply pins. All Vcc pins must be connected to the same +5V VCC supply.  
GND  
Ten Ground pins. All Ground pins must be connected to the same Ground supply.  
3016 tbl 01  
PIN DESCRIPTIONS: SEQUENTIAL ACCESS PORT  
SYMBOL  
NAME  
I/O(1)  
I/O Sequential data inputs/outputs for 16-bit wide data.  
DESCRIPTION  
SI/O0-15 Inputs  
SCLK  
SCE  
Clock  
I
I
SI/O0-SI/O15, SCE, SR/W, and SLD are registered on the LOW-to-HIGH transition of SCLK.  
Also, the sequential access port address pointer increments by 1 on each LOW-to-HIGH  
transition of SCLK when CNTEN is LOW.  
Chip Enable  
When SCE is LOW, the sequential access port is enabled on the LOW-to-HIGH transition of  
SCLK. When SCE is HIGH, the sequential access port is disabled into powered-down mode on  
the LOW-to-HIGH transition of SCLK, and the SI/O outputs are in the high-impedance state. All  
data is retained, unless altered by the random access port.  
CNTEN  
SR/W  
Counter Enable  
I
I
When CNTEN is LOW, the address pointer increments on the LOW-to-HIGH transition of SCLK.  
This function is independant of SCE.  
Read/Write Enable  
When SR/W and SCE are LOW, a write cycle is initiated on the LOW-to-HIGH transition of  
SCLK. When SR/W is HIGH, and SCE and SOE are LOW, a read cycle is initiated on the  
LOW-to-HIGH transition of SCLK. Termination of a Write cycle is done on the Low-to-High  
transistion of SCLK if SR/W or SCE is High.  
SLD  
Address Pointer  
Load Control  
I
When SLD is sampled LOW, there is an internal delay of one cycle before the address pointer  
changes. When SLD is LOW, data on the inputs SI/O0-SI/O11 is loaded into a data-in register  
on the LOW-to-HIGH transition of SCLK. On the cycle following SLD, the address pointer  
changes to the address location contained in the data-in register. SSTRT1 and SSTRT2 may  
not be LOW while SLD is LOW or during the cycle following SLD.  
SSTRT1, Load Start of  
SSTRT2 Address Register  
I
When SSTRT1 or SSTRT2 is LOW, the start of address register #1 or #2 is loaded into the  
address pointer on the LOW-to-HIGH transition of SCLK. The start addresses are stored in  
internal registers. SSTRT1 and SSTRT2 may not be LOW while SLD is LOW or during the cycle  
following SLD.  
EOB1,  
EOB2  
End of Buffer Flag  
O
EOB1 or EOB2 is output LOW when the address pointer is incremented to match the address  
stored in the end of buffer registers. The flags can be cleared by either asserting RST LOW or  
by writing zero into bit 0 and/or bit 1 of the control register at address 101. EOB1 and EOB2 are  
dependent on separate internal registers, and therefore separate match addresses.  
SOE  
Output Enable  
Reset  
I
I
SOE controls the data outputs and is independent of SCLK. When SOE is LOW, output buffers  
and the sequentially addressed data is output. When SOE is HIGH, the SI/O output bus is in  
the high-impedance state. SOE is asynchronous to SCLK.  
RST  
When RST is LOW, all internal registers are set to their default state, the address pointer is set  
to zero and the EOB1 and EOB2 flags are set HIGH. RST is asynchronous to SCLK.  
NOTE:  
3016 tbl 02  
1. "I/O" is bidirectional Input and Output. "I" is Input and "O" is Output.  
6.31  
3
IDT70825S/L  
HIGH-SPEED 8K x 16 SEQUENTIAL ACCESS RANDOM ACCESS MEMORY  
MILITARY AND COMMERCIAL TEMPERATURE RANGES  
ABSOLUTE MAXIMUM RATINGS(1)  
RECOMMENDED OPERATING  
TEMPERATURE AND SUPPLY VOLTAGE  
Symbol  
Rating  
Commercial  
Military  
Unit  
VTERM(2) Terminal Voltage –0.5 to +7.0 –0.5 to +7.0  
V
Ambient  
Grade  
Military  
Commercial  
Temperature  
–55°C to +125°C  
0°C to +70°C  
GND  
0V  
VCC  
with Respect  
to GND  
5.0V ± 10%  
TA  
Operating  
Temperature  
0 to +70  
–55 to +125  
°C  
°C  
0V  
5.0V ± 10%  
3016 tbl 04  
TBIAS  
TSTG  
IOUT  
Temperature  
Under Bias  
–55 to +125 –65 to +135  
–55 to +125 –65 to +150  
Storage  
Temperature  
°C  
RECOMMENDED DC OPERATING  
CONDITIONS  
DC Output  
Current  
50  
50  
mA  
Symbol  
Parameter  
Supply Voltage  
Supply Voltage  
Input High Voltage  
Input Low Voltage  
Min.  
Typ. Max. Unit  
VCC  
4.5  
5.0  
0
5.5  
V
V
V
V
NOTES:  
3016 tbl 03  
GND  
VIH  
0
0
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RAT-  
INGS may cause permanent damage to the device. This is a stress rating  
onlyandfunctionaloperationofthedeviceattheseoranyotherconditions  
abovethoseindicatedintheoperationalsectionsofthisspecificationisnot  
implied. Exposure to absolute maximum rating conditions for extended  
periods may affect reliability.  
2. VTERM must not exceed Vcc + 0.5V for more than 25% of the cycle time  
or 10ns maximum, and is limited to < 20mA for the period of VTERM > Vcc  
+ 0.5V.  
2.2  
6.0(2)  
0.8  
VIL  
–0.5(1)  
NOTES:  
3016 tbl 05  
1. VIL > –1.5V for pulse width less than 10ns.  
2. VTERM must not exceed Vcc + 0.5V.  
CAPACITANCE(1)  
(TA = +25°C, F = 1.0MHz)TQFP ONLY  
Symbol  
CIN  
Parameter  
Conditions(2) Max. Unit  
Input Capacitance  
VIN = 3dV  
9
pF  
pF  
COUT  
Output  
VOUT = 3dV  
10  
Capacitance  
NOTES:  
3016 tbl 06  
1. This parameter is determined by device characterization, but is not  
production tested.  
2. 3dV references the interpolated capacitance when the input and output  
signals switch from 0V to 3V or from 3V to 0V.  
DC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE  
AND SUPPLY VOLTAGE RANGE (VCC = 5.0V ± 10%)  
IDT70825S  
IDT70825L  
Symbol  
Parameter  
Input Leakage Current(1)  
Output Leakage Current  
Test Conditions  
Min.  
Max.  
Min.  
Max.  
Unit  
µA  
|ILI|  
VCC = Max. VIN = GND to VCC  
5.0  
1.0  
|ILO|  
VCC = Max. CE and SCE = VIH  
VOUT = GND to VCC  
5.0  
1.0  
µA  
VOL  
