ACS422MD68TAGYYX [IDT]

PORTABLE CONSUMER CODEC; 便携式消费类编解码器
ACS422MD68TAGYYX
型号: ACS422MD68TAGYYX
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

PORTABLE CONSUMER CODEC
便携式消费类编解码器

解码器 编解码器 便携式
文件: 总87页 (文件大小:1351K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
PORTABLE CONSUMER CODEC  
LOW-POWER, HIGH-FIDELITY INTEGRATED CODEC  
ACS422Mx68  
The ACS422Mx68 is a low-power, high-fidelity integrated  
CODEC targeted at portable applications such as tablet  
computers, personal navigation devices, portable  
FEATURES  
High fidelity 24-bit stereo CODEC  
DAC 102dB SNR; THD+N better than -82dB  
projectors and speaker docks. In addition to a high-fidelity  
ADC 90dB SNR, THD + N better than -80dB  
TM  
low-power CODEC, the device integrates a MONO DDX  
Built in audio controls and processing  
Class D speaker amplifier and a true cap-less headphone  
amplifier. Beyond high-fidelity for portable systems, the  
device offers an enriched “audio presence” through built-in  
audio processing capability.  
3D stereo enhancement  
Dual (cascaded) stereo 6-band parametric equalizers  
Programmable Compressor/Limiter/Expander  
Psychoacoustic Bass and Treble enhancement  
processing  
TM  
Filterless Mono DDX Class D  
Speaker Driver  
TARGET APPLICATIONS  
1W/channel (8) or 2W/channel  
(4), 0.05% THD+N typical  
Tablet Computers  
Portable Navigation Devices  
Personal Media Players  
Portable Projectors  
Speaker Docks  
Tri-state DDXTM Class D achieves low EMI and high  
efficiency  
>80% efficiency at 1W  
Spread spectrum support for reduced EMI output power  
mode  
Anti-Pop circuitry  
On-chip true cap-less headphone driver  
35 mW output power (16)  
Charge-pump allows true ground centered outputs  
SNR of 102dB  
I2S data interface  
Microphone/line-in interface  
Analog microphone or line-in inputs  
Digital microphone (ACS422MD68)  
Automatic level control  
On-chip low-jitter PLL for audio timing  
Low power with built in power management  
1.7 V CODEC supports 1Vrms  
Very low standby and no-signal power consumption  
1.8V digital / 1.7V analog supply for low power  
2
2-wire (I C compatible) control interface  
68-pin dual row 6x6 mm TLA package  
TM  
DDX and the DDX logo are trademarks of Apogee Technology.  
1
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
TABLE OF CONTENTS  
1. OVERVIEW ................................................................................................................................ 3  
1.1. Block Diagram ...................................................................................................................................3  
1.2. Audio Outputs ....................................................................................................................................3  
1.3. Audio Inputs .......................................................................................................................................4  
2. POWER MANAGEMENT .......................................................................................................... 5  
2.1. Control Registers ...............................................................................................................................5  
2.2. Stopping the Master Clock .................................................................................................................6  
3. OUTPUT AUDIO PROCESSING ............................................................................................... 7  
3.1. DC Removal ......................................................................................................................................7  
3.2. Volume Control ..................................................................................................................................8  
3.3. Digital DAC Volume Control ...............................................................................................................9  
3.4. Parametric Equalizer .........................................................................................................................9  
3.4.1. Prescaler & Equalizer Filter .................................................................................................9  
3.4.2. EQ Registers ......................................................................................................................10  
3.4.3. Equalizer, Bass, Treble Coefficient & Equalizer Prescaler RAM .......................................11  
3.5. Gain and Dynamic Range Control ...................................................................................................15  
3.6. Limiter ..............................................................................................................................................15  
3.7. Compressor .....................................................................................................................................16  
3.7.1. Configuration ......................................................................................................................17  
3.7.2. Controlling parameters .......................................................................................................17  
3.7.3. Overview ............................................................................................................................18  
3.7.4. Limiter/Compressor Registers ............................................................................................20  
3.7.5. Expander Registers ...........................................................................................................22  
3.8. Output Effects ..................................................................................................................................23  
3.9. Stereo Depth (3-D) Enhancement ...................................................................................................23  
3.10. Psychoacoustic Bass Enhancement ..............................................................................................24  
3.11. Treble Enhancement .....................................................................................................................24  
3.12. Mute and De-Emphasis .................................................................................................................25  
3.13. Mono Operation and Phase Inversion ...........................................................................................25  
3.13.1. DAC Control Register .....................................................................................................26  
3.13.2. Interpolation and Filtering ................................................................................................27  
3.14. Analog Outputs ..............................................................................................................................28  
3.14.1. Headphone Output ...........................................................................................................28  
3.14.2. Speaker Outputs ..............................................................................................................28  
3.14.3. DDXTMClass D Audio Processing ....................................................................................29  
3.15. Other Output Capabilities ..............................................................................................................35  
3.15.1. Audio Output Control .......................................................................................................35  
3.15.2. Headphone Switch ...........................................................................................................35  
3.15.3. Headphone Operation ......................................................................................................36  
3.15.4. EQ Operation ...................................................................................................................36  
3.16. Thermal Shutdown .........................................................................................................................37  
3.16.1. Algorithm description: ......................................................................................................37  
3.16.2. Thermal Trip Points. .........................................................................................................37  
3.16.3. Temperature Limit State Diagram: ...................................................................................38  
3.16.4. Instant Cut Mode ..............................................................................................................38  
3.16.5. Short Circuit Protection ....................................................................................................39  
3.16.6. Thermal Shutdown Registers ...........................................................................................39  
4. INPUT AUDIO PROCESSING ................................................................................................. 42  
4.1. Analog Inputs ...................................................................................................................................42  
4.1.1. Input Registers ...................................................................................................................43  
4.2. Mono Mixing and Output Configuration ...........................................................................................43  
4.2.1. ADC Registers ...................................................................................................................44  
4.3. Microphone Bias ..............................................................................................................................45  
4.3.1. Microphone Bias Control Register .....................................................................................45  
4.4. Programmable Gain Control ............................................................................................................45  
4.4.1. Input PGA Software Control Register. ...............................................................................46  
4.5. ADC Digital Filter .............................................................................................................................46  
1
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
4.5.1. ADC Signal Path Control Register .....................................................................................48  
4.5.2. ADC High Pass Filter Enable modes .................................................................................48  
4.6. Digital ADC Volume Control .............................................................................................................48  
4.6.1. ADC Digital Registers ........................................................................................................49  
4.7. Automatic Level Control (ALC) ........................................................................................................49  
4.7.1. ALC Operation ..................................................................................................................49  
4.7.2. ALC Registers ....................................................................................................................51  
4.7.3. Peak Limiter .......................................................................................................................52  
4.7.4. Input Threshold ..................................................................................................................52  
4.8. Digital Microphone Support .............................................................................................................52  
4.8.1. DMIC Register ...................................................................................................................55  
5. DIGITAL AUDIO AND CONTROL INTERFACES ................................................................... 56  
5.1. Data Interface ..................................................................................................................................56  
5.2. Master and Slave Mode Operation ..................................................................................................56  
5.3. Audio Data Formats .........................................................................................................................57  
5.4. Left Justified Audio Interface ...........................................................................................................57  
5.5. Right Justified Audio Interface (assuming n-bit word length) ...........................................................57  
5.6. I2S Format Audio Interface ..............................................................................................................58  
5.7. Data Interface Registers ..................................................................................................................58  
5.7.1. Audio Data Format Control Register ..................................................................................58  
5.7.2. Audio Interface Output Tri-state .........................................................................................59  
5.7.3. Audio Interface Bit Clock and LR Clock configuration ........................................................59  
5.7.4. Bit Clock and LR Clock Mode Selection ............................................................................60  
5.7.5. ADC Output Pin State ........................................................................................................61  
5.7.6. Audio Interface Control 3 Register .....................................................................................61  
5.8. Bit Clock Mode .................................................................................................................................61  
5.9. Control Interface ..............................................................................................................................62  
5.9.1. Register Write Cycle ..........................................................................................................62  
5.9.2. Multiple Write Cycle ...........................................................................................................63  
5.9.3. Register Read Cycle ..........................................................................................................63  
5.9.4. Multiple Read Cycle ...........................................................................................................64  
5.9.5. Device Addressing and Identification .................................................................................64  
6. AUDIO CLOCK GENERATION ............................................................................................... 66  
6.1. Internal Clock Generation (ACLK) ...................................................................................................66  
6.2. ACLK Clocking and Sample Rates ..................................................................................................66  
6.3. DAC/ADC Modulator Rate Control ...................................................................................................67  
7. CHARACTERISTICS ............................................................................................................... 69  
7.1. Electrical Specifications ...................................................................................................................69  
7.1.1. Absolute Maximum Ratings ...............................................................................................69  
7.1.2. Recommended Operating Conditions ................................................................................69  
7.2. Device Characteristics .....................................................................................................................70  
7.3. Typical Power Consumption ............................................................................................................72  
7.4. Low Power Mode Power Consumption ............................................................................................72  
8. REGISTER MAP ...................................................................................................................... 73  
9. PIN INFORMATION ................................................................................................................. 75  
9.1. ACS422MA68 Pin Diagram .............................................................................................................75  
9.2. ACS422MD68 Pin Diagram .............................................................................................................76  
9.3. Pin Tables ........................................................................................................................................77  
9.3.1. Power Pins .........................................................................................................................77  
9.3.2. Reference Pins ..................................................................................................................77  
9.3.3. Analog Input Pins ...............................................................................................................78  
9.3.4. Analog Output Pins ............................................................................................................78  
9.3.5. Data and Control Pins ........................................................................................................78  
9.3.6. PLL Pins and No Connects ................................................................................................79  
10. PACKAGE INFORMATION ................................................................................................... 80  
10.1. Package Drawing ...........................................................................................................................80  
10.2. Pb Free Process- Package Classification Reflow Temperatures ..................................................80  
11. APPLICATION INFORMATION ............................................................................................ 81  
12. ORDERING INFORMATION ................................................................................................. 81  
2
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
13. DISCLAIMER ......................................................................................................................... 81  
14. DOCUMENT REVISION HISTORY ....................................................................................... 82  
3
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422x00  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
LIST OF FIGURES  
Figure 1. Block Diagram ...................................................................................................................................3  
Figure 2. Output Audio Processing ..................................................................................................................7  
Figure 3. Prescaler & EQ Filters ....................................................................................................................10  
Figure 4. 6-Tap IIR Equalizer Filter ................................................................................................................10  
Figure 5. DAC Coefficient RAM Write Sequence ...........................................................................................12  
Figure 6. DAC Coefficient RAM Read Sequence ...........................................................................................13  
Figure 7. Gain Compressor, Output vs Input .................................................................................................16  
Figure 8. Compressor block diagram .............................................................................................................18  
Figure 9. 3-D Channel Inversion ....................................................................................................................23  
Figure 10. Bass Enhancement .......................................................................................................................24  
Figure 11. Treble Enhancement ....................................................................................................................25  
Figure 12. Interpolation and Filtering .............................................................................................................27  
Figure 13. Constant Output Power Error ........................................................................................................31  
Figure 14. Constant Output Power nominal and high/low ..............................................................................31  
Figure 15. Temp sense volume adjustment algorithm ...................................................................................38  
Figure 16. Input Audio Processing .................................................................................................................42  
Figure 17. Mic Bias ........................................................................................................................................45  
Figure 18. ADC Filter Data path .....................................................................................................................46  
Figure 19. ADC Input processing ...................................................................................................................47  
Figure 20. ALC Operation ..............................................................................................................................49  
Figure 21. Single Digital Microphone (data is ported to both left and right channels) ....................................54  
Figure 22. Stereo Digital Microphone Configuration ......................................................................................55  
Figure 23. Master mode .................................................................................................................................56  
Figure 24. Slave mode ...................................................................................................................................56  
Figure 25. Left Justified Audio Interface (assuming n-bit word length) ..........................................................57  
Figure 26. Right Justified Audio Interface (assuming n-bit word length) ........................................................57  
Figure 27. I2S Justified Audio Interface (assuming n-bit word length) ...........................................................58  
Figure 28. Bit Clock mode ..............................................................................................................................62  
Figure 29. 2-Wire Serial Control Interface ......................................................................................................63  
Figure 30. Multiple Write Cycle ......................................................................................................................63  
Figure 31. Read Cycle ...................................................................................................................................64  
Figure 32. Multiple Read Cycle ......................................................................................................................64  
Figure 33. ACS422MA68 Pinout ....................................................................................................................75  
Figure 34. ACS422MD68 Pinout ....................................................................................................................76  
Figure 35. Package Outline ...........................................................................................................................80  
1
V0.8 04/11  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422X00  
ACS422x00  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
LIST OF TABLES  
Table 1. Power Management Register 1 ..........................................................................................................5  
Table 2. Power Management Register 2 ..........................................................................................................5  
Table 3. Power Management Register1 -- Master Clock Disable ....................................................................6  
Table 4. DC_COEF_SEL Register ...................................................................................................................7  
Table 5. CONFIG0 Register .............................................................................................................................7  
Table 6. Volume Update Control Register .......................................................................................................8  
Table 7. Gain Control Register .........................................................................................................................8  
Table 8. DAC Volume Control Registers ..........................................................................................................9  
Table 9. CONFIG1 Register ...........................................................................................................................10  
Table 10. DACCRAM Read/Write Registers .................................................................................................11  
Table 11. DACCRAM Address Register ........................................................................................................11  
Table 12. DACCRAM Status Register ...........................................................................................................11  
Table 13. DACCRAM EQ Addresess .............................................................................................................14  
Table 14. DACCRAM Bass/Treble Addresses ...............................................................................................14  
Table 15. CLECTL Register ...........................................................................................................................20  
Table 16. MUGAIN Register ..........................................................................................................................20  
Table 17. COMPTH Register .........................................................................................................................20  
Table 18. CMPRAT Register ..........................................................................................................................20  
Table 19. CATKTCL Register ........................................................................................................................20  
Table 20. CATKTCH Register ........................................................................................................................21  
Table 21. CRELTCL Register ........................................................................................................................21  
Table 22. CRELTCH Register ........................................................................................................................21  
Table 23. LIMTH Register ..............................................................................................................................21  
Table 24. LIMTGT Register ............................................................................................................................21  
Table 25. LATKTCL Register .........................................................................................................................21  
Table 26. LATKTCH Register ........................................................................................................................21  
Table 27. LRELTCL Register .........................................................................................................................21  
Table 28. LRELTCH Register ........................................................................................................................22  
Table 29. EXPTH Register .............................................................................................................................22  
Table 30. EXPRAT Register ..........................................................................................................................22  
Table 31. XATKTCL Register .........................................................................................................................22  
Table 32. XATKTCH Register ........................................................................................................................22  
Table 33. XRELTCL Register .........................................................................................................................22  
Table 34. XRELTCH Register ........................................................................................................................22  
Table 35. FX Control Register ........................................................................................................................23  
Table 36. CNVRTR1 Register ........................................................................................................................26  
Table 37. HPVOL L/R Registers ....................................................................................................................28  
Table 38. SPKVOL L/R Registers ..................................................................................................................29  
Table 39. Constant Output Power 1 Register ................................................................................................32  
Table 40. Constant Output Power 2 Register ................................................................................................32  
Table 41. Constant Output Power 3 Register ................................................................................................33  
Table 42. CONFIG0 Register .........................................................................................................................33  
Table 43. PWM0 Register ..............................................................................................................................33  
Table 44. PWM1 Register ..............................................................................................................................34  
Table 45. PWM2 Register ..............................................................................................................................34  
Table 46. PWM3 Register ..............................................................................................................................34  
Table 47. Power Management 2 Register ......................................................................................................35  
Table 48. Additional Control Register ............................................................................................................36  
Table 49. Headphone Operation ....................................................................................................................36  
Table 50. EQ Operation .................................................................................................................................36  
Table 51. Additional Control Register ............................................................................................................39  
Table 52. THERMTS Register .......................................................................................................................40  
Table 53. THERMTSPKR1 Register ..............................................................................................................41  
Table 54. THERMTSPKR2 Register ..............................................................................................................41  
Table 55. Input Software Control Register .....................................................................................................43  
Table 56. INMODE Register ..........................................................................................................................44  
Table 57. CNVRTR0 Register ........................................................................................................................44  
Table 58. AIC2 Register .................................................................................................................................44  
1
V0.8 04/11  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422X00  
ACS422x00  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
Table 59. Power Management 1 Register - Mic Bias Enable .........................................................................45  
Table 60. INVOL L&R Registers ....................................................................................................................46  
Table 61. CNVRTR0 Register ........................................................................................................................48  
Table 62. ADC HPF Enable ...........................................................................................................................48  
Table 63. L/R ADC Digital Volume Registers .................................................................................................49  
Table 64. ALC Control Registers ...................................................................................................................51  
Table 65. NGATE Register ............................................................................................................................52  
Table 66. DMIC Clock ....................................................................................................................................53  
Table 67. Valid Digital Mic Configurations .....................................................................................................54  
Table 68. DMICCTL Register .........................................................................................................................55  
Table 69. AIC1 Register .................................................................................................................................58  
Table 70. AIC2 Register .................................................................................................................................59  
Table 71. Bit Clock and LR Clock Mode Selection .........................................................................................60  
Table 72. ADC Data Output pin state ............................................................................................................61  
Table 73. AIC3 Register .................................................................................................................................61  
Table 74. Master Mode BCLK Frequency Control Register ...........................................................................62  
Table 75. DEVADRl Register .........................................................................................................................64  
Table 76. DEVID H&L Registers ....................................................................................................................65  
Table 77. REVID Register ..............................................................................................................................65  
Table 78. RESET Register .............................................................................................................................65  
Table 79. ADCSR Register ............................................................................................................................66  
Table 80. DACSR Register ............................................................................................................................67  
Table 81. ACLK and Sample Rates ...............................................................................................................67  
Table 82. CONFIG0 Register .........................................................................................................................68  
Table 83. SDM Rates .....................................................................................................................................68  
Table 84. Electrical Specification: Maximum Ratings ....................................................................................69  
Table 85. Recommended Operating Conditions ............................................................................................69  
Table 86. Device Characteristics ...................................................................................................................70  
Table 87. Typical Power Consumption ..........................................................................................................72  
Table 88. Low power mode power consumption ............................................................................................72  
Table 89. Register Map ..................................................................................................................................73  
Table 90. Power Pins .....................................................................................................................................77  
Table 91. Reference Pins ..............................................................................................................................77  
Table 92. Analog Input Pins ...........................................................................................................................78  
Table 93. Analog Output Pins ........................................................................................................................78  
Table 94. Data and Control Pins ....................................................................................................................78  
Table 95. PLL and NC Pins ...........................................................................................................................79  
Table 96. Reflow Temperatures .....................................................................................................................80  
2
V0.8 04/11  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422X00  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
1. OVERVIEW  
1.1. Block Diagram  
The ACS422Mx68 is an advanced low power codec with integrated amplifiers and timing generators. To support the  
design of audio subsystems in a portable device, the ACS422Mx68 features an intelligent codec architecture with  
advanced audio processing algorithms, integrated with a true cap-less headphone amplifier, 1W/channel (8) or  
TM  
2W/channel (4) filterless DDX mono class D amplifier, and microphone interface with programmable gain.  
PVDD 4  
V- 2  
CAP- 2  
AVDD 3  
CPVDD  
CAP+  
Clocking  
VDD_XTAL  
VDD_PLL2  
DVDD_CORE  
DVDD_IO  
SPKR +  
SPKR -  
Digital PWM  
controller  
VDD_PLL3  
VDD_PLL1 VDD_PLSS  
vol  
BTL  
Charge-Pump  
Internal Audio Clock(s)  
MCLK  
PLL  
Digital  
Volume  
Anti-  
pop  
HP  
DAC Left  
DAC  
HP Out Left  
Vref  
I2C_SDA  
I2C_SCL  
HP_DET  
TEST  
AFILT1  
AFILT2  
Control  
Digital  
Volume  
Anti-  
pop  
HP  
DAC Right  
DAC  
HP Out Right  
Audio Processing  
Bass/Treble Enhancement  
SYSTEM EQ  
DAC Left  
DACBCLK  
DACLRCLK  
DACIN  
SPEAKER EQ  
3-D effect  
Compressor-limiter  
Dynamic Range Expander  
LIN1  
DAC Right  
LIN2  
+
-
D2S  
D2S  
RIN1  
RIN2  
ADCOUT  
ADCLRCLK  
ADCBCLK  
-97 to +30 dB  
In 0.5 dB steps  
AGND  
-
LIN1  
MIC Bias  
-17 to +30dB in 0.75dB steps  
AGC  
+0/+10/+20/+30 dB  
Boost  
Vref  
+
LIN2  
LIN3  
D2S  
Audio  
Processing  
VOL  
mute  
ADCL  
LIN1  
LIN2  
-97 to +30 dB  
In 0.5 dB steps  
Automatic Level Control  
S
LIN3/DMIC_CLK*  
RIN1  
RIN2  
RIN3  
D2S  
Audio  
Processing  
VOL  
AGC  
Boost  
mute  
ADCR  
RIN1  
-17 to +30dB in 0.75dB steps  
+0/+10/+20/+30 dB  
RIN2  
RIN3/DMIC_DAT*  
*Digital Microphone Products  
VSS_PLSS  
VSS_XTAL  
3
4
PVSS  
DVSS  
AVSS  
CPGND  
Figure 1. Block Diagram  
1.2. Audio Outputs  
The ACS422Mx68 provides multiple outputs for analog sound. Audio outputs include:  
TM  
A 1W/channel (8) or 2W/channel (4) filterless MONO DDX Class D amplifier. This amplifier is capable of  
driving a MONO speaker typically found in portable equipment, providing high fidelity, high efficiency, and excellent  
sound quality.  
A line-out/capless stereo headphone port with ground referenced outputs, capable of driving headphones  
without requiring an external DC blocking capacitor.  
