F2480EVBI [IDT]

Broadband RF Analog VGA 400 to 3000 MHz;
F2480EVBI
型号: F2480EVBI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Broadband RF Analog VGA 400 to 3000 MHz

文件: 总34页 (文件大小:4063K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Broadband RF Analog VGA  
400 to 3000 MHz  
F2480  
Datasheet  
Description  
Features  
The F2480 is a 400 to 3000 MHz RF Analog Variable Gain  
Amplifier (AVGA) that can be used in receivers, transmitters and  
other applications. Either the amplifier or voltage variable  
attenuator (VVA) can be configured as the first stage in the  
cascade.  
400 to 3000 MHz (Amplifier Range)  
50 to 6000 MHz (Attenuator Range)  
12dB typical cascaded max gain  
36dB continuous gain range  
Excellent linearity +41.5dBm OIP3  
Noise Figure 4.3dB  
The F2480 RF AVGA provides 12dB typical maximum cascade  
gain (no attenuation) with 4.3dB noise figure (amplifier as first  
stage) and 36dB gain adjustment designed to operate with a  
single +5V supply. Nominally, the amplifier offers +41.5dBm  
output IP3 using 106mA of ICC.  
ICC = 106mA  
1.2mA Amplifier Standby Current  
Biꢀdirectional attenuator RF ports  
This device is packaged in a 5 x 5 mm, 32ꢀpin TQFN with 50ꢁ  
singleꢀended RF input and RF output impedances for ease of  
integration into the signalꢀpath lineup.  
Positive amplifier gain slope vs. frequency to counteract  
system PCB loss.  
VMODE pin allows either positive or negative attenuation control  
response  
LinearꢀinꢀdB attenuation characteristic  
4 RF Port pinout supporting multiple lineup configurations  
50ꢂ input and output impedances  
Competitive Advantage  
The F2480 RF AVGA provides very highꢀperformance by  
combining a silicon VVA & a Zero-Distortion™ RF amplifier in a  
single, compact TQFN package. Because of the superb VVA IP3  
performance over its full attenuation range, the VVA can be  
placed after the amplifier while yielding the desired cascaded  
OIP3 performance. Utilizing IDT’s technology, the resultant RF  
AVGA provides +41.5dBm OIP3 performance at 900MHz. The  
device is internally matched so there is no need to optimize  
external matching elements.  
Broadband, Internally Matched  
5 x 5 mm, 32ꢀpin TQFN package  
Block Diagram  
Figure 1. Block Diagram  
RFAMP_OUT ATTN_RF1  
Typical Applications  
Multiꢀmode, Multiꢀcarrier Receivers  
PCS1900 Base Stations  
DCS1800 Base Stations  
WiMAX and LTE Base Stations  
UMTS/WCDMA 3G Base Stations  
PHS/PAS Base Stations  
Point to Point Infrastructure  
Public Safety Infrastructure  
Broadband Repeaters  
RFAMP_IN  
Band_Select  
STBY  
VCTRL  
Bias  
Control  
VMODE  
VCC  
2
IBIAS  
TM  
Zero-DistortionTM  
GPS Receivers  
Distributed Antenna Systems  
Cable Infrastructure  
ATTN_RF2  
Digital Radio  
© 2017 Integrated Device Technology, Inc.  
1
March23,2017  
F2480 Datasheet  
Pin Assignments  
Figure 2. Pin Assignments for 5 x 5 x 0.75 mm - TQFN Package – Top View  
NC  
GND  
24  
NC  
NC  
1
2
23  
22  
21  
RFAMP_IN  
3
4
5
6
VMODE  
VCC  
EP  
GND  
NC  
VCTRL  
NC  
20  
19  
18  
17  
NC  
Bias  
Ctrl  
NC  
NC  
NC  
7
8
NC  
© 2017 Integrated Device Technology, Inc.  
2
March23,2017  
F2480 Datasheet  
Pin Descriptions  
Table 1. Pin Descriptions  
Number  
Name  
Description  
1, 5, 6, 7, 8,  
14, 16, 17,  
18, 19, 23,  
24, 25, 27,  
28, 32  
No internal connection. These pins can be left unconnected, have voltage applied, or connected to ground  
(recommended).  
NC  
2, 4, 29, 31  
3
GND  
Ground these pins. These pins are internally connected to the exposed paddle.  
RFAMP_IN Amplifier input internally matched to 50ꢁ. Must use external DC block.  
+5V Power Supply. Tie to VCC and connect bypass capacitors as close to the pin as possible. See Typical  
Application Circuit for details.  
9
VCC  
Leave pin open circuited for lowꢀband select and connect 0resistor to GND for midꢀband, highꢀband  
and wideꢀband applications. A pullꢀup resistor of approximately 1.5Mꢁ connects between this pin and  
VCC.  
10  
11  
Band_Select  
STBY  
Logic Low or Open on this pin enables the device. Logic High puts the device into Standby mode. A pullꢀ  
down resistor of approximately 1Mꢁ connects between this pin and GND.  
12  
13  
RSET  
Connect external resistor to GND to optimize amplifier bias. Used in conjunction with pin 13.  
Connect external resistor to GND to optimize amplifier bias. Used in conjunction with pin 12.  
RDSET  
Attenuator RF Port 2. Matched to 50ꢁ. Use an external DC blocking capacitor as close to the device as  
possible.  
15  
20  
21  
ATTN_RF2  
VCTRL  
Attenuator control voltage. Apply a voltage in the range as specified in the General Specifications Table.  
See application section for details about VCTRL. This pin has an internal pull down resistor.  
+5V Power Supply. Tie to VCC and connect bypass capacitors as close to the pin as possible. See Typical  
Application Circuit for details.  
VCC  
Attenuator slope control. Set to logic LOW to enable negative attenuation slope (Attenuation low to high  
as voltage is increased). Set to logic HIGH to enable positive attenuation slope (Attenuation high to low as  
voltage is increased).  
22  
VMODE  
Attenuator RF Port 1. Matched to 50ꢁ. Use an external DC blocking capacitor as close to the device as  
possible.  
26  
30  
ATTN_RF1  
RFAMP_OUT Amplifier output internally matched to 50ꢁ. Must use external DC block as close to the pin as possible.  
Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple  
— EP  
ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple ground  
vias are also required to achieve the noted RF performance.  
© 2017 Integrated Device Technology, Inc.  
3
March23,2017  
F2480 Datasheet  
Absolute Maximum Ratings  
The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the device.  
Functional operation of the F2480 at absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions may affect  
device reliability.  
Table 2. Absolute Maximum Ratings  
Parameter  
Symbol  
Minimum  
Maximum  
Units  
VCC to GND  
STBY, Band_Select  
RSET  
VCC  
VLOGIC  
IRSET  
ꢀ0.3  
ꢀ0.3  
5.5  
VCC + 0.25  
+1.5  
V
V
mA  
mA  
V
RDSET  
IRDSET  
+0.8  
RFAMP_IN externally applied DC voltage  
RFAMP_OUT externally applied DC voltage  
VRFAMPin  
VRFAMPout  
+1.4  
+3.6  
VCC ꢀ 0.15  
VCC + 0.15  
V
Lower of  
(VCC, 3.9)  
VMODE to GND  
VMODE  
ꢀ0.3  
V
Lower of  
(VCC, 4.0)  
VCTRL to GND (VCC = 0 to 5.25 V)  
ATTEN_RF1, ATTEN_RF2  
VCTRL  
ꢀ0.3  
ꢀ0.3  
V
V
VATTENRF  
PMAXAMP  
+0.3  
RFAMP_IN RF Input Power applied for 24 hours  
maximum (VCC applied, RF = 2GHz, TA=+25°C)  
+22  
dBm  
ATTN_RF1 or ATTN_RF2 RF Input Power  
(@ 2GHz and +85°C)  
PMAXATTEN  
+30  
dBm  
Continuous Power Dissipation  