Output Low Voltage  
Output High Voltage  
IOL = 4mA, VCC = Min.  
IOH = –4mA, VCC = Min.  
0.4  
0.4  
V
VOH  
2.4  
2.4  
V
3016 tbl 07  
NOTE:  
1. At Vcc 2.0V input leakages are undefined.  
6.31  
4
IDT70825S/L  
HIGH-SPEED 8K x 16 SEQUENTIAL ACCESS RANDOM ACCESS MEMORY  
MILITARY AND COMMERCIAL TEMPERATURE RANGES  
DC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE  
AND SUPPLY VOLTAGE RANGE(1) (VCC = 5.0V ± 10%)  
70825X20  
Com'l. Only Com'l. Only  
Version Typ.(2) Max. Typ.(2)Max. Typ.(2) Max. Typ.(2) Max. Unit  
70825X25  
70825X35  
70825X45  
Test  
Condition  
Symbol  
Parameter  
ICC  
Dynamic Operating  
Current  
CE = VIL, Outputs  
Open, SCE = VIL(5)  
MIL.  
S
L
160  
160  
400 155  
340 155  
400 mA  
340  
(Both Ports Active)  
f = fMAX(3)  
COM’L. S 180 380  
170  
170  
360  
310  
160  
160  
340 155  
290 155  
340  
290  
L
180 330  
ISB1  
ISB2  
ISB3  
ISB4  
Standby Current  
(Both Ports - TTL Level CMD = VIH  
SCE and CE > VIH(7) MIL.  
S
L
20  
20  
85  
65  
16  
16  
85 mA  
65  
Inputs)  
f = fMAX(3)  
COM’L. S  
L
25  
25  
70  
50  
25  
25  
70  
50  
20  
20  
70  
50  
16  
16  
70  
50  
Standby Current  
(One Port - TTL Level Active Port Outputs  
CE or SCE = VIH  
MIL.  
S
L
——  
95  
95  
290  
250  
90  
90  
290 mA  
250  
Input)  
Open, f = fMAX(3)  
COM’L. S 115 260  
105  
105  
250  
220  
95  
95  
240  
210  
90  
90  
240  
210  
L
115 230  
Full Standby Current  
(Both Ports - CMOS  
Both Ports CE and  
SCE VCC - 0.2V(6,7)  
MIL.  
S
L
1.0  
0.2  
30  
10  
1.0  
0.2  
30 mA  
10  
Level Inputs)  
VIN VCC - 0.2V or COM’L. S  
VIN 0.2V, f = 0(4)  
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
L
Full Standby Current  
(One Port - CMOS  
Level Inputs)  
One Port CE or  
SCE VCC - 0.2V(6)  
Outputs Open  
MIL.  
S
L
90  
90  
260  
215  
85  
85  
260 mA  
215  
(3)  
(Active port), f = fMAX COM’L. S 110 240  
100  
100  
230  
190  
90  
90  
220  
180  
85  
85  
220  
VIN VCC - 0.2V or  
VIN 0.2V  
L
110 200  
180  
NOTES:  
3016 tbl 08  
1. "X" in part number indicates power rating (S or L).  
2. VCC = 5V, Ta = +25°C; guaranteed by device characterization but not production tested.  
3. At f = fMAX, address, control lines (except Output Enable), and SCLK are cycling at the maximum frequency read cycle of 1/tRC.  
4. f = 0 means no address or control lines change.  
5. SCE may transition, but is Low (SCE=VIL) when clocked in by SCLK.  
6. SCE may be 0.2V, after it is clocked in, since SCLK=VIH must be clocked in prior to powerdown.  
7. If one port is enabled (either CE or SCE = Low) then the other port is disabled (SCE or CE = High, respectively). CMOS High > Vcc - 0.2V and  
Low < 0.2V, and TTL High = VIH and Low = VIL.  
DATA RETENTION CHARACTERISTICS OVER ALL TEMPERATURE RANGES  
(L VERSION ONLY) (VLC < 0.2V, VHC > VCC - 0.2V)  
Symbol  
Parameter  
VCC for Data Retention  
Data Retention Current  
Test Condition  
VCC = 2V  
CE = VHC  
Min.  
2.0  
Typ.(1)  
Max.  
Unit  
V
VDR  
ICCDR  
MIL.  
100  
100  
4000  
1500  
µA  
VIN = VHC or = VLC COM’L.  
SCE = VHC(4) when SCLK=  
CMD = VHC  
tCDR(3)  
tR(3)  
Chip Deselect to Data Retention Time  
Operation Recovery Time  
0
ns  
tRC(2)  
ns  
3016 tbl 09  
NOTES :  
1. TA = +25°C, VCC = 2V; guaranteed by device characterization but not production tested.  
2. tRC = Read Cycle Time  
3. This parameter is guaranteed by device characterization, but is not production tested.  
4. To initiate data retention, SCE = VIH must be clocked in.  
6.31  
5
IDT70825S/L  
HIGH-SPEED 8K x 16 SEQUENTIAL ACCESS RANDOM ACCESS MEMORY  
MILITARY AND COMMERCIAL TEMPERATURE RANGES  
DATA RETENTION AND POWER DOWN/UP WAVEFORM (RANDOM AND SEQUENTIAL PORT) (1,2)  
DATA RETENTION MODE  
VDR 2V  
4.5V  
4.5V  
VCC  
t
CDR  
tR  
V
DR  
V
IH  
CE  
V
IH  
SCLK  
SCE  
tPD  
tPU  
ICC  
3016 drw 04  
ISB  
ISB  
NOTES :  
1. SCE is synchronized to the sequential clock input.  
2. CMD > VCC - 0.2V.  
5V  
5V  
893  
893Ω  
DATAOUT  
DATAOUT  
347Ω  
30pF  
347Ω  
5pF  
3016 drw 05  
3016 drw 06  
Figure 2. Output Test Load (for tCLZ, tBLZ, tOLZ, tCHZ,  
tBHZ, tOHZ, tWHZ, tCKHZ, and tCKLZ)  
Including scope and jig.  
Figure 1. AC Output Test Load  
8
7
6
tAA/tCD/tEB  
(Typical, ns)  
5
4
3
2
1
10pF is the I/O  
capacitance of  
this device, and  
30pF is the AC  
Test Load  
AC TEST CONDITIONS  
Input Pulse Levels  
GND to 3.0V  
3ns Max.  
capacitance.  
Input Rise/Fall Times  
-1  
-2  
Input Timing Reference Levels  
Output Reference Levels  
AC Test Load  
1.5V  
20 40 60 80 100 120 140 160 180 200  
1.5V  
3016 drw 07  
CAPACITANCE (pF)  
Figures 1, 2, and 3  
-3  
3016 tbl 10  
Figure 3. Lumped Capacitance Load Typical Derating Curve  
6.31  
6
IDT70825S/L  
HIGH-SPEED 8K x 16 SEQUENTIAL ACCESS RANDOM ACCESS MEMORY  
MILITARY AND COMMERCIAL TEMPERATURE RANGES  
TRUTH TABLE I – RANDOM ACCESS READ AND WRITE (1,2)  
Inputs/Outputs  
MODE  
CE CMD R/W OE LB UB  
I/O0-I/O7  
DATAOUT  
DATAOUT  
High-Z  
I/O8-I/O-  
DATAOUT  
High-Z  
L
H
H
H
H
H
H
H
H
H
L
H
H
H
L
L
L
L
L
L
H
L
Read both Bytes.  
L
Read lower Byte only.  
Read upper Byte only.  
Write to both Bytes.  
L
L
H
L
DATAOUT  
DATAIN  
High-Z  
L
H(3)  
H(3)  
H(3)  
X
L
DATAIN  
DATAIN  
High-Z  
L
L
L
H
L
Write to lower Byte only.  
Write to upper Byte only.  
L
L
H
X
X
H
DATAIN  
High-Z  
H
X
H
X
L
X
X
H
High-Z  
Both Bytes deselected and powered down.  
L
H
High-Z  
High-Z  
Outputs disabled but not powered down.  
L
X
High-Z  
High-Z  
Both Bytes deselected but not powered down.  
Write I/O0-I/O12 to the Buffer Command Register.  
Read contents of the Buffer Command Register via I/O0-I/O12.  
H
H(3) L(4) L(4)  
DATAIN  
DATAIN  
DATAOUT  
H
L