Each endpoint features independent volume controls, including a soft-mute capability which can slowly ramp up or  
down the volume changes to avoid unwanted audio artifacts.  
The ACS422Mx68 output signal paths consist of digital filters, DACs and output drivers. The digital filters and DACs are  
enabled when the ACS422Mx68 is in ‘playback only’ or ‘record and playback’ mode. The output drivers can be sepa-  
rately enabled by individual control bits.  
3
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
The digital filter and audio processing block processes the data to provide volume control and numerous sound  
enhancement algorithms. Two high performance sigma-delta audio DACs convert the digital data into analog.  
The digital audio data is converted to oversampled bit streams using 24-bit digital interpolation filters, which then enters  
sigma-delta DACs, and become converted to high quality analog audio signals.  
To enhance the sound available from the small, low-power speakers typically found in a portable device, the  
ACS422Mx68 provides numerous audio enhancement capabilities. The ACS422Mx68 features dual, independent, pro-  
grammable left/right 6-band equalization, allowing the system designer to provide an advanced system equalizer to  
accommodate the specific speakers and enclosure design. A compressor/limiter features programmable attack and  
release thresholds, enabling the system designer to attenuate loud noise excursions to avoid speaker artifacts, thus  
allowing the underlying content to be played at a louder volume without distortion. For compressed audio, a program-  
mable expander is available to help restore the dynamic range of the original content. A stereo depth enhancement  
algorithm allows common left/right content (e.g. dialog) to be attenuated separately from other content, providing a per-  
ceived depth separation between background and foreground audio. Psychoacoustic bass and treble enhancement  
algorithms achieve a rich, full tone even from originally compressed content, and even with speakers generally unable  
to play low-frequency sounds.  
1.3. Audio Inputs  
On the analog input side, the device features multiple line-in/microphone inputs, which can be used for analog micro-  
phone, or line-in inputs. In addition, digital microphones are also supported. The device provides input gain control,  
separate volume controls, automatic leveling capability, and programmable microphone boost to smooth input record-  
ing. A programmable silence “floor” or “threshold” can be set to minimize background noise.  
4
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
2. POWER MANAGEMENT  
2.1. Control Registers  
The ACS422Mx68 has control registers to enable system software to control which functions are active. To minimize  
power consumption, unused functions should be disabled. To avoid audio artifacts, it is important to enable or disable  
functions in the correct order.  
Register Address  
Bit  
Label  
Type  
Default  
Description  
Analog in Boost Left  
0 = Power down, 1 = Power up  
7
BSTL  
RW  
0
Analog in Boost Right  
0 = Power down, 1 = Power up  
6
5
4
3
2
1
0
BSTR  
PGAL  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
0
0
0
0
0
0
Analog in PGA Left  
0 = Power down, 1 = Power up  
Analog in PGA Right  
0 = Power down, 1 = Power up  
PGAR  
ADCL  
0x1A  
Power Management 1  
ADC Left  
0 = Power down,1 = Power up  
ADC Right  
0 = Power down. 1 = Power up  
ADCR  
MICB  
MICBIAS  
0 = Power down, 1 = Power up  
Master clock disable  
0: master clock enabled, 1: master clock disabled  
DIGENB  
Table 1. Power Management Register 1  
Register Address  
Bit  
Label  
Type  
Default  
Description  
Analog in D2S AMP  
0 = Power down, 1 = Power up  
7
D2S  
RW  
0
LHP Output Buffer + DAC  
0 = Power down, 1 = Power up  
6
5
4
3
2
1
0
HPL  
HPR  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
0
0
0
0
0
0
RHP Output Buffer + DAC  
0 = Power down, 1 = Power up  
LSPK Output Buffer  
0 = Power down, 1 = Power up  
SPKL  
0x1B  
Power Management 2  
RSPK Output Buffer  
0 = Power down, 1 = Power up  
SPKR  
INSELL  
INSELR  
VREF  
Analog in Select Mux Left  
0 = Power down, 1 = Power up  
Analog in Select Mux Right  
0 = Power down, 1 = Power up  
VREF (necessary for all other functions)  
0 = Power down, 1 = Power up  
Table 2. Power Management Register 2  
5
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
2.2. Stopping the Master Clock  
In order to minimize digital core power consumption, the master clock may be stopped in Standby and OFF modes by  
setting the DIGENB bit (R25, bit 0).  
Register Address  
0x1A  
Power Management 1  
Bit  
Label  
Type  
Default  
Description  
Master clock disable  
0 = master clock enabled, 1 = master clock disabled  
0
DIGENB  
RW  
0
Table 3. Power Management Register1 -- Master Clock Disable  
Note: Before DIGENB can be set, the control bits ADCL, ADCR, HPL, HPR, SPKL, and SPKR  
must be set to zero and a waiting time of 100ms must be observed to allow port ramping/gain  
fading to complete. Any failure to follow this procedure may cause pops or, if less than 1mS, may  
prevent the DACs and ADCs from re-starting correctly.  
6
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
3. OUTPUT AUDIO PROCESSING  
DACCRAM 00h – 3Dh  
DACCRAM 40h – 7Dh  
DACCRAM 80h – 96h  
EQ1 Coefficients  
PA  
Treble  
EQ2 Coefficients  
Bass Coefficients  
DAC Volume  
Mute  
0 to -95.25dB  
0.375dB steps  
DACCRAM ADh  
Compressor  
Limiter  
Expander  
De-  
emphasis  
Phase  
Invert  
DAC_L/R  
DACCRAM 97h – ADh Treble Coefficients  
GAIN  
0 to 46.5 dB  
In 1.5 dB steps  
Mono  
Mix  
DC  
Removal  
PA  
Bass  
DACCRAM 96h  
DACCRAM AFh  
DACCRAM AEh – AFh  
3D Coefficients  
18h  
DMonoMix  
Prescale  
EQ1  
1
Prescale  
2
EQ2  
Expander  
Limiter  
DACPOL  
18h  
33h – 38h  
18h  
3-D  
41h  
DC-Coef_Sel  
De-emphasis  
DAC Volume  
2Dh – 32h  
26h – 2Ch  
25h  
04h – 05h  
18h  
Mute  
FXCTRL  
WRITE  
READ  
ADDRESS  
39h  
3Ah – 3Ch  
3Dh – 3Fh  
40h  
Compressor  
Control  
STATUS  
8Ah  
1Ch – 1Eh  
88h  
02h  
+12 to -77.25 dB  
In 0.75 dB steps  
Thermal  
Limit  
BTL/HP Power  
Management  
SPKR  
VOL  
Digital PWM  
controller  
BTL  
HP  
SPKR  
1Bh  
HP Volume  
(Digital)  
Anti-  
pop  
DAC  
HP Out Left  
Audio Processing  
Bass/Treble Enhancement  
SYSTEM EQ  
+6 to -88.5 dB  
In 0.75 dB steps  
00h  
LEFT  
HP  
Detect  
SPEAKER EQ  
DAC_L/R  
Interpolation  
3-D effect  
Compressor-limiter  
Dynamic Range Expander  
RIGHT  
HP Volume  
(Digital)  
Anti-  
pop  
HP  
DAC  
HP Out Right  
+6 to -88.5 dB  
In 0.75 dB steps  
01h  
HP  
Detect  
Figure 2. Output Audio Processing  
3.1. DC Removal  
Before processing, a DC removal filter removes the DC component from the incoming audio data. The DC removal fil-  
ter is programmable.  
Register Address  
Bit  
Label  
Type  
Default  
Description  
Reserved for future use.  
7:3  
R
0
0: dc_coef = 24'h100000; //2^^-3 = 0.125  
1: dc_coef = 24'h040000;  
2: dc_coef = 24'h010000;  
3: dc_coef = 24'h004000;  
4: dc_coef = 24'h001000;  
R65 (41h)  
DCOFSEL  
2:0  
-
RW  
5
5: dc_coef = 24'h000400;  
6: dc_coef = 24'h000100; //2^^-15 = 0.00030517  
7: dc_coef = 24'h000040; //2^^-17  
Table 4. DC_COEF_SEL Register  
Register Address  
Bit  
7:6  
5:4  
3:2  
Label  
ASDM[1:0]  
DSDM[1:0]  
RSVD  
Type  
RW  
RW  
R
Default  
10h  
Description  
ADC Modulator Rate  
10h  
DAC Modulator Rate  
R31 (1Fh)  
CONFIG0  
0h  
Reserved for future use.  
1 = bypass DC removal filter  
(WARNING DC content can damage speakers)  
1
0
dc_bypass  
RSVD  
RW  
R
0
0
Reserved  
Table 5. CONFIG0 Register  
7
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
3.2. Volume Control  
The signal volume can be controlled digitally, across a gain and attenuation range of -95.25dB to 0dB (0.375dB steps).  
The level of attenuation is specified by an eight-bit code, ‘DACVOL_x’, where ‘x’ is L, or R. The value “00000000” indi-  
cates mute; other values select the number of 0.375dB steps above -95.625dB for the volume level.  
The Volume Update bits control the updating of volume control data; when a bit is written as ‘0’, the Left Volume control  
associated with that bit is updated whenever the left volume register is written and the Right Volume control is updated  
when ever the right volume register is written. When a bit is written as ‘1’, the left volume data is placed into an internal  
holding register when the left volume register is written and both the left and right volumes are updated when the right  
volume register is written. This enables a simultaneous left and right volume update  
Register Address  
Bit  
Label  
Type  
Default  
Description  
1 = volume fades between old/new value  
0 = volume/mute changes immediately  
7
ADCFade  
RW  
1
1 = volume fades between old/new value  
0 = volume/mute changes immediately  
6
5
DACFade  
RSVD  
RW  
R
1
0
Reserved for future use.  
0 = Left input volume updated immediately  
1 = Left input volume held until right input volume  
register written.  
4
3
2
1
0
INVOLU  
ADCVOLU  
DACVOLU  
SPKVOLU  
HPVOLU  
RW  
RW  
RW  
RW  
RW  
0
0
0
0
0
0 = Left ADC volume updated immediately  
1 = Left ADC volume held until right ADC volume  
register written.  
R10 (0Ah)  
VUCTL  
0 = Left DAC volume updated immediately  
1 = Left DAC volume held until right DAC volume  
register written.  
0 = Left speaker volume updated immediately  
1 = Left speaker volume held until right speaker  
volume register written.  
0 = Left headphone volume updated immediately  
1 = Left headphone volume held until right  
headphone volume register written.  
Table 6. Volume Update Control Register  
The output path may be muted automatically when a long string of zero data is received. The length of zeros is pro-  
grammable and a detection flag indicates when a stream of zero data has been detected.  
Register Address  
Bit  
7
Label  
zerodet_flag  
RSVD  
Type  
R
Default  
Description  
1 = zero detect length exceeded.  
Reserved for future use.  
0
0
6
R
Enable mute if input consecutive zeros exceeds this  
length. 0 = 512, 1 = 1k, 2 = 2k, 3 = 4k samples  
5:4  
zerodetlen  
RW  
2
R33 (21h)  
Gain Control  
(GAINCTL)  
3
2
1
0
7
RSVD  
auto_mute  
RSVD  
R
RW  
R
0
1
0
0
0
Reserved for future use.  
1 = auto mute if detect long string of zeros on input  
Reserved for future use.  
RSVD  
R
Reserved for future use.  
zerodet_flag  
R
1 = zero detect length exceeded.  
Table 7. Gain Control Register  
8
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
3.3. Digital DAC Volume Control  
The signal volume can be controlled digitally, across a gain and attenuation range of -95.25dB to 0dB (0.375dB steps).  
The level of attenuation is specified by an eight-bit code, ‘DACVOL_x’, where ‘x’ is L, or R. The value “00000000” indi-  
cates mute; other values select the number of 0.375dB steps above -95.625dB for the volume level.  
Register Address  
Bit  
Label  
Type  
Default  
Description  
Left DAC Volume Level  
0000 0000 = Digital Mute  
0000 0001 = -95.25dB  
0000 0010 = -94.875dB  
... 0.375dB steps up to  
1111 1111 = 0dB  
R4 (04h)  
Left DAC  
Volume Control  
DACVOL_L  
[7:0]  
FF  
(0dB)  
7:0  
RW  
Note: If DACVOLU is set, this setting will take effect  
after the next write to the Right Input Volume register.  
Right DAC Digital Volume Level  
0000 0000 = Digital Mute  
0000 0001 = -95.25dB  
0000 0010 = -94.875dB  
... 0.375dB steps up to  
1111 1111 = 0dB  
R5 (05h)  
Right DAC  
Volume Control  
DACVOL_R  
[7:0]  
FF  
(0dB)  
7:0  
RW  
Table 8. DAC Volume Control Registers  
3.4. Parametric Equalizer  
The ACS422Mx68 has a dual 6-band digital parametric equalizer to enable fine tuning of the audio response and pref-  
erences for a given system. Each EQ may be enabled or disabled independently. Typically one EQ will be used for  
speaker compensation and disabled when only headphones are in use while the other EQ is used to alter the audio to  
make it more pleasing to the listener. This function operates on the digital audio data before it is converted back to ana-  
log by the audio DACs.  
In all, 186 bytes of memory are required to store the parameters for each equalizer: each filter requires 5, 24-bit coeffi-  
cients. There are 6 filters per channel, requiring a total of 180 bytes of EQ coefficient RAM. Two additional 24-bit values  
per channel store the prescale value, resulting in 372 bytes total, described later. Rather than having all 372 bytes be in  
the I2C address space of the device, access to the EQ ram occurs through the Control/Status registers.  
3.4.1.  
Prescaler & Equalizer Filter  
The Equalizer Filter consists of a Prescaler and 6 cascaded 6-tap IIR Filters. The Prescaler allows  
the input to be attenuated prior to the EQ filters in case the EQ filters introduce gain, and would thus  
clip if not prescaled.  
IDT provides a tool to enable an audio designer to determine appropriate coefficients for the equal-  
izer filters. The filters enable the implementation of a 6-band parametric equalizer with selectable fre-  
quency bands, gain, and filter characteristics (high, low, or bandpass).  
EQ  
Filter 0  
EQ  
Filter 1  
EQ  
Filter 2  
EQ  
Filter 3  
EQ  
Filter 4  
EQ  
Filter 5  
DATA IN  
DATA OUT  
eq_prescale  
Figure 3. Prescaler & EQ Filters  
9
V1.2 1/12  
ACS422MX68  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
The figure below shows the structure of a single EQ filter. The a(0) tap is always normalized to be  
equal to 1 (400000h). The remaining 5 taps are 24-bit twos compliment format programmable coeffi-  
cients. (-2 coefficient +2).  
x(n)  
y(n)  
b(0)
b(1)
b(2)  
Z-1  
Z-1  
Z-1  
Z-1  
a(1)
a(2)  
Figure 4. 6-Tap IIR Equalizer Filter  
3.4.2.  
EQ Registers  
EQ Filter Enable Register  
Register Address  
Bit  
Label  
Type  
Default  
Description  
EQ bank 2 enable  
0 = second EQ bypassed, 1 = second EQ enabled  
7
EQ2_EN  
R/W  
0
EQ2 band enable. When the EQ is enabled the  
following EQ stages are executed.  
0 - Prescale only  
6:4  
3
EQ2_BE[2:0]  
EQ1_EN  
R/W  
R/W  
R/W  
0
0
0
1 - Prescale and Filter Band 0  
...  
6 - Prescale and Filter Bands 0 to 5  
7 - RESERVED  
R32 (20h)  
CONFIG1  
EQ bank 1 enable  
0 = first EQ bypassed, 1 = first EQ enabled  
EQ1 band enable. When the EQ is enabled the  
following EQ stages are executed.  
0 - Prescale only  
1 - Prescale and Filter Band 0  
...  
2:0  
EQ1_BE[2:0]  
6 - Prescale and Filter Bands 0 to 5  
7 - RESERVED  
Table 9. CONFIG1 Register  
DACCRAM Read Data (0x3D–LO, 0x3E–MID, 0x3F–HI), DACCRAM Write Data (0x3A–LO, 0x3B–MID, 0x3C–HI)  
Registers  
These two 24-bit registers provide the 24-bit data holding registers used when doing indirect writes/reads to the DAC  
10  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
Coefficient RAM.  
Register Address  
Bit  
Label  
Type  
Default  
Description  
Low byte of a 24-bit data register, contains the values  
to be written to the DACCRAM. The address written will  
have been specified by the DACCRAM Address fields.  
R58 (3Ah)  
DACCRAM_WRITE_LO  
7:0  
DACCRWD[7:0]  
R/W  
0
Middle byte of a 24-bit data register, contains the  
values to be written to the DACCRAM. The address  
written will have been specified by the DACCRAM  
Address fields.  
R59 (3Bh)  
DACCRAM_WRITE_MID  
7:0  
7:0  
7:0  
DACCRWD[15:8]  
DACCRWD[23:16]  
DACCRRD[7:0]  
R/W  
R/W  
R
0
0
0
High byte of a 24-bit data register, contains the values  
to be written to the DACCRAM. The address written will  
have been specified by the DACCRAM Address fields.  
R60 (3Ch)  
DACCRAM_WRITE_HI  
Low byte of a 24-bit data register, contains the contents  
of the most recent DACCRAM address read from the  
RAM. The address read will have been specified by the  
DACCRAM Address fields.  
R61 (3Dh)  
DACCRAM_READ_LO  
Middle byte of a 24-bit data register, contains the  
contents of the most recent DACCRAM address read  
from the RAM. The address read will have been  
specified by the DACCRAM Address fields.  
R62 (3Eh)  
DACCRAM_READ_MID  
7:0  
7:0  
DACCRRD[15:8]  
DACCRRD[23:16]  
R
R
0
0
High byte of a 24-bit data register, contains the  
contents of the most recent DACCRAM address read  
from the RAM. The address read will have been  
specified by the DACCRAM Address fields.  
R63 (3Fh)  
DACCRAM_READ_HI  
Table 10. DACCRAM Read/Write Registers  
DACCRAM Address Register  
This 7-bit register provides the address to the internal RAM when doing indirect writes/reads to the DAC Coefficient  
RAM.  
Register Address  
Bit  
Label  
Type  
Default  
Description  
Contains the address (between 0 and 255) of the  
DACCRAM to be accessed by a read or write. This is  
not a byte address--it is the address of the 24-bit  
data item to be accessed from the DACCRAM.This  
address is automatically incremented after writing to  
DACCRAM_WRITE_HI or reading from  
R64 (40h)  
DACCRADDR  
7:0  
DACCRADD  
R/W  
0
DACCRAM_READ_HI (and the 24 bit data from the  
next RAM location is fetched.)  
Table 11. DACCRAM Address Register  
DACCRAM STATUS Register  
This control register provides the write/read enable when doing indirect writes/reads to the DAC Coefficient RAM.  
Register Address  
Bit  
7
Label  
DACCRAM_Busy  
RSVD  
Type  
R
Default  
Description  
1 = read/write to DACCRAM in progress, cleared by  
HW when done.  
0
0
R138 (8Ah)  
DACCRSTAT  
6:0  
R
Reserved  
Table 12. DACCRAM Status Register  
3.4.3.  
Equalizer, Bass, Treble Coefficient & Equalizer Prescaler RAM  
The DAC Coefficient RAM is a single port 161x24 synchronous RAM. It is programmed indirectly  
through the Control Bus in the following manner:  
11  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
1. Write target address to DACCRAM_ADDR register.  
2. Write D7:0 to the DACCRAM_WRITE_LO register  
3. Write D15:8 to the DACCRAM_WRITE_MID register  
4. Write D23:16 to the DACCRAM_WRITE_HI register  
5. On successful receipt of the DACCRAM_WRITE_HI data, the part will automatically start a write  
cycle. The DACCRAM_Busy bit will be set high to indicate that a write is in progress.  
6. On completion of the internal write cycle, the DACCRAM_Busy bit will be 0 (when operating the  
control interface at high speeds - TBD - software must poll this bit to ensure the write cycle is  
complete before starting another write cycle.)  
7. The bus cycle may be terminated by the host or steps 2-6 may be repeated for writes to consec-  
utive EQ RAM locations.  
Generic write operation  
S
writing 1 reigster  
AS  
multiple write cycle  
multiple write cycle  
P
AS  
DA6  
DA0  
W
RA7  
RA1  
RA0  
RD7  
RD0  
AS  
RD7  
RD0  
AS  
RD7  
RD0  
AS  
SDA  
SCL  
2.5 uS  
min.  
register write here  
EQ RAM Write Lo  
updated here  
register write here  
28 SCL cycles  
70 uS min.  
EQ RAM read finished;  
EQ Read Data valid  
(time not fixed)  
EQ_A updated;  
EQ RAM write must  
have finished here;  
EQ_A ++  
EQ RAM write req = 1  
EQ RAM read req = 1  
EQ RAM write operation  
write EQ RAM write EQ RAM  
write EQ RAM  
Write Mid  
write EQ RAM Address  
RA[7:0] RD[7:0]  
write EQ RAM Write Lo  
write EQ RAM Write Lo  
RA[7:0] RD[7:0]  
Write Mid  
Write Hi  
S
S
S
DA[6:0], W  
DA[6:0], W  
RA[7:0]  
RD[7:0]  
RD[7:0]  
RD[7:0]  
DA[6:0], W  
RD[7:0]  
repeat for multiple consecutive EQ RAM locations writes  
Figure 5. DAC Coefficient RAM Write Sequence  
Reading back a value from the DACCRAM is done in this manner:  
1. Write target address to DACCRAM_ADDR register.(EQ data is pre-fetched for read even if we  
don’t use it)  
2. Start (or repeat start) a write cycle to DACCRAM_READ_LO and after the second byte (register  
address) is acknowledged, go to step 3. (Do not complete the write cycle.)  