Junction Temperature  
Pdiss  
Tj  
1.5  
W
°C  
°C  
°C  
+150  
+150  
+260  
Storage Temperature Range  
Lead Temperature (soldering, 10s)  
Tst  
ꢀ65  
Electrostatic Discharge – HBM  
(JEDEC/ESDA JSꢀ001ꢀ2014)  
Class 1C  
Class C3  
Electrostatic Discharge – CDM  
(JEDEC 22ꢀC101F)  
© 2017 Integrated Device Technology, Inc.  
4
March23,2017  
F2480 Datasheet  
Recommended Operating Conditions  
Table 3. Recommended Operating Conditions  
Parameter  
Symbol  
Condition  
All VCC Pins  
Minimum  
Typical  
Maximum  
Units  
Power Supply Voltage  
VCC  
TEP  
4.75  
ꢀ40  
400  
50  
5.00  
5.25  
+105  
3000  
6000  
V
Operating Temperature Range  
Exposed Paddle Temperature  
Amplifier  
°C  
RF Frequency Range  
fRF  
MHz  
Attenuator  
Amplifier RF Maximum Input  
Operating Power  
Pmax1, CW TEP = ꢀ40 to 105 °C  
8
dBm  
dBm  
Attenuator RF Maximum Input  
Operating Power  
Pmax2, CW ATTEN_RF1 or ATTEN_RF2  
See Figure 3  
RFAMP_IN Port Impedance  
RFAMP_OUT Port Impedance  
ATTN_RF1 Port Impedance  
ATTN_RF2 Port Impedance  
ZRFAMPIN  
ZRFAMPOUT  
ZATTNRF1  
ZATTNRF2  
50  
50  
50  
50  
Figure 3. Attenuator Maximum RF Input Power vs. Frequency  
© 2017 Integrated Device Technology, Inc.  
5
March23,2017  
F2480 Datasheet  
Electrical Characteristics  
Table 4. General Electrical Characteristics  
Parameter  
Logic Input High Threshold  
Logic Input Low Threshold  
Symbol  
VIH_AMP  
VIL_AMP  
Condition  
STBY, Band_Select  
STBY, Band_Select  
VCC > 3.9V  
Minimum  
Typical  
Maximum  
Units  
[b]  
1.1 [a]  
-0.3  
1.17  
1.17  
0
VCC  
V
V
0.63  
3.6  
VIH_Mode  
VIL_Mode  
VCTRL  
VMODE Logic  
3.15V ≤ VCC ≤ 3.9V  
VCC – 0.3  
0.63  
3.6  
V
V
3.9V < VCC ≤ 5.25V  
3.15V ≤ VCC ≤ 3.9V  
0
VCTRL Voltage  
0
VCC – 0.3  
12  
ISTBY  
IBand_Select  
IMODE  
-10  
-10  
-1  
Logic Current  
ꢃA  
ꢃA  
10  
35  
Control Current  
ICTRL  
Pin 20  
-1  
12  
Pin 21  
1.17  
106  
121  
121  
0.90  
2.20  
Pin 9 – Low Band Bias  
Pin 9 – Mid Band Bias  
Pin 9 – High Band Bias  
170  
1.7  
Supply Current  
ICC  
mA  
ns  
Pin 9 – Wide Band Bias  
Pin 9 – Standby  
121  
0.8  
50% of STBY going low to  
Gain within ± 1dB  
Startup Time from STBY  
250  
a. Items in min/max columns in bold italics are guaranteed by test.  
b. Items in min/max columns that are not bold/italics are guaranteed by design characterization.  
© 2017 Integrated Device Technology, Inc.  
6
March23,2017  
F2480 Datasheet  
Table 5. Stand Alone Amplifier Electrical Characteristics  
Typical Application Circuit. See Table 8 band settings as noted (LB, MB, HB, WB), VCC = +5.0V, TEP = +25°C, fRF = 2000MHz,  
POUT = 0dBm/tone for single tone and two tone tests, OIP3 tone delta = 1MHz, all RF source and RF load impedances = 50, PCB board and  
connector losses are deꢀembedded, unless otherwise noted.  
Parameter  
Input Return Loss  
Symbol  
Condition  
Minimum  
Typical  
Maximum  
Units  
RLAMPIN  
16  
17  
dB  
dB  
Output Return Loss  
RLAMPOUT  
400MHz Low Band Bias  
900MHz Low Band Bias  
2000MHz Mid Band Bias  
2700MHz High Band Bias  
400MHz Wide Band Bias  
2700MHz Wide Band Bias  
400MHz Low Band Bias  
900MHz Low Band Bias  
2000MHz Mid Band Bias  
2700MHz High Band Bias  
400MHz Wide Band Bias  
2700MHz Wide Band Bias  
400MHz Low Band Bias  
900MHz Low Band Bias  
2000MHz Mid Band Bias  
2700MHz High Band Bias  
400MHz Wide Band Bias  
2700MHz Wide Band Bias  
400MHz Low Band Bias  
900MHz Low Band Bias  
11.1  
13.2  
14.1  
14.4  
11.1  
14.4  
4.5  
GLB  
12.1 [a]  
13.0  
14.2  
15.5  
GMB  
GHB  
Gain  
dB  
dB  
GWB  
NFLB  
4.3  
NFMB  
NFHB  
4.5  
Noise Figure  
5.0  
4.5  
NFWB  
5.0  
37  
OIP3LB  
38 [b]  
41.5  
41  
OIP3MB  
OIP3HB  
Output Third Order Intercept Point  
Output 1dB Compression  
Reverse Isolation  
dBm  
dBm  
dB  
40  
35  
OIP3WB  
39  
19.5  
20.9  
19.7  
19.5  
18.7  
19.5  
20.5  
18.5  
18  
OP1dBLB  
OP1dBMB 2000MHz Mid Band Bias  
OP1dBHB 2700MHz High Band Bias  
400MHz Wide Band Bias  
OP1dBWB  
2700MHz Wide Band Bias  
400MHz Low Band Bias  
RevISOLB  
900MHz Low Band Bias  
RevISOMB 2000MHz Mid Band Bias  
RevISOHB 2700MHz High Band Bias  
18  
400MHz Low Band Bias  
RevISOWB  
20.5  
18  
2700MHz High Band Bias  
a. Items in min/max columns in bold italics are guaranteed by test.  
b. Items in min/max columns that are not bold/italics are guaranteed by design characterization.  
© 2017 Integrated Device Technology, Inc.  
7
March23,2017  
F2480 Datasheet  
Table 6. Stand Alone Voltage Variable Attenuator Electrical Characteristics  
Typical Application Circuit. VCC = +5V, TEP = +25°C, signals applied to ATTEN_RF1 input, fRF = 2000MHz, minimum attenuation, PIN = 0dBm  
for small signal parameters, PIN = +20dBm / tone for single tone and two tone linearity tests, two tone delta frequency = 50MHz, all RF source  
and RF load impedances = 50, PCB board traces and connector losses are deꢀembedded, unless otherwise noted.  
Parameter  
Symbol  
Condition  
Minimum  
Typical  
Maximum  
Units  
50MHz [a]  
700MHz  
1.0  
1.2  
1.4  
1.5  
2.7  
29  
Insertion Loss  
Amin  
2000MHz  
2700MHz  
6000MHz  
50MHz [a]  
700MHz  
dB  
1.9  
35.6  
35.5  
35.4  
37  
Maximum Attenuation  
Amax  
2000MHz  
2700MHz  
6000MHz  
33.2  
dB  
deg  
dB  
ΦꢄMAX  
ΦꢄMID  
At 35dB attenuation  
At 18dB attenuation  
50MHz [a]  
27  
Relative Insertion Phase Relative to  
Insertion Loss  
10  
16  
700MHz  
17  
Minimum ATTEN_RF1 Return Loss  
Over Control Voltage Range  
S11  
2000MHz  
17  
2700MHz  
17  
6000MHz  
15  
50MHz [a]  
14  
700MHz  
15  
Minimum ATTEN_RF2 Return Loss  
Over Control Voltage Range  
S22  
IIP3  
2000MHz  
16  
dB  
2700MHz  
17  
6000MHz  
13  
65  
dBm  
dBm  
dBm  
Input IP3  
IIP3ATTEN All attenuation settings  
44  
47  
Minimum Output IP3  
Input IP2 ( f1+ f2 )  
OIP3MIN  
IIP2  
Maximum attenuation  
PIN + IM2 [dBc]  
35  
95  
dBm  
IIP2MIN  
HD2  
All attenuation settings  
PIN + H2 [dBc]  
87  
Input IH2  
90  
dBm  
dBm  
dBm  
Input IH3  
Input 1dB Compression [b]  
HD3  
PIN + H3 [dBc]/2  
54  
IP1dB  
34.4  
Any 1dB step in the 0dB to  
TSETTL0.1dB 33dB range. 50% VCTRL to RF  
settled to within ± 0.1dB  
Settling Time  
15  
ꢃs  
a. Set blocking capacitors C2 and C9 to 0.01ꢃF to achieve best return loss performance at 50MHz.  
b. The input 1dB compression point is a linearity figure of merit. Refer to Absolute Maximum Ratings section for the maximum RF input power.  
© 2017 Integrated Device Technology, Inc.  
8
March23,2017  
F2480 Datasheet  
Thermal Characteristics  
Table 7. Package Thermal Characteristics  
Parameter  
Symbol  
Value  
Units  
θJAꢀAMP  
θJAꢀATTN  
Amplifier ꢀ Junction to Ambient Thermal Resistance.  
Attenuator ꢀ Junction to Ambient Thermal Resistance.  