H
L
L(4) L(4) DATAOUT  
3016 tbl 11  
NOTES:  
1. H = VIH, L = VIL, X = Don't Care, and High-Z = High-impedance.  
2. RST, SCE, CNTEN, SR/W, SLD, SSTRT1, SSTRT2, SCLK, SI/O0-SI/O15, EOB1, EOB2, and SOE are unrelated to the random access port control and  
operation.  
3. If OE = VIL during write, tWHZ must be added to the tWP or tCW write pulse width to allow the bus to float prior to being driven.  
4. Byte operations to control register using UB and LB separately are also allowed.  
TRUTH TABLE II – SEQUENTIAL READ (1,2,3,6,8)  
Inputs/Outputs  
MODE  
SCLK SCE CNTEN SR/W EOB1 EOB2 SOE  
SI/O  
L
L
L
L
L
L
H
L
H
H
H
H
H
LOW LAST  
LAST LAST  
LAST LOW  
LAST LAST  
LOW LOW  
L
L
L
L
H
[EOB1]  
Counter Advanced Sequential Read with EOB1 reached.  
[EOB1 - 1] Non-Counter Advanced Sequential Read, without EOB1 reached.  
[EOB2] Counter Advanced Sequential Read with EOB2 reached.  
[EOB2 - 1] Non-Counter Advanced Sequential Read without EOB2 reached.  
H
L
HIGH-Z  
Counter Advanced Sequential Non-Read with EOB1 and EOB2  
reached.  
3016 tbl 12  
TRUTH TABLE III – SEQUENTIAL WRITE (1,2,3,4,5,6,7,8)  
Inputs/Outputs  
MODE  
SCLK SCE CNTEN SR/W EOB1 EOB2 SOE SI/O  
L
L
H
L
L
L
LAST LAST  
LOW LOW  
LAST LAST  
NEXT NEXT  
H
H
X
X
SI/OIN Non-Counter Advanced Sequential Write, without EOB1 or EOB2 reached  
SI/OIN Counter Advanced Sequential Write with EOB1 and EOB2 reached.  
High-Z No Write or Read due to Sequential port Deselect. No counter advance.  
H
H
H
L
X
X
High-Z No Write or Read due to Sequential port Deselect. Conter does advance.  
3016 tbl 13  
NOTES:  
1. H = VIH, L = VIL, X = Don't Care, and High-Z = High-impedance. LOW = VOL.  
2. RST, SLD, SSTRT1, SSTRT2 are continuously HIGH during a sequential write access, other than pointer access operations.  
3. CE, OE, R/W, CMD, LB, UB, and I/O0-I/O15 are unrelated to the sequential port control and operation except for CMD which must not be used concurrently  
with the sequential port operation (due to the counter and register control). CMD should be HIGH (CMD = VIH) during sequential port access.  
4. SOEmust be HIGH (SOE=VIH) prior to write conditions only if the previous cycle is a read cycle, since the data being written must be an input at the rising  
edge of the clock during the cycle in which SR/W = VIL.  
5. SI/OIN refers to SI/O0-SI/O15 inputs.  
6. "LAST" refers to the previous value still being output, no change.  
7. Termination of a write is done on the Low-to-High transition of SCLK if SR/W or SCE is High.  
8. When CLKEN=Low, the address is incremented on the next rising edge before any operation takes place. See the diagrams called "Sequential Counter  
Enable Cycle after Reset, Read (and write) Cycle".  
6.31  
7
IDT70825S/L  
HIGH-SPEED 8K x 16 SEQUENTIAL ACCESS RANDOM ACCESS MEMORY  
MILITARY AND COMMERCIAL TEMPERATURE RANGES  
TRUTH TABLE IV – SEQUENTIAL ADDRESS POINTER OPERATIONS (1,2,3,4,5)  
Inputs/Outputs  
SCLK SLD SSTRT1 SSTRT2 SOE  
MODE  
Start address for Buffer #1 loaded into Address Pointer.  
Start address for Buffer #2 loaded into Address Pointer.  
H
H
L
L
H
H
H
L
X
X
H
H(6) Data on SI/O0-SI/O12 loaded into Address Pointer.  
NOTES:  
3016 tbl 14  
1. H = VIH, L = VIL, X = Don't Care, and High-Z = High-impedance.  
2. RST is continuously HIGH. The conditions of SCE, CNTEN, and SR/W are unrelated to the sequential address pointer operations.  
3. CE, OE, R/W, LB, UB, and I/O0-I/O15 are unrelated to the sequential port control and operation, except for CMD which must not be used concurrently with  
the sequential port operation (due to the counter and register control). CMD should be HIGH (CMD = VIH) during sequential port access.  
4. Address pointer can also change when it reaches an end of buffer address. See Flow Control Bits table.  
5. When SLD is sampled LOW, there is an internal delay of one cycle before the address pointer changes. The state of CNTEN is ignored and the address  
is not incremented during the two cycles.  
6. SOE may be LOW with SCE deselect or in the write mode using SR/W.  
ADDRESS POINTER LOAD CONTROL (SLD)  
address location contained in the data-in register. SSTRT1,  
SSTRT2 may not be low while SLD is LOW, or during the cycle  
following SLD. The SSTRT1 and SSTRT2 require only one  
clock cycle, since these addresses are pre-loaded in the  
registers already.  
In SLD mode, there is an internal delay of one cycle before  
the address pointer changes in the cycle followingSLD. When  
SLD is LOW, data on the inputs SI/O0-SI/O12 is loaded into a  
data-in register on the LOW-to-HIGH transition of SCLK. On  
the cycle following SLD, the address pointer changes to the  
SLD MODE (1)  
SLD  
(1)  
SCLK  
B
A
C
ADDRIN  
DATAOUT  
SI/O0-11  
SSTRT1,2  
3016 drw 08  
NOTE:  
1. At SCLK edge (A), SI/O0-SI/O12 data is loaded into a data-in register. At edge (B), contents of the data-in register are loaded into the address pointer (i.e.  
address pointer changes). At SCLK edge (A), SSTRT1 and SSTRT2 must be high to ensure for proper sequential address pointer loading. At SCLK edge  
(B), SLD and SSTRT1,2 must be high to ensure for proper sequential address pointer loading. For SSTRT1 or SSTRT2, the data to be read will be ready  
for edge (B), while data will not be ready at edge (B) when SLD is used, but will be ready at edge (C).  
SEQUENTIAL LOAD OF ADDRESS INTO POINTER/COUNTER (1)  
15  
14  
H
13  
H
12 ------------------------------------------------------------------------------------------------------------ 0  
Address Loaded into Pointer  
H
LSB SI/O BITS  
MSB  
3016 drw 09  
NOTE:  
1. "H" = VIH for the SI/O intput state.  
6.31  
8
IDT70825S/L  
