F1423 [IDT]

TX Differential Input RF Amplifier;
F1423
型号: F1423
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

TX Differential Input RF Amplifier

文件: 总26页 (文件大小:2663K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
F1423  
Datasheet  
TX Differential Input RF Amplifier  
600 MHz to 3000 MHz  
G
ENERAL  
D
ESCRIPTION  
F
EATURES  
The F1423 is a 600 MHz to 3000 MHz TX differential  
input / singleꢀended output RF amplifier used in  
transmitter applications.  
Broadband 600 MHz – 3000 MHz  
13.1 dB typical gain @ 2000 MHz  
5.1 dB NF @ 2000 MHz  
+41.8 dBm OIP3 @ 2000 MHz  
+21.5 dBm output P1dB @ 2000 MHz  
Single 5 V supply voltage  
The F1423 TX Amp provides 13.1 dB gain with  
+41.8 dBm OIP3 and 5.1 dB noise figure at 2000 MHz.  
This device uses a single 5 V supply and 120 mA of ICC.  
I
CC = 120 mA  
This device is packaged in a 4mm x 4mm, 24ꢀpin Thin  
QFN with 50 ohm differential RF input and 50 ohm  
single ended RF output impedances for ease of  
integration into the signalꢀpath.  
Up to +105 °C TCASE operating temperature  
50 ꢁ differential input impedance  
50 ꢁ single ended output impedance  
Positive gain slope for board loss  
compensation  
Standby mode for power savings  
4 mm x 4 mm, 24ꢀpin TQFN package  
C
OMPETITIVE  
ADVANTAGE  
In typical Base Stations, RF Amplifiers are used in the  
TX traffic paths to drive the transmit power amplifier.  
The F1423 TX Amplifier offers very high reliability due  
to its construction using silicon die in a QFN package.  
The F1423 includes a broadband differential input to  
accept ACꢀcoupled signals directly from a balanced  
modulator or RF DAC architecture.  
F
UNCTIONAL  
B
LOCK  
D
IAGRAM  
RFOUT  
RFIN  
APPLICATIONS  
Multiꢀmode, Multiꢀcarrier Transmitters  
GSM850/900 Base Stations  
PCS1900 Base Stations  
STBY  
BANDSEL  
DCS1800 Base Stations  
WiMAX and LTE Base Stations  
UMTS/WCDMA 3G Base Stations  
PHS/PAS Base Stations  
O
RDERING NFORMATION  
I
Public Safety Infrastructure  
Tape &  
Reel  
F1423NBGI8  
RF Product Line  
Green  
F1423, Rev O 11/6/2015  
1
© 2015 Integrated Device Technology, Inc.  
F1423  
BSOLUTE  
A
M
AXIMUM  
R
ATINGS  
Parameter  
Symbol  
VCC  
Min  
ꢀ0.3  
ꢀ0.3  
Max  
+5.5  
Units  
V
VCC to GND  
STBY, Band_Sel  
RBIAS1  
VCntl  
VCC + 0.25  
+1.5  
V
IRB1  
mA  
mA  
V
RBIAS2  
IRB2  
+0.8  
RFIN+, RFINꢀ, Voltage1  
RFIN+, RFINꢀ, Current1  
VRFin  
IRFin  
ꢀ0.02  
ꢀ5  
+0.02  
+5  
mA  
V
RFOUT externally applied DC voltage  
VRFout  
VCC ꢀ 0.15  
VCC + 0.15  
RF Differential Input Power  
(applied for 24 hours maximum)  
Pin  
+22  
dBm  
Continuous Power Dissipation  
Junction Temperature  
Pdiss  
Tj  
1.5  
150  
150  
260  
W
°C  
°C  
°C  
Storage Temperature Range  
Lead Temperature (soldering, 10s)  
Tst  
ꢀ65  
ElectroStatic Discharge – HBM  
(JEDEC/ESDA JSꢀ001ꢀ2014)  
Class 2  
(2000 V)  
ElectroStatic Discharge – CDM  
(JESD 22ꢀC101F)  
Class C3  
(1000 V)  
Note 1: The RFIN+ and RFINꢀ pins connect to an internal balun that presents a very low impedance to ground.  
Stresses above those listed above may cause permanent damage to the device. Functional operation of the device at  
these or any other conditions above those indicated in the operational section of this specification is not implied.  
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
P
ACKAGE  
THERMAL AND  
MOISTURE  
C
HARACTERISTICS  
θJA (Junction – Ambient)  
40 °C/W  
4 °C/W  
MSL1  
θJC (Junction – Case) [The Case is defined as the exposed paddle]  
Moisture Sensitivity Rating (Per JꢀSTDꢀ020)  
Zero-DistortionTM, TX Amplifier  
2
Rev O 11/6/2015  
F1423  
F1423 RECOMMENDED  
O
PERATING  
C
ONDITIONS  
Parameter  
Symbol  
VCC  
Conditions  
All VCC pins  
Min  
4.75  
ꢀ40  
Typ  
Max  
5.25  
Units  
V
Supply Voltage(s)  
Operating Temperature Range  
RF Frequency Range  
TCASE  
FRF  
Case Temperature  
Operating Range  
Differential  
+105  
30001  
°C  
600  
MHz  
RF Source Impedance  
RF Load Impedance  
ZRFI  
50  
50  
ZRFO  
Single Ended  
RF Band Designation2  
Lowꢀband  
FRF_LB  
FRF_MB  
FRF_HB  
FRF_BB  
600  
1400  
2100  
600  
1100  
2100  
30001  
30001  
Midꢀband  
RF Frequency Range  
MHz  
Highꢀband  
Broadꢀband  
Note 1: Though device linearity is specified over the range from 700 MHz to 2700 MHz, gain flatness up to 3000 MHz  
is specified in the highꢀband and broadband tables to account for extended DPD bandwidth requirements.  
Note 2: To optimize RF performance, a different output match will be used for each of the 4 RF bands listed (see  