40  
80  
°C/W  
°C/W  
Amplifier ꢀ Junction to Case Thermal Resistance.  
(Case is defined as the exposed paddle)  
θJC_BOT_AMP  
θJC_BOT_ATTN  
4
°C/W  
°C/W  
Attenuator ꢀ Junction to Case Thermal Resistance.  
(Case is defined as the exposed paddle)  
5
Moisture Sensitivity Rating (Per JꢀSTDꢀ020)  
MSL 1  
Typical Operating Conditions (TOC)  
Unless otherwise noted:  
VCC = +5.0V  
TEP = +25°C (TEP is defined as the exposed paddle temperature).  
Amplifier components configured for operation per Table 8 for each indicated band.  
POUT = 0dBm/tone for all amplifier linearity tests.  
1MHz tone spacing for all amplifier linearity tests.  
PIN = +20dBm/tone applied to ATTEN_RF1 for all attenuator linearity tests.  
50MHz tone spacing for all attenuator linearity tests.  
VCTRL setting = minimum attenuation setting.  
STBY = Logic HIGH (or open).  
Band Select = GND.  
VMODE = Logic LOW = Negative Slope.  
Evaluation kit trace and connector losses are fully deꢀembedded.  
Sꢀparameters for the amplifier and attenuator have external RF caps replaced by 0ꢁ resistors for purposes of displaying broadband  
results.  
Since the Wide Band and Mid Band settings are the same in Table 8, the Mid Band results will be the same curves as those displayed in  
the Amplifier Wide Band section.  
© 2017 Integrated Device Technology, Inc.  
9
March23,2017  
F2480 Datasheet  
Typical Performance Characteristics – Attenuator [1]  
Figure 4.  
Attenuation vs. VCTRL over Frequency  
and VMODE  
Figure 5.  
Attenuation vs. Frequency over VCTRL  
0
-5  
0
-10  
-20  
-30  
-40  
-10  
-15  
-20  
-25  
-30  
-35  
0.9GHz / Vmode = 0V  
0.9GHz / Vmode = 3V  
2.0GHz / Vmode = 0V  
2.0GHz / Vmode = 3V  
3.0GHz / Vmode = 0V  
3.0GHz / Vmode = 3V  
Vctrl = 0.0V  
Vctrl = 1.2V  
Vctrl = 1.8V  
Vctrl = 0.8V  
Vctrl = 1.4V  
Vctrl = 2.4V  
Vctrl = 1.0V  
Vctrl = 1.6V  
-40  
-50  
0
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4 2.6  
1
2
3
4
5
6
7
8
9
VCTRL (V)  
Frequency (GHz)  
Figure 6.  
Min. and Max. Attenuation vs.  
Frequency over Temperature  
Figure 7.  
Attenuation Delta to +25 C vs. VCTRL  
over Frequency and Temperature  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
-0.50  
-1.00  
-1.50  
-2.00  
-2.50  
-3.00  
0
-1  
-2  
-3  
-4  
-5  
-20  
-40C / Vctrl = 0.0V  
-40C / 0.9GHz  
-40C / 2.0GHz  
-40C / 3.0GHz  
25C / Vctrl = 0.0V  
105C / Vctrl = 0.0V  
-40C / Vctrl = 3.0V  
25C / Vctrl = 3.0V  
105C / Vctrl = 3.0V  
105C / 0.9GHz  
105C / 2.0GHz  
105C / 3.0GHz  
-25  
-30  
-35  
-40  
-45  
-50  
-6  
0
1
2
3
4
5
6
7
8
9
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6  
VCTRL (V)  
Frequency (GHz)  
© 2017 Integrated Device Technology, Inc.  
10  
March23,2017  
F2480 Datasheet  
Typical Performance Characteristics – Attenuator [2]  
Figure 8.  
Attenuation vs. VCTRL over Frequency  
Figure 9.  
Attenuation Slope vs. VCTRL over  
Frequency  
0
-5  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0.4GHz  
0.7GHz  
1.5GHz  
2.7GHz  
4.0GHz  
5.0GHz  
6.0GHz  
0.4GHz  
0.7GHz  
1.5GHz  
2.7GHz  
4.0GHz  
5.0GHz  
6.0GHz  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6  
VCTRL (V)  
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
1.9  
2.1  
VCTRL (V)  
Figure 10. Return Loss (ATTEN_RF1 port) vs. VCTRL  
over Frequency  
Figure 11. Return Loss (ATTEN_RF2 port) vs. VCTRL  
over Frequency  
0
0
0.4GHz  
0.4GHz  
0.7GHz  
0.7GHz  
-5  
-5  
1.5GHz  
1.5GHz  
2.7GHz  
2.7GHz  
-10  
-10  
4.0GHz  
4.0GHz  
5.0GHz  
5.0GHz  
-15  
-15  
6.0GHz  
6.0GHz  
-20  
-25  
-30  
-35  
-20  
-25  
-30  
-35  
-40  
-40  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6  
VCTRL (V)  
VCTRL (V)  
Figure 12. Insertion Phase Change vs. VCTRL over  
Frequency  
Figure 13. Insertion Phase Slope vs. VCTRL over  
Frequency  
70  
100  
0.4GHz  
0.4GHz  
(positive phase = electrically shorter)  
0.7GHz  
0.7GHz  
60  
1.5GHz  
1.5GHz  
80  
2.7GHz  
2.7GHz  
4.0GHz  
50  
4.0GHz  
60  
5.0GHz  
5.0GHz  
40  
6.0GHz  
6.0GHz  
30  
20  
10  
0
40  
20  
0
-10  
-20  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
VCTRL (V)  
VCTRL (V)  
© 2017 Integrated Device Technology, Inc.  
11  
March23,2017  
F2480 Datasheet  
Typical Performance Characteristics – Attenuator [3]  
Figure 14. Attenuation Response vs. VCTRL over  
Figure 15. Attenuation Slope vs. VCTRL over  
Frequency and Temperature  
Frequency and Temperature  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
-40C / 0.9GHz  
25C / 0.9GHz  
105C / 0.9GHz  
-40C / 2.0GHz  
25C / 2.0GHz  
105C / 2.0GHz  
-40C / 3.0GHz  
25C / 3.0GHz  
105C / 3.0GHz  
-40C / 0.9GHz  
25C / 0.9GHz  
-5  
105C / 0.9GHz  
-40C / 2.0GHz  
-10  
25C / 2.0GHz  
105C / 2.0GHz  
-15  
-40C / 3.0GHz  
25C / 3.0GHz  
-20  
105C / 3.0GHz  
-25  
-30  
-35  
-40  
0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
VCTRL (V)  
VCTRL (V)  
Figure 16. Return Loss (ATTEN_RF1) vs. VCTRL  
Figure 17. Return Loss (ATTEN_RF2) vs. VCTRL,  
over Frequency and Temperature  
over Frequency and Temperature  
0
0
-40C / 0.9GHz  
25C / 0.9GHz  
105C / 0.9GHz  
-40C / 2.0GHz  
25C / 2.0GHz  
105C / 2.0GHz  
-40C / 3.0GHz  
25C / 3.0GHz  
105C / 3.0GHz  
-40C / 0.9GHz  
25C / 0.9GHz  
105C / 0.9GHz  
-40C / 2.0GHz  
25C / 2.0GHz  
105C / 2.0GHz  
-40C / 3.0GHz  
25C / 3.0GHz  
105C / 3.0GHz  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6  
VCTRL (V)  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6  
VCTRL (V)  
Figure 18. Insertion Phase Change vs. VCTRL over  
Frequency and Temperature  
Figure 19. Insertion Phase Slope vs. VCTRL over  
Frequency and Temperature  
70  
-40C / 0.9GHz  
25C / 0.9GHz  
105C / 0.9GHz  
-40C / 2.0GHz  
25C / 2.0GHz  
105C / 2.0GHz  
-40C / 3.0GHz  
25C / 3.0GHz  
105C / 3.0GHz  
60  
50  
40  
30  
20  
10  
0
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
VCTRL (V)  
© 2017 Integrated Device Technology, Inc.  
12  
March23,2017  
F2480 Datasheet  
Typical Performance Characteristics – Attenuator [4]  
Figure 20. Return Loss (ATTEN_RF1 port) vs.  
Figure 21. Return Loss (ATTEN_RF1 port) vs.  
Attenuation over Frequency  
Attenuation over Freq & Temp  
0
0
-5  
0.4GHz  
0.7GHz  
1.5GHz  
2.7GHz  
4.0GHz  
5.0GHz  
6.0GHz  
-40C / 0.9GHz  
25C / 0.9GHz  
105C / 0.9GHz  
-40C / 2.0GHz  
25C / 2.0GHz  
105C / 2.0GHz  
-40C / 3.0GHz  
25C / 3.0GHz  
105C / 3.0GHz  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
0
4
8
12  
16  
20  
24  
28  
32  
36  
0
4
8
12  
16  
20  
24  
28  
32  
36  
Attenuation (dB)  
Attenuation (dB)  
Figure 22. Return Loss (ATTEN_RF2 port) vs.  
Figure 23. Return Loss (ATTEN_RF2 port) vs.  
Attenuation over Frequency  
Attenuation over Freq & Temp  
0
0
0.4GHz  
0.7GHz  
1.5GHz  