HIGH-SPEED 8K x 16 SEQUENTIAL ACCESS RANDOM ACCESS MEMORY  
MILITARY AND COMMERCIAL TEMPERATURE RANGES  
Reset (RST)  
Setting RST LOW resets the control state of the SARAM.  
RST functions asynchronously of SCLK, (i.e. not registered).  
The default states after a reset operation are as follows:  
Register  
Address Pointer  
Contents  
0
EOB Flags  
Cleared to High state  
BUFFER CHAINING  
Buffer Flow Mode  
Start Address Buffer #1  
End Address Buffer #1  
Start Address Buffer #2  
End Address Buffer #2  
Registered State  
0
(1)  
4095 (4K)  
4096 (4K+1)  
8191 (8K)  
SCE = VIH, SR/W = VIL  
3016 tbl 15  
BUFFER COMMAND MODE (CMD)  
Buffer Command Mode (CMD) allows the random access reading and clearing the status of the EOB flags. Seven  
port to control the state of the two buffers. Address pins A0-A2 different CMD cases are available depending on the condi-  
and I/O pins I/O0-I/O12 are used to access the start of buffer tions of A0-A2 and R/W. Address bits A3-A12 and data I/O bits  
and the end of buffer addresses and to set the flow control I/O13-I/O15 are not used during this operation.  
mode of each buffer. The Buffer Command Mode also allows  
RANDOM ACCESS PORT CMD MODE(1)  
Case #  
A2-A0  
000  
R/W  
0 (1)  
0 (1)  
0 (1)  
0 (1)  
0 (1)  
0
DESCRIPTIONS  
Write (read) the start address of Buffer #1 through I/O0-I/O12.  
Write (read) the end address of Buffer #1 through I/O0-I/O12.  
Write (read) the start address of Buffer #2 through I/O0-I/O12.  
Write (read) the end address of Buffer #2 through I/O0-I/O12.  
Write (read) flow control register  
1
2
3
4
5
6
7
8
001  
010  
011  
100  
101  
Write only – clear EOB1 and/or EOB2 flag  
Read only – flag status register  
101  
1
110/111  
(X)  
(Reserved)  
3016 tbl 16  
NOTE:  
1. R/W input "0(1)" indicates a write(0) or read(1) occurring with the same address input.  
CASES 1 THROUGH 4: START AND END OF BUFFER REGISTER DESCRIPTION(1,2)  
15  
H
14  
H
13  
H
12 ------------------------------------------------------------------------------------------------------------ 0  
Address Loaded into Buffer  
MSB  
LSB I/O BITS  
NOTES:  
3016 drw 10  
1. "H" = VOH for I/O in the output state and "Don't Cares" for I/O in the input state.  
2. A write into the buffer occurs when R/W= VIL and a read when R/W= VIH. EOB1/SOB1 and EOB2/SOB2 are chosen through address A0-A2 while CMD  
= VIL and CE = VIH.  
CASE 5: BUFFER FLOW MODES  
of the other buffer. In STOP mode, the address pointer stops  
incrementing after it reaches the end of the buffer. In LINEAR  
mode, the address pointer ignores the end of buffer address  
and increments past it, but sets the EOB flag. MASK mode is  
the same as LINEAR mode except EOB flags are not set.  
Within the SARAM, the user can designate one of four  
buffer flow modes for each buffer. Each buffer flow mode  
defines a unique set of actions for the sequential port address  
pointerandEOBflags.InBUFFERCHAININGmode,afterthe  
address pointer reaches the end of the buffer, it sets the  
corresponding EOB flag and continues from the start address  
6.31  
9
IDT70825S/L  
HIGH-SPEED 8K x 16 SEQUENTIAL ACCESS RANDOM ACCESS MEMORY  
MILITARY AND COMMERCIAL TEMPERATURE RANGES  
FLOW CONTROL REGISTER DESCRIPTION(1,2)  
0
15  
MSB  
H
H
H
H
H
H
H
H
H
H
4
3
2
1
0
H
LSB I/O BITS  
Counter Release  
(STOP Mode Only)  
Buffer #1 flow control  
NOTES:  
Buffer #2 flow control  
3016 drw 11  
1. "H" = VOH for I/O in the output state and "Don't Cares"' for I/O in the input state.  
2. Writing a 0 into bit 4 releases the address pointer after it is stopped due to the STOP mode and allows sequential write operations to resume. This occurs  
asynchronously of SCLK, and therefore caution should be taken. The pointer will be at address EOB+2 on the next rising edge of SCLK that is enabled  
by CNTEN. The pointer is also released by RST, SLD, SSTRT1 and SSTRT2 operations.  
FLOW CONTROL BITS  
Flow Control Bits  
Bit 1 & Bit 0  
Mode  
(Bit 3 & Bit 2)  
Functional Description  
00  
01  
BUFFER  
CHAINING  
EOB1 (EOB2) is asserted (Active Low output) when the pointer matches the end address of Buffer  
#1 (Buffer #2). The pointer value is changed to the start address of Buffer #2 (Buffer #1).(1,3)  
STOP  
EOB1 (EOB2) is asserted when the pointer matches the end address of Buffer #1 (Buffer #2).  
The address pointer will stop incrementing when it reaches the next address (EOB address + 1), if  
CNTEN is Low on the next clock's rising edge. Otherwise, the address pointer will stop incrementing on  
EOB. Sequential write operations are inhibited after the address pointer is stopped. The pointer can be  
released by bit 4 of the flow control register. (1,2,4)  
10  
11  
LINEAR  
MASK  
EOB1 (EOB2) is asserted when the pointer matches the end address of Buffer #1 (Buffer #2).  
The pointer keeps incrementing for further operations.(1)  
EOB1 (EOB2) is not asserted when the pointer reaches the end address of Buffer #1 (Buffer #2),  
although the flag status bits will be set. The pointer keeps incrementing for further operations.  
3016 tbl 17  
NOTES:  
1. EOB1 and EOB2 may be asserted (set) at the same time, if both end addresses have been loaded with the same value.  
2. CMD Flow Control bits are unchanged, the count does not continue advancement.  
3. If EOB1 and EOB2 are equal, then the pointer will jump to the start of Buffer #1.  
4. If counter has stopped at EOBx and was released by bit 4 of the flow control register, CNTEN must be LOW on the next rising edge of SCLK otherwise  
the flow control will remain in the STOP mode.  
CASES 6 AND 7: FLAG STATUS REGISTER BIT DESCRIPTION(1)  
0
0
15  
MSB  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