Table 2). In addition, different value amplifier bias resistors will be used to optimize performance in each of  
the 4 bands.  
Rev O 11/6/2015  
3
Zero-DistortionTM, TX Amplifier  
F1423  
F1423 SPECIFICATION - GENERAL  
See F1423 Typical Application Circuit. Unless otherwise stated, specifications apply when operated as a TX RF  
Amplifier, VCC = +5.0 V, TC = +25 °C.  
Parameter  
Logic Input High  
Logic Input Low  
Symbol  
VIH  
VIL  
ISTBY  
Condition  
Min  
1.1  
Typ  
Max  
Units  
V
0.63  
+10  
+10  
STBY pin  
-10  
-10  
Logic Current  
ꢂA  
IBAND  
Band_Sel pin  
ICC_LB  
ICC_MB  
ICC_HB  
ICC_BB  
ICC_STBY  
Lowꢀband bias setting  
Midꢀband bias setting  
Highꢀband bias setting  
Broadꢀband bias setting  
STBY = 5V  
50% STBY to RF output  
settled to within ±0.5dB  
50% STBY to DC standby  
current settled to within  
±2mA of final ICC value  
103  
120  
120  
120  
0.8  
Supply Current3  
mA  
135 1  
1.0  
Standby Current  
mA  
µs  
Power ON switching time  
TON  
1
Power OFF switching time  
TOFF  
1
µs  
Note 1: Items in min/max columns in bold italics are Guaranteed by Test.  
Note 2: Items in min/max columns that are not bold/italics are Guaranteed by Design Characterization.  
Note 3: Use external resistors to set amplifier bias currents to optimize device linearity. See Table 2.  
Zero-DistortionTM, TX Amplifier  
4
Rev O 11/6/2015  
F1423  
F1423 SPECIFICATION – LOW-BAND  
See F1423 Typical Application Circuit. Unless otherwise stated, specifications apply when operated as a TX RF  
Amplifier, VCC = +5.0 V, TC = +25 °C, FRF = 700 MHz, Pout = +7 dBm, R8 =2.1 kΩ, R9 =9.1 kΩ, C1 = 9 pF,  
Rsource = 50 Ω differential, Rload = 50 Ω singleꢀended, Band_Sel = open, EVKit trace connector and transformer  
losses are deꢀembedded.  
Parameter  
RF Input Return Loss  
RF Output Return Loss  
Common Mode Rejection  
Gain  
Symbol  
RFINRL_LB  
RFOUTRL_LB  
CMRRLB  
GLB  
Condition  
Min  
Typ  
17  
Max  
13.2  
Units  
dB  
12.8  
20.7  
12.6  
dB  
700 MHz to 1100 MHz  
dB  
12.0 1  
dB  
Any 400 MHz BW from  
700 MHz to 1100 MHz  
In any 20 MHz range over  
RF Band  
Gain Flatness  
Gain Ripple  
GFLAT_LB  
GRIPPLE_LB  
NFLB  
0.4  
dB  
dB  
dB  
±0.04  
4.5  
5.4  
Noise Figure3  
Tcase = +105 °C  
Output Third Order  
Intercept Point3  
Output 1dB Compression3  
Pout = +4 dBm/tone  
5 MHz tone separation  
OIP3LB  
392  
20  
42.5  
21.1  
dBm  
dBm  
OP1dBLB  
F1423 SPECIFICATION – MID-BAND  
See F1423 Typical Application Circuit Unless otherwise stated, specifications apply when operated as a TX RF  
Amplifier, VCC = +5.0 V, TC = +25 °C, FRF = 2000 MHz, Pout = +7 dBm, R8 =2.4 kΩ, R9 =60.4 kΩ, C1 = 9 pF,  
Rsource = 50 Ω differential, Rload = 50 Ω singleꢀended, Band_Sel = GND, EVKit trace connector and transformer  
losses are deꢀembedded.  
Parameter  
RF Input Return loss  
RF Output Return Loss  
Common Mode Rejection  
Gain  
Symbol  
RFINRL_MB  
RFOUTRL_MB  
CMRRMB  
GMB  
Condition  
Min  
Typ  
15  
Max  
Units  
dB  
16.5  
19.0  
13.1  
dB  
1400 MHz to 2100 MHz  
dB  
12.5 1  
13.7  
dB  
Any 400MHz BW from  
1400 MHz to 2100 MHz  
In any 20 MHz range over  
RF Band  
Gain Flatness  
Gain Ripple  
GFLAT_MB  
GRIPPLE_MB  
NFMB  
0.17  
dB  
dB  
dB  
±0.01  
5.1  
5.8  
Noise Figure3  
Tcase = +105 °C  
Output Third Order  
Intercept Point3  
Output 1dB Compression3  
Pout = +4 dBm/tone  
5MHz tone separation  
OIP3MB  
38.82  
20.3  
41.8  
21.5  
dBm  
dBm  
OP1dBMB  
Note 1: Items in min/max columns in bold italics are Guaranteed by Test.  
Note 2: Items in min/max columns that are not bold/italics are Guaranteed by Design Characterization.  
Note 3: Measured using external 1:1 transformer at the RF input.  
Rev O 11/6/2015  
5
Zero-DistortionTM, TX Amplifier  
F1423  
F1423 Specification – High-Band  
See F1423 Typical Application Circuit. Unless otherwise stated, specifications apply when operated as a TX RF  
Amplifier, VCC = +5.0 V, TC = +25 °C, FRF = 2700 MHz, Pout = +7 dBm, R8 =2.4 kΩ, R9 =60.4 kΩ, C1 = 6 pF,  
Rsource = 50 Ω differential, Rload = 50 Ω singleꢀended, Band_Sel = GND, EVKit trace connector and transformer  
losses are deꢀembedded.  
Parameter  
RF Input Return loss  
RF Output Return Loss  
Common Mode Rejection  
Gain  
Symbol  
RFINRL_HB  
RFOUTRL_HB  
CMRRHB  
GHB  
Condition  
Min  
Typ  
15.5  
20  
Max  
Units  
dB  
dB  
2100 MHz to 3000 MHz  
18.5  
13.1  
dB  
12.4 1  
13.9  
dB  