2.7GHz  
4.0GHz  
5.0GHz  
6.0GHz  
-40C / 0.9GHz  
25C / 0.9GHz  
105C / 0.9GHz  
-40C / 2.0GHz  
25C / 2.0GHz  
105C / 2.0GHz  
-40C / 3.0GHz  
25C / 3.0GHz  
105C / 3.0GHz  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
0
4
8
12  
16  
20  
24  
28  
32  
36  
0
4
8
12  
16  
20  
24  
28  
32  
36  
Attenuation (dB)  
Attenuation (dB)  
Figure 24. Insertion Phase Change vs.  
Attenuation over Frequency  
70  
Figure 25. Insertion Phase Change vs.  
Attenuation over Freq & Temp  
0.4GHz  
0.7GHz  
(positive phase = electrically shorter)  
60  
50  
40  
30  
20  
10  
0
1.5GHz  
2.7GHz  
4.0GHz  
5.0GHz  
6.0GHz  
-10  
0
4
8
12  
16  
20  
24  
28  
32  
36  
Attenuation (dB)  
© 2017 Integrated Device Technology, Inc.  
13  
March23,2017  
F2480 Datasheet  
Typical Performance Characteristics – Attenuator [5]  
Figure 26. Min. and Max. Attenuation vs.  
Figure 27. Min. and Max. Attenuation Slope vs.  
Frequency  
Frequency  
0
-23  
-25  
-27  
-29  
-31  
-33  
-35  
-37  
-39  
50  
45  
40  
35  
30  
25  
20  
15  
10  
Max. Slope  
Min. Slope  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-40C / Vctrl = 0V  
-40C / Vctrl = 3V  
25C / Vctrl = 0V  
25C / Vctrl = 3V  
105C / Vctrl = 0V  
105C / Vctrl = 3V  
-8  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Frequency (GHz)  
Frequency (GHz)  
Figure 28. Worst-Case Return Loss (ATTEN_RF1  
port) vs. Frequency over Temp  
Figure 29. Worst-Case Return Loss (ATTEN_RF2  
port) vs. Frequency over Temp  
0
0
-40C  
-40C  
25C  
25C  
105C  
105C  
-5  
-5  
-10  
-15  
-20  
-25  
-10  
-15  
-20  
-25  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Frequency (GHz)  
Frequency (GHz)  
Figure 30. Max. Insertion Phase Change vs.  
Frequency over Temp  
70  
-40C  
(positive phase = electrically shorter)  
25C  
60  
105C  
50  
40  
30  
20  
10  
0
-10  
0
1
2
3
4
5
6
Frequency (GHz)  
© 2017 Integrated Device Technology, Inc.  
14  
March23,2017  
F2480 Datasheet  
Typical Performance Characteristics – 2 GHz Attenuator [6]  
Figure 31. Input IP3 vs. VCTRL over VMODE and  
Figure 32. Output IP3 vs. VCTRL over VMODE and  
Temperature  
Temperature  
80  
75  
70  
65  
60  
55  
50  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
-40C / Vmode = 0V  
-40C / Vmode = 0V  
25C / Vmode = 0V  
105C / Vmode = 0V  
-40C / Vmode= 3V  
25C / Vmode= 3V  
105C / Vmode= 3V  
45  
40  
35  
30  
25C / Vmode = 0V  
105C / Vmode = 0V  
-40C / Vmode= 3V  
25C / Vmode= 3V  
105C / Vmode= 3V  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4 2.6  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4 2.6  
VCTRL (V)  
VCTRL (V)  
Figure 33. Input IP2 vs. VCTRL over VMODE and  
Figure 34. Output IP2 vs. VCTRL over VMODE and  
Temperature  
120  
Temperature  
120  
-40C / Vmode = 0V  
25C / Vmode = 0V  
105C / Vmode = 0V  
-40C / Vmode = 3V  
110  
100  
90  
110  
25C / Vmode = 3V  
105C / Vmode = 3V  
100  
90  
80  
70  
60  
50  
80  
-40C / Vmode = 0V  
70  
25C / Vmode = 0V  
105C / Vmode = 0V  
-40C / Vmode = 3V  
60  
25C / Vmode = 3V  
105C / Vmode = 3V  
50  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4 2.6  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4 2.6  
VCTRL (V)  
VCTRL (V)  
nd  
rd  
Figure 35.  
2
Harmonic Input Intercept Point vs.  
Figure 36.  
3
Harmonic Input Intercept Point vs.  
VCTRL over VMODE and Temperature  
VCTRL over VMODE and Temperature  
130  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
-40C / Vmode = 0V  
-40C / Vmode = 0V  
25C / Vmode = 0V  
105C / Vmode = 0V  
-40C / Vmode = 3V  
25C / Vmode = 3V  
105C / Vmode = 3V  
80  
25C / Vmode = 0V  
105C / Vmode = 0V  
-40C / Vmode = 3V  
25C / Vmode = 3V  
105C / Vmode = 3V  
70  
60  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4 2.6  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4 2.6  
VCTRL (V)  
VCTRL (V)  
© 2017 Integrated Device Technology, Inc.  
15  
March23,2017  
F2480 Datasheet  
Typical Performance Characteristics – 2 GHz Attenuator [7]  
Figure 37. Input IP3 vs. VCTRL over RF Port and  
Figure 38. Output IP3 vs. VCTRL over RF Port and  
Temperature  
Temperature  
80  
75  
70  
65  
60  
55  
75  
-40C / RF1 Driven  
70  
25C / RF1 Driven  
65  
105C / RF1 Driven  
-40C / RF2 Driven  
60  
25C / RF2 Driven  
55  
105C / RF2 Driven  
50  
45  
40  
35  
30  
25  
20  
15  
10  
50  
-40C / RF1 Driven  
45  
25C / RF1 Driven  
105C / RF1 Driven  
40  
-40C / RF2 Driven  
35  
25C / RF2 Driven  
105C / RF2 Driven  
30  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4 2.6  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4 2.6  
VCTRL (V)  
VCTRL (V)  
Figure 39. Input IP2 vs. VCTRL over RF Port and  
Temperature  
Figure 40. Output IP2 vs. VCTRL over RF Port and  
Temperature  
120  
120  
110  
100  
90  
-40C / RF1 Driven  
25C / RF1 Driven  
105C / RF1 Driven  
110  
-40C / RF2 Driven  
25C / RF2 Driven  
105C / RF2 Driven  
100  
90  
80  
70  
60  
50  
80  
-40C / RF1 Driven  
70  
25C / RF1 Driven  
105C / RF1 Driven  
-40C / RF2 Driven  
60  
25C / RF2 Driven  
105C / RF2 Driven  
50  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4 2.6  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4 2.6  
VCTRL (V)  
VCTRL (V)  
nd  
rd  
Figure 41.  
2
Harm Input Intercept Point vs. VCTRL  
Figure 42.  
3
Harm Input Intercept Point vs. VCTRL  
over RF Port and Temp  
over RF Port and Temp  
130  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
-40C / RF1 Driven  
25C / RF1 Driven  
105C / RF1 Driven  
-40C / RF2 Driven  
25C / RF2 Driven  
105C / RF2 Driven  
-40C / RF1 Driven  
25C / RF1 Driven  
105C / RF1 Driven  
-40C / RF2 Driven  
25C / RF2 Driven  
105C / RF2 Driven  
80  
70  
60  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4 2.6  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4 2.6  
VCTRL (V)  
VCTRL (V)  
© 2017 Integrated Device Technology, Inc.  
16  
March23,2017  
F2480 Datasheet  
Typical Performance Characteristics – 2 GHz Attenuator [8]  
Figure 43. Input IP3 vs. Attenuation over  
Figure 44. Output IP3 vs. Attenuation over  
Temperature  
Temperature  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
-40C  
25C  
105C  
-40C  
25C  
125C  
0
4
8
12  
16  
20  
24  
28  
32  
36  
0
4
8
12  
16  
20  
24  
28  
32  
36  
Attenuation (dB)  
Attenuation (dB)  
Figure 45. Input IP2 vs. Attenuation over  
Temperature  
Figure 46. Output IP2 vs. Attenuation over  
Temperature  
120  
110  
100  
90  
120  
110  
100  
90  
-40C  
25C  
105C  
80  
80  
70  
70  
-40C  
25C  
60  
60  
105C  
50  
50  
0
4
8
12  
16  
20  
24  
28  
32  
36  
0
4
8
12  
16  
20  
24  
28  
32  
36  
Attenuation (dB)  
Attenuation (dB)  
nd  
rd  
Figure 47.  
2