1
LSB I/O BITS  
End of buffer flag for Buffer #1  
End of buffer flag for Buffer #2  
NOTE:  
1. "H" = VOH for I/O in the output state and "Don't Cares" for I/O in the input state.  
3016 drw 12  
CASE 6: FLAG STATUS REGISTER WRITE CONDITIONS(1)  
Flag Status Bit 0, (Bit 1)  
Functional Description  
0
Clears Buffer Flag EOB1, (EOB2).  
No change to the Buffer Flag.(2)  
1
NOTES:  
3016 tbl 18  
1. Either bit 0 or bit 1, or both bits, may be changed simultaneously. One may be cleared while the second is left alone or cleared.  
2. Remains as it was prior to the CMD operation, either HIGH (1) or LOW (0).  
CASE 7: FLAG STATUS REGISTER READ CONDITIONS  
Flag Status Bit 0, (Bit 1) Functional Description  
0
EOB1 (EOB2) flag has not been set, the  
Pointer has not reached the End of the  
Buffer.  
1
EOB1 (EOB2) flag has been set, the  
PointerhasreachedtheEndoftheBuffer.  
3016 tbl 19  
6.31  
10  
IDT70825S/L  
HIGH-SPEED 8K x 16 SEQUENTIAL ACCESS RANDOM ACCESS MEMORY  
MILITARY AND COMMERCIAL TEMPERATURE RANGES  
CASES 8 AND 9: (RESERVED)  
Illegal operations. All outputs will be HIGH on the I/O bus during a READ.  
RANDOM ACCESS PORT: AC ELECTRICAL CHARACTERISTICS OVER THE  
OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE (2,3)  
IDT70825X20  
Com'l. Only  
IDT70825X25  
Com'l. Only  
IDT70825X35 IDT70825X45  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
tRC  
tAA  
Read Cycle Time  
Address Access Time  
20  
3
20  
20  
20  
10  
10  
10  
9
25  
3
25  
25  
25  
10  
12  
12  
11  
25  
35  
3
35  
35  
35  
15  
15  
15  
15  
35  
45  
3
45  
45  
45  
20  
15  
15  
15  
45  
ns  
ns  
tACE  
tBE  
Chip Enable Access Time  
Byte Enable Access Time  
Output Enable Access Time  
Output Hold from Address Change  
Chip Select Low-Z Time(1)  
Byte Enable Low-Z Time(1)  
Output Enable Low-Z Time(1)  
Chip Select High-Z Time(1)  
Byte Enable High-Z Time(1)  
Output Enable High-Z Time(1)  
Chip Select Power-Up Time  
Chip Select Power-Down Time  
ns  
ns  
tOE  
ns  
tOH  
ns  
tCLZ  
tBLZ  
tOLZ  
tCHZ  
tBHZ  
tOHZ  
tPU  
3
3
3
3
ns  
3
3
3
3
ns  
2
2
2
2
ns  
0
0
0
0
ns  
ns  
ns  
20  
ns  
tPD  
ns  
3016 tbl 20  
NOTES:  
1. Transition measured at ±200mV from steady state. This parameter is guaranteed with the AC Test Load (Figure 2) by device characterization, but is not  
production tested.  
2. "X" in part number indicates power rating (S or L).  
3. CMD access follows standard timing listed for both read and write accesses, ( CE = VIH when CMD = VIL ) or ( CMD = VIH when CE = VIL ).  
RANDOM ACCESS PORT: AC ELECTRICAL CHARACTERISTICS  
OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE (2,4)  
IDT70825X20  
Com'l. Only  
IDT70825X25  
Com'l. Only  
IDT70825X35  
IDT70825X45  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max. Unit  
WRITE CYCLE  
tWC  
tCW  
Write Cycle Time  
20  
15  
15  
0
10  
25  
20  
20  
0
12  
35  
25  
25  
0
15  
45  
30  
30  
0
15  
ns  
ns  
Chip Select to End-of-Write  
Address Valid to End-of-Write(3)  
Address Set-up Time  
Write Pulse Width(3)  
Byte Enable Pulse Width(3)  
tAW  
ns  
tAS  
ns  
tWP  
13  
15  
0
20  
20  
0
25  
25  
0
30  
30  
0
ns  
tBP  
ns  
tWR  
Write Recovery Time  
ns  
tWHZ  
tDW  
Write Enable Output High-Z Time(1)  
Data Set-up Time  
13  
0
15  
0
20  
0
25  
0
ns  
ns  
tDH  
Data Hold Time  
ns  
tOW  
Output Active from End-of-Write  
3
3
3
3
ns  
3016 tbl 21  
NOTES:  
1. Transition measured at ±200mV from steady state. This parameter is guaranteed with the AC Test Load (Figure 2) by device characterization, but is not  
production tested.  
2. "X" in part number indicates power rating (S or L).  
3. OE is continuously HIGH, OE = VIH. If during the R/W controlled write cycle the OE is LOW, tWP must be greater or equal to tWHZ + tDW to allow the I/O  
drivers to turn off and on the data to be placed on the bus for the required tDW. If OEis HIGH during the R/W controlled write cycle, this requirement does  
not apply and the minimum write pulse is the specified tWP. For the CE controlled write cycle, OE may be LOW with no degradation to tCW timing.  
4. CMD access follows standard timing listed for both read and write accesses, ( CE = VIH when CMD = VIL ) or ( CMD = VIH when CE = VIL ).  
6.31  
11  
IDT70825S/L  
HIGH-SPEED 8K x 16 SEQUENTIAL ACCESS RANDOM ACCESS MEMORY  
MILITARY AND COMMERCIAL TEMPERATURE RANGES  
RANDOM ACCESS PORT WAVEFORM: READ CYCLES (1,2)  
tRC  
ADDR  
tAA  
tOH  
(2)  
ACS  
t
tCHZ  
t
CLZ  
tBHZ  
t
BE  
tBLZ  
tOE  
tOHZ  
tOLZ  
I/OOUT  
Valid Data Out  
3016 drw 13  
NOTES:  
1. R/W is HIGH for Read cycle.  
2. Address valid prior to or coincident with CE transition LOW; otherwise tAA is the limiting parameter.  
RANDOM ACCESS PORT WAVEFORM: READ CYCLES BUFFER COMMAND MODE  
t
RC  
ADDR  
t
AA  
t
OH  
(1)  
tACS  
t
CHZ  
t
CLZ  
tBHZ  
t
BE  
t
BLZ  
t
OE  
tOHZ  
t
OLZ  
I/OOUT  
Valid Data Out  
3016 drw 14  
NOTE:  
1. CE = VIH when CMD = VIL.  
6.31  
12  
IDT70825S/L  
HIGH-SPEED 8K x 16 SEQUENTIAL ACCESS RANDOM ACCESS MEMORY  
MILITARY AND COMMERCIAL TEMPERATURE RANGES  
RANDOM ACCESS PORT WAVEFORM: WRITE CYCLE NO.1 (R/W CONTROLLED TIMING) (1,6)  
tWC  
ADDR  
tAW  
R/W  
(3)  
(2)  
t
WR  
tWP  
t
AS  
(8)  
(5)  
CE, LB, UB  
tDH  
tDW  
I/OIN  
Valid Data In  
OE  
t
OHZ  
tWHZ  
Data Out(4)  
Data Out(4)  
I/OOUT  
t
ACS  
BE  
t
OW  
t
3016 drw 15  
RANDOM ACCESS PORT WAVEFORM: WRITE CYCLE NO.2  
(CE, LB, AND/OR UB CONTROLLED TIMING) (1,6,7)  
tWC  
ADDR  
tAW  
(8)  
(5)  
CE, LB, UB  
t
AS  
(3)  
t
WR  
(2)  
(2)  
t
t
CW  
BP  
R/W  
tDW  
tDH  
I/OIN  
Valid Data  
3016 drw 16  
NOTES:  