3. Signal a repeat start and indicate a read operation  
4. Read D7:0 (register address incremented after ack by host)  
5. Read D15:8 (register address incremented after ack by host)  
6. Read D23:16 (register address incremented and next EQ location pre-fetched after ack by host)  
7. The host stops the bus cycle  
To repeat a read cycle for consecutive EQ RAM locations:  
1. Start (or repeat start instead of stopping the bus cycle in step 7) a write cycle indicating  
DACCRAM_RD_LO as the target address.  
2. After the second byte is acknowledged, signal a repeated start.  
3. Indicate a read operation  
4. Read the DACCRAM_READ_LO register as described in step 4  
5. Read the DACCRAM_READ_MID register as described in step 5  
6. Read the DACCRAM_READ_HI register as described in step 6  
12  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
7. Repeat steps 8-13 as desired  
Generic read operation  
read 1 register  
Sr  
multiple read cycle  
multiple read cycle  
RA0  
AS  
AS  
AM  
AM  
NM  
RA7  
RA1  
DA6  
DA0  
R
RD7  
RD0  
RD7  
RD0  
RD7  
RD0  
SDA  
SCL  
NACK from master to end read cycle  
EQ_A ++; prefetch data  
EQ_A updated;  
EQ RAM read req = 1  
EQ RAM Data  
must be valid here  
EQ RAM Data  
must be valid here  
30 SCL cycles  
75 uS min.  
EQ RAM read operation  
write EQ  
RAM Read  
Lo, truncate  
write EQ  
RAM Read  
Lo, truncate  
read EQ RAM  
Data Mid  
read EQ RAM  
Data Lo  
read EQ RAM  
Data Hi  
read EQ RAM  
Data Lo  
write EQ RAM Address  
RA[7:0] RD[7:0]  
Sr  
Sr  
P
S
P S  
S
DA[6:0], W  
DA[6:0], W  
RA[7:0]  
DA[6:0], R  
RD[7:0]  
RD[7:0]  
RD[7:0]  
DA[6:0], W  
RA[7:0]  
DA[6:0], R  
RD[7:0]  
repeat for multiple consecutive EQ RAM locations reads  
1. DA: Device Address  
2. RA: Register Address  
3. EQ_A: EQ RAM Address  
4. RD: Register Data  
6. AM: Acknowledge from master  
7. NM: Not Acknowledge from master  
8. S: Start  
9. Sr: Repeated Start  
10. P: Stop  
5. AS: Acknowledge from slave  
Figure 6. DAC Coefficient RAM Read Sequence  
DACCRAM EQ Addresess  
EQ 0  
EQ1  
Channel 0  
Coefficients  
Channel 1  
Coefficients  
Channel 0  
Coefficients  
Channel 1  
Coefficients  
Addr  
Addr  
Addr  
Addr  
0x00 EQ_COEF_0F0_B0  
0x01 EQ_COEF_0F0_B1  
0x02 EQ_COEF_0F0_B2  
0x03 EQ_COEF_0F0_A1  
0x04 EQ_COEF_0F0_A2  
0x05 EQ_COEF_0F1_B0  
0x06 EQ_COEF_0F1_B1  
0x07 EQ_COEF_0F1_B2  
0x08 EQ_COEF_0F1_A1  
0x09 EQ_COEF_0F1_A2  
0x0A EQ_COEF_0F2_B0  
0x0B EQ_COEF_0F2_B1  
0x0C EQ_COEF_0F2_B2  
0x0D EQ_COEF_0F2_A1  
0x0E EQ_COEF_0F2_A2  
0x0F EQ_COEF_0F3_B0  
0x10 EQ_COEF_0F3_B1  
0x20 EQ_COEF_1F0_B0 0x40 EQ_COEF_2F0_B0  
0x21 EQ_COEF_1F0_B1 0x41 EQ_COEF_2F0_B1  
0x22 EQ_COEF_1F0_B2 0x42 EQ_COEF_2F0_B2  
0x23 EQ_COEF_1F0_A1 0x43 EQ_COEF_2F0_A1  
0x24 EQ_COEF_1F0_A2 0x44 EQ_COEF_2F0_A2  
0x25 EQ_COEF_1F1_B0 0x45 EQ_COEF_2F1_B0  
0x26 EQ_COEF_1F1_B1 0x46 EQ_COEF_2F1_B1  
0x27 EQ_COEF_1F1_B2 0x47 EQ_COEF_2F1_B2  
0x28 EQ_COEF_1F1_A1 0x48 EQ_COEF_2F1_A1  
0x29 EQ_COEF_1F1_A2 0x49 EQ_COEF_2F1_A2  
0x2A EQ_COEF_1F2_B0 0x4A EQ_COEF_2F2_B0  
0x2B EQ_COEF_1F2_B1 0x4B EQ_COEF_2F2_B1  
0x2C EQ_COEF_1F2_B2 0x4C EQ_COEF_2F2_B2  
0x2D EQ_COEF_1F2_A1 0x4D EQ_COEF_2F2_A1  
0x2E EQ_COEF_1F2_A2 0x4E EQ_COEF_2F2_A2  
0x2F EQ_COEF_1F3_B0 0x4F EQ_COEF_2F3_B0  
0x30 EQ_COEF_1F3_B1 0x50 EQ_COEF_2F3_B1  
0x31 EQ_COEF_1F3_B2 0x51 EQ_COEF_2F3_B2  
0x32 EQ_COEF_1F3_A1 0x52 EQ_COEF_2F3_A1  
0x60 EQ_COEF_3F0_B0  
0x61 EQ_COEF_3F0_B1  
0x62 EQ_COEF_3F0_B2  
0x63 EQ_COEF_3F0_A1  
0x64 EQ_COEF_3F0_A2  
0x65 EQ_COEF_3F1_B0  
0x66 EQ_COEF_3F1_B1  
0x67 EQ_COEF_3F1_B2  
0x68 EQ_COEF_3F1_A1  
0x69 EQ_COEF_3F1_A2  
0x6A EQ_COEF_3F2_B0  
0x6B EQ_COEF_3F2_B1  
0x6C EQ_COEF_3F2_B2  
0x6D EQ_COEF_3F2_A1  
0x6E EQ_COEF_3F2_A2  
0x6F EQ_COEF_3F3_B0  
0x70 EQ_COEF_3F3_B1  
0x71 EQ_COEF_3F3_B2  
0x72 EQ_COEF_3F3_A1  
0x11  
EQ_COEF_0F3_B2  
0x12 EQ_COEF_0F3_A1  
13  
V1.2 1/12  
ACS422MX68  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
EQ 0  
EQ1  
Channel 0  
Coefficients  
Channel 1  
Coefficients  
Channel 0  
Coefficients  
Channel 1  
Coefficients  
Addr  
Addr  
Addr  
Addr  
0x13 EQ_COEF_0F3_A2  
0x14 EQ_COEF_0F4_B0  
0x15 EQ_COEF_0F4_B1  
0x16 EQ_COEF_0F4_B2  
0x17 EQ_COEF_0F4_A1  
0x18 EQ_COEF_0F4_A2  
0x19 EQ_COEF_0F5_B0  
0x1A EQ_COEF_0F5_B1  
0x1B EQ_COEF_0F5_B2  
0x1C EQ_COEF_0F5_A1  
0x1D EQ_COEF_0F5_A2  
0x33 EQ_COEF_1F3_A2 0x53 EQ_COEF_2F3_A2  
0x34 EQ_COEF_1F4_B0 0x54 EQ_COEF_2F4_B0  
0x35 EQ_COEF_1F4_B1 0x55 EQ_COEF_2F4_B1  
0x36 EQ_COEF_1F4_B2 0x56 EQ_COEF_2F4_B2  
0x37 EQ_COEF_1F4_A1 0x57 EQ_COEF_2F4_A1  
0x38 EQ_COEF_1F4_A2 0x58 EQ_COEF_2F4_A2  
0x39 EQ_COEF_1F5_B0 0x59 EQ_COEF_2F5_B0  
0x3A EQ_COEF_1F5_B1 0x5A EQ_COEF_2F5_B1  
0x3B EQ_COEF_1F5_B2 0x5B EQ_COEF_2F5_B2  
0x3C EQ_COEF_1F5_A1 0x5C EQ_COEF_2F5_A1  
0x3D EQ_COEF_1F5_A2 0x5D EQ_COEF_2F5_A2  
0x73 EQ_COEF_3F3_A2  
0x74 EQ_COEF_3F4_B0  
0x75 EQ_COEF_3F4_B1  
0x76 EQ_COEF_3F4_B2  
0x77 EQ_COEF_3F4_A1  
0x78 EQ_COEF_3F4_A2  
0x79 EQ_COEF_3F5_B0  
0x7A EQ_COEF_3F5_B1  
0x7B EQ_COEF_3F5_B2  
0x7C EQ_COEF_3F5_A1  
0x7D EQ_COEF_3F5_A2  
0x1E  
0x1F  
-
0x3E  
0x3F  
-
0x5E  
0x5F  
-
0x7E  
0x7F  
-
EQ_PRESCALE0  
EQ_PRESCALE1  
EQ_PRESCALE2  
EQ_PRESCALE3  
Table 13. DACCRAM EQ Addresess  
DACCRAM Bass/Treble Addresses  
Bass  
Treble  
Coefficients  
3D  
Addr  
Addr  
Addr  
Coefficients1  
Coefficients  
0x80  
0x81  
0x82  
0x83  
0x84  
0x85  
0x86  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
BASS_COEF_EXT1_B0  
BASS_COEF_EXT1_B1  
BASS_COEF_EXT1_B2  
BASS_COEF_EXT1_A1  
BASS_COEF_EXT1_A2  
BASS_COEF_EXT2_B0  
BASS_COEF_EXT2_B1  
BASS_COEF_EXT2_B2  
BASS_COEF_EXT2_A1  
BASS_COEF_EXT2_A2  
BASS_COEF_NLF_M12  
BASS_COEF_NLF_M2  
BASS_COEF_LMT_B0  
BASS_COEF_LMT_B1  
0x97  
0x98  
0x99  
0x9A  
0x9B  
0x9C  
0x9D  
0x9E  
0x9F  
0xA0  
0xA1  
0xA2  
0xA3  
0xA4  
TREB_COEF_EXT1_B0  
TREB_COEF_EXT1_B1  
TREB_COEF_EXT1_B2  
TREB_COEF_EXT1_A1  
TREB_COEF_EXT1_A2  
TREB_COEF_EXT2_B0  
TREB_COEF_EXT2_B1  
TREB_COEF_EXT2_B2  
TREB_COEF_EXT2_A1  
TREB_COEF_EXT2_A2  
TREB_COEF_NLF_M1  
TREB_COEF_NLF_M2  
TREB_COEF_LMT_B0  
TREB_COEF_LMT_B1  
0xAE  
0xAF  
3D_COEF  
3D_MIX  
Table 14. DACCRAM Bass/Treble Addresses  
14  
V1.2 1/12  
ACS422MX68  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
Bass  
Coefficients1  
Treble  
Coefficients  
3D  
Addr  
Addr  
Addr  
Coefficients  
0x8E  
0x8F  
0x90  
0x91  
0x92  
0x93  
0x94  
0x95  
0x96  
BASS_COEF_LMT_B2  
BASS_COEF_LMT_A1  
BASS_COEF_LMT_A2  
BASS_COEF_CTO_B0  
BASS_COEF_CTO_B1  
BASS_COEF_CTO_B2  
BASS_COEF_CTO_A1  
BASS_COEF_CTO_A2  
BASS_MIX  
0xA5  
0xA6  
0xA7  
0xA8  
0xA9  
0xAA  
0xAB  
0xAC  
0xAD  
TREB_COEF_LMT_B2  
TREB_COEF_LMT_A1  
TREB_COEF_LMT_A2  
TREB_COEF_CTO_B0  
TREB_COEF_CTO_B1  
TREB_COEF_CTO_B2  
TREB_COEF_CTO_A1  
TREB_COEF_CTO_A2  
TREB_MIX  
Table 14. DACCRAM Bass/Treble Addresses  
1.All B0 coefficients are set to unity (400000h) by default. All others, including M1 and M2, are 0 by default.  
2.NLF coefficients (M1, M2) have a range defined as +/-8, with 1 sign bit, 3 integer bits, and 20 fraction bits. So, unity for these  
values is 100000h. This is as opposed to the rest of the coefficient RAM, which has a range defined as +/-2, with 1 sign bit,  
1 integer bit, and 22 fraction bits.  
3.5. Gain and Dynamic Range Control  
The gain for a given channel is controlled by the DACVOL registers. The range of gain supported is from -95.625db to  
0db in 0.375db steps.  
If the result of the gain multiply step would result in overflow of the 24-bit output word width, the output is saturated at  
the max positive or negative value.  
In addition to simple gain control, the ACS422Mx68 also provides sophisticated dynamic range control. The dynamic  
range control processing element implements limiting, dynamic range compression, and dynamic range expansion  
functions.  
3.6. Limiter  
The Limiter function will limit the output of the DSP module to the Class-D and DAC modules. If the signal is greater  
than 0dB it will saturate at 0dB as the final processing step within the DSP module.  
There are times when the user may intentionally want the output Limiter to perform this saturation, for example +6dB of  
gain applied within the DSP gain control and then limited to 0dB when output to the Class-D module would result in a  
clipped signal driving the speaker output. This clipped signal would obviously contribute to increased distortion on the  
speaker output which from the user listening perception it would “sound louder”.  
At other times, the system implementor may wish to protect speakers from overheating or provide hearing protection by  
intentionally limiting the output level before full scale is reached. A limit threshold, independent of the compressor  
threshold is provided for this purpose. It is expected that the limit threshold is set to a higher level than the compressor  
threshold.  
15  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
3.7. Compressor  
Limit Threshold:  
-6 dBFS  
0
Compressor Threshold: -14.25 dBFS  
Expander Threshold:  
-18 dBFS  
-2  
Compressor Ratio:  
Expander Ratio:  
3:1  
1:2  
-4  
-6  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
Compressed Output Range  
Natural Output Range  
Limit Threshold  
Compressor Threshold  
Expander Threshold  
Expanded  
Output Range  
-22  
-20  
-18  
-16  
-14  
-12  
-10  
-8  
-6  
-4  
-2  
0
Input (dBFS)  
Figure 7. Gain Compressor, Output vs Input  
The traditional compressor algorithm provides two functions simultaneously (depending on signal level). For higher  
level signals, it can provide a compression function to reduce the signal level. For lower level signals, it can provide an  
expansion function for either increasing dynamic range or noise gating.  
The compressor monitors the signal level and, if the signal is higher than a threshold, will reduce the gain by a pro-  
grammed ratio to restrict the dynamic range. Limiting is an extreme example of the compressor where, as the input sig-  
nal level is increased, the gain is decreased to maintain a specific output level.  
In addition to limiting the bandwidth of the compressed audio, it is common for compressed audio to also compress the  
dynamic range of the audio. The expansion function in the ACS422Mx68 can help restore the original dynamics to the  
audio.  
The expander is a close relative of the compressor. Rather than using signal dependent gain to restrict the dynamic  
range, the expander uses signal dependent gain to expand the dynamic range. Thus if a signal level is below a particu-  
lar threshold, the expander will reduce the gain even further to extend the dynamic range of the material.  
16  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
3.7.1.  
Configuration  
This compressor limiter provides the following configurable parameters.  
Compressor  
Threshold – The threshold above which the compressor will reduce the dynamic range of  
the audio in the compression region.  
Ratio – The ratio between the input dynamic range and the output dynamic range. For  
example, a ratio of 3 will reduce an input dynamic range of 9db to 3db.  
Attack Time – The amount of time that changes in gain are smoothed over during the attack  
phase of the compressor.  
Release Time – The amount of time that changes in gain are smoothed over during the  
release phase of the compressor.  
Makeup gain – Used to increase the overall level of the compressed audio.  
Limiter  
Threshold – The threshold above which the limiter will reduce the dynamic range of the  
audio in the compression region.  
Target – The limit of the output level (typically set to the same as threshold).  
Attack Time – The amount of time that changes in gain are smoothed over during the attack  
phase of the limiter.  
Release Time – The amount of time that changes in gain are smoothed over during the  
release phase of the limiter.  
Expander  
Threshold – The threshold below which the expander will increase the dynamic range of the  
audio.  
Ratio – The ratio between the input dynamic range and the output dynamic range of the  
audio in the expansion range. For example a ratio of 3 will take an input dynamic range of  
9db and expand it to 27db.  
Attack Time – The amount of time that changes in gain are smoothed over during the attack  
phase of the expander  
Release Time - The amount of time that changes in gain are smoothed over during the  
release phase of the expander.  
Two level detection algorithms  
RMS – Use an RMS measurement for the level.  
Peak – Use a peak measurement for the level.  
3.7.2.  
Controlling parameters  
In order to control this processing, there are a number of configurable parameters. The parameters  
and their ranges are:  
Compressor/limiter  
Threshold – -40db to 0db relative to full scale.  
Ratio – 1 to 20  
Attack Time – typically 0 to 500ms  
Release Time – typically 25ms to 2 seconds  
Makeup gain – 0 to 40db  
17  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
Expander  
Threshold – -30 to -60 dB  
Ratio – 1 to 6  
Attack Time – same as above  
Release Time – same as above.  
Two level detection algorithms  
RMS  
Peak  
3.7.3.  
Overview  
A basic block diagram of the compressor is shown below:  
Audio In  
Audio Out  
Attack/  
release  
filter  
Level  
Detector  
Gain  
Calc  
Lowpass filter  
Gains based on  
Attack and release  
Peak or RMS  
Compare to Thresholds  
Calc Gain  
Figure 8. Compressor block diagram  
As this diagram shows, there are 3 primary components of the compressor.  
1. Level Detector: The level detector, oddly enough, detects the level of the incoming signal.  
Since the comp/limiter is designed to work on blocks of signals, the level detector will either find  
the peak value of the block of samples to be processed or the rms level of the samples within a  
block.  
2. Gain Calculation: The gain calculation block is responsible for taking the output of the level  
detector and calculating a target gain based on that level and the compressor and expander  
thresholds. The compressor recalculates the target gain value every block, typically every  
10ms.  
The gain calculation operates in 3 regions:  
Linear region – If the level is higher than the expander threshold and lower than the  
compression threshold, then the gain is 1.0  
Compression region – When the level is higher than the compressor threshold, then the  
comp/limiter is in the compression region. The gain is a function of the compressor ratio  
and the signal level.  
Expansion region – When the signal is lower than the expansion threshold, the  
comp/limiter is in the expansion region. In this region, the gain is a function of the signal  
level and the expansion ratio.  
Compression region gain calculation: In the compression region, the gain calculation is:  
Atten(in db) = (1-1/ratio)(threshold(in db) – level(in db);  
For example,  
• Ratio = 4:1 compression  
• Threshold = -16db  
• Level = -4 db  
18  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
The required attenuation is: 9db or a gain coefficient of 0.1259.  
Translating this calculation from log space to linear yields the formula:  
1/ratio  
Gain =(level/threshold)  
*(threshold/level)  
Expansion region gain calculation: In the expansion region, the attenuation calculation is:  
Atten(in db) = (1 - ratio)(threshold-level);  
For example,  
• Ratio = 3:1  
• Threshold = -40db  
• Level = -44 db  
The resulting attenuation required is 8db or a gain value of 0.1585.  
The linear equation for calculating the gain is:  
ratio  
Gain =(level/threshold)  
*(threshold/level)  
State Transitions: In addition to calculating the new gain for the compressor, the gain calcu-  
lation block will also select the filter coefficient for the attack/release filter. The rules for  
selecting the coefficient are as follows:  
In the compression region:  
If the gain calculated is less than the last gain calculated (more compression is being  
applied), then the filter coefficient is the compressor attack.  
If the gain calculated is more than the last gain calculated (less compression), the filter coef-  
ficient is the compressor release.  
In the expansion region:  
If the calculated gain is less than the last gain calculated (closing expander, the filter coeffi-  
cient is the expander attack.  
If the calculated gain is more than the last gain calculated, the filter coefficient is the  
expander release.  
In the linear region:  
Modify gain until a gain of 1.0 is obtained.  
If the last non-linear state was compression, use the compressor release.  
If the last non-linear state was expansion, use the expander attack.  
3. Attack/Release filter: In order to prevent objectionable artifacts, the gain is smoothly ramped  
from the current value to the new value calculated by the gain calculation block. In the PC-based  
comp/limiter, this is achieved using a simple tracking lowpass filter to smooth out the abrupt tran-  
sitions. The calculation (using the coefficient (coeff) selected by the gain block) is:  
Filtered_gain = coeff*last_filtered_gain + (1.0 - coeff)*target_gain;  
This creates a exponential ramp from the current gain value to the new value.  
19  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
3.7.4.  
Limiter/Compressor Registers  
General compressor/limiter/expander control  
Register Address  
Bit  
Label  
Type  
Default  
Description  
7:5  
RSVD  
R
0h  
Reserved  
CLE Level Detection Mode  
0 = Average  
1 = Peak  
4
3
Lvl_Mode  
RW  
RW  
0
0
Window width selection for level detection:  
0 = equivalent of 512 samples of selected Base Rate  
(~10-16ms)  
R37 (25h)  
CLECTL  
WindowSel  
1 = equivalent of 64 samples of selected Base Rate  
(~1.3-2ms)  
2
1
0
Exp_en  
Limit_en  
Comp_en  
RW  
RW  
RW  
0
0
0
1 = enable expander  
1 = enable limiter  
1 = enable compressor  
Table 15. CLECTL Register  
Compressor/Limiter/Expander make-up gain  
Register Address  
Bit  
7:5  
4:0  
Label  
RSVD  
Type  
R
Default  
0h  
Description  
Reserved  
0dB..46.5dB in 1.5dB steps  
R38 (26h)  
MUGAIN  
CLEMUG[4:0]  
RW  
0h  
Table 16. MUGAIN Register  
Compressor Threshold  
Register Address  
Bit  
7:0  
Label  
Type  
Default  
Description  
R39 (27h)  
COMPTH  
COMPTH[7:0]  
RW  
00h  
FFh..00h = 0dB..95.625dB in 0.375dB steps.  