Harm Input Intercept Point vs.  
Figure 48.  
3
Harm Input Intercept Point vs.  
Attenuation over Temperature  
Attenuation over Temperature  
130  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
80  
-40C  
25C  
-40C  
25C  
70  
105C  
105C  
60  
10  
0
4
8
12  
16  
20  
24  
28  
32  
36  
0
4
8
12  
16  
20  
24  
28  
32  
36  
Attenuation (dB)  
Attenuation (dB)  
© 2017 Integrated Device Technology, Inc.  
17  
March23,2017  
F2480 Datasheet  
Typical Performance Characteristics – 2 GHz Attenuator [9]  
Figure 49. Input IP3 vs. Attenuation over RF Port  
Figure 50. Output IP3 vs. Attenuation over RF  
and Temperature  
Port and Temperature  
80  
75  
70  
65  
60  
55  
50  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
-40C / RF1 Driven  
25C / RF1 Driven  
105C / RF1 Driven  
-40C / RF2 Driven  
25C / RF2 Driven  
105C / RF2 Driven  
45  
-40C / RF1 Driven  
25C / RF1 Driven  
40  
105C / RF1 Driven  
-40C / RF2 Driven  
35  
25C / RF2 Driven  
105C / RF2 Driven  
30  
0
4
8
12  
16  
20  
24  
28  
32  
36  
0
4
8
12  
16  
20  
24  
28  
32  
36  
Attenuation (dB)  
Attenuation (dB)  
Figure 51. Input IP2 vs. Attenuation over RF Port  
and Temperature  
Figure 52. Output IP2 vs. Attenuation over RF  
Port and Temperature  
120  
120  
110  
100  
90  
-40C / RF1 Driven  
25C / RF2 Driven  
110  
100  
90  
105C / RF1 Driven  
-40C / RF2 Driven  
25C / RF2 Driven  
105C / RF2 Driven  
80  
80  
-40C / RF1 Driven  
70  
70  
25C / RF1 Driven  
105C / RF1 Driven  
-40C / RF2 Driven  
60  
60  
25C / RF2 Driven  
105C / RF2 Driven  
50  
50  
0
4
8
12  
16  
20  
24  
28  
32  
36  
0
4
8
12  
16  
20  
24  
28  
32  
36  
Attenuation (dB)  
Attenuation (dB)  
nd  
rd  
Figure 53.  
2
Harm Input Intercept Point vs.  
Figure 54. 3 Harm Input Intercept Point vs.  
Attenuation over RF Port and Temp  
Attenuation over RF Port and Temp  
130  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
-40C / RF1 Driven  
25C / RF1 Driven  
105C / RF1 Driven  
-40C / RF2 Driven  
25C / RF2 Driven  
105C / RF2 Driven  
-40C / RF1 Driven  
25C / RF1 Driven  
105C / RF1 Driven  
-40C / RF2 Driven  
25C / RF2 Driven  
105C / RF2 Driven  
80  
70  
60  
10  
0
4
8
12  
16  
20  
24  
28  
32  
36  
0
4
8
12  
16  
20  
24  
28  
32  
36  
Attenuation (dB)  
Attenuation (dB)  
© 2017 Integrated Device Technology, Inc.  
18  
March23,2017  
F2480 Datasheet  
Typical Performance Characteristics – Amplifier – Wide Band Mode [1]  
Figure 55. Gain vs. Frequency over Temperature  
Figure 56. Reverse Isolation vs. Frequency over  
and Voltage – WB mode  
Temperature and Voltage – WB Mode  
16  
15  
14  
13  
12  
11  
10  
9
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
-40 C / 4.75 V  
+25 C / 4.75 V  
+105 C / 4.75 V  
-40 C / 5.00 V  
+25 C / 5.00 V  
+105 C / 5.00 V  
-40 C / 5.25 V  
+25 C / 5.25 V  
+105 C / 5.25 V  
-40 C / 4.75 V  
+25 C / 4.75 V  
+105 C / 4.75 V  
-40 C / 5.00 V  
+25 C / 5.00 V  
+105 C / 5.00 V  
-40 C / 5.25 V  
+25 C / 5.25 V  
+105 C / 5.25 V  
8
7
6
-26  
-28  
-30  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
3.6  
3.6  
3.6  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
3.6  
3.6  
3.6  
Frequency (GHz)  
Frequency (GHz)  
Figure 57. Input Match vs. Frequency over  
Figure 58. Output Match vs. Frequency over  
Temperature and Voltage – WB Mode  
Temperature and Voltage – WB Mode  
0
-2  
0
-2  
-40 C / 4.75 V  
+25 C / 4.75 V  
+105 C / 4.75 V  
-40 C / 5.00 V  
+25 C / 5.00 V  
+105 C / 5.00 V  
-40 C / 5.25 V  
+25 C / 5.25 V  
+105 C / 5.25 V  
-4  
-4  
-6  
-6  
-8  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
-26  
-28  
-30  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-40 C / 4.75 V  
+25 C / 4.75 V  
+105 C / 4.75 V  
-40 C / 5.00 V  
+25 C / 5.00 V  
+105 C / 5.00 V  
-40 C / 5.25 V  
+25 C / 5.25 V  
+105 C / 5.25 V  
-24  
-26  
-28  
-30  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
Frequency (GHz)  
Frequency (GHz)  
nd  
rd  
Figure 59.  
2
Harmonic vs. Fundamental Freq  
Figure 60. 3  
Harmonic vs. Fundamental Freq  
over Temp and Voltage – WB Mode  
over Temp and Voltage – WB Mode  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-40 C / 4.75 V  
+25 C / 4.75 V  
+105 C / 4.75 V  
-40 C / 5.00 V  
+25 C / 5.00 V  
+105 C / 5.00 V  
-40 C / 5.25 V  
+25 C / 5.25 V  
+105 C / 5.25 V  
-40 C / 4.75 V  
+25 C / 4.75 V  
+105 C / 4.75 V  
-40 C / 5.00 V  
+25 C / 5.00 V  
+105 C / 5.00 V  
-40 C / 5.25 V  
+25 C / 5.25 V  
+105 C / 5.25 V  
-90  
0.4  
-90  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
Frequency (GHz)  
Frequency (GHz)  
© 2017 Integrated Device Technology, Inc.  
19  
March23,2017  
F2480 Datasheet  
Typical Performance Characteristics – Amplifier – Wide Band Mode [2]  
Figure 62. Output IP2H vs. Frequency over  
Temperature and Voltage – WB Mode  
Figure 61. Output IP3 vs. Frequency over  
Temperature and Voltage – WB Mode  
45  
40  
35  
30  
25  
60  
55  
50  
45  
40  
-40 C / 4.75 V  
+25 C / 4.75 V  
+105 C / 4.75 V  
-40 C / 5.00 V  
+25 C / 5.00 V  
+105 C / 5.00 V  
-40 C / 5.25 V  
+25 C / 5.25 V  
+105 C / 5.25 V  
-40 C / 4.75 V  
+25 C / 4.75 V  
+105 C / 4.75 V  
-40 C / 5.00 V  
+25 C / 5.00 V  
+105 C / 5.00 V  
-40 C / 5.25 V  
+25 C / 5.25 V  
+105 C / 5.25 V  
20  
15  
35  
30  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
3.6  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
3.6  
Frequency (GHz)  
Frequency (GHz)  
Figure 63. Output P1dB vs. Frequency over  
Temperature and Voltage – WB Mode  
Figure 64. Noise Figure vs. Frequency over  
Temperature and Voltage – WB Mode  
23  
22  
21  
20  
19  
18  
17  
16  
9
8
7
6
5
4
3
2
1
0
-40 C / 4.75 V  
+25 C / 4.75 V  
+105 C / 4.75 V  
-40 C / 5.00 V  
+25 C / 5.00 V  
+105 C / 5.00 V  
-40 C / 5.25 V  
+25 C / 5.25 V  
+105 C / 5.25 V  
-40 C / 4.75 V  
+25 C / 4.75 V  
+105 C / 4.75 V  
-40 C / 5.00 V  
+25 C / 5.00 V  
+105 C / 5.00 V  
-40 C / 5.25 V  
+25 C / 5.25 V  
+105 C / 5.25 V  
15  
14  
13  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
3.6  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
3.6  
Frequency (GHz)  
Frequency (GHz)  
© 2017 Integrated Device Technology, Inc.  
20  
March23,2017  
F2480 Datasheet  
Typical Performance Characteristics – Amplifier – Low Band Mode [1]  
Figure 65. Gain vs. Frequency over Temperature  
Figure 66. Reverse Isolation vs. Frequency over  
and Voltage – LB mode  
Temperature and Voltage – LB Mode  
16  
15  
14  
13  
12  
11  
10  
9
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
-40 C / 4.75 V  
+25 C / 4.75 V  
+105 C / 4.75 V  
-40 C / 5.00 V  
+25 C / 5.00 V  
+105 C / 5.00 V  
-40 C / 5.25 V  
+25 C / 5.25 V  
+105 C / 5.25 V  