Any 400 MHz BW from  
2100 MHz to 3000 MHz  
In any 20 MHz range over  
RF Band  
Gain Flatness  
Gain Ripple  
GFLAT_HB  
GRIPPLE_HB  
NFHB  
0.23  
dB  
dB  
dB  
±0.015  
6.0  
6.6  
Noise Figure3  
Tcase = +105 °C  
Output Third Order  
Intercept Point3  
Output 1dB Compression3  
Pout = +4 dBm/tone  
5MHz tone separation  
OIP3HB  
37.3  
20.6  
dBm  
dBm  
OP1dBHB  
20.02  
F1423 Specification – Broad-Band  
See F1423 Typical Application Circuit. Unless otherwise stated, specifications apply when operated as a TX RF  
Amplifier, VCC = +5.0 V, TC = +25 °C, FRF = 2200 MHz, Pout = +7 dBm, R8 =2.4 kΩ, R9 =60.4 kΩ, C1 = 9 pF,  
Rsource = 50 Ω differential, Rload = 50 Ω singleꢀended, Band_Sel = GND, EVKIT trace connector and transformer  
losses are deꢀembedded.  
Parameter  
RF Input Return loss  
RF Output Return Loss  
Common Mode Rejection  
Gain  
Symbol  
RFINRL_BB  
RFOUTRL_BB  
CMRRBB  
GBB  
Condition  
Min  
Typ  
15.0  
18.5  
18.5  
13.2  
Max  
Units  
dB  
dB  
700 MHz to 3000 MHz  
dB  
12.6 1  
13.8  
dB  
Any 400 MHz BW from  
700 MHz to 3000 MHz  
In any 20 MHz range over  
400 MHz BW  
Gain Flatness  
GFLAT_BB  
0.4  
dB  
Gain Ripple  
Gain Slope  
GRIPPLE_BB  
GSLOPE_BB  
NFBB  
±0.04  
dB  
dB/MHz  
dB  
±0.002  
5.2  
Noise Figure3  
Tcase = +105 °C  
5.8  
Output Third Order  
Intercept Point3  
Output 1dB Compression3  
Pout = +4 dBm/tone  
5 MHz tone separation  
OIP3BB  
41.4  
21.4  
dBm  
dBm  
OP1dBBB  
20.52  
Note 1: Items in min/max columns in bold italics are Guaranteed by Test.  
Note 2: Items in min/max columns that are not bold/italics are Guaranteed by Design Characterization.  
Note 3: Measured using external 1:1 transformer at the RF input.  
Zero-DistortionTM, TX Amplifier  
6
Rev O 11/6/2015  
F1423  
Table1: STBY Truth Table  
Parameter  
Level  
Logic Low or Open Circuit  
Logic High  
Function  
Powered On  
Powered Off  
STBY  
Table2: Component Settings for Optimized Linearity Performance per RF band  
Frequency Range  
(MHz)  
Band_Sel  
(Pin 11)  
Open  
Pin 14 to GND  
Pin 15 to GND  
C1  
(pF)  
9
9
6
9
ICC  
(mA)  
104  
120  
120  
120  
Band  
(kΩ)  
2.1  
2.4  
2.4  
(kΩ)  
9.1  
60.4  
60.4  
60.4  
Low ꢀ Band  
Mid ꢀ Band  
High ꢀ Band  
Broad ꢀ Band  
600 ꢀ 1100  
1400 ꢀ 2100  
2100 ꢀ 3000  
700 ꢀ 3000  
GND  
GND  
GND  
2.4  
TYPICAL  
O
PERATING  
CONDITIONS (TOC)  
Unless otherwise noted for the TOC graphs on the following pages, the following conditions apply.  
Vcc= 5.0 V  
Tcase = 25 °C (All temperatures are referenced to the exposed paddle).  
ZS = 50 Ohms Differential  
ZL = 50 Ohms Single Ended  
Board configured as defined in Table 2 for each band.  
Pout = 4 dBm / Tone  
5 MHz Tone Spacing  
EVKIT traces, connectors, and transformer losses are de-embedded.  
S-parameters (S11, S21, S12, and S22) measured using a de-embedded Differential Board EVKit  
and the inputs are mathematically combined using an ideal 1:1 (50 : 50 ꢁ) transformer to  
produce the 2 port S-parameters.  
Amplitude and phase imbalances measures RFIN+ to RFOUT and compares to RFIN- to RFOUT.  
Phase imbalance is the deviation from an ideal 180 degrees.  
OIP3, Output P1dB and Noise Figure measured using a Transformer Board EVKit.  
Note: The use of the external transformer T1 is included for simple 2 port evaluation purposes.  
At some frequencies the external transformer interacts with the onꢀchip balun affecting the gain and noise  
figure flatness responses. These interactions have been removed from the noise figure TOCs.  
Rev O 11/6/2015  
7
Zero-DistortionTM, TX Amplifier  
F1423  
TOC  
S
[DIFFERENTIAL  
B
OARD S-PARS, AMPLITUDE AND  
P
HASE  
IMBALANCE, BROAD-BAND BIAS](-1-)  
RF Gain vs. Vcc and TCASE  
Input Match vs. Vcc and TCASE  
15  
0
4.75V, -40C  
4.75V, 25C  
4.75V, 105C  
5.00V, -40C  
5.00V, 25C  
5.00V, 105C  
5.25V, -40C  
5.25V, 25C  
5.25V, 105C  
4.75V, -40C  
4.75V, 25C  
4.75V, 105C  
5.00V, -40C  
5.25V, -40C  
5.25V, 25C  
5.25V, 105C  
14.5  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
5.00V, 25C  
5.00V, 105C  
14  
13.5  
13  
12.5  
12  
11.5  
11  
10.5  
10  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
Frequency (GHz)  
2.4  
2.7  
3
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
Frequency (GHz)  
2.4  
2.7  
3
3
3
Output Match vs. Vcc and TCASE  
Reverse Gain vs. Vcc and TCASE  
0
-12  
4.75V, -40C  
4.75V, 25C  
4.75V, 105C  
5.00V, -40C  
5.00V, 25C  
5.00V, 105C  
5.25V, -40C  
5.25V, 25C  
5.25V, 105C  
4.75V, -40C  