Table 17. COMPTH Register  
Compressor ratio register  
Register Address  
Bit  
Label  
Type  
Default  
Description  
7:5  
RSVD  
R
000  
Reserved  
Compressor Ratio  
00h = Reserved  
01h = 1.5:1  
R40 (28h)  
CMPRAT  
4:0  
CMPRAT[4:0]  
RW  
00h  
02h..14h = 2:1..20:1  
15h..1Fh = Reserved  
Table 18. CMPRAT Register  
Compressor Attack Time Constant Register (Low)  
Register Address  
Bit  
Label  
Type  
Default  
Description  
R41 (29h)  
CATKTCL  
Low byte of the time constant used to ramp to a new  
gain value during a compressor attack phase.  
7:0  
CATKTC[7:0]  
RW  
00h  
Table 19. CATKTCL Register  
20  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
Compressor Attack Time Constant Register (High)  
Register Address  
Bit  
Label  
Type  
Default  
Description  
R42 (2Ah)  
CATKTCH  
High byte of the time constant used to ramp to a new  
gain value during a compressor attack phase.  
7:0  
CATKTC[15:8]  
RW  
00h  
Table 20. CATKTCH Register  
Compressor Release Time Constant Register (Low)  
Register Address  
Bit  
Label  
Type  
Default  
Description  
R43 (2Bh)  
CRELTCL  
Low byte of the time constant used to ramp to a new  
gain value during a compressor release phase.  
7:0  
CRELTC[7:0]  
RW  
00h  
Table 21. CRELTCL Register  
Compressor Release Time Constant Register (High)  
Register Address  
Bit  
Label  
Type  
Default  
Description  
R44 (2Ch)  
CRELTCH  
High byte of the time constant used to ramp to a new  
gain value during a compressor release phase.  
7:0  
CRELTC[15:8]  
RW  
00h  
Table 22. CRELTCH Register  
Limiter Threshold Register  
Register Address  
Bit  
Label  
Type  
Default  
Description  
R45 (2Dh)  
LIMTH  
7:0  
LIMTH[7:0]  
RW  
00h  
FFh..00h = 0dB..95.625dB in 0.375dB steps.  
Table 23. LIMTH Register  
Limiter Target Register  
Register Address  
Bit  
7:0  
Label  
Type  
Default  
Description  
R46 (2Eh)  
LIMTGT  
LIMTGT[7:0]  
RW  
00h  
FFh..00h = 0dB..95.625dB in 0.375dB steps.  
Table 24. LIMTGT Register  
Limiter Attack Time Constant Register (Low)  
Register Address  
Bit  
Label  
Type  
Default  
Description  
R47 (2Fh)  
LATKTCL  
Low byte of the time constant used to ramp to a new  
gain value during a limiter attack phase.  
7:0  
LATKTC[7:0]  
RW  
00h  
Table 25. LATKTCL Register  
Limiter Attack Time Constant Register (High)  
Register Address  
Bit  
Label  
Type  
Default  
Description  
R48 (30h)  
LATKTCH  
High byte of the time constant used to ramp to a new  
gain value during a limiter attack phase.  
7:0  
LATKTC[15:8]  
RW  
00h  
Table 26. LATKTCH Register  
Limiter Release Time Constant Register (Low)  
Register Address  
Bit  
Label  
Type  
Default  
Description  
R49 (31h)  
LRELTCL  
Low byte of the time constant used to ramp to a new  
gain value during a limiter release phase.  
7:0  
LRELTC[7:0]  
RW  
00h  
Table 27. LRELTCL Register  
21  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
Limiter Release Time Constant Register (High)  
Register Address  
Bit  
Label  
Type  
Default  
Description  
R50 (32h)  
LRELTCH  
High byte of the time constant used to ramp to a new  
gain value during a limiter release phase.  
7:0  
LRELTC[15:8]  
RW  
00h  
Table 28. LRELTCH Register  
3.7.5.  
Expander Registers  
Expander Threshold Register  
Register Address  
Bit  
Label  
Type  
Default  
Description  
R51 (33h)  
EXPTH  
7:0  
EXPTH[7:0]  
RW  
00h  
Expander threshold: 0..95.625dB in 0.375dB steps  
Table 29. EXPTH Register  
Expander Ratio Register  
Register Address  
Bit  
Label  
Type  
Default  
Description  
7:3  
RSVD  
R
00h  
Reserved  
R52 (34h)  
EXPRAT  
Expander Ratio  
0h..1h = Reserved  
2h..7h = 1:2..1:7  
EXPRAT[2:0]  
RW  
000  
Table 30. EXPRAT Register  
Expander Attack Time Constant Register (Low)  
Register Address  
Bit  
Label  
Type  
Default  
Description  
R53 (35h)  
XATKTCL  
Low byte of the time constant used to ramp to a new  
gain value during a expander attack phase.  
7:0  
XATKTC[7:0]  
RW  
00h  
Table 31. XATKTCL Register  
Expander Attack Time Constant Register (High)  
Register Address  
Bit  
Label  
Type  
Default  
Description  
R54 (36h)  
XATKTCH  
High byte of the time constant used to ramp to a new  
gain value during a expander attack phase.  
7:0  
XATKTC[15:8]  
RW  
00h  
Table 32. XATKTCH Register  
Expander Release Time Constant Register (Low)  
Register Address  
Bit  
Label  
Type  
Default  
Description  
R55 (37h)  
XRELTCL  
Low byte of the time constant used to ramp to a new  
gain value during a expander release phase.  
7:0  
XRELTC[7:0]  
RW  
0
Table 33. XRELTCL Register  
Expander Release Time Constant Register (High)  
Register Address  
Bit  
Label  
Type  
Default  
Description  
R56 (38h)  
XRELTCH  
High byte of the time constant used to ramp to a new  
gain value during a expander release phase.  
7:0  
XRELTC[15:8]  
RW  
0
Table 34. XRELTCH Register  
22  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
3.8. Output Effects  
The ACS422Mx68 offers Bass enhancement, Treble enhancement, Stereo Depth enhancement. The output effects  
processing is outlined in the following sections.l  
Register Address  
Bit  
Label  
Type  
Default  
Description  
7:5  
RSVD  
R
000  
Reserved  
3D Enhancement Enable  
0 = Disabled 1 = Enabled  
4
3
2
1
0
3DEN  
TEEN  
RW  
RW  
RW  
RW  
RW  
0
0
0
0
0
Treble Enhancement Enable  
0 = Disabled 1 = Enabled  
R57 (39h)  
FXCTL  
Treble Non-linear Function Bypass:  
0 = Enabled 1 = Bypassed  
TNLFBYP  
BEEN  
Bass Enhancement Enable  
0 = Disabled 1 = Enabled  
Bass Non-linear Function Bypass:  
0 = Enabled 1 = Bypassed  
BNLFBYP  
Table 35. FX Control Register  
3.9. Stereo Depth (3-D) Enhancement  
The ACS422Mx68 has a digital depth enhancement option to artificially increase the separation between the left and  
right channels, by enabling the attenuation of the content common to both channels. The amount of attenuation is pro-  
grammable within a range. The input is prescaled (fixed) before summation to prevent saturation.  
The 3-D enhancement algorithm is a tried and true algorithm that uses two principles.  
1. If the material common to the two channels is removed, then the speakers will sound more 3-D.  
2. If the material for the opposite channel is presented to the current channel inverted, it will tend to  
cancel any material from the opposite channel on the current ear. For example, if the material  
from the right is presented to the left ear inverted, it will cancel some of the material from the  
right ear that is leaking into the right ear.  
Left  
Left  
Right  
Right  
Figure 9. 3-D Channel Inversion  
Note: 3D_Mix specifies the amount of the common signal that is subtracted from the left and right  
channels. This number is a fractional amount between 0 and 1. For proper operation, this value is typically  
negative.  
23  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
3.10. Psychoacoustic Bass Enhancement  
One of the primary audio quality issues with small speaker systems is their inability to reproduce significant amounts of  
energy in the bass region (below 200Hz). While there is no magic mechanism to make a speaker reproduce frequen-  
cies that it is not capable of, there are mechanisms for fooling the ear into thinking that the bass material is being  
heard.  
The psychoacoustic bass processor relies on a psychoacoustic principle called “missing fundamental”. If the human  
ear hears a proper series of harmonics for a particular bass note, the listener will hear the fundamental of that series,  
even if it is not present.  
A processing algorithm using this principle allows for improving the apparent low frequency response of an audio sys-  
tem below what it is actually capable of. Below is a diagram of the implementation of this algorithm.  
.
Cutoff Filter  
Limit  
Filter  
Extract  
Filter  
NLF  
Figure 10. Bass Enhancement  
This implementation is composed of 5 major components:  
1. Extract filter – This filter extracts the bass information that the speaker system can't reproduce.  
This is a 4th order band pass filter with a typical bandwidth of 1.5 to 2 octaves.  
2. NLF – This is a Nonlinear function that is used to generate the harmonics of the fundamentals in  
the extracted audio. More on this function later.  
3. Limit Filter – This filter will limit the amplitude of the harmonics generated to prevent the har-  
monics from creating noise in the midrange. Too many harmonics will spill into the mid range  
and be heard as unwanted buzzing. Too few and the psychoacoustic effect is not reached. The  
exact composition of this filter is still or be determined. A 2nd order filter is currently sufficient for  
the NLF function employed.  
4. Mixing – This structure allows mixing of the generated harmonics and the original material.  
5. Cutoff Filter – This filter is used to remove all material below the cutoff frequency of the speaker  
systems. This includes the fundamentals used to create the psychoacoustic effect, since they  
can't be reproduced. This is a 2nd order high pass filter.  
3.11. Treble Enhancement  
One of the mechanisms used to limit the bit rate for compressed audio is to first remove high frequency information  
before compression. When these files are decompressed, this can lead to dull sounding audio. The IDT treble  
enhancement replaces these lost high frequencies.  
The enhanced treble function works much like the enhanced bass, however it's intended use is different. The enhanced  
treble uses a non linear function to add treble harmonics to a signal that has limited high-frequency bandwidth (such as  
a low bit rate MP3). In this case, the algorithm makes use of the audio fact that presence of audio between 4-8K is a  
good predictor of audio between 10K-20K.  
24  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
Extract  
Filter  
Limit  
Filter  
NLF  
Figure 11. Treble Enhancement  
This implementation extracts the high frequency content that is available in the audio, generates harmonics of those  
frequencies. These harmonics are then summed back into the original signal, providing a brighter sound.  
This algorithm has 4 components.  
Extract Filter– This filter is used to extract the treble between 4-8K. This is 2 2nd order high  
pass filters.  
Enhanced Treble Non-Linear Function– Generates high frequency components  
Limit Filter– This filter limits the harmonics generated by the NLF to prevent any significant  
aliasing. A second order filter is sufficient.  
Mixing Network – This simply sums the generated harmonic signals into the original signal.  
3.12. Mute and De-Emphasis  
The ACS422Mx68 has a Soft Mute function, which is used to gradually attenuate the digital signal volume to zero. The  
gain returns to its previous setting if the soft mute is removed. At startup, the codec is muted by default; to enable audio  
play, the mute bit must be cleared to 0.  
After the equalization filters, de-emphasis may be performed on the audio data to compensate for pre-emphasis that  
may be included in the audio stream. De-emphasis filtering is only available for 48kHz, 44.1kHz, and 32kHz sample  
rates.  
3.13. Mono Operation and Phase Inversion  
Normal stereo operation converts left and right channel digital audio data to analog in separate DACs. However, it is  
also possible to have the same signal (left or right) appear on both analog output channels by disabling one channel;  
alternately, there is a mono-mix mode that mixes the two channels digitally before converting to analog using only one  
DAC. In this mode, the other DAC is switched off, and the resulting mixed stream signal can appear on both analog  
output channels. The DAC output defaults to non-inverted. Setting DACPOLL and DACPOLR bits will invert the DAC  
output phase on the left and right channels.  
25  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
3.13.1. DAC Control Register  
Register Address  
Bit  
7
Label  
Type  
RW  
Default  
Description  
Invert DAC Right signal  
DACPOLR  
DACPOLL  
0
0
6
RW  
Invert DAC Left signal  
DAC mono mix  
00: stereo  
DMONOMIX  
[1:0]  
5:4  
3
RW  
RW  
00  
1
01: mono ((L/2)+(R/2)) into DACL, ‘0’ into DACR  
10: mono ((L/2)+(R/2)) into DACR, ‘0’ into DACL  
11: mono ((L/2)+(R/2)) into DACL and DACR  
R24 (18h)  
CNVRTR1  
Digital Soft Mute  
1 = mute  
DACMU  
0 = no mute (signal active)  
De-emphasis Enable  
1 = De-emphasis Enabled  
0 = No De-emphasis  
2
DEEMP  
RSVD  
RW  
R
0
1:0  
00  
Reserved  
Table 36. CNVRTR1 Register  
26  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
3.13.2. Interpolation and Filtering  
AUTO  
2X  
2X  
2X  
2X  
20X  
24  
22  
22  
22  
20  
1
Input Rate =  
From I2S  
From I2S  
From I2S  
From I2S  
57T FIR-A  
11T FIR-B  
7T FIR-C  
7T FIR-D  
SDM  
To Analog DAC  
8/11.024/12kHz (QX):  
8kHz  
11.025kHz  
12kHz  
16kHz  
22.05kHz  
24kHz  
32kHz  
44.1kHz  
48kHz  
64kHz  
88.2kHz  
96kHz  
128kHz  
176.4kHz  
192kHz  
2.560MHz  
3.528MHz  
3.840MHz  
2X  
2X  
2X  
20X  
24  
22  
22  
20  
1
Input Rate =  
57T FIR-A  
11T FIR-B  
7T FIR-C  
SDM  
To Analog DAC  
To Analog DAC  
16/22.05/24kHz (HX):  
16kHz  
22.05kHz  
24kHz  
32kHz  
44.1kHz  
48kHz  
64kHz  
88.2kHz  
96kHz  
128kHz  
176.4kHz  
192kHz  
2.560MHz  
3.528MHz  
3.840MHz  
2X  
2X  
2X  
20X  
24  
22  
22  
20  
1
Input Rate =  
57T FIR-A  
11T FIR-B  
7T FIR-C  
SDM  
32/44.1/48kHz (1X):  
32kHz  
44.1kHz  
48kHz  
64kHz  
88.2kHz  
96kHz  
128kHz  
176.4kHz  
192kHz  
256kHz  
352.8kHz  
384kHz  
5.120MHz  
7.056MHz  
7.680MHz  
2X  
2X  
20X  
24  
22  
20  
1
Input Rate =  
57T FIR-A  
11T FIR-B  
SDM  
To Analog DAC  
64/88.2/96kHz (2X):  
64kHz  
88.2kHz  
96kHz  
128kHz  
176.4kHz  
192kHz  
256kHz  
352.8kHz  
384kHz  
5.120MHz  
7.056MHz  
7.680MHz  
Full  
2X  
2X  
2X  
2X  
2X  
20X  
24  
22  
22  
22  
20  
20  
1
Input Rate =  
From I2S  
From I2S  
From I2S  
From I2S  
57T FIR-A  
11T FIR-B  
7T FIR-C  
7T FIR-D  
7T FIR-E  
SDM  
To Analog DAC  
8/11.024/12kHz (QX):  
8kHz  
11.025kHz  
12kHz  
16kHz  
22.05kHz  
24kHz  
32kHz  
44.1kHz  
48kHz  
64kHz  
88.2kHz  
96kHz  
128kHz  
176.4kHz  
192kHz  
256kHz  
352.8kHz  
384kHz  
5.120MHz  
7.056MHz  
7.680MHz  
2X  
2X  
2X  
2X  
20X  
24  
22  
22  
20  
20  
1
Input Rate =  
57T FIR-A  
11T FIR-B  
7T FIR-C  
7T FIR-D  
SDM  
To Analog DAC  
16/22.05/24kHz (HX):  
16kHz  
22.05kHz  
24kHz  
32kHz  
44.1kHz  
48kHz  
64kHz  
88.2kHz  
96kHz  
128kHz  
176.4kHz  
192kHz  
256kHz  
352.8kHz  
384kHz  
5.120MHz  
7.056MHz  
7.680MHz  
2X  
2X  
2X  
20X  
24  
22  
22  
20  
1
Input Rate =  
57T FIR-A  
11T FIR-B  
7T FIR-C  
SDM  
To Analog DAC  
32/44.1/48kHz (1X):  
32kHz  
44.1kHz  
48kHz  
64kHz  
88.2kHz  
96kHz  
128kHz  
176.4kHz  
192kHz  
256kHz  
352.8kHz  
384kHz  
5.120MHz  
7.056MHz  
7.680MHz  
2X  
2X  
20X  
24  
22  
20  
1
Input Rate =  
57T FIR-A  
11T FIR-B  
SDM  
To Analog DAC  
64/88.2/96kHz (2X):  
64kHz  
88.2kHz  
96kHz  
128kHz  
176.4kHz  
192kHz  
256kHz  
352.8kHz  
384kHz  
5.120MHz  
7.056MHz  
7.680MHz  
Half  
2X  
2X  
2X  
2X  
20X  
24  
22  
22  
22  
20  
1
Input Rate =  
From I2S  
From I2S  
From I2S  
From I2S  
57T FIR-A  
11T FIR-B  
7T FIR-C  
7T FIR-D  
SDM  
To Analog DAC  
8/11.024/12kHz (QX):  
8kHz  
11.025kHz  
12kHz  
16kHz  
22.05kHz  
24kHz  
32kHz  
44.1kHz  
48kHz  
64kHz  
88.2kHz  
96kHz  
128kHz  
176.4kHz  
192kHz  
2.560MHz  
3.528MHz  
3.840MHz  
2X  
2X  
2X  
20X  
24  
22  
22  
20  
1
Input Rate =  
57T FIR-A  
11T FIR-B  
7T FIR-C  
SDM  
To Analog DAC  
16/22.05/24kHz (HX):  
16kHz  
22.05kHz  
24kHz  
32kHz  
44.1kHz  
48kHz  
64kHz  
88.2kHz  
96kHz  
128kHz  
176.4kHz  
192kHz  
2.560MHz  
3.528MHz  
3.840MHz  
2X  
2X  
20X  
24  
22  
22  
1
Input Rate =  
57T FIR-A  
11T FIR-B  
SDM  
To Analog DAC  
32/44.1/48kHz (1X):  
32kHz  
44.1kHz  
48kHz  
64kHz  
88.2kHz  
96kHz  
128kHz  
176.4kHz  
192kHz  
2.560MHz  
3.528MHz  
3.840MHz  
2X  
20X  
24  
22  
1
Input Rate =  
57T FIR-A  
SDM  
To Analog DAC  
64/88.2/96kHz (2X):  
64kHz  
88.2kHz  
96kHz  
128kHz  
176.4kHz  
192kHz  
2.560MHz  
3.528MHz  
3.840MHz  
Figure 12. Interpolation and Filtering  
27  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
3.14. Analog Outputs  
3.14.1. Headphone Output  
The HPOut pins can drive a 16or 32headphone or alternately drive a line output. The signal vol-  
ume of the headphone amplifier can be independently adjusted under software control by writing to  
HPVOL_L and HPVOL_R. Setting the volume to 0000000 will mute the output driver; the output  
remains at ground, so that no click noise is produced when muting or un-muting.  
Gains above 0dB run the risk of clipping large signals.  
To minimize artifacts such as clicks and zipper noise, the headphone and BTL outputs feature a vol-  
ume fade function that smoothly changes volume from the current value to the target value.  
3.14.1.1. Headphone Volume Control Registers  
Register Address  
Bit  
Label  
Type  
Default  
Description  
7
RSVD  
R
0
Reserved  
Left Headphone Volume  
1111111 = +6dB  
1111110 = +5.25dB  
R2 (00h)  
HPVOLL  
HPVOL_L  
[6:0]  
1110111 1110111 = 0dB  
6:0  
RW  
(0dB)  
...  
0000001 = -88.5dB  
0000000 = Analog mute  
Note: If HPVOLU is set, this setting will take effect after  
the next write to the Right Input Volume register.  
7
RSVD  
R
0
Reserved  
Right Headphone Volume  
1111111 = +6dB  
1111110 = +5.25dB  
1110111 = 0dB  
...  
R3 (01h)  
HPVOLR  
HPVOL_R  
[6:0]  
6:0  
RW  
1110111  
0000001 = -88.5dB  
0000000 = Analog mute  
Table 37. HPVOL L/R Registers  
3.14.2. Speaker Outputs  
The LSPKOut (L+, L-) and RSPKOut (R+, R-) pins are controlled similarly, but independently of, the headphone output  
pins. They are intended to drive an 8 ohm or 4 ohm speaker pair.  
28  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
3.14.2.1. Speaker Volume Control Registers  
Register Address  
Bit  
Label  
Type  
Default  
Description  
7
RSVD  
R
0
Reserved  
Left Speaker Volume  
1111111 = +12dB  
1111110 = +11.25dB  
R2 (2h)  
SPKVOLL  
SPKVOL_L  
[6:0]  
1101111 1101111 = 0dB  
(0dB) ...  
6:0  
7:0  
RW  
0001000 to 0000001 = -77.25dB  
0000000= Mute  
Note: If SPKVOLU is set, this setting will take effect  
after the next write to the Right Input Volume register.  
R3 (3h)  
RESERVED  
RSVD  
R
0
Reserved  
Table 38. SPKVOL L/R Registers  
3.14.3. DDXTMClass D Audio Processing  
TM  
For additional information on the DDX  
www.idt.com.  
Class D solution, please see the application note on  
TM  
The DDX Class D PWM Controller performs the following signal processing:  
Feedback filters are applied to shape any noise. The filters move noise from audible frequencies  
to frequencies above the audio range.  
The PWM block converts the data streams to tri-state PWM signals and sends them to the  
power stages.  
TM  
Finally, the DDX Class D controller block adjusts the output volume to provide constant output  
power across supply voltage.  