-40 C / 4.75 V  
+25 C / 4.75 V  
+105 C / 4.75 V  
-40 C / 5.00 V  
+25 C / 5.00 V  
+105 C / 5.00 V  
-40 C / 5.25 V  
+25 C / 5.25 V  
+105 C / 5.25 V  
8
7
6
-26  
-28  
-30  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
3.6  
3.6  
3.6  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
3.6  
3.6  
3.6  
Frequency (GHz)  
Figure 67. Input Match vs. Frequency over  
Temperature and Voltage – LB Mode  
Frequency (GHz)  
Figure 68. Output Match vs. Frequency over  
Temperature and Voltage – LB Mode  
0
-2  
0
-2  
-40 C / 4.75 V  
+25 C / 4.75 V  
+105 C / 4.75 V  
-40 C / 5.00 V  
+25 C / 5.00 V  
+105 C / 5.00 V  
-40 C / 5.25 V  
+25 C / 5.25 V  
+105 C / 5.25 V  
-4  
-4  
-6  
-6  
-8  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
-26  
-28  
-30  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-40 C / 4.75 V  
+25 C / 4.75 V  
+105 C / 4.75 V  
-40 C / 5.00 V  
+25 C / 5.00 V  
+105 C / 5.00 V  
-40 C / 5.25 V  
+25 C / 5.25 V  
+105 C / 5.25 V  
-24  
-26  
-28  
-30  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
Frequency (GHz)  
Harmonic vs. Fundamental Freq  
over Temp and Voltage – LB Mode  
Frequency (GHz)  
Harmonic vs. Fundamental Freq  
over Temp and Voltage – LB Mode  
nd  
rd  
Figure 69.  
2
Figure 70. 3  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-40 C / 4.75 V  
+25 C / 4.75 V  
+105 C / 4.75 V  
-40 C / 5.00 V  
+25 C / 5.00 V  
+105 C / 5.00 V  
-40 C / 5.25 V  
+25 C / 5.25 V  
+105 C / 5.25 V  
-40 C / 4.75 V  
+25 C / 4.75 V  
+105 C / 4.75 V  
-40 C / 5.00 V  
+25 C / 5.00 V  
+105 C / 5.00 V  
-40 C / 5.25 V  
+25 C / 5.25 V  
+105 C / 5.25 V  
-90  
0.4  
-90  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
Frequency (GHz)  
Frequency (GHz)  
© 2017 Integrated Device Technology, Inc.  
21  
March23,2017  
F2480 Datasheet  
Typical Performance Characteristics – Amplifier – Low Band Mode [2]  
Figure 71. Output IP3 vs. Frequency over  
Figure 72. Output IP2H vs. Frequency over  
Temperature and Voltage – LB Mode  
Temperature and Voltage – LB Mode  
45  
40  
35  
30  
25  
60  
55  
50  
45  
40  
35  
30  
-40 C / 4.75 V  
+25 C / 4.75 V  
+105 C / 4.75 V  
-40 C / 5.00 V  
+25 C / 5.00 V  
+105 C / 5.00 V  
-40 C / 5.25 V  
+25 C / 5.25 V  
+105 C / 5.25 V  
-40 C / 4.75 V  
+25 C / 4.75 V  
+105 C / 4.75 V  
-40 C / 5.00 V  
+25 C / 5.00 V  
+105 C / 5.00 V  
-40 C / 5.25 V  
+25 C / 5.25 V  
+105 C / 5.25 V  
20  
15  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
3.6  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
3.6  
Frequency (GHz)  
Frequency (GHz)  
Figure 73. Output P1dB vs. Frequency over  
Temperature and Voltage – LB Mode  
23  
22  
21  
20  
19  
18  
17  
16  
-40 C / 4.75 V  
+25 C / 4.75 V  
+105 C / 4.75 V  
-40 C / 5.00 V  
+25 C / 5.00 V  
+105 C / 5.00 V  
-40 C / 5.25 V  
+25 C / 5.25 V  
+105 C / 5.25 V  
15  
14  
13  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
3.6  
Frequency (GHz)  
© 2017 Integrated Device Technology, Inc.  
22  
March23,2017  
F2480 Datasheet  
Typical Performance Characteristics – Amplifier – High Band Mode [1]  
Figure 74. Gain vs. Frequency over Temperature  
and Voltage – HB mode  
Figure 75. Reverse Isolation vs. Frequency over  
Temperature and Voltage – HB Mode  
16  
15  
14  
13  
12  
11  
10  
9
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
-40 C / 4.75 V  
+25 C / 4.75 V  
+105 C / 4.75 V  
-40 C / 5.00 V  
+25 C / 5.00 V  
+105 C / 5.00 V  
-40 C / 5.25 V  
+25 C / 5.25 V  
+105 C / 5.25 V  
-40 C / 4.75 V  
+25 C / 4.75 V  
+105 C / 4.75 V  
-40 C / 5.00 V  
+25 C / 5.00 V  
+105 C / 5.00 V  
-40 C / 5.25 V  
+25 C / 5.25 V  
+105 C / 5.25 V  
8
7
6
-26  
-28  
-30  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
3.6  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
3.6  
Frequency (GHz)  
Frequency (GHz)  
Figure 76. Input Match vs. Frequency over  
Temperature and Voltage – HB Mode  
Figure 77. Output Match vs. Frequency over  
Temperature and Voltage – HB Mode  
0
-2  
0
-2  
-40 C / 4.75 V  
+25 C / 4.75 V  
+105 C / 4.75 V  
-40 C / 5.00 V  
+25 C / 5.00 V  
+105 C / 5.00 V  
-40 C / 5.25 V  
+25 C / 5.25 V  
+105 C / 5.25 V  
-4  
-4  
-6  
-6  
-8  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
-26  
-28  
-30  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
-26  
-28  
-30  
-40 C / 4.75 V  
+25 C / 4.75 V  
+105 C / 4.75 V  
-40 C / 5.00 V  
+25 C / 5.00 V  
+105 C / 5.00 V  
-40 C / 5.25 V  
+25 C / 5.25 V  
+105 C / 5.25 V  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
3.6  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
3.6  
Frequency (GHz)  
Frequency (GHz)  
nd  
rd  
Figure 78. 2 Harmonic vs. Fundamental Freq  
over Temp and Voltage – HB Mode  
Figure 79. 3 Harmonic vs. Fundamental Freq  
over Temp and Voltage – HB Mode  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-40 C / 4.75 V  
+25 C / 4.75 V  
+105 C / 4.75 V  
-40 C / 5.00 V  
+25 C / 5.00 V  
+105 C / 5.00 V  
-40 C / 5.25 V  
+25 C / 5.25 V  
+105 C / 5.25 V  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-40 C / 4.75 V  
+25 C / 4.75 V  
+105 C / 4.75 V  
-40 C / 5.00 V  
+25 C / 5.00 V  
+105 C / 5.00 V  
-40 C / 5.25 V  
+25 C / 5.25 V  
+105 C / 5.25 V  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
3.6  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
3.6  
Frequency (GHz)  
Frequency (GHz)  
© 2017 Integrated Device Technology, Inc.  
23  
March23,2017  
F2480 Datasheet  
Typical Performance Characteristics – Amplifier – High Band Mode [2]  
Figure 80. Output IP3 vs. Frequency over  
Temperature and Voltage – HB Mode  
Figure 81. Output IP2H vs. Frequency over  
Temperature and Voltage – HB Mode  
45  
40  
35  
30  
25  
60  
55  
50  
45  
40  
35  
30  
-40 C / 4.75 V  
+25 C / 4.75 V  
+105 C / 4.75 V  
-40 C / 5.00 V  
+25 C / 5.00 V  
+105 C / 5.00 V  
-40 C / 5.25 V  
+25 C / 5.25 V  
+105 C / 5.25 V  
-40 C / 4.75 V  
+25 C / 4.75 V  
+105 C / 4.75 V  
-40 C / 5.00 V  
+25 C / 5.00 V  
+105 C / 5.00 V  
-40 C / 5.25 V  
+25 C / 5.25 V  
+105 C / 5.25 V  
20  
15  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
3.6  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
3.6  
Frequency (GHz)  
Frequency (GHz)  
Figure 82. Output P1dB vs. Frequency over  
Temperature and Voltage – HB Mode  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
-40 C / 4.75 V  
+25 C / 4.75 V  
+105 C / 4.75 V  
-40 C / 5.00 V  
+25 C / 5.00 V  
+105 C / 5.00 V  
-40 C / 5.25 V  
+25 C / 5.25 V  
+105 C / 5.25 V  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
3.6  
Frequency (GHz)  
© 2017 Integrated Device Technology, Inc.  
24  
March23,2017  
                                                       