4.75V, 25C  
4.75V, 105C  
5.00V, -40C  
5.00V, 25C  
5.00V, 105C  
5.25V, -40C  
5.25V, 25C  
5.25V, 105C  
-14  
-16  
-18  
-20  
-22  
-24  
-26  
-28  
-5  
-10  
-15  
-20  
-25  
-30  
0.6  
0.9  
1.2  
1.5 2.1  
Frequency (GHz)  
1.8  
2.4  
2.7  
3
0.6  
0.9  
1.2  
1.5 2.1  
Frequency (GHz)  
1.8  
2.4  
2.7  
Amplitude Imbalance vs. TCASE  
Phase Imbalance vs. TCASE  
1.5  
20  
-40C  
25C  
1
Z
Z
S
L
= 25 Ohm / port  
= 50 Ohm  
-40C  
25C  
Z
Z
S
L
= 25 Ohm / port  
= 50 Ohm  
15  
105C  
105C  
10  
0.5  
5
0
0
-0.5  
-1  
-5  
-10  
-15  
-20  
-1.5  
0.6  
0.9  
1.2  
1.5 2.1  
Frequency (GHz)  
1.8  
2.4  
2.7  
3
0.6  
0.9  
1.2  
1.5 2.1  
Frequency (GHz)  
1.8  
2.4  
2.7  
Zero-DistortionTM, TX Amplifier  
8
Rev O 11/6/2015  
F1423  
TOC  
S
[TRANSFORMER  
B
OARD, OIP3, P1dB, NOISE  
F
IGURE, ICC, BROAD-BAND  
OIP3 vs. Pout Level  
BIAS](-2-)  
OIP3 vs. Vcc and TCASE  
60  
60  
0dBm/tone  
2dBm/tone  
4dBm/tone  
4.75V, -40C  
4.75V, 25C  
4.75V, 105C  
5.00V, -40C  
5.00V, 25C  
5.00V, 105C  
5.25V, -40C  
5.25V, 25C  
5.25V, 105C  
55  
55  
50  
50  
45  
40  
35  
30  
25  
20  
15  
10  
45  
40  
35  
30  
25  
20  
15  
10  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3
Frequency (GHz)  
Frequency (GHz)  
Output P1dB vs. Vcc and TCASE  
Noise Figure vs. Vcc and TCASE  
24  
8
4.75V, -40C  
4.75V, 25C  
4.75V, 105C  
5.00V, -40C  
5.00V, 25C  
5.00V, 105C  
5.25V, -40C  
5.25V, 25C  
5.25V, 105C  
4.75V, -40C  
4.75V, 25C  
4.75V, 105C  
5.00V, -40C  
5.00V, 25C  
5.00V, 105C  
5.25V, -40C  
5.25V, 25C  
5.25V, 105C  
7.5  
7
23  
22  
21  
20  
19  
18  
6.5  
6
5.5  
5
4.5  
4
0.6  
0.9  
1.2  
1.5  
Frequency (GHz)  
1.8  
2.1  
2.4  
2.7  
3
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3
Frequency (GHz)  
Icc vs. Vcc and TCASE  
140  
-40C  
25C  
135  
130  
125  
120  
115  
110  
105  
100  
105C  
4.75  
5
5.25  
Vcc (Volts)  
Rev O 11/6/2015  
9
Zero-DistortionTM, TX Amplifier  
F1423  
TOC  
S
[DIFFERENTIAL  
B
OARD S-PARS, AMPLITUDE AND  
P
HASE  
IMBALANCE, LOW-BAND  
B
IAS](-3-)  
RF Gain vs. Vcc and TCASE  
Input Match vs. Vcc and TCASE  
15  
0
4.75V, -40C  
4.75V, 25C  
4.75V, 105C  
5.00V, -40C  
5.00V, 25C  
5.00V, 105C  
5.25V, -40C  
5.25V, 25C  
5.25V, 105C  
4.75V, -40C  
4.75V, 25C  
4.75V, 105C  
5.00V, -40C  
5.00V, 25C  
5.00V, 105C  
5.25V, -40C  
5.25V, 25C  
5.25V, 105C  
14.5  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
14  
13.5  
13  
12.5  
12  
11.5  
11  
10.5  
10  
0.6  
0.7  
0.8  
0.9  
Frequency (GHz)  
1
1.1  
1.2  
1.3  
1.3  
1.3  
0.6  
0.7  
0.8  
0.9  
Frequency (GHz)  
1
1.1  
1.2  
1.3  
1.3  
1.3  
Output Match vs. Vcc and TCASE  
Reverse Gain vs. Vcc and TCASE  
0
-12  
4.75V, -40C  
4.75V, 25C  
4.75V, 105C  
5.00V, -40C  
5.00V, 25C  
5.00V, 105C  
5.25V, -40C  
5.25V, 25C  
5.25V, 105C  
4.75V, -40C  
4.75V, 25C  
4.75V, 105C  
5.00V, -40C  
5.00V, 25C  
5.00V, 105C  
5.25V, -40C  
5.25V, 25C  
5.25V, 105C  
-14  
-16  
-18  
-20  
-22  
-24  
-26  
-28  
-5  
-10  
-15  
-20  
-25  
-30  
0.6  
0.7  
0.8  
0.9  
Frequency (GHz)  
1
1.1  
1.2  
0.6  
0.7  
0.8  
0.9  
Frequency (GHz)  
1
1.1  
1.2  
Amplitude Imbalance vs. TCASE  
Phase Imbalance vs. TCASE  
1.5  
20  
Z
Z
S
L
= 25 Ohm / port  
= 50 Ohm  
-40C  
-40C  
25C  
Z
Z
S
L
= 25 Ohm / port  
= 50 Ohm  
15  
25C  
1
105C  
105C  
10  
0.5  
5
0
0
-0.5  
-1  
-5  
-10  
-15  
-20  
-1.5  
0.6  
0.7  
0.8  
0.9  
1
1.1  
1.2  
0.6  
0.7  
0.8  
0.9 1  
Frequency (GHz)  
1.1  
1.2  
Frequency (GHz)  
Zero-DistortionTM, TX Amplifier  
10  
Rev O 11/6/2015  
F1423  
TOC [TRANSFORMER BOARD, OIP3, P1dB, NOISE FIGURE, ICC, LOW-BAND BIAS](-4-)  
S
OIP3 vs. Vcc and TCASE  
Output P1dB vs. Vcc and TCASE  
24  
60  
4.75V, -40C  
4.75V, 25C  
4.75V, 105C  
5.00V, -40C  
5.00V, 25C  
5.00V, 105C  
5.25V, -40C  
5.25V, 25C  
5.25V, 105C  
4.75V, -40C  
4.75V, 25C  
4.75V, 105C  
5.00V, -40C  
5.00V, 25C  
5.00V, 105C  
5.25V, -40C  
5.25V, 25C  
5.25V, 105C  
55  
23  
22  
21  
20  
19  
18  
50  
45  
40  
35  
30  
25  
20  
15  
10  
0.6  
0.7  
0.8  
0.9  
1
1.1  
1.2  
1.3  
0.6  
0.7  
0.8  
0.9 1  
Frequency (GHz)  
1.1  
1.2  
1.3  
Frequency (GHz)  
Icc vs. Vcc and TCASE  
Noise Figure vs. Vcc and TCASE  
125  
7
-40C  
25C  
105C  
4.75V, -40C  
4.75V, 25C  
4.75V, 105C  
5.00V, -40C  
5.00V, 25C  
5.00V, 105C  
5.25V, -40C  
5.25V, 25C  
5.25V, 105C  
120  
115  
110  
105  
100  
95  
6.5  
6
5.5  
5
4.5  
4
90  
3.5  
3
85  
4.75  
5