The power stages boost the signals to higher levels, sufficient to drive speakers at a comfortable lis-  
tening level.  
3.14.3.1. Constant Output Power Mode  
In normal operation the BTL amplifier is rated at 0.5W (full scale digital with 6dB BTL gain) into an 8  
ohm load at 3.6V but will vary from about 0.38W to about 1.2W across a 3.1V to 5.5V supply range.  
However, when constant output power mode is enabled, the full scale output is held constant from  
3.1V to 5.5V.  
The BTL amplifier in ACS422Mx68 will continuously adjust to power supply changes to ensure that  
the full scale output power remains constant. This is not an automatic level control. Rather, this func-  
tion prevents sudden volume changes when switching between battery and line power. Please note,  
when in this mode the amplifier efficiency may be reduced and decreases with higher supply volt-  
ages and lower target values.  
A simple 5-bit ADC is used to monitor PVDD. As PVDD raises or lowers, the analog circuit will send  
a 5-bit code to the digital section that will average and then calculate a gain adjustment. The BTL  
audio signal will be multiplied by this gain value (in addition to the user volume controls).  
29  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
The user will select a target value for the circuit. The constant output function will calculate a gain  
adjustment that will provide approximately the same full scale output voltage as provided when  
PVDD causes the same code value. So, if the target is 9 then a PVDD voltage of about 3.7V would  
generate a code value of 9 and a full scale output power of about 630mW into 8 ohms. If PVDD  
should rise to 4V, generating a code of 13, then the constant output power circuit would reduce the  
gain by 0.75dB (4 codes * 0.1875dB) to keep the full scale output at the target level.  
The circuit may be configured to add gain, attenuation, or both to maintain the full-scale output level.  
If the needed adjustment falls outside of the range of the circuit (only attenuation is enabled and gain  
is needed, for example) then the circuit will apply as much correction as it is able. Through the use of  
gain, attenuation, and target values, different behaviors may be implemented:  
Attenuation only, target set to mimic a low supply voltage - Constant output level across bat-  
tery state with constant quality (THD/SNR)  
Attenuation only, target set to mimic a moderate supply voltage - Output limiting to an  
approximate power level. Level will decrease at lower supply voltages but won’t increase  
beyond a specific point.  
Gain only, target at or near max - Output will remain relatively constant but distortion will  
increase as PVDD is lowered. This mimics the behavior of common class-AB amplifiers.  
Gain and attenuation - Output remains at a level below the maximum possible at the highest  
supply voltage and above the theoretical full scale at minimum supply. Full scale PCM input  
clips when the supply voltage is low but won’t become too loud when the supply voltage is  
high.  
In addition to maintaining a constant output level, PVDD may be monitored for a large, sudden,  
change. If the High Delta function is enabled and PVDD changes more than 4 code steps since the  
last cycle, the output will be rapidly reduced then gradually increased to the target level.  
When using this circuit, please take note of the following:  
The full scale output power may be limited by the supply voltage.  
Full scale output power is affected by other gain controls in the output path including the EQ  
and compressor/limiter.  
The Constant Output Power function is intended to help maintain a constant output level, not  
an exact output level. The output level for a specific target may vary part to part. If limiting is  
required for safety or other reasons, be conservative and set the target well below the maxi-  
mum allowable level.  
Noise on the PVDD supply may cause erratic behavior. Use the recommended supply  
decoupling caps and verify that the power supply can support the peak currents demanded  
by a class-D amplifier.  
30  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
Constant Output Power error (dB) relative to a target of 8 for an ideal part and the output error if left  
uncorrected across a 3.1 to 5.5V supply range.  
Figure 13. Constant Output Power Error  
Constant Output Power for nominal and high/low reference across a 3.1 to 5.5V supply  
range.(Uncorrected power shown for reference) A target of 8 roughly corresponds to 0.5W at 3.6V  
into 8 ohms.  
Figure 14. Constant Output Power nominal and high/low  
31  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
3.14.3.2. Under Voltage Lock Out  
When the PVDD supply becomes low, the BTL amplifier may be disabled to help prevent undesir-  
able amplifier operation (overheat) or system level problems (battery under-voltage.)  
The same circuit that monitors the PVDD supply to help maintain a constant output power is used to  
monitor the PVDD supply for a critical under-voltage situation. If the sense circuit consistently returns  
a 0 code then the PVDD supply is less than the minimum required for proper operation. To prevent  
accidental shutdown due to a noisy supply at the minimum operating range, the output of the PVDD  
sense circuit will be averaged for at least 200ms.  
3.14.3.3. Registers  
Constant Output Power 1  
Register Address  
Bit  
Label  
Type  
Default  
Description  
1 = Constant Output Power function will use attenuate  
the BTL output if the PVDD sense circuit returns a code  
higher than the target value.  
7
COPAtten  
RW  
0
1 = Constant Output Power function will use attenuate  
the BTL output if the PVDD sense circuit returns a code  
higher than the target value.  
R34 (22h)  
Constant Output  
Power 1  
6
COPGain  
RW  
0
1 = If the PVDD code value has changed more than 4  
counts since the last gain adjustment, the output will be  
reduced rapidly then slowly returned to the target level.  
5
HDeltaEn  
RW  
RW  
0
4:0  
COPTarget[4:0]  
8h  
5-bit target for the Constant Output Power function.  
Table 39. Constant Output Power 1 Register  
Constant Output Power 2  
Register Address  
Bit  
7
Label  
RSVD  
RSVD  
Type  
R
Default  
Description  
0
0
Reserved  
Reserved  
6
R
Number of sense cycles to average:  
000 = 1  
001 = 2  
010 = 4  
011 = 8  
5:3  
AvgLength[2:0]  
RW  
000  
100 = 16  
101 = 32  
110 = 64  
111 = 128  
R35 (23h)  
Constant Output  
Power 2  
Rate the PVDD supply is monitored:  
000 = 0.0625ms  
001 = 0.125ms  
010 = 0.25ms  
011 = 0.5ms  
2:0  
MonRate[2:0]  
RW  
100  
100 = 1ms  
101 = 2ms  
110 = 4ms  
111 = 8ms  
Table 40. Constant Output Power 2 Register  
32  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
Constant Output Power 3  
Register Address  
Bit  
Label  
Type  
Default  
Description  
1 = A high delta situation has been detected (positive  
code change > 4) and the constant output power  
function is adjusting.  
7
HighDelta  
R
0
1 = Constant Output Power function will use attenuate  
the BTL output if the PVDD sense circuit returns a code  
higher than the target value.  
R137 (89h)  
Constant Output  
Power 3  
6
RSVD  
R
R
0
Amount that the Constant Output Power function is  
adjusting the signal gain. Value is 2s compliment with  
each step equal to 0.1875dB. The approximate range is  
+/- 6dB  
5:0  
COPAdj  
0h  
Table 41. Constant Output Power 3 Register  
Configuration Register  
Register Address  
Bit  
Label  
ASDM[1:0]  
DSDM[1:0]  
RSVD  
Type  
RW  
RW  
R
Default  
10h  
Description  
7:6  
5:4  
3:2  
ADC Modulator Rate  
DAC Modulator Rate  
10h  
R31 (1Fh)  
CONFIG0  
0h  
Reserved for future use.  
1 = bypass DC removal filter  
(WARNING DC content can damage speakers)  
1
0
dc_bypass  
RSVD  
RW  
R
0
0
Reserved  
Table 42. CONFIG0 Register  
PWM Control 0 Register  
Register Address  
Bit  
Label  
Type  
Default  
Description  
Class-D Short Circuit Detect Time-out  
00 = 10uS  
7:5  
SCTO  
RW  
11  
01 = 100uS  
10 = 500uS  
11 = 100mS  
Under Voltage Lock Out  
5
UVLO  
RW  
1
1 = BTL output disabled if PVDD sense circuit returns  
code 0  
R66 (42h)  
PWM0  
4
3
2
roundup  
bfclr  
RW  
RW  
RW  
1
0
1
1 = roundup, 0 = truncate for quantizer  
1 = disable binomial filter  
fourthorder  
1 = 4th order binomial filter; 0 = 3rd order  
1 = 24-bit Noise Shaper output (pre-quantizer)  
0 = 8/9/10-bit quantizer output  
1
0
add3_sel  
RW  
RW  
0
0
quantizer_sel  
Table 43. PWM0 Register  
33  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
PWM Control 1 Register  
Register Address  
Bit  
Label  
Type  
Default  
Description  
7
RSVD  
R
0
Reserved  
Dither position, where dither inserted after NS.  
0,1,2 = dither bits 2:0  
4 = dither bits 3:1  
5 = dither bits 4:1  
....  
6:2  
dithpos[4:0]  
RW  
0
R67 (43h)  
PWM1  
19 = dither bits 19:17  
1
0
dith_range  
dithclr  
RW  
RW  
0
0
1 = dither -1 to +1, 0 = -3 to +3  
1 = disable dither  
Table 44. PWM1 Register  
PWM Control 2 Register  
Register Address  
Bit  
Label  
Type  
Default  
Description  
7:2  
dvalue[5:0]  
RW  
18h  
dvalue constant field  
1 = swap pwm a/b output pair for all channels  
The control lines to the power stage are swapped  
inverting the output signal.  
R68 (44h)  
PWM2  
1
0
pwm_outflip  
RW  
0
pwm_outmode  
RW  
1
1 = tristate, 0 = binary  
Table 45. PWM2 Register  
PWM Control 3 Register  
Register Address  
Bit  
7:6  
5:0  
Label  
Type  
RW  
Default  
00  
Description  
pwm output muxing  
0 = normal  
1 = swap 0/1  
2 = ch0 on both  
3 = ch1 on both  
outctrl[1:0]  
cvalue[5:0]  
R69 (45h)  
PWM3  
RW  
0Ah  
tristate constant field, must be even and not 0  
Table 46. PWM3 Register  
34  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
3.15. Other Output Capabilities  
Each audio analog output can be separately enabled. Disabling outputs serves to reduce power consumption, and is  
the default state of the device.  
3.15.1. Audio Output Control  
See Power management section. The output enable bits are also power management bits and the  
outputs will be turned off when disabled.  
Register Address  
Bit  
7
Label  
D2S  
Type  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Default  
Description  
Analog in D2S AMP Enable  
0
0
0
0
0
0
0
1
6
HPOutL  
HPOutR  
SPKOut  
RSVD  
RSVD  
RSVD  
VREF  
Left Headphone Output Enable  
Right Headphone Output Enable  
Speaker Output Enable  
5
R27 (1Bh)  
Power Management  
(2)  
4
3
2
1
0
Voltage reference  
Note: A value of “1” indicates the output is enabled; a value of ‘0’ disables the output.  
Table 47. Power Management 2 Register  
3.15.2. Headphone Switch  
The HPDETECT pin is used to detect connection of a headphone. When headphone insertion is  
detected, the codec can automatically disable the speaker outputs and enable the headphone out-  
puts. Control bits determine the meaning and polarity of the input.  
In addition to enabling and disabling outputs, the EQ may also be controlled using the HP_DET pin.  
The 2 EQ filters may be configured so that one EQ is active when the Headphone output is active  
and the other EQ is active when the Speaker output is active (independent HP and Speaker EQ).  
One EQ may be enabled only when the Speaker is active and the other EQ may be on when either  
of the outputs are active (Speaker compensation and USER EQ) or other combinations are possible.  
Note that the EQ coefficients must be programmed and the EQs must be enabled using their control  
registers. The HP_DET logic can only disable the EQ filters.  
35  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
3.15.2.1. Headphone Switch Register  
Register Address  
Bit  
Label  
Type  
Default  
Description  
Headphone Switch Enable  
7
HPSWEN  
RW  
0
0: Headphone switch disabled  
1: Headphone switch enabled  
Headphone Switch Polarity  
6
HPSWPOL  
RW  
0
0: HPDETECT high = headphone  
1: HPDETECT high = speaker  
5:4  
3:2  
EQ2SW[1:0]  
EQ1SW[1:0]  
RW  
RW  
00  
00  
EQ2 behavior due to speaker/headphone output state  
EQ1 behavior due to speaker/headphone output state  
R29 (1Ch)  
Additional Control  
(CTL)  
Thermal Shutdown Enable (See section 7.9)  
0: thermal shutdown disabled  
1
TSDEN  
RW  
0
1: thermal shutdown enabled  
Zero Cross Time-out Enable  
0: Time-out Disabled  
1: Time-out Enabled - volumes updated if no zero cross  
event has occurred before time-out  
0
TOEN  
RW  
0
Table 48. Additional Control Register  
3.15.3. Headphone Operation  
HP_DET  
Pin state  
Headphone  
Enabled  
Speaker  
Enabled  
HPOut1  
SPKOut2  
HPSWEN  
HPSWPOL  
0
0
0
0
1
1
1
1
1
1
1
1
X
X
X
X
0
0
0
0
1
1
1
1
X
X
X
X
0
0
1
1
0
0
1
1
0
0
1
1
X
X
0
1
0
1
X
X
0
1
0
1
0
1
X
X
X
X
0
1
no  
no  
no  
yes  
no  
yes  
yes  
no  
yes  
no  
no  
yes  
no  
no  
yes  
no  
no  
no  
yes  
no  
no  
no  
no  
yes  
Table 49. Headphone Operation  
1.HPOut = Logical OR of the HPL and HPR enable (power state) bits  
2.SPKOut = Logical OR of the SPK enable (power state) bits  
3.15.4. EQ Operation  
EQ Behavior1  
EQnSW1  
EQnSW0  
0
0
EQ is not disabled due to Headphone/Speaker logic  
EQ is disabled when Headphone output is active  
EQ is disabled when Speaker output is active  
0
1
1
1
0
1
EQ is disabled when Headphone AND Speaker output are active  
Table 50. EQ Operation  
1.EQ must be enabled. EQ behavior is dependent on HP_DET and Output power  
state programming.  
36  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
3.16. Thermal Shutdown  
To avoid overpowering and overheating the codec when the amplifier outputs are driving large currents, the  
ACS422Mx68 incorporates a thermal protection circuit. If enabled, and the device temperature reaches approximately  
150°C, the speaker and headphone amplifier outputs will be disabled. Once the device cools, the outputs will be auto-  
matically re-enabled.  
3.16.1. Algorithm description:  
There are 2 trip points, “high” and “low”. High indicates a critical overheat requiring a reduction in vol-  
ume to avoid damage to the part. Low is set for a slightly lower temperature point, indicating that the  
current level is safe but that increased volume would result in a critical overheat condition.  
Normally, the overheat bits are polled every 8ms but may be polled at 4ms, 8ms, 16ms, or 32ms by  
adjusting the Poll value. Reductions in volume will be allowed to happen at the Poll rate. Increases in  
volume are programmable to happen every 1, 2, 4, or 8 Poll cycles and in steps of 0.75dB to 6dB.  
This allows a full scale volume increase in a range of 10s of milliseconds to 10s of seconds.  
When both overheat bits are 0, the volume is allowed to increment by the IncStep size, unless the  
volume has already reached the maximum value allowed. Any subsequent increment will be held off  
until the programmed number of polling cycles have occurred.  
When the low overheat bit is 1 and the high overheat bit is 0, this indicates that the volume is cur-  
rently at a safe point but the temperature is higher than desired and incrementing the volume may  
cause severe overheating. The volume is held at the current value.  
When the high overheat bit is 1, damage could occur, so the volume setting will be immediately  
reduced by the Decrement Step value. As the overheat bits are re-polled, this volume reduction will  
continue until the high overheat bit drops to 0 or the volume value reaches the minimum setting. If  
the high overheat bit remains 1 even at the minimum setting, then the mute control bit will be  
asserted. If the high overheat bit persists even after mute, then the BTL amp will be powered down.  
3.16.2. Thermal Trip Points.  
The high and low trip points can be adjusted to suit the needs of a particular system implementation.  
There is a “shift” value (TripShift) which sets the low trip point, and there is a “split” value (TripSplit)  
that sets how many degrees above the low trip point the high trip point is.  
By default:  
TripShift = 2 (140 degrees C)  
TripSplit = 0 (15 degrees C)  
Therefore:  
High Trip Point = 155°C.  
Low Trip Point = 140°C.  
37  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
3.16.3. Temperature Limit State Diagram:  
TS Disabled  
IDLE  
Every “Poll” time  
(8ms default)  
Increment  
Volume by  
IncStep  
Increment  
Ratio Count  
No  
Ratio met & Vol  
/= Max?  
01  
00  
Yes  
OverheatHL ==?  
1X  
Decrement  
Volume by  
DecStep  
No  
Vol @ Min?  
Yes  
Volume =  
Mute  
No  
Vol = Mute?  
Yes  
BTL PWD  
Figure 15. Temp sense volume adjustment algorithm  
3.16.4. Instant Cut Mode  
This mode can be used to make our algorithm react faster to reduce thermal output but will cause  
more pronounced volume changes. If enabled:  
Only the high overheat is used, the low overheat is ignored.  
Whenever polled, if the high overheat is 1, then the volume setting will immediately be set to 0h.  
Conversely, if the high overheat is 0, the volume setting will immediately be set to the MaxVol  
value.  
Both volume clear and volume set events occur at the polling rate.  
During this mode, the algorithm still possesses the ability to mute and then power down the BTL amp  
if the high overheat continues to be 1.  
This mode is disabled by default.  
38  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
3.16.5. Short Circuit Protection  
To avoid damage to the outputs if a short circuit condition should occur, both the headphone and BTL amplifiers imple-  
ment short circuit protection circuits. The headphone output amplifier will detect the load current and limit its output if in  
an over current state. The BTL amplifier will sense a short to PVDD, ground, or between its +/- outputs and disable its  
output if a short is detected. After a brief time, the amplifier will turn on again. If a short circuit condition is still present,  
the amplifier will disable itself again.  
3.16.6. Thermal Shutdown Registers  
The thermal shutdown circuit is enabled using the Additional Control Register, see Table 51.  
3.16.6.1. Headphone Switch Register  
Register Address  
Bit  
Label  
Type  
Default  
Description  
Headphone Switch Enable  
7
HPSWEN  
RW  
0
0: Headphone switch disabled  
1: Headphone switch enabled  
Headphone Switch Polarity  
6
HPSWPOL  
RW  
0
0: HPDETECT high = headphone  
1: HPDETECT high = speaker  
5:4  
3:2  
EQ2SW[1:0]  
EQ1SW[1:0]  
RW  
RW  
00  
00  
EQ2 behavior due to speaker/headphone output state  
EQ1 behavior due to speaker/headphone output state  
R29 (1Ch)  
Additional Control  
(CTL)  
Thermal Shutdown Enable (See section 7.9)  
0: thermal shutdown disabled  
1
TSDEN  
RW  
0
1: thermal shutdown enabled  
Zero Cross Time-out Enable  
0: Time-out Disabled  
1: Time-out Enabled - volumes updated if no zero cross  
event has occurred before time-out  
0
TOEN  
RW  
0
Table 51. Additional Control Register  
39  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
3.16.6.2. Temp Sensor Control/Status Register  
Register Address  
Bit  
Label  
Type  
Default  
Description  
Temp sensor high trip point status  
0 = Normal Operation  
7
TripHighStat  
R
0
1 = Over Temp Condition  
Temp sensor low trip point status  
0 = Normal Operation  
1 = Over Temp Condition  
6
TripLowStat  
TripSplit[1:0]  
R
0
Temp sensor “split” setting. Determines how many  
degrees above the low trip point the high trip is set:  
0h = 15 Degrees C  
5:4  
RW  
0h  
1h = 30 Degrees C  
R29 (1Dh)  
2h = 45 Degrees C  
3h = 60 Degrees C.  
Temp Sensor  
Control/Status  
(THERMTS)  
Temp sensor “shift” setting. Determines the low trip  
temperature:  
0h = 110 Degrees C  
1h = 125 Degrees C  
2h = 140 Degrees C  
3h = 155 Degrees C.  
3:2  
1:0  
TripShift[1:0]  
Poll[1:0]  
RW  
RW  
2h  
1h  
Temp sensor polling interval  
0h = 4ms  
1h = 8ms  
2h = 16ms  
3h = 32ms  
Table 52. THERMTS Register  
40  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
3.16.6.3. Temp Sensor Status Register  
Register Address  
Bit  
Label  
Type  
Default  
Description  
Force powerdown enable for the speaker thermal  
algorithm:  
0 = Speaker will remain powered up even if the temp  
sensor continues to report an overheat condition at  
minimum volume (mute)  
7
ForcePwd  
RW  
1
1 = Speaker will be powered down if the temp sensor  
reports an overheat at the minimum volume (mute)  
Instant Cut Mode  
0 = Both temp sensor status bits used to smoothly  
adjust the volume.  
1 = Only the high temp sensor status bit will be used to  
set the volume. volume will be set to the full volume or  
mute (IncStep and DecStep are ignored.)  
6
InstCutMode  
IncRatio[1:0]  
RW  
RW  
0
Increment interval ratio. Determines the ratio between  
the speaker volume increment interval and the speaker  
volume decrement interval (increment rate is equal to or  
slower than decrement rate):  
0h = 1:1  
1h = 2:1  
2h = 4:1  
3h = 8:1  
R30 (1Eh)  
Speaker Thermal  
Algorithm Control  
(THERMSPKR1)  
5:4  
0h  
Increment step size for the speaker thermal control  
algorithm (occurs at the temp sensor polling rate X the  
increment interval ratio.)  
0h = 0.75dB  
1h = 1.5dB  
2h = 3.0dB  
3h = 6.0dB  
3:2  
1:0  
IncStep[1:0]  
DecStep[1:0]  
RW  
RW  
0h  
1h  
Decrement step size for the speaker thermal control  
algorithm (occurs at the temp sensor polling rate.)  
0h = 3dB  
1h = 6dB  
2h = 12dB  
3h = 24dB  
Table 53. THERMTSPKR1 Register  
Register Address  
Bit  
Label  
Type  
Default  
Description  
0: Speaker not powered down due to thermal algorithm  
1: Speaker has been powered down because overtemp  
condition was present even though the speaker was  
muted.  