                                                                    
F2480 Datasheet  
Device Usage  
Table 8. Suggested Components for Optimum Linearity Performance of the Amplifier  
RSET  
Pin 12 to GND  
(k)  
RDSET  
Pin 13 to GND  
(k)  
Frequency Range  
(MHz)  
Band_Select  
Pin 10  
C1  
(pF)  
Icc  
(mA)  
Band  
Low Band  
Mid Band  
High Band  
Wide Band  
400 – 1100  
1100 – 2200  
2200 – 3000  
400 – 3000  
LB (Open)  
HB (GND)  
HB (GND)  
HB (GND)  
2.1  
2.4  
2.4  
2.4  
9.1  
9
9
6
9
106  
121  
121  
121  
60.4  
90.9  
60.4  
Note: Mid Band and Wide Band use the same setting and component values.  
Table 9. Control Pins Usage for the TX VGA  
Pin Description  
Pin  
Input Level  
Function  
Logic LOW  
Improves higher frequency performance  
Band_Select  
10  
Logic HIGH or Open Circuit Improves lower frequency performance  
Logic LOW or Open Circuit  
Logic HIGH  
Amplifier Powered On  
STBY  
11  
Amplifier Power Savings Mode  
Negative Attenuation Slope  
VCTRL = 0.0 V results in insertion loss  
VCTRL = 2.8 V results in maximum attenuation  
Logic LOW  
Logic HIGH  
VMODE  
22  
Positve Attenuation Slope  
VCTRL = 2.8 V results in insertion loss  
VCTRL = 0.0 V results in maximum attenuation  
Application Information  
The F2480 has been optimized for use in high performance RF applications from 400 to 3000 MHz.  
STBY  
The STBY control pin allows for power saving when the device is not in use. Setting the STBY pin as a logic low or by leaving the pin open  
will produce a full current operation mode. The STBY pin has an internal 1 Mresistor to ground. Applying logic high to this pin will put the  
part in the power savings mode.  
Band_Select  
The Band_Select control pin can be used to boost the current in the device. This is typical done in the High Band and Wide Band frequency  
applications by grounding the Band_Select pin. Internally there is a 1.5 Mpullꢀup resistor to set this pin high if no connection is made to it.  
RSET and RDSET  
RSET (pin 12) and RDSET (pin 13) use external resistors to ground to set the DC current in the device and to optimize the linearity  
performance of the amplifier stage. The resistor values in Table 8 can be used as a guide for the RF band of interest. By decreasing the  
resistor value to ground on the RSET pin will increase the DC current in the amplifier stage. The maximum operating DC current through  
RSET should never be higher than 1.5mA at TEP= 105 ºC. The resistor to ground on RDSET is used to optimize the linearity performance in  
conjunction with the resistor on RSET.  
© 2017 Integrated Device Technology, Inc.  
25  
March23,2017  
F2480 Datasheet  
Application Information (Cont.)  
Amplifier Stability  
The standalone amplifier is not unconditionally stable. Set RS = 5ꢁ and R1 = 500ꢁ to makes the circuit unconditionally stable. By increasing  
RS from the EVKIT value of 0ꢁ to 5ꢁ decreases the small signal gain by approx. 0.5dB and increases the NF by approx. 0.5dB. By changing  
R1 from an open to 500ꢁ decreases the small signal gain by approx. 0.5dB and decreases the OIP3 and OP1dB by approx. 0.5dB.  
ATTEN_RF1 and ATTEN_RF2 Ports  
The attenuator stage is biꢀdirectional thus allowing ATTEN_RF1 or ATTEN_RF2 to be used as the RF input. As displayed in the Typical  
Operating Conditions curves, ATTEN_RF1 shows enhanced linearity. VCC must be applied prior to the application of RF power to ensure  
reliability. DC blocking capacitors are required on the RF pins and should be set to a value that results in a low reactance over the frequency  
range of interest.  
Attenuator Default Start-up  
The VCTRL pin has an internal pullꢀdown resistor while VMODE does not have an internal pullꢀup or pullꢀdown resistor and thus needs to be set  
externally. If VMODE is set to a logic LOW and VCTRL = 0V, the part will power up in the insertion loss state. If VMODE is set to a logic HIGH and  
VCTRL = 0V the part will power up in the maximum attenuation state. It is recommended that the user tie VMODE to either ground or logic HIGH.  
Ensure the VMODE and VCTRL pin voltages meet the dependencies to VCC as noted in the General Specifications Table during power up or  
under operation.  
VCTRL  
The VCTRL pin is used to control the attenuation of the attenuator stage. With VMODE set to a logic LOW (HIGH), this places the device in a  
negative (positive) slope mode where increasing (decreasing) the VCTRL voltage produces an increasing (a decreasing) attenuation from min  
attenuation (max attenuation) to max attenuation (min attenuation) respectively. See the General Specifications Table for the allowed control  
voltage range and its dependence on VCC. Apply VCC before applying voltage to the VCTRL pin to prevent damage to the onꢀchip pullꢀup ESD  
diode. If this sequencing is not possible, then set resistor R6 to 1kꢁ to limit the current into the VCTRL pin.  
VMODE  
The VMODE pin is used to set the attenuation vs. VCTRL slope. With VMODE set to logic LOW (HIGH) this will set the attenuation slope to be  
negative (positive). A negative (positive) slope is defined as increasing (decreasing) attenuation with increasing (decreasing) VCTRL voltage.  
The EVKit provides an onꢀboard jumper to manually set the VMODE. Installing a jumper on header J4 from VMODE to GND (VIH) to set the device  
for a negative (positive) slope. Resistors R2 and R3 on the evaluation board form a voltage divider to establish a compatible logic HIGH level  
using the VCC supply as a source. The VMODE does not have an internal pullꢀup or pullꢀdown resistor so it must be set externally.  
Power Supplies  
A common 5V power supply should be used for all pins requiring DC power. All supply pins should be bypassed with external capacitors to  
minimize noise and fast transients. Supply noise can degrade noise figure and fast transients can trigger ESD clamps and cause them to fail.  
Supply voltage change or transients should have a slew rate smaller than 1V / 20ꢃs. In addition, all control pins should remain at 0V (± 0.3V)  
while the supply voltage ramps or while it returns to zero.  
© 2017 Integrated Device Technology, Inc.  
26  
March23,2017  
F2480 Datasheet  
Control Pin Interface  
If control signal integrity is a concern and clean signals cannot be guaranteed due to overshoot, undershoot, ringing, etc., the following circuit  
at the input of each control pin is recommended. This applies to control pins 10, 11, 20, and 22 as shown below. Note the recommended  
resistor and capacitor values do not necessarily match the EVKit BOM for the case of poor control signal integrity. For multiple devices driven  
by a single control line, values will need to be adjusted accordingly so as to not load the control line.  
Figure 83. Control Pin Components for Signal Integrity  
© 2017 Integrated Device Technology, Inc.  
27  
March23,2017  
F2480 Datasheet  
Evaluation Kit Picture  
Figure 84. Top View  
Figure 85. Bottom View  
© 2017 Integrated Device Technology, Inc.  
28  
March23,2017  
F2480 Datasheet  
Evaluation Kit / Applications Circuit  
Figure 86. Electrical Schematic  
Note: RS and R1 are used to produce unconditional stability for the amplifier and are not included in the performance stated in this datasheet.  
See applications information section above.  
© 2017 Integrated Device Technology, Inc.  
29  
March23,2017  
F2480 Datasheet  
Table 10. Bill of Material (BOM)  
Part Reference  
QTY  
Description  
Manufacturer Part #  
Manufacturer  
C1  
1
2
1
1
3
2
1
1
0
2
0
5
1
1
0
0
0
5
6
1
2
2
1
1
9pF ±0.25pF, 50V, C0G Ceramic Capacitor (0402)  
100pF ±5%, 50V, C0G Ceramic Capacitor (0402)  
10ꢃF ±20%, 6.3V, X5R Ceramic Capacitor (0603)  
47pF ±5%, 50V, C0G Ceramic Capacitor (0402)  
1000pF ±5%, 50V, C0G Ceramic Capacitor (0402)  
10nF ±5%, 50V, X7R Ceramic Capacitor (0603)  
0.1ꢃF ±10%, 16V, X7R Ceramic Capacitor (0402)  
0ꢁ ±1%, 1/10W, Resistor (0402)  
Not Installed  
GRM1555C1H9R0C  
GRM1555C1H101J  
GRM188R60J106M  
GRM1555C1H470J  
GRM1555C1H102J  
GRM188R71H103J  
GRM155R71C104K  
ERJꢀ2GE0R00X  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Panasonic  
C2, C9  
C3  
C4  
C5, C7, C10  
C6, C8  
C11  
RS [a]  
R1 [a]  
R2, R3  
100kꢁ ±1%, 1/10W, Resistor (0402)  
Not Installed  
ERJꢀ2RKF1003X  
Panasonic  
R4  
R5, R6, R7, R11, R13  
0ꢁ ±1%, 1/10W, Resistor (0402)  
60.4kꢁ ±1%, 1/10W, Resistor (0402)  
2.4kꢁ ±1%, 1/10W, Resistor (0402)  
Not Installed, Alternate 1 Bias Resistor (0402)  
Not Installed, Alternate 2 Bias Resistor (0402)  
Not Installed, Alternate 3 Bias Resistor (0402)  
Test Point  
ERJꢀ2GE0R00X  
ERJꢀ2RKF6042X  
ERJꢀ2RKF2401X  
Panasonic  
Panasonic  
Panasonic  
R8  
R9  
R10, R12  
R14, R15  
R16, R17  
TP1 – TP5  
J1, J2, J3, J5, J6, J7  
J4  
5021  
Keystone Electronics  
SMA EndꢀLaunch (small)  
142ꢀ0711ꢀ821  
961103ꢀ6404ꢀAR  
961102ꢀ6404ꢀAR  
67997ꢀ108HLF  
F2480NBGI  
Emerson Johnson  
CONN HEADER VERT SGL 3 POS GOLD  
CONN HEADERS VERT SGL 2 POS GOLD  
2 x 4 HEADER VERT  
3M  
3M  
J8, J9  
J10, J11  
U1  
FCI  
IDT  
IDT  
RF Amplifier / VVA  
Printed Circuit Board  
F2480 PCB  
a. The data included in this datasheet does not include these as stability resistors. For the amplifier to be unconditionally stable  
RS and R1 must be installed. See the Applications Section for more details.  
© 2017 Integrated Device Technology, Inc.  
30  
March23,2017  
F2480 Datasheet  
Evaluation Kit Operation  
Below is a basic setup procedure for configuring and testing the F2480 EVKit.  
Pre-Configure EVKit:  
The section is a guide to setup the EVKit for testing. Remove the J8 header shunt if the application is for low band operation. All other  
operating bands require the J8 shunt to be installed. Remove any shorting shunt from header J9 which will allow the part to be in the  
operating mode when powered up. Verify that there is a shunt between pins 1, 2 of J11 and pins 1, 2 of J10. These pins configure the PCB to  
use the installed bias resistors to support Mid Band and Wide Band (see Table 8). Alternate resistors can be installed on the unpopulated  
resistor slots on J11 and J10 to support the other operating bands (see Additional EVKit Information section). If a negative (positive)  
attenuator control slope is desired, connect a shunt between pins 1 and 2 (2 and 3) of header J4.  
Power Supply Setup:  
Without making any connections to the EVKit, setup one fixed power supply for 5V with a current limit of 160mA and one variable supply set  
to 0V with a current limit of 10mA. Disable both power supplies.  
RF Test Setup:  
Set up the RF test set to the desired frequency and power ranges within the specified operating limits noted in this datasheet.  
Disable the output power of all the RF sources.  
Connect EVKit to Test setup:  
With the RF sources and power supplies disabled connect the fixed 5V power supply to connector J3, the variable supply to J6 and the RF  
connections to the desired RF ports. Terminate any unused RF ports (J1, J2, J5, J7) into 50ꢁ.  
Powering Up the EVkit:  
Enable the 5V supply and observe a DC current of approx. 120mA.  
Enable the variable supply.  
Enable the RF sources. Verify that the DC current stays about 120mA to verify that the amplifier is not being over driven by RF input power.  
If the J4 connection is set for a negative (positive) attenuation slope then increasing the variable supply with produce increased (decreased)  
attenuation for the attenuator path (J2 to J7).  
Powering Down the EVkit:  
Disable the RF power being applied to the device.  
Adjust the variable supply down to 0V and disable it.  
Disable the 5V supply.  
Disconnect EVKit from the RF test stand.  
Additional EVKIT Information  
EVKit modification to support additional Table 8 bias settings:  
The standard EVKit is setup for only one RSET / RDSET bias setting (pins 12/ 13 on the F2480) noted in Table 8.  
Additional Table 8 values (R12/R10, R15/R14, R17/ R16) can be installed on the board to allow for different jumper settings. Never have two  
shunts installed at the same time on header J11 since this may produce excessive bias current and damage the part. As the resistance to  
ground decreases on pin 12 of the device, the DC current will increase. The DC current of the EVKIT should never exceed 250mA.  
© 2017 Integrated Device Technology, Inc.  
31  
March23,2017  
F2480 Datasheet  
Package Drawings  
Figure 87. Package Outline Drawing (5 x 5 x 0.75 mm 32-pin TQFN), NBG32  
© 2017 Integrated Device Technology, Inc.  
32  
March23,2017  
F2480 Datasheet  
Recommended Land Pattern  
Figure 88. Recommended Land Pattern  
© 2017 Integrated Device Technology, Inc.  
33  
March23,2017  
F2480 Datasheet  
Ordering Information  
Orderable Part Number  
Package  
MSL Rating  
Shipping Packaging  
Temperature  
F2480NBGI  
F2480NBGI8  
F2480EVBI  
5 x 5 x 0.75 mm 32ꢀTQFN  
5 x 5 x 0.75 mm 32ꢀTQFN  
Evaluation Board  
1
1
Tray  
ꢀ40 to +105 °C  
ꢀ40 to +105 °C  
Tape and Reel  
Marking Diagram  
Line 1 ꢀ Company.  
Line 2 ꢀ Product Number.  
Line 3 ꢀ “Z” the initial alpha characters are the ASM Test Step.  
IDT  
Line 3 ꢀ “1503” is two digits for the year and week that the part was assembled (2015, Week 3).  
Line 3 ꢀ “L” or last alpha characters are the Assembler Code.  
Line 4 ꢀ Near Dot – Lot Code.  
F2480NBGI  
Z1503L  
Q32A016Y  
Revision History  
Revision Date  
Description of Change  
March 23, 2017  
Initial release.  
Corporate Headquarters  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Sales  
Tech Support  
www.IDT.com/go/support  
1ꢀ800ꢀ345ꢀ7015 or 408ꢀ284ꢀ8200  
Fax: 408ꢀ284ꢀ2775  
www.IDT.com/go/sales  
www.IDT.com  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as “IDT”) reserve the right to modify the products and/or specifications described herein at any time,  
without notice, at IDT's sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same  
way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability  
of IDT's products for any particular purpose, an implied warranty of merchantability, or nonꢀinfringement of the intellectual property rights of others. This document is presented only as a guide and does not  
convey any license under intellectual property rights of IDT or any third parties.  
IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be  
reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the  
property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. All contents of this document are copyright of  
Integrated Device Technology, Inc. All rights reserved.  
© 2017 Integrated Device Technology, Inc.  
34  
March23,2017  