Vcc (Volts)  
5.25  
0.6  
0.7  
0.8  
0.9  
1
1.1  
1.2  
1.3  
Frequency (GHz)  
Rev O 11/6/2015  
11  
Zero-DistortionTM, TX Amplifier  
F1423  
TOC  
S
[DIFFERENTIAL  
B
OARD S-PARS, AMPLITUDE AND  
P
HASE  
IMBALANCE, MID-BAND  
B
IAS](-5-)  
RF Gain vs. Vcc and TCASE  
Input Match vs. Vcc and TCASE  
14.5  
0
4.75V, -40C  
4.75V, 25C  
4.75V, 105C  
5.00V, -40C  
5.00V, 25C  
5.00V, 105C  
5.25V, -40C  
5.25V, 25C  
5.25V, 105C  
4.75V, -40C  
4.75V, 25C  
4.75V, 105C  
5.00V, -40C  
5.00V, 25C  
5.00V, 105C  
5.25V, -40C  
5.25V, 25C  
5.25V, 105C  
14  
13.5  
13  
-5  
-10  
-15  
-20  
-25  
-30  
12.5  
12  
11.5  
11  
10.5  
1.4  
1.5  
1.6  
1.7 1.8  
Frequency (GHz)  
1.9  
2
2.1  
2.1  
2.1  
1.4  
1.5  
1.6  
1.7 1.8  
Frequency (GHz)  
1.9  
2
2.1  
2.1  
2.1  
Output Match vs. Vcc and TCASE  
Reverse Gain vs. Vcc and TCASE  
0
-12  
4.75V, -40C  
4.75V, 25C  
4.75V, 105C  
5.00V, -40C  
5.00V, 25C  
5.00V, 105C  
5.25V, -40C  
5.25V, 25C  
5.25V, 105C  
4.75V, -40C  
4.75V, 25C  
4.75V, 105C  
5.00V, -40C  
5.00V, 25C  
5.00V, 105C  
5.25V, -40C  
5.25V, 25C  
5.25V, 105C  
-14  
-16  
-18  
-20  
-22  
-24  
-26  
-28  
-5  
-10  
-15  
-20  
-25  
-30  
1.4  
1.5  
1.6  
1.7 1.8  
Frequency (GHz)  
1.9  
2
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2
Frequency (GHz)  
Amplitude Imbalance vs. TCASE  
Phase Imbalance vs. TCASE  
1.5  
20  
Z
Z
S
L
= 25 Ohm / port  
= 50 Ohm  
-40C  
-40C  
25C  
Z
Z
S
L
= 25 Ohm / port  
= 50 Ohm  
15  
25C  
1
105C  
105C  
10  
0.5  
5
0
0
-0.5  
-1  
-5  
-10  
-15  
-20  
-1.5  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2
1.4  
1.5  
1.6  
1.7 1.8  
Frequency (GHz)  
1.9  
2
Frequency (GHz)  
Zero-DistortionTM, TX Amplifier  
12  
Rev O 11/6/2015  
F1423  
TOC [TRANSFORMER BOARD, OIP3, P1dB, NOISE FIGURE, ICC, MID-BAND BIAS](-6-)  
S
OIP3 vs. Vcc and TCASE  
Output P1dB vs. Vcc and TCASE  
60  
24  
4.75V, -40C  
4.75V, 25C  
5.00V, -40C  
5.00V, 25C  
5.00V, 105C  
5.25V, -40C  
5.25V, 25C  
5.25V, 105C  
4.75V, -40C  
4.75V, 25C  
4.75V, 105C  
5.00V, -40C  
5.00V, 25C  
5.00V, 105C  
5.25V, -40C  
5.25V, 25C  
5.25V, 105C  
55  
23  
22  
21  
20  
19  
18  
4.75V, 105C  
50  
45  
40  
35  
30  
25  
20  
15  
10  
1.4  
1.5  
1.6  
1.7 1.8  
Frequency (GHz)  
1.9  
2
2.1  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2
2.1  
Frequency (GHz)  
Noise Figure vs. Vcc and TCASE  
Icc vs. Vcc and TCASE  
8
140  
-40C  
25C  
105C  
4.75V, -40C  
4.75V, 25C  
4.75V, 105C  
5.00V, -40C  
5.00V, 25C  
5.00V, 105C  
5.25V, -40C  
5.25V, 25C  
5.25V, 105C  
7.5  
7
135  
130  
125  
120  
115  
110  
105  
100  
6.5  
6
5.5  
5
4.5  
4
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2
2.1  
4.75  
5
5.25  
Frequency (GHz)  
Vcc (Volts)  
Rev O 11/6/2015  
13  
Zero-DistortionTM, TX Amplifier  
F1423  
TOC  
S
[DIFFERENTIAL  
B
OARD S-PARS, AMPLITUDE AND  
P
HASE  
IMBALANCE, HIGH-BAND BIAS](-7-)  
RF Gain vs. Vcc and TCASE  
Input Match vs. Vcc and TCASE  
15  
0
4.75V, -40C  
4.75V, 25C  
4.75V, 105C  
5.00V, -40C  
5.25V, -40C  
5.25V, 25C  
5.25V, 105C  
4.75V, -40C  
4.75V, 25C  
4.75V, 105C  
5.00V, -40C  
5.00V, 25C  
5.00V, 105C  
5.25V, -40C  
5.25V, 25C  
5.25V, 105C  
14.5  
14  
5.00V, 25C  
5.00V, 105C  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
13.5  
13  
12.5  
12  
11.5  
11  
10.5  
10  
2
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9  
3
3
3
2
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9  
3
3
3
Frequency (GHz)  
Frequency (GHz)  
Output Match vs. Vcc and TCASE  
Reverse Gain vs. Vcc and TCASE  
0
-12  
4.75V, -40C  
4.75V, 25C  
4.75V, 105C  
5.00V, -40C  
5.00V, 25C  
5.00V, 105C  
5.25V, -40C  
5.25V, 25C  
5.25V, 105C  
4.75V, -40C  
4.75V, 25C  
4.75V, 105C  
5.00V, -40C  
5.00V, 25C  
5.00V, 105C  
5.25V, -40C  
5.25V, 25C  
5.25V, 105C  
-14  
-16  
-18  
-20  
-22  
-24  
-26  
-28  
-5  
-10  
-15  
-20  
-25  
-30  
2
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9  
2
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9  
Frequency (GHz)  
Frequency (GHz)  
Amplitude Imbalance vs. TCASE  
Phase Imbalance vs. TCASE  
1.5  
20  
Z
Z
S
L
= 25 Ohm / port  
= 50 Ohm  
-40C  
-40C  
Z
Z
S
L
= 25 Ohm / port  
= 50 Ohm  
15  
25C  
25C  
1
105C  
105C  
10  
0.5  
5
0
0
-0.5  
-1  
-5  
-10  
-15  
-20  
-1.5  
2
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9  
2
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9  
Frequency (GHz)  
Frequency (GHz)  