1. R/W, CE, or LB and UB must be inactive during all address transitions.  
2. A write occurs during the overlap of R/W = VIL, CE = VIL and LB = VIL and/or UB = VIL.  
3. tWR is measured from the earlier of CE (and LB and/or UB) or R/W going HIGH to the end of the write cycle.  
4. During this period, I/O pins are in the output state and the input signals must not be applied.  
5. If the CE LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the High-impedance state.  
6. OE is continuously HIGH, OE = VIH. If during the R/W controlled write cycle the OE is LOW, tWP must be greater or equal to tWHZ + tDW to allow the I/O  
drivers to turn off and on the data to be placed on the bus for the required tDW. If OEis HIGH during the R/Wcontrolled write cycle, this requirement does  
not apply and the minimum write pulse is the specified tWP. For the CE controlled write cycle, OE may be LOW with no degregation to tCW timing.  
7. I/OOUT is never enabled, therefore the output is in High-Z state during the entire write cycle.  
8. CMD access follows the standard CE access described above. If CMD = VIL, then CE must = VIH or, when CE = VIL, CMD must = VIH.  
6.31  
13  
IDT70825S/L  
HIGH-SPEED 8K x 16 SEQUENTIAL ACCESS RANDOM ACCESS MEMORY  
MILITARY AND COMMERCIAL TEMPERATURE RANGES  
SEQUENTIAL PORT: AC ELECTRICAL CHARACTERISTICS OVER THE  
OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE(2)  
IDT70825X20 IDT70825X25 IDT70825X35 IDT70825X45  
Com'l. Only Com'l. Only  
Symbol  
Parameter  
Min.  
Max. Min.  
Max.  
Min.  
Max.  
Min. Max. Unit  
READ CYCLE  
tCYC  
tCH  
Sequential Clock Cycle Time  
Clock Pulse High  
25  
10  
10  
5
8
30  
12  
12  
5
10  
11  
25  
14  
15  
40  
15  
15  
6
15  
15  
35  
17  
18  
50  
18  
18  
6
20  
15  
45  
20  
23  
ns  
ns  
tCL  
Clock Pulse Low  
ns  
tES  
Count Enable and Address Pointer Set-up Time  
Count Enable and Address Pointer Hold Time  
Output Enable to Data Valid  
Output Enable Low-Z Time(1)  
Output Enable High-Z Time(1)  
Clock to Valid Data  
ns  
tEH  
2
2
2
2
ns  
tSOE  
tOLZ  
tOHZ  
tCD  
2
2
2
ns  
2
9
ns  
3
3
3
3
ns  
20  
12  
13  
ns  
tCKHZ  
tCKLZ  
tEB  
Clock High-Z Time(1)  
Clock Low-Z Time(1)  
ns  
ns  
Clock to EOB  
ns  
3016 tbl 22  
NOTES:  
1. Transition measured at ±200mV from steady state. This parameter is guaranteed with the AC Test Load (Figure 2) by device characterization, but is not  
production tested.  
2. "X" in part numbers indicates power rating (S or L).  
SEQUENTIAL PORT: AC ELECTRICAL CHARACTERISTICS  
OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE(1)  
IDT70825X20  
Com'l. Only  
IDT70825X25  
Com'l. Only  
IDT70825X35  
IDT70825X45  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max. Unit  
WRITE CYCLE  
tCYC  
tFS  
Sequential Clock Cycle Time  
Flow Restart Time  
25  
13  
5
30  
15  
5
40  
20  
6
50  
20  
6
ns  
ns  
ns  
ns  
ns  
ns  
tWS  
Chip Select and Read/Write Set-up Time  
Chip Select and Read/Write Hold Time  
Input Data Set-up Time  
tWH  
tDS  
2
2
2
2
5
5
6
6
tDH  
Input Data Hold Time  
2
2
2
2
NOTE:  
3016 tbl 23  
1. "X" in part numbers indicates power rating (S or L).  
SEQUENTIAL PORT: AC ELECTRICAL CHARACTERISTICS  
OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE(1)  
IDT70825X20  
Com'l. Only  
IDT70825X25  
Com'l. Only  
IDT70825X35  
IDT70825X45  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
RESET CYCLE  
tRSPW  
tWERS  
tRSRC  
tRSFV  
Reset Pulse Width  
13  
10  
10  
15  
15  
10  
10  
20  
20  
10  
10  
25  
20  
10  
10  
25  
ns  
ns  
Write Enable High to Reset High  
Reset High to Write Enable Low  
Reset High to Flag Valid  
ns  
ns  
NOTE:  
3016 tbl 24  
1. "X" in part numbers indicates power rating (S or L).  
6.31  
14  
IDT70825S/L  
HIGH-SPEED 8K x 16 SEQUENTIAL ACCESS RANDOM ACCESS MEMORY  
MILITARY AND COMMERCIAL TEMPERATURE RANGES  
SEQUENTIAL PORT WAVEFORM: WRITE, POINTER LOAD, NON-INCREMENTING READ  
tCYC  
tCH  
t
CL  
SCLK  
CNTEN  
SLD  
tEH  
tES  
(2)  
(3)  
t
EH  
(1)  
t
ES  
t
DS  
t
DH  
HIGH IMPEDANCE  
SI/OIN  
Dx  
A0  
t
t
WS  
WS  
t
WS  
t
WH  
t
WH  
SR/W  
SCE  
tWS  
tWH  
t
WH  
t
tCCKSHZZ  
tCD  
SOE  
t
SOE  
t
OLZ  
tOHZ  
SI/OOUT  
D0  
D0  
D0  
3016 drw 17  
tCKLZ  
SEQUENTIAL PORT WAVEFORM: WRITE, POINTER LOAD, BURST READ  
t
CYC  
t
CH  
t
CL  
SCLK  
tEH  
tES  
(3)  
CNTEN  
SLD  
(2)  
t
EH  
(1)  
t
ES  
t
DS  
t
DS  
tDH  
tDH  
HIGH IMPEDANCE  
SI/OIN  
Dx  
A0  
D2  
tWS  
tWS  
t
WH  
tWH  
SR/W  
SCE  
tWS  
WS  
t
tWH  
t
WH  
tCD  
SOE  
tSOE  
t
OHZ  
tOLZ  
(2)  
SI/OOUT  
D0  
D1  
t
CKLZ  
3016 drw 18  
NOTES:  
1. If SLD = VIL, then address will be clocked in on the SCLK's rising edge.  
2. If CNTEN = VIH for the SCLK's rising edge, the internal address counter will not advance.  
3. Pointer is not incremented on cycle immediately following SLD even if CNTEN is LOW.  
6.31  
15  
IDT70825S/L  
HIGH-SPEED 8K x 16 SEQUENTIAL ACCESS RANDOM ACCESS MEMORY  
MILITARY AND COMMERCIAL TEMPERATURE RANGES  
SEQUENTIAL PORT WAVEFORM: READ STRT/EOB FLAG TIMING  
t
CYC  
t
CH  
tCL  
SCLK  
t
EH  
t
ES  
(4)  
(2)  
CNTEN  
t
ES  
t
EH  
(1)  
SSTRT1/2  
t
DS  
t
DH  
HIGH IMPEDANCE  
SI/OIN  
Dx  
D3  
t
WS  
t
WS  
t
t
WH  
t
WH  
SR/W  
SCE  
t
WS  
t
WS tWH  
WH  
(3)  
t
CD  
t
SOE  
SOE  
t
OHZ  
t
OLZ  
(2)  
(5)  
SI/OOUT  
D0  
D1  
D2  
tCKLZ  
EOB1/2  
t
EB  
3016 drw 19  
NOTES:  
1. If SSTRT1 or SSTRT2 = VIL, then address will be clocked in on the SCLK's rising edge.  
2. If CNTEN = VIH for the SCLK's rising edge, the internal address counter will not advance.  
3. SOE will control the output and should be High on Power-Up. If SCE= VIL and is clocked in while SR/W = VIH, the data addressed will be read out within  