7
ForcePwdStatus  
R
0
R136 (88h)  
Speaker Thermal  
Algorithm Status  
(THERMSPKR2)  
Current speaker volume value. If no overheat is being  
reported by the temperature sensor, this value should  
be equal to the greater of the left or right speaker  
volume setting.  
6:0  
VolStatus[6:0]  
R
08  
Table 54. THERMTSPKR2 Register  
41  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
4. INPUT AUDIO PROCESSING  
Mic Bias  
1Ah  
AGND  
-
MIC Bias  
Vref  
+
08h  
09h  
ADC Power  
Zero Cross Detect  
Management  
ADC Leftt Digital Volume  
06h  
Left input volume  
Left Boost  
1Ah  
08h  
0Ch  
Left Input Select  
0Ch  
-71.25 to +24 dB  
In 0.375 dB steps  
LIN1  
LIN2  
LIN3  
D2S  
-17.25 to +30dB in 0.75dB steps  
+0/+10/+20/+30 dB  
ADC Output  
Configuration  
VOL  
SRC  
HPF  
PGA  
Boost  
mute  
ADCL  
ADCR  
Mono Mix  
18h  
Automatic Level Control  
S
RIN1  
RIN2  
RIN3  
D2S  
VOL  
SRC  
HPF  
PGA  
Boost  
mute  
-17.25 to +30dB in 0.75dB steps  
+0/+10/+20/+30 dB  
-71.25 to +24 dB  
In 0.375 dB steps  
16h HPF enable  
ADC Data Select  
14h  
16h  
Right input volume  
Right Boost  
0Dh  
09h  
Right Input Select  
0Dh  
ADC Polarity  
ADC Right Digital Volume  
07h  
ALC Control 0  
0Eh  
LIN1  
LIN2  
ALC Control 1  
ALC Control 2  
ALC Control 3  
Noise Gate Control  
0Fh  
10h  
11h  
12h  
+
D2S  
D2S  
-
RIN1  
RIN2  
D2S Input Select  
0Bh  
Figure 16. Input Audio Processing  
4.1. Analog Inputs  
The ACS422Mx68 provides multiple high impedance, low capacitance AC-coupled analog inputs with an input signal  
path to the stereo ADCs. Prior to the ADC, there is a multiplexor that allows the system to select which input is in use.  
Following the mux, there is a programmable gain amplifier and also an optional microphone gain boost. The gain of the  
PGA can be controlled either by the system, or by the on-chip level control function. The stereo record path can also  
operate with the two channels mixed to mono either in the analog or digital domains.  
Signal inputs are biased internally to AVSS but AC coupling capacitors are required when connecting microphones  
(due to the 2.5V microphone bias) or when offsets would cause unacceptable “zipper noise” or pops when changing  
PGA or boost gain settings. To avoid audio artifacts, the line inputs are kept biased to analog ground when they are  
muted or the device is placed into standby mode.  
42  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
4.1.1.  
Input Registers  
Register Address  
Bit  
Label  
Type  
Default  
Description  
Left Channel Input Select  
00 = LINPUT1  
01 = LINPUT2  
10 = LINPUT3  
11 = D2S  
7:6  
INSEL_L  
RW  
00  
R12 (0Ch)  
ADC Signal Path  
Control Left  
(INSELL)  
Left Channel Microphone Gain Boost  
00 = Boost off (bypassed)  
01 = 10dB boost  
10 = 20dB boost  
11 = 30dB boost  
5:4  
3:0  
7:6  
MICBST_L  
RSVD  
RW  
R
00  
0000  
00  
Reserved  
Right Channel Input Select  
00 = RINPUT1  
01 = RINPUT2  
10 = RINPUT3  
11 = D2S  
INSEL_R  
RW  
R13 (0Dh)  
ADC Signal Path  
Control Right  
(INSELR)  
Right Channel Microphone Gain Boost  
00 = Boost off (bypassed)  
01 = 10dB boost  
10 = 20dB boost  
11 = 30dB boost  
5:4  
3:0  
MICBST_R  
RSVD  
RW  
R
00  
0000  
Reserved  
Table 55. Input Software Control Register  
4.2. Mono Mixing and Output Configuration  
The stereo ADC can operate as a stereo or mono device, or the two channels can be mixed to mono. Mixing can occur  
either in the input path (analog, before ADC) or after the ADC. MONOMIX determines whether to mix to mono, and  
where.  
For analog mono mix, either the left or right channel ADC can be used for the audio stream. The other ADC may be  
powered off to conserve power. A differential input amplifier may be selected as a mono source to either ADC input.  
This D2S amplifier can select either Input 1 or Input 2 using the DS bit.  
The system also has the flexibility to select the data output. ADCDSEL configures the interface, assigning the source of  
the left and right ADC independently.  
43  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
4.2.1.  
ADC Registers  
4.2.1.1.  
ADC D2S Input Mode Register  
Register Address  
Bit  
Label  
Type  
R
Default  
0h  
Description  
Reserved  
7:1  
RSVD  
DS  
R11 (0Bh)  
ADC Input mode  
(INMODE)  
Differential Input Select  
0: LIN1 - RIN1  
1: LIN2 - RIN2  
0
RW  
0
Table 56. INMODE Register  
4.2.1.2.  
ADC Mono, Filter and Inversion Register  
Register Address  
Bit  
Label  
Type  
Default  
Description  
ADC Right Channel Polarity  
7
ADCPOLR  
RW  
0
0 = normal  
1 = inverted  
ADC Left Channel Polarity  
0 = normal  
1 = inverted  
ADC mono mix  
00: Stereo  
01: Analog Mono Mix (using left ADC)  
10: Analog Mono Mix (using right ADC)  
11: Digital Mono Mix (ADCL/2 + ADCR/2 on both Left  
and Right ADC outputs)  
6
ADCPOLL  
RW  
RW  
0
AMONOMIX  
[1:0]  
R22 (16h)  
ADC Control  
(CNVRTR0)  
5:4  
00  
3
2
ADCMU  
HPOR  
RW  
RW  
1
0
1 = Mute ADC  
High Pass Offset Result  
0 = discard offset when HPF disabled  
1 = store and use last calculated offset when HPF  
disabled  
1
0
ADCHPDR  
ADCHPDL  
RW  
RW  
0
0
ADC High Pass Filter Disable (Right)  
ADC High Pass Filter Disable (Right)  
Table 57. CNVRTR0 Register  
4.2.1.3.  
ADC Data Output Configuration Register  
Register Address  
Bit  
Label  
Type  
Default  
Description  
00: left DAC = left I2S data; right DAC = right I2S data  
01: left DAC = left I2S data; right DAC = left I2S data  
10: left DAC = right I2S data; right DAC = right I2S data  
11: left DAC = right I2S data; right DAC = left I2S data  
7:6  
5:4  
DACDSEL[1:0]  
RW  
00  
R20 (14h)  
Audio Interface  
Control 2  
00: left I2S data = left ADC; right I2S data = right ADC  
01: left I2S data = left ADC; right I2S data = left ADC  
10: left I2S data = right ADC; right I2S data = right ADC  
11: left I2S data = right ADC; right I2S data = left ADC  
ADCDSEL[1:0]  
RW  
00  
(AIC2)  
3
TRI  
RW  
RW  
0
0
Interface Tri-state (See Section 9.2.4)  
2:0  
BLRCM  
Bitclock and LRClock mode (See Section 9.2.4)  
Table 58. AIC2 Register  
44  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
4.3. Microphone Bias  
The MICBIAS output is used to bias electric type microphones. It provides a low noise reference voltage used for an  
external resistor biasing network. The MICB control bit is used to enable the output.  
The MICBIAS can source up to 3mA of current; therefore, the external resistors must be large enough to conform to  
this limit.  
4.3.1.  
Microphone Bias Control Register  
Register Address  
Bit  
Label  
Type  
Default  
Description  
Microphone Bias Enable  
0 = OFF (high impedance output)  
1 = ON  
R26 (1Ah)  
Power Management  
(1)  
1
MICB  
RW  
0
Table 59. Power Management 1 Register - Mic Bias Enable  
Internal Mic  
Voltage  
MICB  
+
-
MICBIAS 2.5V  
Internal  
Resistor  
Internal  
Resistor  
AGND  
Figure 17. Mic Bias  
4.4. Programmable Gain Control  
The Programmable Gain Amplifier (PGA) enables the input signal level to be matched to the ADC input range. Ampli-  
fier gain is adjustable across the range +30dB to –17.25dB (using 0.75dB steps). The PGA can be controlled directly by  
the system software using the Input Volume Control registers (INVOLL and INVOLR), or alternately the Automatic  
Level Control (ALC) function can automatically control the gain. If the ALC function is used, writing to the Input Volume  
Control registers has no effect.  
Left and right input gains are independently adjustable. By controlling the update bit (INVOLU), the left and right gain  
settings can be simultaneously updated. To eliminate zipper noise, LZCEN and RZCEN bits enable a zero-cross detec-  
tor to insure changes only occur when the signal is at zero. A time-out for zero-cross is also provided, using TOEN in  
register R29 (1Dh).  
Software can also mute the inputs in the analog domain.  
45  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
4.4.1.  
Input PGA Software Control Register.  
Register Address  
Bit  
Label  
Type  
Default  
Description  
7
RSVD  
RW  
0
Left Channel Zero Cross Detector  
1 = Change gain on zero cross only  
6
IZCL  
RW  
RW  
0
0 = Change gain immediately  
Note: If INVOLU is set, this setting will take effect  
after the next write to the Right Input Volume register.  
R8 (08h)  
Left Input Volume  
(INVOLL)  
Left Channel Input Volume Control  
111111 = +30dB  
INVOL_L  
[5:0]  
010111 111110 = +29.25dB  
(0dB)  
5:0  
.. 0.75dB steps down to 000000 = -17.25dB  
Note: If INVOLU is set, this setting will take effect  
after the next write to the Right Input Volume register.  
7
6
RSVD  
IZCR  
RW  
RW  
0
0
Right Channel Zero Cross Detector  
1 = Change gain on zero cross only  
0 = Change gain immediately  
R9 (09h)  
Right Input Volume  
(INVOLR)  
Right Channel Input Volume Control  
INVOL_R  
[5:0]  
010111 111111 = +30dB  
(0dB)  
5:0  
0
RW  
RW  
111110 = +29.25dB  
.. 0.75dB steps down to 000000 = -17.25dB  
Zero Cross Time-out Enable  
0: Time-out Disabled  
1: Time-out Enabled - volumes updated if no zero  
cross event has occurred before time-out  
R28 (1Ch)  
Additional Control  
(CTL)  
TOEN  
0
Table 60. INVOL L&R Registers  
4.5. ADC Digital Filter  
To provide the correct sampling frequency on the digital audio outputs, ADC filters perform true 24-bit signal processing  
and convert the raw multi-bit oversampled data from the ADC using the digital filter path illustrated below.  
Figure 18. ADC Filter Data path  
46  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
AUTO  
1/80X  
1/2X  
1/2X  
1/2X  
1
17  
22  
22  
24  
Output Rate =  
8/11.025/12kHz (QX):  
From Analog ADC  
From Analog ADC  
From Analog ADC  
From Analog ADC  
CIC  
7T FIR-C  
11T FIR-B  
57T FIR-A  
To I2S  
64kHz  
88.2kHz  
96kHz  
32kHz  
44.1kHz  
48kHz  
16kHz  
22.05kHz  
24kHz  
8kHz  
11.025kHz  
12kHz  
5.120MHz  
7.056MHz  
7.68MHz  
1/80X  
CIC  
1/2X  
1/2X  
1
17  
22  
24  
Output Rate =  
16/22.05/24kHz (HX):  
11T FIR-B  
57T FIR-A  
To I2S  
To I2S  
64kHz  
88.2kHz  
96kHz  
32kHz  
44.1kHz  
48kHz  
16kHz  
22.05kHz  
24kHz  
5.120MHz  
7.056MHz  
7.68MHz  
1/80X  
CIC  
1/2X  
1/2X  
1
17  
22  
24  
Output Rate =  
32/44.1/48kHz (1X):  
11T FIR-B  
57T FIR-A  
128kHz  
176.4kHz  
192kHz  
64kHz  
88.2kHz  
96kHz  
32kHz  
44.1kHz  
48kHz  
10.240MHz  
14.112MHz  
15.360MHz  
1/80X  
CIC  
1/2X  
1
17  
24  
Output Rate =  
64/88.2/96kHz (2X):  
57T FIR-A  
To I2S  
128kHz  
176.4kHz  
192kHz  
64kHz  
88.2kHz  
96kHz  
10.240MHz  
14.112MHz  
15.360MHz  
Full  
1/80X  
CIC  
1/2X  
1/2X  
1/2X  
1/2X  
1
17  
22  
22  
22  
24  
Output Rate =  
8/11.025/12kHz (QX):  
From Analog ADC  
From Analog ADC  
From Analog ADC  
From Analog ADC  
7T FIR-D  
7T FIR-C  
11T FIR-B  
57T FIR-A  
To I2S  
128kHz  
176.4kHz  
192kHz  
64kHz  
88.2kHz  
96kHz  
32kHz  
44.1kHz  
48kHz  
16kHz  
22.05kHz  
24kHz  
8kHz  
11.025kHz  
12kHz  
10.240MHz  
14.112MHz  
15.360MHz  
1/80X  
CIC  
1/2X  
1/2X  
1/2X  
1
17  
22  
22  
24  
Output Rate =  
16/22.05/24kHz (HX):  
7T FIR-C  
11T FIR-B  
57T FIR-A  
To I2S  
64kHz  
88.2kHz  
96kHz  
128kHz  
176.4kHz  
192kHz  
32kHz  
44.1kHz  
48kHz  
16kHz  
22.05kHz  
24kHz  
10.240MHz  
14.112MHz  
15.360MHz  
1/80X  
CIC  
1/2X  
1/2X  
1
17  
22  
24  
Output Rate =  
32/44.1/48kHz (1X):  
11T FIR-B  
57T FIR-A  
To I2S  
128kHz  
176.4kHz  
192kHz  
64kHz  
88.2kHz  
96kHz  
32kHz  
44.1kHz  
48kHz  
10.240MHz  
14.112MHz  
15.360MHz  
1/80X  
CIC  
1/2X  
1
17  
24  
Output Rate =  
64/88.2/96kHz (2X):  
57T FIR-A  
To I2S  
128kHz  
176.4kHz  
192kHz  
64kHz  
88.2kHz  
96kHz  
10.240MHz  
14.112MHz  
15.360MHz  
Half  
1/80X  
CIC  
1/2X  
1/2X  
1/2X  
1
17  
22  
22  
24  
Output Rate =  
8/11.025/12kHz (QX):  
From Analog ADC  
From Analog ADC  
From Analog ADC  
From Analog ADC  
7T FIR-C  
11T FIR-B  
57T FIR-A  
To I2S  
64kHz  
88.2kHz  
96kHz  
32kHz  
44.1kHz  
48kHz  
16kHz  
22.05kHz  
24kHz  
8kHz  
11.025kHz  
12kHz  
5.120MHz  
7.056MHz  
7.68MHz  
1/80X  
CIC  
1/2X  
1/2X  
1
17  
22  
24  
Output Rate =  
16/22.05/24kHz (HX):  
11T FIR-B  
57T FIR-A  
To I2S  
64kHz  
88.2kHz  
96kHz  
32kHz  
44.1kHz  
48kHz  
16kHz  
22.05kHz  
24kHz  
5.120MHz  
7.056MHz  
7.68MHz  
1/80X  
CIC  
1/2X  
1
17  
24  
Output Rate =  
32/44.1/48kHz (1X):  
57T FIR-A  
To I2S  
64kHz  
88.2kHz  
96kHz  
32kHz  
44.1kHz  
48kHz  
5.120MHz  
7.056MHz  
7.68MHz  
1/80X  
CIC  
1
17  
Output Rate =  
64/88.2/96kHz (2X):  
To I2S  
64kHz  
88.2kHz  
96kHz  
5.120MHz  
7.056MHz  
7.68MHz  
Figure 19. ADC Input processing  
The ADC digital filters contain a software-selectable digital high pass filter. When the high-pass filter is enabled, the dc  
offset is continuously calculated and subtracted from the input signal. The HPOR bit enables the last calculated DC off-  
set value to be stored when the high-pass filter is disabled; this value will then continue to be subtracted from the input  
signal. To provide support for calibration, the stored and subtracted value will not change unless the high-pass filter is  
enabled even if the DC value is changed. The high pass filter may be enabled separately for each of the left and right  
channels.  
The output data format can be programmed by the system. This allows stereo or mono recording streams at both  
inputs. Software can change the polarity of the output signal.  
47  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
4.5.1.  
ADC Signal Path Control Register  
Register Address  
Bit  
Label  
Type  
Default  
Description  
0 = Right polarity not inverted  
1 = Right polarity inverted  
7
ADCPOLR  
RW  
0
0 = Left polarity not inverted  
1 = Left polarity inverted  
6
ADCPOLL  
RW  
0
ADC mono mix  
00: Stereo  
AMONOMIX  
[1:0]  
5:4  
RW  
00  
01: Analog Mono Mix (using left ADC)  
10: Analog Mono Mix (using right ADC)  
11: Digital Mono Mix  
R22 (16h)  
ADC Control  
(CNVRTR0)  
3
2
ADCMU  
HPOR  
RW  
RW  
1
0
1 = Mute ADC  
High Pass Offset Result  
0 = discard offset when HPF disabled  
1 = store and use last calculated offset when HPF  
disabled  
1
0
ADCHPDR  
ADCHPDL  
RW  
RW  
0
0
ADC High Pass Filter Disable (Right)  
ADC High Pass Filter Disable (Right)  
Table 61. CNVRTR0 Register  
4.5.2.  
ADC High Pass Filter Enable modes  
ADCHPDR  
ADCHPDL  
High Pass Mode  
0
0
1
1
0
1
0
1
High-pass filter enabled on left and right channels  
High-pass filter disabled on left channel, enabled on right channel  
High-pass filter enabled on left channel, disabled on right channel  
High-pass filter disabled on left and right channels  
Table 62. ADC HPF Enable  
4.6. Digital ADC Volume Control  
The ADC volume can be controlled digitally, across a gain and attenuation range of -71.25dB to +24dB (0.375dB  
steps). The level of attenuation is specified by an eight-bit code ‘ADCVOL_x’, where ‘x’ is L, or R. The value  
“00000000” indicates mute; other values describe the number of 0.375dB steps above -71.25dB.  
The ADCVOLU bit controls the updating of digital volume control data. When ADCVOLU is written as ‘0’, the ADC digi-  
tal volume is immediately updated with the ADCVOL_L data when the Left ADC Digital Volume register is written.  
When ADCVOLU is set to ‘1’, the ADCVOL_L data is held in an internal holding register until the Right ADC Digital Vol-  
ume Register is written.  
48  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
4.6.1.  
ADC Digital Registers  
Register Address  
Bit  
Label  
Type  
Default  
Description  
Left ADC Digital Volume Control  
0000 0000 = Digital Mute  
R6 (06h)  
Left ADC  
Digital Volume  
0000 0001 = -71.25dB  
0000 0010 = -70.875dB  
... 0.375dB steps up to 1111 1111 = +24dB  
Note: If ADCVOLU is set, this setting will take effect  
after the next write to the Right Input Volume register.  
ADCVOL_L  
[7:0]  
10111111  
(0dB)  
7:0  
RW  
Right ADC Digital Volume Control  
0000 0000 = Digital Mute  
0000 0001 = -71.25dB  
R7 (07h)  
Right ADC  
Digital Volume  
ADCVOL_R  
[7:0]  
10111111  
(0dB)  
7:0  
RW  
0000 0010 = -70.875dB  
... 0.375dB steps up to 1111 1111 = +24dB  
Table 63. L/R ADC Digital Volume Registers  
4.7. Automatic Level Control (ALC)  
The ACS422Mx68 has an automatic level control to achieve recording volume across a range of input signal levels.  
The device uses a digital peak detector to monitor and adjusts the PGA gain to provide a signal level at the ADC input.  
A range of adjustment between –6dB and –28.5dB (relative to ADC full scale) can be selected. The device provides  
programmable attack, hold, and decay times to smooth adjustments. The level control also features a peak limiter to  
prevent clipping when the ADC input exceeds a threshold. Note that if the ALC is enabled, the input volume controls  
are ignored.  
4.7.1.  
ALC Operation  
Figure 20. ALC Operation  
When ALC is enabled, the recording volume target can be programmed between –6dB and –28.5dB  
(relative to ADC full scale). The ALC will attempt to keep the ADC input level to within +/-0.5dB of the  
target level. An upper limit for the PGA gain can also be imposed, using the MAXGAIN control bits.  
49  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
Hold time specifies the delay between detecting a peak level being below target, and the PGA gain  
beginning to ramp up. It is specified as 2n*2.67mS, enabling a range between 0mS and over 40s.;  
ramp-down begins immediately if the signal level is above the target.  
Decay (Gain Ramp-Up) Time is the time that it takes for the PGA to ramp up across 90% of its  
range. The time is 2n*24mS. The time required for the recording level to return to its target value  
therefore depends on the decay time and on the gain adjustment required.  
Attack (Gain Ramp-Down) Time is the time that it takes for the PGA to ramp down across 90% of its  
range. Time is specified as 2n*24mS. The time required for the recording level to return to its target  
value depends on both the attack time and on the gain adjustment required.  
When operating in stereo, the peak detector takes the maximum of left and right channel peak val-  
ues, and both PGAs use the same gain setting, to preserve the stereo image. If the ALC function is  
only enabled on one channel, only one PGA is controlled by the ALC mechanism, and the other  
channel runs independently using the PGA gain set through the control registers.  
If one ADC channel is unused, the peak detector will ignore that channel.  
The ALC function can operate when the two ADC outputs are mixed to mono in the digital domain or  
in the analog domain.  