Zero-DistortionTM, TX Amplifier  
14  
Rev O 11/6/2015  
F1423  
TOC  
S
[TRANSFORMER  
B
OARD, OIP3, P1dB, NOISE  
F
IGURE, ICC, ACLR, HIGH-BAND BIAS](-8-)  
OIP3 vs. Vcc and TCASE  
Output P1dB vs. Vcc and TCASE  
60  
24  
4.75V, -40C  
4.75V, 25C  
4.75V, 105C  
5.00V, -40C  
5.00V, 25C  
5.00V, 105C  
5.25V, -40C  
5.25V, 25C  
5.25V, 105C  
4.75V, -40C  
4.75V, 25C  
4.75V, 105C  
5.00V, -40C  
5.00V, 25C  
5.00V, 105C  
5.25V, -40C  
5.25V, 25C  
5.25V, 105C  
55  
23  
22  
21  
20  
19  
18  
50  
45  
40  
35  
30  
25  
20  
15  
10  
2
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9  
Frequency (GHz)  
3
2
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9  
3
Frequency (GHz)  
Noise Figure vs. Vcc and TCASE  
Icc vs. Vcc and TCASE  
8
140  
-40C  
25C  
105C  
4.75V, -40C  
4.75V, 25C  
4.75V, 105C  
5.00V, -40C  
5.00V, 25C  
5.00V, 105C  
5.25V, -40C  
5.25V, 25C  
5.25V, 105C  
7.5  
7
135  
130  
125  
120  
115  
110  
105  
100  
6.5  
6
5.5  
5
4.5  
4
2
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9  
3
4.75  
5
5.25  
Frequency (GHz)  
Vcc (Volts)  
WCDMA ACLR vs. Pout (PAR = 4.3 dB)  
WCDMA ACLR vs. Pout (PAR = 11.4 dB)  
-20  
-20  
ACLR1+  
ACLR1-  
ACLR2+  
ACLR2-  
ACLR1+  
ACLR1-  
ACLR2+  
ACLR2-  
-30  
-40  
-50  
-60  
-70  
-80  
-30  
-40  
-50  
-60  
-70  
-80  
Measurement at 2.7 GHz  
1 DPCH, PAR = 4.3 dB  
Specified Pout = 7 dBm  
Measurement at 2.7 GHz  
64 DPCH, PAR = 11.4 dB  
Specified Pout = 7 dBm  
2
3
4
5
6
7
8
9
10  
11  
12  
2
3
4
5
6
7
8
9
10  
11  
12  
Average WCDMA POUT (dBm)  
Average WCDMA POUT (dBm)  
Rev O 11/6/2015  
15  
Zero-DistortionTM, TX Amplifier  
F1423  
P
ACKAGE  
D
RAWING  
(4 mm x 4 mm 24ꢀpin TQFN), NBG24  
N
OTE: THE F1423 USES THE P2 EXPOSED PADDLE DIMENSIONS NOTED BELOW  
Zero-DistortionTM, TX Amplifier  
16  
Rev O 11/6/2015  
F1423  
LAND  
P
ATTERN  
D
IMENSION  
Land Pattern to Support 2.6 mm x 2.6 mm Exposed Paddle Version  
(See Version P2 of Package Drawing)  
Rev O 11/6/2015  
17  
Zero-DistortionTM, TX Amplifier  
F1423  
IN  
P
D
IAGRAM  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
RFIN+  
GND  
GND  
RFOUT  
GND  
RFIN-  
GND  
RBIAS2  
RBIAS1  
STBY  
Control  
Circuit  
NC  
NC  
E.P.  
P
IN  
D
ESCRIPTION  
Pin  
Name  
Function  
Differential Input +. Pin looks like a DC short to ground. Must use  
external DC block if DC is present on RF line.  
1
RFIN+  
2, 4, 9, 12, 16,  
18, 23  
Ground these pins. These pins are internally connected to the  
exposed paddle.  
Differential Input ꢀ. Pin looks like a DC short to ground. Must use  
external DC block if DC is present on RF line.  
No internal connection. OK to connect to GND, OK to connect to  
VCC. Application circuit ties these pins to ground.  
5 V Power Supply. Connect to VCC and use bypass capacitors as  
close to the pin as possible.  
GND  
RFINꢀ  
NC  
3
5, 6, 7, 8, 19,  
20, 21, 22, 24  
10  
VCC  
Leave pin open circuited for lowꢀband select and connect 0 resistor  
to GND for highꢀband select. Internally this pin has a 1.5 MΩ pullꢀup  
resistor that connects to VCC.  
Standby (High= device power OFF, Low/Open = device power ON).  
Internally this pin has a 1 MΩ pullꢀdown resistor that is connected to  
GND.  
11  
Band_Sel  
STBY  
13  
14  
15  
RBIAS1  
RBIAS2  
Connect external resistor to GND. Use value in Table 2.  
Connect external resistor to GND. Use value in Table 2.  
RF output. Must use external DC block as close to the pin as  
possible.  
17  
RFOUT  
Exposed Pad. Internally connected to GND. Solder this exposed pad  
to a PCB pad that uses multiple ground vias to provide heat transfer  
out of the device into the PCB ground planes. These multiple ground  
vias are also required to achieve the noted RF performance.  
— EP  
Zero-DistortionTM, TX Amplifier  
18  
Rev O 11/6/2015  
F1423  
A
PPLICATIONS NFORMATION  
I
The F1423 has been optimized for use in high performance RF applications from 600 MHz to 3000 MHz.  
STBY  
The STBY control pin allows for power saving when the device is not in use. Setting the STBY pin to a logic  
low, or leaving the pin open, will put the device in normal operation mode. The STBY pin has an internal  
1 Meg ohm resistor to ground. Applying a logic high to this pin will put the part in standby mode. Voltage  
should not be applied to the STBY pin without VCC present.  
Band_Sel  
The Band_Sel control pin can be used to adjust the current in the device for Mid Band, High Band, and Wide  