that cycle. If SCE = VIL and is clocked in while SR/W= VIL, the data addressed will be written to if the last cycle was a Read. SOEmay be used to control  
the bus contention and permit a Write on this cycle.  
4. Unlike SLD case, CNTEN is not disabled on cycle immediately following SSTRT.  
5. If SR/W = VIL, data would be written to D0 again since CNTEN = VIH.  
6. SOE = VIL makes no difference at this point since the SR/W = VIL disables the output until SR/W = VIH is clocked in on the next rising clock edge.  
6.31  
16  
IDT70825S/L  
HIGH-SPEED 8K x 16 SEQUENTIAL ACCESS RANDOM ACCESS MEMORY  
MILITARY AND COMMERCIAL TEMPERATURE RANGES  
SEQUENTIAL PORT WAVEFORM: WRITE CYCLES  
tCYC  
tCH  
tCL  
SCLK  
t
EH  
tEH  
(4)  
tES  
tES  
(3)  
CNTEN  
SLD  
t
EH  
(1)  
tES  
t
DS  
t
DS  
tDS  
t
DH  
t
DH  
tDH  
HIGH IMPEDANCE  
SI/OIN  
Dx  
A0  
D1  
D0  
tWS  
tWS  
tWH  
t
WH  
(4)  
SR/W  
SCE  
t
WS  
tWS  
tWH  
tWH  
tCKHZ  
tCD  
(5)  
SOE  
tOHZ  
HIGH IMPEDANCE  
SI/OOUT  
D0  
D0  
3016 drw 20  
t
CKLZ  
SEQUENTIAL PORT WAVEFORM: BURST WRITE CYCLES  
tCYC  
tCH  
tCL  
SCLK  
tEH  
tES  
(3)  
(2)  
CNTEN  
SLD  
tES  
tEH  
(1)  
tDS  
t
DS  
t
DH  
tDH  
D1  
D0  
SI/OIN  
Dx  
A0  
D2  
t
WS  
t
WS  
tWH  
tWH  
SR/  
W
(5)  
tWS  
tWS  
tWH  
tWH  
SCE  
SOE  
(5)  
tCKLZ  
tCD  
HIGH IMPEDANCE  
SI/OOUT  
D2  
30916 drw 21  
NOTES :  
1. If SLD = VIL, then address will be clocked in on the SCLK's rising edge.  
2. If CNTEN = VIH for the SCLK's rising edge, the internal address counter will not advance.  
3. Pointer is not incrementing on cycle immediately following SLD even if CNTEN is Low.  
4. If SR/W = VIL, data would be written to D0 again since CNTEN = VIH.  
5. SOE = VIL makes no difference at this point since the SR/W = VIL disables the output until SR/W = VIH is clocked in on the next rising clock edge.  
6.31  
17  
IDT70825S/L  
HIGH-SPEED 8K x 16 SEQUENTIAL ACCESS RANDOM ACCESS MEMORY  
MILITARY AND COMMERCIAL TEMPERATURE RANGES  
SEQUENTIAL PORT WAVEFORM: WRITE CYCLES (STRT/EOB FLAG TIMING)  
tCH  
tCL  
SCLK  
tEH  
t
ES  
(2)  
(4)  
CNTEN  
tES  
tEH  
(1)  
SSTRT1/2  
tDS  
t
DH  
HIGH IMPEDANCE  
D0  
D1  
Dx  
D2  
D3  
SI/OIN  
tWS  
t
WS  
t
WH  
tWH  
(5)  
SR/W  
SCE  
tWS  
tWS  
tWH  
t
WH  
(3)  
(6)  
tCKLZ  
SOE  
tCD  
HIGH IMPEDANCE  
D3  
SI/OOUT  
t
EB  
EOB1/2  
3016 drw 22  
NOTES:  
1. If SSTRT1 or SSTRT2 = VIL, then address will be clocked in on the SCLK's rising edge.  
2. If CNTEN = VIH for the SCLK's rising edge, the internal address counter will not advance.  
3. SOE will control the output and should be High on Power-Up. If SCE= VIL and is clocked in while SR/W = VIH, the data addressed will be read out within  
that cycle. If SCE = VIL and is clocked in while SR/W= VIL, the data addressed will be written to if the last cycle was a Read. SOE may be used to control  
the bus contention and permit a Write on this cycle.  
4. Unlike SLD case, CNTEN is not disabled on cycle immediately following SSTRT.  
5. If SR/W = VIL, data would be written to D0 again since CNTEN = VIH.  
6. SOE = VIL makes no difference at this point since the SR/W = VIL disables the output until SR/W = VIH is clocked in on the next rising clock edge.  
6.31  
18  
IDT70825S/L  
HIGH-SPEED 8K x 16 SEQUENTIAL ACCESS RANDOM ACCESS MEMORY  
MILITARY AND COMMERCIAL TEMPERATURE RANGES  
SEQUENTIAL COUNTER ENABLE CYCLE AFTER RESET, WRITE CYCLE(2, 4, 6)  
SCLK  
(2)  
D0  
D1  
D2  
D3  
D4  
SI/OIN  
3016 drw 23  
SEQUENTIAL COUNTER ENABLE CYCLE AFTER RESET, READ CYCLE(2, 4)  
SCLK  
(3)  
SR
(5)  
D0(5)  
D3  
D1  
D2  
SI/OOUT  
3016 drw 24  
NOTES:  
1. 'D0' represents data input for Address=0, 'D1' represents data input for Address=1, etc.  
1. If CNTEN=VIL then 'D1' would be written into 'A1' at this point.  
3. Data output is available at a tCD after the SR/W=VIH is clocked. The RST sets SR/W=Low internally and therefore disables the output until the next clock.  
4. SCE=VIL throughout all cycles.  
5. If CNTEN=VIL then 'D1' would be clocked out (read) at this point.  
6. SR/W=VIL.  
6.31  
19  
IDT70825S/L  
HIGH-SPEED 8K x 16 SEQUENTIAL ACCESS RANDOM ACCESS MEMORY  
MILITARY AND COMMERCIAL TEMPERATURE RANGES  
RANDOM ACCESS PORT WAVEFORM: RESET TIMING  
t
RSPW  
t
RSRC  
, S
or  
(4)  
)
t
WERS  
t
RSFV  
1/2  
Flag Valid  
3016 drw 25  
RANDOM ACCESS PORT WAVEFORM: RESTART TIMING OF SEQUENTIAL PORT (1)  
0.5 x tCYC  
tFS  
SCLK  
R
(2)  
2-5ns  
6-7ns  
CLR(3)  
Block  
3016 drw 26  
(Internal Signal)  
NOTES:  
1. The sequential port is in the STOP mode and is being restarted from the random port by the Bit 4 Counter Release (see Case 5).  
2. "0" is written to Bit 4 from the random port at address [A2 - A0] = 100, when CMD = VIL and CE = VIH. The device is in the Buffer Command Mode  
(see Case 5).  
3. CLR is an internal signal only and is shown for reference only.  
4. Sequential port must also prohibit SR/W or SCE from being low for tWERS and tRSRC periods, or SCLK must not toggle from Low-to-High until after tRSRC.  
6.31  
20  
IDT70825S/L  
HIGH-SPEED 8K x 16 SEQUENTIAL ACCESS RANDOM ACCESS MEMORY  
MILITARY AND COMMERCIAL TEMPERATURE RANGES  
ORDERING INFORMATION  
XXXXX  
A
999  
A
A
IDT  
Device  
Type  
Power  
Speed  
Package  
Process/  
Temperature  
Range  
Commercial (0°C to +70°C)  
Blank  
B
Military (–55°C to +125°C)  
Compliant to MIL-STD-883, Class B  
G
PF  
84-pin PGA (G84-3)  
80-pin TQFP (PN80-1)  
20  
25  
35  
45  
Commercial Only  
Commercial Only  
Speed in nanoseconds  
S
L
Standard Power  
Low Power  
70825 128K (8K x 16) Sequential Access Random Access  
Memory  
3016 drw 27  
6.31  
21  