50  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
4.7.2.  
ALC Registers  
Register Address  
Bit  
7:3  
2
Label  
RSVD  
Type  
R
Default  
Description  
00000 Reserved  
ALC MODE  
RW  
0
0: ALC Mode 1: Limiter mode  
ALC function select  
00 = ALC off (PGA gain set by register)  
01 = Right channel only  
10 = Left channel only  
11 = Stereo (PGA registers unused)  
Note: ensure that LINVOL and RINVOL settings (reg.  
0 and 1) are the same before entering this mode.  
R14 (0Eh)  
ALC Control 0  
ALCSEL  
[1:0]  
00  
(OFF)  
1:0  
RW  
7
RSVD  
R
0
Reserved  
Set Maximum Gain of PGA  
111: +30dB  
MAXGAIN  
[2:0]  
111  
110: +24dB  
6:4  
RW  
(+30dB) ….(-6dB steps)  
001: -6dB  
R15 (0Fh)  
ALC Control 1  
000: -12dB  
ALC target – sets signal level at ADC input  
0000 = -28.5dB fs  
0001 = -27.0dB fs  
(-12dB) … (1.5dB steps)  
1110 = -7.5dB fs  
ALCL  
[3:0]  
1011  
3:0  
7
RW  
RW  
1111 = -6dB fs  
RSVD  
0
Sets the minimum gain of the PGA  
000 = -17.25db  
001 = -11.25  
6:4  
MINGAIN  
RW  
000  
...  
110 = +18.75dB  
R16 (10h)  
111 = +24.75db  
ALC Control 2  
where each value represents a 6dB step.  
ALC hold time before gain is increased.  
0000 = 0ms  
HLD  
[3:0]  
0000  
0001 = 2.67ms  
3:0  
7:4  
3:0  
RW  
RW  
RW  
(0ms) 0010 = 5.33ms  
… (time doubles with every step)  
1111 = 43.691s  
ALC decay (gain ramp-up) time  
0000 = 24ms  
0001 = 48ms  
DCY  
[3:0]  
0011  
(192ms) 0010 = 96ms  
… (time doubles with every step)  
1010 or higher = 24.58s  
R17 (11h)  
ALC Control 3  
ALC attack (gain ramp-down) time  
0000 = 6ms  
0001 = 12ms  
ATK  
[3:0]  
0010  
(24ms) 0010 = 24ms  
… (time doubles with every step)  
1010 or higher = 6.14s  
Table 64. ALC Control Registers  
51  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
4.7.3.  
Peak Limiter  
To prevent clipping, the ALC circuit also includes a limiter function. If the ADC input signal exceeds  
87.5% of full scale (–1.16dB), the PGA gain is ramped down at the maximum attack rate, until the  
signal level falls below 87.5% of full scale. This function is automatically enabled whenever the ALC  
is enabled.  
4.7.4.  
Input Threshold  
To avoid hissing during quiet periods, the ACS422Mx68 has an input threshold noise gate function  
that compares the signal level at the inputs to a noise gate threshold. Below the threshold, the pro-  
grammable gain can be held , or the ADC output can be muted. The threshold can be adjusted in  
increments of 1.5dB.  
The noise gate activates when the signal-level at the input pin is less than the Noise Gate Threshold  
(NGTH) setting.  
The ADC output can be muted. Alternatively, the PGA gain can be held .  
The threshold is adjusted in 1.5dB steps. The noise gate only works in conjunction with the ALC, and  
always operates on the same channel(s) as the ALC.  
4.7.4.1.  
Noise Gate Control Register  
Register Address  
Bit  
Label  
Type  
Default  
Description  
Noise gate threshold (compared to ADC full-scale  
range)  
00000 -76.5dBfs  
00000 00001 -75dBfs  
… 1.5 dB steps  
NGTH  
[4:0]  
7:3  
RW  
11110 -31.5dBfs  
11111 -30dBfs  
R12 (12h)  
Noise Gate Control  
(NGATE)  
Noise gate type  
X0 = PGA gain held  
01 = mute ADC output  
11 = reserved (do not use this setting)  
NGG  
[1:0]  
2:1  
0
RW  
RW  
00  
Noise gate function enable  
1 = enable  
NGAT  
0
0 = disable  
Table 65. NGATE Register  
4.8. Digital Microphone Support  
Line Input 3 may be an analog line (mic) or digital microphone input depending on the part option.  
The digital microphone interface permits connection of a digital microphone(s) to the CODEC via the DMIC_DAT, and  
DMIC_CLK 2-pin interface. DMIC_DAT is an input that carries individual channels of digital microphone data to the  
ADC. In the event that a single microphone is used, the data is ported to both ADC channels. This mode is selected  
using a control bit and the left time slot is copied to the ADC left and right inputs.  
The DMIC_CLK output is synchronous to the internal master (DSP) clock and is adjustable in 4 steps. Each step pro-  
vides a clock that is a multiple of the chosen ADC base rate and modulator rate.The default frequency is 320/3 times  
the ADC base rate for 32KHz, and 80 times the base rate for 44.1KHz and 48KHz base rates.  
52  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
DMIC_CLK  
divisor  
SDM Rate  
DMRate [1:0]  
Base Rate  
DSPCLK  
DMIC_CLK  
32 KHz  
44.1 KHz  
48 KHz  
32 KHz  
44.1 KHz  
48 KHz  
32 KHz  
44.1 KHz  
48 KHz  
32 KHz  
44.1 KHz  
48 KHz  
32 KHz  
44.1 KHz  
48 KHz  
32 KHz  
44.1 KHz  
48 KHz  
32 KHz  
44.1 KHz  
48 KHz  
32 KHz  
44.1 KHz  
48 KHz  
40.960 MHz  
56.448 MHz  
61.440 MHz  
40.960 MHz  
56.448 MHz  
61.440 MHz  
40.960 MHz  
56.448 MHz  
61.440 MHz  
40.960 MHz  
56.448 MHz  
61.440 MHz  
40.960 MHz  
56.448 MHz  
61.440 MHz  
40.960 MHz  
56.448 MHz  
61.440 MHz  
40.960 MHz  
56.448 MHz  
61.440 MHz  
40.960 MHz  
56.448 MHz  
61.440 MHz  
12  
16  
16  
16  
20  
20  
20  
24  
24  
24  
32  
32  
16  
16  
16  
24  
24  
24  
32  
32  
32  
40  
40  
40  
3.413333 MHz  
3.528 MHz  
3.84 MHz  
00  
2.56 Mhz  
01  
10  
11  
00  
01  
10  
11  
2.8224 MHz  
3.072 MHz  
2.048 Mhz  
2.352 MHz  
2.56 MHz  
Full  
1.706667 Mhz  
1.764 MHz  
1.92 MHz  
2.56 MHz  
3.528 MHz  
3.84 MHz  
1.706667 MHz  
2.352 MHz  
2.56 MHz  
Half  
1.28 MHz  
1.764 MHz  
1.92 MHz  
1.024 MHz  
1.4112 MHz  
1.536 MHz  
Table 66. DMIC Clock  
The two DMIC data inputs are shown connected to the ADCs through the same multiplexors as the analog ports.  
Although the internal implementation is different between the analog ports and the digital microphones, the functionality  
is the same. In most cases, the default values for the DMIC clock rate and data sample phase will be appropriate and  
an audio driver will be able to configure and use the digital microphones exactly like an analog microphone.  
If the ADC path is powered down, the DMIC_CLK output will be driven low to place the DMIC element into a low power  
state. (Many digital microphones will enter a low power state if the clock input is held at a DC level or toggled at a slow  
rate.)  
53  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
The codec supports the following digital microphone configurations:  
Digital Mics  
Data Sample  
Notes  
0
N/A  
No Digital Microphones  
When using a microphone that supports multiplexed operation (2-mics  
can share a common data line), configure the microphone for “Left” and  
select mono operation.  
1
2
Single Edge  
Double Edge  
“Left” D-mic data is used for ADC left and right channels.  
External logic required to support sampling on a single Digital Mic pin  
channel on rising edge and second Digital Mic right channel on falling  
edge of DMIC_CLK for those digital microphones that don’t support  
alternative clock edge (multiplexed output) capability.  
Table 67. Valid Digital Mic Configurations  
Off-Chip  
On-Chip  
Digital  
Microphone  
Single Line In  
DMIC_DAT  
Stereo Channels  
Output  
STEREO  
ADC  
Pin  
DMIC_CLK  
Pin  
PCM  
On-Chip  
Multiplexer  
Single Microphone not supporting multiplexed output.  
Valid Data  
Valid Data  
Valid Data  
DMIC_DAT  
Right  
Left  
Channel Channel  
DMIC_CLK  
Single “Left” Microphone, DMIC input set to mono input mode.  
Valid Data  
Valid Data  
Valid Data  
Valid Data  
DMIC_DAT  
Left & Right  
Channel  
DMIC_CLK  
Figure 21. Single Digital Microphone (data is ported to both left and right channels)  
54  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
Off-Chip  
On-Chip  
External  
Multiplexer  
Digital  
On-Chip  
Microphones  
Multiplexer  
DMIC_DAT  
Stereo Channels  
Output  
STEREO  
ADC  
Pin  
PCM  
DMIC_CLK  
Pin  
Valid  
Data R  
Valid  
Data L  
Valid  
Data R  
Valid  
Data L  
Valid  
Data R  
DMIC_DAT  
Right  
Left  
Channel Channel  
DMIC_CLK  
Figure 22. Stereo Digital Microphone Configuration  
4.8.1.  
DMIC Register  
Register Address  
Bit  
Label  
Type  
Default  
Description  
Digital Microphone Enable  
0 = DMIC interface is disabled (DMIC_CLK low,  
DMIC muted)  
7
DMicEn  
RW  
0
1 = DMIC interface is enabled  
6:5  
4
RSVD  
R
00  
0
Reserved  
0 = stereo operation, 1 = mono operation (left  
channel duplicated on right)  
R36 (24h)  
D-Mic Control  
(DMICCTL)  
DMono  
RW  
Selects when the D-Mic data is latched relative to the  
DMIC_CLK.  
00 = Left data rising edge / right data falling edge  
01 = Left data center of high / right data center of low  
10 = Left data falling edge / right data rising edge  
11 = Left data center of low / right data center of high  
3:2  
1:0  
DMPhAdj[1:0]  
DMRate[1:0]  
RW  
RW  
00  
00  
Selects the DMIC clock rate: See table in text  
Table 68. DMICCTL Register  
55  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
5. DIGITAL AUDIO AND CONTROL INTERFACES  
5.1. Data Interface  
For digital audio data, the ACS422Mx68 uses five pins to input and output digital audio data.  
ADCDOUT: ADC data output  
ADCLRCK: ADC data alignment clock  
ADCBCLK: Bit clock, for synchronization  
DACDIN: DAC data input  
DACLRCK: DAC data alignment clock  
DACBCLK: Bit clock, for synchronization  
The clock signals ADCBCLK, ADCLRCK, DACBCLK, and DACLRCK are outputs when the ACS422Mx68 operates as  
a master; they are inputs when it is a slave. Three different data formats are supported:  
Left justified  
Right justified  
I2S  
All of these modes are MSB first.  
5.2. Master and Slave Mode Operation  
The ACS422Mx68 can be used as either a master or slave device, selected by the MS Bit. When operating as a mas-  
ter, the ACS422Mx68 generates ADCBCLK, ADCLRCLK, DACBCLK and DACLRCLK and controls sequencing of the  
data transfer the data pins. In slave mode, the ACS422Mx68 provides data aligned to clocks it receives.  
ADCBCLK  
ADCLRCLK  
DSP  
ADCDOUT  
CODEC  
ENCODER/  
DECODER  
DACBCLK  
DACLRCLK  
DACDIN  
Figure 23. Master mode  
ADCBCLK  
ADCLRCLK  
ADCDOUT  
DACBCLK  
DACLRCLK  
DACDIN  
DSP  
ENCODER/  
DECODER  
CODEC  
Figure 24. Slave mode  
56  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
5.3. Audio Data Formats  
The ACS422Mx68 supports 3 common audio interface formats and programmable clocking that provides broad com-  
patibility with DSPs, Consumer Audio and Video SOCs, FPGAs, handset chipsets, and many other products.  
In all modes, depending on word length, BCLK frequency and sample rate, there may be unused BCLK cycles before  
each LRCLK transition. If the converter word length is smaller than the number of clocks per sample in the frame then  
the DAC will ignore (truncate) the extra bits while the ADC will zero pad the output data. If the converter word length  
chosen is larger than the number of clocks available per sample in the frame, the ADC data will be truncated to fit the  
frame and the DAC data will be zero padded.  
5.4. Left Justified Audio Interface  
In Left Justified mode, the MSB is available on the first rising edge of BCLK following a LRCLK transition. The other bits  
are then transmitted in order. The LRCLK signal is high when left channel data is present and low when right channel  
data is present.  
1/fs  
Left Justified  
Left Channel  
Right Channel  
LRCLK  
BCLK  
1
2
3
n-2 n-1  
n
1
2
3
n-2 n-1  
n
SDI / SDO  
MSB  
LSB  
MSB  
LSB  
Word Length (WL)  
Figure 25. Left Justified Audio Interface (assuming n-bit word length)  
5.5. Right Justified Audio Interface (assuming n-bit word length)  
In Right Justified mode, the LSB is available on the last rising edge of BCLK before a LRCLK transition. All other bits  
are transmitted in order. The LRCLK signal is high when left channel data is present and low when right channel data is  
present.  
1/fs  
Right Justified  
Left Channel  
Right Channel  
LRCLK  
BCLK  
1
2
3
n-2 n-1  
n
1
2
3
n-2 n-1  
n
SDI / SDO  
MSB  
LSB  
MSB  
LSB  
Word Length (WL)  
Figure 26. Right Justified Audio Interface (assuming n-bit word length)  
57  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
2
5.6. I S Format Audio Interface  
In I2S mode, the MSB is available on the second rising edge of BCLK following a LRCLK transition. The other bits up to  
the LSB are then transmitted in order.  
1/fs  
I2S  
Left Channel  
Right Channel  
LRCLK  
BCLK  
1 BCLK  
1 BCLK  
SDI / SDO  
1
2
3
n-2 n-1  
n
1
2
3
n-2 n-1  
n
MSB  
LSB  
MSB  
LSB  
Word Length (WL)  
2
Figure 27. I S Justified Audio Interface (assuming n-bit word length)  
5.7. Data Interface Registers  
5.7.1.  
Audio Data Format Control Register  
Register Address  
Bit  
Label  
Type  
Default  
Description  
7
RSVD  
R
0
Reserved  
BCLK invert bit (for master and slave modes)  
0 = BCLK not inverted  
1 = BCLK inverted  
6
5
4
BCLKINV  
MS  
RW  
RW  
RW  
0
0
0
Master / Slave Mode Control  
1 = Enable Master Mode  
0 = Enable Slave Mode  
2
Right, left and I S modes – LRCLK polarity  
R19 (13h)  
LRP  
1 = invert LRCLK polarity  
0 = normal LRCLK polarity  
Digital Audio Interface  
Format  
(AIC1)  
Audio Data Word Length  
11 = 32 bits  
3:2  
1:0  
WL[1:0]  
RW  
RW  
10  
10  
10 = 24 bits  
01 = 20 bits  
00 = 16 bits  
Audio Data Format Select  
11 = Reserved  
2
FORMAT[1:0]  
10 = I S Format  
01 = Left justified  
00 = Right justified  
Table 69. AIC1 Register  
58  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
5.7.2.  
Audio Interface Output Tri-state  
TRI is used to tri-state the ADCDOUT, ADCLRCK, DACLRCK, ADCBCLK, and DACBCLK pins. In Slave mode (MAS-  
TER=0) only ADCDOUT will be tri-stated since the other pins are configured as inputs. The Tri-stated pins are pulled  
low with an internal pull-down resistor unless that resistor is disabled.  
Register Address  
Bit  
Label  
Type  
Default  
Description  
00: left DAC = left I2S data; right DAC = right I2S data  
01: left DAC = left I2S data; right DAC = left I2S data  
10: left DAC = right I2S data; right DAC = right I2S data  
11: left DAC = right I2S data; right DAC = left I2S data  
7:6  
DACDSEL[1:0]  
RW  
00  
00: left I2S data = left ADC; right I2S data = right ADC  
01: left I2S data = left ADC; right I2S data = left ADC  
10: left I2S data = right ADC; right I2S data = right ADC  
11: left I2S data = right ADC; right I2S data = left ADC  
5:4  
ADCDSEL[1:0]  
RW  
00  
R20 (14h)  
Audio Interface  
Control 2  
Tri-states ADCDOUT, ADCLRCLK, DACLRCLK,  
ADCBCLK, and DACBCLK pins.  
(AIC2)  
0 = ADCDOUT is an output, ADCLRCK, DACLRCLK,  
ADCBCLK, and DACBCLK are inputs (slave mode) or  
outputs (master mode)  
1 = ADCDOUT, ADCLRCK, DACLRCLK, ADCBCLK, and  
DACBCLK are high impedance  
3
TRI  
RW  
RW  
0
2:0  
BLRCM[2:0]  
000  
Bitclock and LRClock mode. See Table Below  
Table 70. AIC2 Register  
5.7.3.  
Audio Interface Bit Clock and LR Clock configuration  
Although the DAC and ADC interfaces implement separate Bit Clock and LR Clock pins, it is also possible to share one  
or both of the clocks.  
the following restrictions must be observed when the BCLK from one path (DAC or ADC) is combined with the LRCLK  
from the other path (ADC or DAC) as described by the Bit Clock and LR Clock Mode Selection table below:  
1. Both the DAC and ADC must be programmed for the same sample rate  
2. Both the DAC and ADC must be programmed for the same number of clocks per frame  
3. When in slave mode, the DAC and ADC data must be aligned relative to the provided BCLK and  
LRCLK (this is guaranteed in master mode)  
4. The DAC and ADC must be powered down when changing the BLRCM mode  
5. If sharing the BCLK from one path (DAC or ADC) and the LRCLK from the other path (ADC or  
DAC), shut down both the DAC and ADC before programming the sample rate and clocks per  
frame for either. (Again, both must match.)  
59  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
5.7.4.  
Bit Clock and LR Clock Mode Selection  
BLRCM  
DAC  
BCLK  
ADC  
BCLK  
DAC  
LRCLK  
ADC  
LRCLK  
MODE1  
MS  
[2:0]  
000  
001  
0
0
Independent  
Independent  
Input for playback path  
Input for playback path  
input for record path  
input for record path  
Input for playback path  
Input for playback path  
input for record path  
input for record path  
Shared BCLK  
(DAC)  
Input for playback and  
record  
0
010  
unused  
Input for playback path  
input for record path  
Shared BCLK  
& LRCLK  
(DAC)  
Input for playback and  
record  
Input for playback and  
record  
0
011  
unused  
unused  
Shared  
BCLK (DAC)  
& LRCLK  
(ADC)  
Input for playback and  
record  
Input for playback and  
record  
0
0
0
100  
101  
110  
unused  
unused  
Shared BCLK  
(ADC)  
Input for playback and  
record  
unused  
unused  
Input for playback path  
input for record path  
unused  
Shared  
BCLK (ADC)  
& LRCLK  
(DAC)  
Input for playback and  
record  
Input for playback and  
record  
Shared BCLK  
& LRCLK  
(ADC)  
Input for playback and  
record  
Input for playback and  
record  
0
1
1
1
1
1
1
1
1
111  
000  
001  
010  
011  
100  
101  
110  
111  
unused  
unused  
Independent  
(off if  
converter off)  
Output for playback  
path (off when DACs  
off)  
Output for playback path  
(off when DACs off)  
Output for record path  
Output for record path  
(off when ADCs off)  
2
3
(Off when ADC off)  
Independent Output for playback path  
(off if all  
converters off)  
Output for record path  
(off when DACs and  
ADCs off)  
Output for playback  
path (off when DACs  
and ADCs off)  
Output for record path  
(off when DACs and  
ADCs off)  
(off when DACs and  
ADCs off)  
Output for playback and  
record (stays on if either  
DAC or ADC on)  
Shared BCLK  
(DAC)  
Output for playback  
path (Off if DAC is off)  
Output for record path  
(off when ADCs off)  
unused (off)  
unused (off)  
unused (off)  
Shared BCLK Output for playback and  
& LRCLK  
(DAC)  
Output for playback  
and record (stays on if  
either DAC or ADC on)  
record (stays on if either  
DAC or ADC on)  
unused (off)  
Shared  
Output for playback and  
Output for playback  
and record (stays on if  
either DAC or ADC on)  
BCLK(DAC)& record (stays on if either  
LRCLK(ADC)  
unused (off)  
DAC or ADC on)  
Output for playback and  
record (stays on if either  
DAC or ADC on)  
Shared BCLK  
(ADC)  
Output for playback  
path (Off if DAC is off)  
Output for record path  
(off when ADCs off)  
unused (off)  
Shared  
BCLK(ADC)&  
LRCLK(DAC)  
Output for playback and  
record (stays on if either and record (stays on if  
Output for playback  
unused (off)  
unused (off)  
unused (off)  
DAC or ADC on)  
either DAC or ADC on)  
Shared BCLK  
&
LRCLK(ADC)  
Output for playback and  
record (stays on if either  
DAC or ADC on)  
Output for playback  
and record (stays on if  
either DAC or ADC on)  
unused (off)  
Table 71. Bit Clock and LR Clock Mode Selection  
1.When sharing both the BCLK and LRCLK between the DAC and ADC interfaces, both the DAC and ADC must be programmed  
for the same rate, the same number of clocks per frame, and data must be aligned the same with respect to LRCLK. Disable  
all converters before changing modes.  
2.DAC (playback path) is off when HPL, HPR, SPKL, and SPKR power states are off.  
60  
V1.2 1/12  
ACS422MX68  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
3.ADC (record path) is off when ADCL, and ADCR power states are off (PGA, D2S, Boost power states are not  
considered.)  