Band frequency applications. This is done by grounding the Band_Sel pin. Internally there is a 1.5 Meg ohm  
pullꢀup resistor. Voltage should not be applied to the Band_Sel pin without VCC present.  
RBias1 and RBias2  
RBIAS1 (pin 14) and RBIAS2 (pin 15) use a single external resistor to ground on each pin to set the DC  
current in the device and to optimize the linearity performance of the amplifier stage. The resistor values in  
Table 2 can be used as a guide for the RF band of interest. By decreasing the resistor value to ground on the  
RBIAS1 pin will increase the DC current in the amplifier stage. The resistor to ground on RBIAS2 is used to  
optimize the linearity performance in conjunction with the resistor on RBIAS1.  
Amplifier Stability  
To ensure unconditional stability the value of R1 should be set to 510 Ohms. This will reduce the RF Gain,  
OIP3, and OP1dB by approx 0.4 dB. Additionally, shunt resistors to ground of approximately 1k ohm should be  
connected from pin 1 to ground and pin 3 to ground. This will stabilize the circuit due to common mode  
source impedances. The installed 1k resistor will add 0.1 dB degradation to the Gain and Noise Figure. The  
1k ohm will also dampen any common mode amplitude and phase interactions from the differential source  
impedance and the F1423 differential input impedance.  
Power Supplies  
A common VCC power supply should be used for all pins requiring DC power. All supply pins should be  
bypassed with external capacitors to minimize noise and fast transients. Supply noise can degrade noise figure  
and fast transients can trigger ESD clamps and cause them to fail. Supply voltage change or transients should  
have a slew rate smaller than 1 V / 20 µs. In addition, all control pins should remain at 0 V (+/ꢀ0.3 V) while the  
supply voltage ramps or while it returns to zero.  
Control Pin Interface  
If control signal integrity is a concern and clean signals cannot be guaranteed due to overshoot, undershoot,  
ringing, etc., the following circuit at the input of each control pin is recommended. This applies to all control  
pins 11 and 13. Note the recommended resistor and capacitor values do not necessarily match the EV kit BOM  
for the case of poor control signal integrity.  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
F1423  
Exposed Pad (GND)  
5k ohm  
STBY  
2pF  
5k ohm  
Band_Sel  
2pF  
Rev O 11/6/2015  
19  
Zero-DistortionTM, TX Amplifier  
F1423  
EVKIT  
P
ICTURE (DIFFERENTIAL  
B
OARD  
)
EVKIT  
P
ICTURE (TRANSFORMER  
B
OARD  
)
Zero-DistortionTM, TX Amplifier  
20  
Rev O 11/6/2015  
F1423  
EVKIT / APPLICATIONS  
C
IRCUIT (DIFFERENTIAL  
B
OARD  
)
EVKit / Applications Circuit (Transformer Board)  
Rev O 11/6/2015  
21  
Zero-DistortionTM, TX Amplifier  
F1423  
EVKIT BOM (DIFFERENTIAL  
B
OARD  
)
Part Ref  
QTY  
1
DESCRIPTION  
Mfr. Part #  
Mfr.  
C1  
C2  
9.0 pF ±0.25 pF, 50 V, C0G, Ceramic Capacitor (0402)  
1000 pF ±5%, 50 V, C0G, Ceramic Capacitor (0402)  
0.1 µF ±10%, 16 V, X7R, Ceramic Capacitor (0402)  
10 µF ±20%, 6.3 V, X5R, Ceramic Capacitor (0603)  
Not installed (0402)  
GRM1555C1H9R0C  
GRM1555C1H102J  
GRM155R71C104K  
GRM188R60J106M  
Murata  
Murata  
Murata  
Murata  
1
C3  
1
C4  
1
R1  
1
R2, R3, R4  
R5, R6  
R7  
3
0 Ω Resistor, 1/10W, (0402)  
ERJꢀ2GE0R00X  
Panasonic  
0
Not installed  
1
2.1k ꢁ ±1%, Resistor, 1/10W, (0402)  
2.4k ꢁ ±1%, Resistor, 1/10W, (0402)  
60.4k ꢁ ±1%, Resistor, 1/10W, (0402)  
9.1k ꢁ ±1%, Resistor, 1/10W, (0402)  
Not installed  
ERJꢀ2RKF2101X  
ERJꢀ2RKF2401X  
ERJꢀ2RKF6042X  
ERJꢀ2RKF9101X  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
R8  
1
R9  
1
R10  
1
R11  
1
R12  
1
Not installed  
J1, J2, J3, J9  
J4, J5, J8  
J6, J7  
U1  
4
SMA_END_LAUNCH (small)  
142ꢀ0711ꢀ821  
961102ꢀ6404ꢀAR  
67997ꢀ108HLF  
Emerson Johnson  
3
CONN HEADER VERT 2 x 1 Gold  
CONN HEADER VERT 2 x 4 Gold  
RF Amplifier  
3M  
FCI  
IDT  
2
1
F1423NBGI  
1
Printed Circuit Board (3 port)  
F1423 EVKIT (3 port)  
Zero-DistortionTM, TX Amplifier  
22  
Rev O 11/6/2015  
F1423  
EVKIT BOM (TRANSFORMER  
B
OARD  
)
Part Ref  
C1  
QTY  
1
DESCRIPTION  
Mfr. Part #  
Mfr.  
9.0 pF ±0.25 pF, 50 V, C0G, Ceramic Capacitor (0402)  
1000 pF ±5%, 50 V, C0G, Ceramic Capacitor (0402)  
0.1 µF ±10%, 16 V, X7R, Ceramic Capacitor (0402)  
10 µF ±20%, 6.3 V, X5R, Ceramic Capacitor (0603)  
Not installed (0402)  
GRM1555C1H9R0C  
GRM1555C1H102J  
GRM155R71C104K  
GRM188R60J106M  
Murata  
Murata  
Murata  