相关型号:

IDT70825L35PFG8

Standard SRAM, 8KX16, 35ns, CMOS, PQFP80, TQFP-80
IDT

IDT70825L45G

HIGH-SPEED 8K x 16 SEQUENTIAL ACCESS RANDOM ACCESS MEMORY (SARAM⑩)
IDT

IDT70825L45GB

HIGH-SPEED 8K x 16 SEQUENTIAL ACCESS RANDOM ACCESS MEMORY (SARAM⑩)
IDT

IDT70825L45GG

Standard SRAM, 8KX16, 45ns, CMOS, CPGA84, PGA-84
IDT

IDT70825L45GGB

Standard SRAM, 8KX16, 45ns, CMOS, CPGA84, PGA-84
IDT

IDT70825L45PF

HIGH-SPEED 8K x 16 SEQUENTIAL ACCESS RANDOM ACCESS MEMORY (SARAM⑩)
IDT

IDT70825L45PF8

Multi-Port SRAM, 8KX16, 45ns, CMOS, PQFP80, TQFP-80
IDT

IDT70825L45PFB

HIGH-SPEED 8K x 16 SEQUENTIAL ACCESS RANDOM ACCESS MEMORY (SARAM⑩)
IDT

IDT70825L45PFBG

Standard SRAM, 8KX16, 45ns, CMOS, PQFP80, TQFP-80
IDT

IDT70825L45PFG

Standard SRAM, 8KX16, 45ns, CMOS, PQFP80, TQFP-80
IDT

IDT70825L45PFG8

Multi-Port SRAM, 8KX16, 45ns, CMOS, PQFP80, TQFP-80
IDT

IDT70825S

HIGH-SPEED 8K x 16 SEQUENTIAL ACCESS RANDOM ACCESS MEMORY (SARAM⑩)
IDT