相关型号:

F2480NBGI

Broadband RF Analog VGA 400 to 3000 MHz
IDT

F2480NBGI8

Broadband RF Analog VGA 400 to 3000 MHz
IDT

F2481

SAW Bandpass Filter
ITF

F249-4.000MHZ-HE0

HCMOS Output Clock Oscillator, 4MHz Nom, ROHS COMPLIANT, SMD, 4 PIN
FOX

F249-4.000MHZ-HE1000

HCMOS Output Clock Oscillator, 4MHz Nom, ROHS COMPLIANT, SMD, 4 PIN
FOX

F249-54.000MHZ-HE0

HCMOS Output Clock Oscillator, 54MHz Nom, ROHS COMPLIANT, SMD, 4 PIN
FOX

F249-54.000MHZ-HE1000

HCMOS Output Clock Oscillator, 54MHz Nom, ROHS COMPLIANT, SMD, 4 PIN
FOX

F249-FREQ-HE0

HCMOS Output Clock Oscillator, 4MHz Min, 54MHz Max, ROHS COMPLIANT, SMD, 4 PIN
FOX

F249-FREQ-HE1000

HCMOS Output Clock Oscillator, 4MHz Min, 54MHz Max, ROHS COMPLIANT, SMD, 4 PIN
FOX

F249R-4.000MHZ

Oscillator
FOX

F249R-4.000MHZ-HM0

HCMOS Output Clock Oscillator, 4MHz Nom, ROHS COMPLIANT, SMD, 4 PIN
FOX

F249R-4.000MHZ-HM1000

HCMOS Output Clock Oscillator, 4MHz Nom, ROHS COMPLIANT, SMD, 4 PIN
FOX