Murata  
C2  
1
C3  
1
C4  
1
R1  
1
R2, R3, R4  
R5, R6  
R7  
3
0 Ω Resistor, 1/10W, (0402)  
ERJꢀ2GE0R00X  
Panasonic  
0
Not installed  
1
2.1k ꢁ ±1%, Resistor, 1/10W, (0402)  
2.4k ꢁ ±1%, Resistor, 1/10W, (0402)  
60.4k ꢁ ±1%, Resistor, 1/10W, (0402)  
9.1k ꢁ ±1%, Resistor, 1/10W, (0402)  
Not installed  
ERJꢀ2RKF2101X  
ERJꢀ2RKF2401X  
ERJꢀ2RKF6042X  
ERJꢀ2RKF9101X  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
R8  
1
R9  
1
R10  
1
R11  
1
R12  
1
Not installed  
R13, R14  
T1  
2
510 ꢁ ±1%, Resistor, 1/10W, (0402) (Note 1)  
1:1 wideband transformer  
ERJꢀ2RKF5100X  
TC1ꢀ1ꢀ43+  
Panasonic  
1
Mini Circuits  
J1, J3, J9  
J4, J5, J8  
J6, J7  
U1  
3
SMA_END_LAUNCH (small)  
142ꢀ0711ꢀ821  
961102ꢀ6404ꢀAR  
67997ꢀ108HLF  
F1423NBGI  
Emerson Johnson  
3
CONN HEADER VERT 2 x 1 Gold  
CONN HEADER VERT 2 x 4 Gold  
RF Amplifier  
3M  
FCI  
IDT  
2
1
1
Printed Circuit Board (Transformer)  
F1423 EVKIT XFMR  
Note 1: When using an external transformer for evaluation, a common mode resonance interaction can occur with the  
onꢀchip balun. Resistors R13 and R14 will dampen the resonance but affects the Gain and NF by approx 0.2dB.  
TOP  
MARKINGS  
Part Number  
IDTF14  
23NBGI  
Z512ACG  
Assembler  
Code  
ASM  
Test  
Step  
Date Code [YWW]  
(Week 12 of 2015)  
Rev O 11/6/2015  
23  
Zero-DistortionTM, TX Amplifier  
F1423  
EVKIT  
O
PERATION  
The F1423 EVkits (single ended and differential) have a number of control features available.  
STBY (2 pin Header J5)  
Twoꢀpin header J5 can be used to set the part for operational or standby mode. Leaving the two J5  
pins unconnected will place it in the operational mode. Connecting the two J5 pins together will pull  
up the STBY pin to Vcc through R4 and place the part into the standby mode.  
Band_Sel (2 pin Header J4)  
Twoꢀpin header J4 can be used to set the part for best operational performance in different RF bands.  
Based on Table 2 above the LowꢀBand performance is best with these two J4 pins left open while the  
other bands typically have these two pins shorted together.  
RF Band Biasing (RBIAS1, RBIAS2, Band_Sel)  
Below are 4 settings showing the recommended J4, J7, and J8 jumper connections for best linearity  
performance in the different RF bands. The jumpers (shown in red below) select the RBIAS1 and  
RBIAS2 resistor values along with the Band_Sel setting (see Table 2 above). Never have two shunts  
installed at the same time on header J7 since this may produce excessive bias current and damage  
the part.  
Broad-Band  
Low-Band  
Mid-Band  
High-Band  
Zero-DistortionTM, TX Amplifier  
24  
Rev O 11/6/2015  
F1423  
R
EVISION  
HISTORY  
SHEET  
Rev  
O
Date  
2015ꢀ Novꢀ6  
Page  
Description of Change  
Initial Release  
Rev O 11/6/2015  
25  
Zero-DistortionTM, TX Amplifier  
F1423  
Corporate Headquarters  
6024 Silver Creek Valley Road  
San Jose, CA 95138 USA  
Sales  
Tech Support  
http://www.idt.com/support/technical-support  
1-800-345-7015 or 408-284-8200  
Fax: 408-284-2775  
www.idt.com  
DISCLAIMER Integrated Device Technology, Inc. (IDT) reserves the right to modify the products and/or specifications described herein at any time, without notice, at IDT’s sole discretion.  
Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer  
products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT’s products for  
any particular purpose, an implied warranty of merchantability, or nonꢀinfringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any  
license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can  
be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are  
the property of IDT or their respective third party owners.  
Copyright ©2015. Integrated Device Technology, Inc. All rights reserved.  
Zero-DistortionTM, TX Amplifier  
26  
Rev O 11/6/2015  

相关型号:

F1423NBGI

TX Differential Input RF Amplifier
IDT

F1427

PATENTED GOLD METALIZED SILICON GATE ENHANCEMENT MODE RF POWER VDMOS TRANSISTOR
POLYFET

F1430

PATENTED GOLD METALIZED SILICON GATE ENHANCEMENT MODE RF POWER VDMOS TRANSISTOR
POLYFET

F14304

Florence series
CREE

F14325

Jenny series
CREE

F14326

Jenny series
CREE

F14344

Florence series
CREE

F1436R

RF/Microwave Termination, 0MHz Min, 3000MHz Max, 50ohm,
APITECH

F1437R

RF/Microwave Termination, 0MHz Min, 3000MHz Max, 50ohm,
APITECH

F1437RA

RF/Microwave Termination, 0MHz Min, 6000MHz Max, 50ohm, ROHS COMPLIANT PACKAGE
APITECH

F14468

Florence series
CREE

F14486

Florence series
CREE