5.7.5.  
ADC Output Pin State  
Record Path  
Power State  
ADC Data Out  
Pull-down (ADOPDD)  
ADC Data Out  
State  
Tri-state (TRI)  
Off  
Off  
On  
NA  
NA  
0
1
Off, pulled-low  
Off, floating  
Active  
0
1
NA  
0
Off, pulled-low  
Off, floating  
1
Table 72. ADC Data Output pin state  
5.7.6.  
Audio Interface Control 3 Register  
Register Address  
Bit  
Label  
Type  
Default  
Description  
7:6  
5
RSVD  
ADOPDD  
R
RW  
0
0
Reserved  
ADCDOUT Pull-Down Disable  
0 = Pull-Down active when tri-stated or the ADC path  
is powered down.  
1 = Pull-Down always disabled  
ADCLRCLK Pull-Down Disable  
4
3
2
1
0
ALRPDD  
ABCPDD  
DDIPDD  
DLRPDD  
DBCPDD  
RW  
RW  
RW  
RW  
RW  
0
0
0
0
0
0 = Pull-Down active when configured as input  
1 = Pull-Down always disabled  
ADCBCLK Pull-Down Disable  
0 = Pull-Down active when configured as input  
1 = Pull-Down always disabled  
R21 (15h)  
Audio Interface  
Control 3  
(AIC3)  
DACDIN Pull-Down Disable  
0 = Pull-Down active  
1 = Pull-Down always disabled  
DACLRCLK Pull-Down Disable  
0 = Pull-Down active when configured as input  
1 = Pull-Down always disabled  
DACBCLK Pull-Down Disable  
0 = Pull-Down active when configured as input  
1 = Pull-Down always disabled  
Table 73. AIC3 Register  
5.8. Bit Clock Mode  
The default master mode bit clock generator automatically produces a bit clock frequency based on the sample rate  
and word length. When enabled by setting the appropriate BCM bits, the bit clock mode (BCM) function overrides the  
default master mode bit clock generator to produce the bit clock frequency shown below: Note that selecting a word  
length of 24-bits in Auto mode generates 64 clocks per frame (64fs)  
61  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
.
Register Address  
Bit  
Label  
Type  
Default  
Description  
BCLK Frequency  
00 = Auto  
01 = 32 x fs  
10 = 40 x fs  
11 = 64 x fs  
R23/R25 (17h/19h  
ADC/DAC Sample  
Rate Control  
ABCM[1:0]  
DBCM[1:0]  
7:6  
RW  
00  
Table 74. Master Mode BCLK Frequency Control Register  
The BCM mode bit clock generator produces 16, 20, or 32 bit cycles per sample.  
LRCLK  
Fs x 64  
Fs x 40  
Fs x 32  
Figure 28. Bit Clock mode  
Note: The clock cycles are evenly distributed throughout the frame (true multiple of LRCLK not a  
gated clock.)  
5.9. Control Interface  
The registers are accessed through a serial control interface using a multi-word protocol comprised of 8-bit words. The  
first 8 bits provide the device address and Read/Write flag. In a write cycle, the next 8 bits provide the register address;  
all subsequent words contain the data, corresponding to the 8 bits in each control register.The control interface oper-  
ates using a standard 2-wire interface, as a slave device only.  
5.9.1.  
Register Write Cycle  
The controller indicates the start of data transfer with a high to low transition on SDA while SCL  
remains high, signalling that a device address and data will follow. All devices on the 2-wire bus  
respond to the start condition and shift in the next eight bits on SDIN (7-bit address + Read/Write bit,  
MSB first). If the device address received matches the address of the ACS422Mx68 and the R/W bit  
is ‘0’, indicating a write, then the ACS422Mx68 responds by pulling SDA low on the next clock pulse  
(ACK); otherwise, the ACS422Mx68 returns to the idle condition to wait for a new start condition and  
valid address.  
Once the ACS422Mx68 has acknowledged a correct device address, the controller sends the  
ACS422Mx68 register address. The ACS422Mx68 acknowledges the register address by pulling  
SDA low for one clock pulse (ACK). The controller then sends a byte of data (B7 to B0), and the  
ACS422Mx68 acknowledges again by pulling SDA low.  
When there is a low to high transition on SDA while SCL is high, the transfer is complete. After  
receiving a complete address and data sequence the ACS422Mx68 returns to the idle state. If a start  
or stop condition is detected out of sequence, the device returns to the idle condition.  
62  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
SCL  
Device Address DA[6:0]  
nW  
Register Address RA[7:0]  
Register Data RD[7:0]  
SDA  
ACK  
ACK  
ACK  
START  
STOP  
Figure 29. 2-Wire Serial Control Interface  
The ACS422Mx68 has device address D2.  
Multiple Write Cycle  
5.9.2.  
The controller may write more than one register within a single write cycle. To write additional regis-  
ters, the controller will not generate a stop or start (repeated start) command after receiving the  
acknowledge for the second byte of information (register address and data). Instead the controller  
will continue to send bytes of data. After each byte of data is received, the register address is incre-  
mented.  
SCL  
SDA  
Device Address DA[6:0]  
nW  
Register Address RA[7:0]  
Register Data RD[7:0]  
Register Data RD[7:0]  
@RA[7:0]+1  
Register Data RD[7:0]  
@RA[7:0]+n  
ACK  
ACK  
ACK  
ACK  
ACK  
START  
STOP  
Register Write 1  
Register Write 2 ...  
Register Write n  
Figure 30. Multiple Write Cycle  
5.9.3.  
Register Read Cycle  
The controller indicates the start of data transfer with a high to low transition on SDA while SCL  
remains high, signalling that a device address and data will follow. If the device address received  
matches the address of the ACS422Mx68 and the R/W bit is ‘0’, indicating a write, then the  
ACS422Mx68 responds by pulling SDA low on the next clock pulse (ACK); otherwise, the  
ACS422Mx68 returns to the idle condition to wait for a new start condition and valid address.  
Once the ACS422Mx68 has acknowledged a correct address, the controller sends a restart com-  
mand (high to low transition on SDA while SCL remains high). The controller then re-sends the  
devices address with the R/W bit set to ‘1’ to indicate a read cycle.The ACS422Mx68 acknowledges  
by pulling SDA low for one clock pulse. The controller then receives a byte of register data (B7 to  
B0).  
For a single byte transfer, the host controller will not acknowledge (high on data line) the data byte  
and generate a low to high transition on SDA while SCL is high, completing the transfer. If a start or  
stop condition is detected out of sequence, the device returns to the idle condition.  
63  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
SCL  
nW  
R
nACK  
Device Address DA[6:0]  
Register Address RA[7:0]  
Device Address DA[6:0]  
Register Data RD[7:0]  
SDA  
ACK  
ACK  
ACK  
START  
STOP  
RESTART  
Figure 31. Read Cycle  
The ACS422Mx68 has device address D2.  
5.9.4.  
Multiple Read Cycle  
The controller may read more than one register within a single read cycle. To read additional registers, the controller  
will not generate a stop or start (repeated start) command after sending the acknowledge for the byte of data. Instead  
the controller will continue to provide clocks and acknowledge after each byte of received data. The codec will automat-  
ically increment the internal register address after each register has had its data successfully read (ACK from host) but  
will not increment the register address if the data is not received correctly by the host (nACK from host) or if the bus  
cycle is terminated unexpectedly (however the EQ/Filter address will be incremented even if the register address is not  
incremented when performing EQ/Filter RAM reads). By automatically incrementing the internal register address after  
each byte is read, all the internal registers of the codec may be read in a single read cycle.  
S
DA[6:0]  
nW ACK  
RA[7:0]  
ACK Sr  
DA[6:0]  
R
ACK  
RD[7:0]  
ACK  
RD[7:0]  
ACK  
RD[7:0]  
nACK  
P
Set Register Address  
Read Register @ RA[7:0]  
Read Register  
@ RA[7:0] + 1  
Read Register  
@ RA[7:0] + n  
Figure 32. Multiple Read Cycle  
5.9.5.  
Device Addressing and Identification  
The ACS422Mx68 has a default slave address of D2. However, it is sometimes necessary to use a  
different address. The ACS422Mx68 has a device address register for this purpose. The part itself  
has an 8-bit Identification register and an 8-bit revision register that provide device specific informa-  
tion for software. In addition, an 8-bit programmable subsystem ID register can allow firmware to  
provide a descriptive code to higher level software such as an operating system driver or application  
software.  
5.9.5.1.  
Device Registers  
Device Address Register  
Register Address  
Bit  
Label  
Type  
Default  
Description  
7:1  
ADDR[7:1]  
RW  
1101001 7-bit slave address  
R124 (7Ch)  
DEVADR  
Not used - this bit is the R/nW bit in the 2-wire  
protocol.  
0
RSVD  
R
0
Table 75. DEVADRl Register  
64  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
Device Identification Registers  
Register Address  
Bit  
Label  
Type  
Default  
Description  
R126 (7Eh)  
DEVIDH  
16-bit device identification number. The  
ACS422Mx68 has programmable clocking that will  
drive different device IDs for each configuration.  
Contact IDT.  
7:0  
DID[15:8]  
R
xxh  
R125 (7Dh)  
DEVIDL  
7:0  
DID[7:0]  
R
xxh  
Table 76. DEVID H&L Registers  
Device Revision Register  
Register Address  
Bit  
7:4  
3:0  
Label  
Type  
R
Default  
xh  
Description  
MAJ[3:0]  
MNR[3:0]  
4-bit major revision number. Contact IDT.  
4-bit minor revision number. Contact IDT.  
R127 (7Fh)  
REVID  
R
xh  
Table 77. REVID Register  
Note: Contact IDT for device and revision information.  
5.9.5.2.  
Register Reset  
The ACS422Mx68 registers may be reset to their default values using the reset register. Writing a  
special, non-zero value to this register causes all other registers to assume their default states.  
Device status bits will not necessarily change their values depending on the state of the device.  
Register Address  
Bit  
Label  
Type  
Default  
Description  
Reset register  
Writing a value of 85h will cause registers to assume  
their default values. Reading this register returns 00h  
R128 (80h)  
RESET  
7:0  
Reset[7:0]  
RW  
00h  
Table 78. RESET Register  
65  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
6. AUDIO CLOCK GENERATION  
6.1. Internal Clock Generation (ACLK)  
In addition to providing external clocks, the PLL block will also provide two clocks for the audio por-  
tion of the device. They are  
122.880 MHz (2560 x 48 KHz)  
112.896 (2560 x 44.1 KHz)  
It is important that the crystal oscillator and needed PLLs remain on until all audio functions, includ-  
ing jack detection, are disabled.  
6.2. ACLK Clocking and Sample Rates  
The ACS422Mx68 utilizes internal PLLs to generate the audio master clock (ACLK) at 56.448MHz (22.5792MHz *2.5)  
and 61.44MHz (24.576 *2.5). It then generates audio sample rates directly from the master clock. The ADC and DAC  
do not need to run at the same sample rate unless they are sharing BCLK and LRCLK pins. Disable the appropriate  
converters before programming the mode or rate, especially if the DAC and ADC are programmed to share the same  
BCLK and LRCLK. After changing rate, a delay of up to 5mS may be needed for the part to properly lock PLLs, flush fil-  
ters, etc.  
Register Address  
Bit  
Label  
Type  
Default  
Description  
ADC Bit Clock Mode (for data interface ADCBCLK  
generation in master mode)  
00 = Auto  
01 = 32x fs  
7:6  
ABCM[1:0]  
RW  
00  
10 = 40x fs  
11 = 64x fs  
5
RSVD  
R
0
Reserved  
R23 (17h)  
ADC Sample Rate  
Control  
ADC Base Rate  
00 = 32KHz  
01 = 44.1KHz  
10 = 48KHz  
4:3  
ABR[1:0]  
RW  
10  
(ADCSR)  
11 = Reserved  
ADC Base Rate Multiplier  
000 = 0.25x  
001 = 0.50x  
010 = 1x  
2:0  
ABM[2:0]  
RW  
010  
011 = 2x  
100-111 = Reserved  
Table 79. ADCSR Register  
66  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
Register Address  
Bit  
Label  
Type  
Default  
Description  
DAC Bit Clock Mode (for data interface DACBCLK  
generation in master mode)  
00 = Auto  
01 = 32x fs  
7:6  
DBCM[1:0]  
RW  
00  
10 = 40x fs  
11 = 64x fs  
5
RSVD  
R
0
Reserved  
R25 (19h)  
DAC Sample Rate  
Control  
DAC Base Rate  
00 = 32KHz  
01 = 44.1KHz  
10 = 48KHz  
4:3  
DBR[1:0]  
RW  
10  
(DACSR)  
11 = Reserved  
DAC Base Rate Multiplier  
000 = 0.25x  
001 = 0.50x  
010 = 1x  
2:0  
DBM[2:0]  
RW  
010  
011 = 2x  
100-111 = Reserved  
Table 80. DACSR Register  
The clocking of the ACS422Mx68 is controlled using the BR[1:0] and BM[2:0] control bits. Each  
value of BR[1:0] + BM[2:0]selects one combination of ACLK division ratios and hence one combina-  
tion of sample rates  
The BR[1:0] and BM[2:0] bits must be set to configure the appropriate ADC and DAC sample rates in  
both master and slave mode.  
BR [1:0]  
BM [2:0]  
000  
ACLK  
SAMPLE RATE  
8 kHz (MCLK/5120)  
16 kHz (MCLK/2560)  
32 kHz (MCLK/1280)  
Reserved  
001  
00  
010  
40.96 MHz  
011  
100-111  
000  
Reserved  
11.025 kHz (MCLK/5120)  
22.05 kHz (MCLK/2560)  
44.1 kHz (MCLK/1280)  
88.2 kHz (MCLK/640)  
Reserved  
001  
01  
010  
56.448MHz  
011  
100-111  
000  
12 kHz (MCLK/5120)  
24 kHz (MCLK/2560)  
48 kHz (MCLK/1280)  
96 kHz (MCLK/640)  
Reserved  
001  
10  
11  
010  
61.44 MHz  
-
011  
100-111  
000-111  
Reserved  
Table 81. ACLK and Sample Rates  
6.3. DAC/ADC Modulator Rate Control  
The power consumption and audio quality may be adjusted by changing the converter modulator rate. By default the  
67  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
DAC and ADC Sigma-Delta modulators run at a high rate for the best audio quality. The modulator rates for the con-  
verters may be forced to run at half their nominal rate to conserve power. A third option allows the modulator rate to  
automatically drop to half rate when low sampling rates are chosen (1/2 or 1/4 the base rate.) The DACs and ADCs are  
independently controlled.  
Register Address  
Bit  
Label  
Type  
Default  
Description  
ADC Modulator Rate  
00 = Reserved  
01 = Half  
7:6  
ASDM[1:0]  
RW  
10h  
10 = Full  
11 = Auto  
DAC Modulator Rate  
00 = Reserved  
01 = Half  
R31 (1Fh)  
CONFIG0  
5:4  
DSDM[1:0]  
RW  
10h  
10 = Full  
11 = Auto  
3:2  
1
RSVD  
R
0h  
0
Reserved for future use.  
1 = bypass DC removal filter  
(WARNING DC content can damage speakers)  
dc_bypass  
RW  
1 = supply detect forced on. 0 = supply detect on  
when needed (COP, UVLO enabled).  
0
sd_force_on  
R
0
Table 82. CONFIG0 Register  
DSDM[1:0]  
ASDM[1:0]  
BM [2:0]  
Modulator Rate  
00  
NA  
Reserved  
000 (1/4x)  
001 (1/2x)  
010 (1x)  
011 (2x)  
01  
10  
11  
Half  
000 (1/4x)  
001 (1/2x)  
010 (1x)  
011 (2x)  
Full  
000 (1/4x)  
001 (1/2x)  
010 (1x)  
011 (2x)  
Auto (Half)  
Auto (Half)  
Auto (Full)  
Auto (Full)  
Table 83. SDM Rates  
68  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
7. CHARACTERISTICS  
7.1. Electrical Specifications  
7.1.1.  
Absolute Maximum Ratings  
Stresses above the ratings listed below can cause permanent damage to the ACS422Mx68. These  
ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Func-  
tional operation of the device at these or any other conditions above those indicated in the opera-  
tional sections of the specifications is not implied. Exposure to absolute maximum rating conditions  
for extended periods can affect product reliability. Electrical parameters are guaranteed only over the  
recommended operating temperature range.  
Item  
Maximum Rating  
Vss - 0.3V TO Vdd + 0.3V  
Voltage on any pin relative to Ground  
Operating Temperature  
o
o
0 C TO 70 C  
o
o
Storage Temperature  
-55 C TO +125 C  
o
Soldering Temperature  
260 C  
MICBias Output Current  
3mA  
Amplifier Maximum Supply Voltage  
Audio Maximum Supply Voltage  
Digital I/O Maximum Supply Voltage  
Digital Core Maximum Supply Voltage  
6 Volts = PVDD  
3 Volts = AVDD/CPVDD  
3.6 Volts = DVDD_IO  
2.0 Volts = DVDD  
Table 84. Electrical Specification: Maximum Ratings  
7.1.2.  
Recommended Operating Conditions  
Parameter  
Power Supplies  
Min.  
1.4  
1.4  
1.7  
3.0  
0
Typ.  
Max.  
2.0  
3.5  
2.0  
5.25  
70  
Units  
DVDD_Core  
DVDD_IO  
AVDD/CPVDD  
PVDD  
V
V
o
Ambient Operating Temperature  
Case Temperature  
Analog - 5 V  
25  
C
o
T
90  
C
case  
Table 85. Recommended Operating Conditions  
ESD: The ACS422Mx68 is an ESD (electrostatic discharge) sensitive device. The human body and test equipment can  
accumulate and discharge electrostatic charges up to 4000 Volts without detection. Even though the ACS422Mx68  
implements internal ESD protection circuitry, proper ESD precautions should be followed to avoid damaging the functionality  
or performance.  
69  
V1.2 1/12  
ACS422MX68  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
7.2. Device Characteristics  
(Tambient = 25 ºC, DVDD_CORE=DVDD_IO=AVDD=1.9V, PVDD=3.6V, 997Hz signal, fs=48KHz, Input Gain=0dB, 24-bit audio)  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Analog Inputs (LIN1, LIN2, LIN3, RIN1, RIN2, RIN3  
)
0.5  
-6  
Vrms  
dBV  
L/R  
L/R  
Single Ended  
IN1,2,3  
Full Scale Input Voltage  
V
FSIV  
0.5  
-6  
Vrms  
dBV  
Differential Mic  
IN1,2,3  
Input Impedance  
50  
10  
Kohm  
pF  
Input Capacitance  
Analog Input Boost Amplifier  
Programmable Gain Min  
Programmable Gain Max  
Programmable Gain Step Size  
Analog Input PGA  
0.0  
dB  
dB  
dB  
30.0  
10.0  
Programmable Gain Min  
Programmable Gain Max  
Programmable Gain Step Size  
-17.25  
30.0  
dB  
dB  
dB  
Guaranteed Monotonic  
Guaranteed Monotonic  
0.75  
Digital Volume Control Amplifier  
Programmable Gain Min  
Programmable Gain Max  
Programmable Gain Step Size  
Mute Attenuation  
-97  
30.0  
0.5  
dB  
dB  
dB  
dB  
-999  
Analog Inputs (LIN1/RIN1, LIN2/RIN2 Differential) to ADC  
Signal To Noise Ratio  
SNR  
A-weighted 20-20KHz  
90  
dB  
Total Harmonic Distortion +  
Noise  
-80  
0.01  
dB  
%
THD+N  
-1dBFS input  
Analog Inputs (LIN1, LIN2, LIN3, RIN1, RIN2, RIN3 Single Ended) to ADC  
Signal To Noise Ratio  
SNR  
A-weighted 20-20KHz  
90  
dB  
Total Harmonic Distortion +  
Noise  
-80  
0.01  
dB  
%
THD+N  
-1dBFS input  
ADC channel Separation  
Channel Matching  
997Hz full scale signal  
997Hz signal  
70  
dB  
%
2
DAC to Line-Out (HPL, HPR with 10K / 50pF load)  
1
Signal to Noise Ratio  
SNR  
A-weighted  
102  
-84  
dB  
dB  
Total Harmonic Distortion  
THD+N  
997Hz full scale signal  
997Hz full scale signal  
2
+Noise  
Channel Separation  
Mute attenuation  
70  
dB  
dB  
-999  
Headphone Outputs (HPL, HPR)  
RL = 10Kohm  
1.0  
Vrms  
Vrms  
Full Scale Output Level  
V
P
FSOV  
R = 16ohm  
0.75  
L
997Hz full scale signal,  
Output Power  
35  
mW (ave)  
dB  
O
R = 16ohm  
L
Signal to Noise Ratio  
SNR  
A-weighted, R = 16ohm  
102  
L
Table 86. Device Characteristics  
70  
V1.2 1/12  
ACS422MX68  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
Parameter  
Symbol  
THD+N  
Test Conditions  
Min  
Typ  
-76  
-78  
Max  
Unit  
dB  
R = 16ohms, -3dBFS  
Total Harmonic Distortion  
+Noise  
L
R = 32ohms, -3dBFS  
dB  
L
Speaker Outputs (L+, L-, R+, R- with 8ohms bridge-tied load)  
PVDD=5V  
PVDD=3.6V  
3.0  
2.1  
Full Scale Output Level  
V
P
Vrms  
FSOV  
997Hz full scale signal, output  
power mode disabled  
PVDD=5V, 8ohm  
1
0.5  
W(ave)  
Output Power  
O
PVDD=3.6V, 8ohm  
PVDD = 5V, 4 ohm  
DIDD = 3.6V, 4 ohm  
2
1
W(ave)  
dB  
Signal to Noise Ratio  
SNR  
A-weighted  
90  
Total Harmonic Distortion +  
Noise  
THD+N  
5V/8ohms/0.5W  
0.05  
%
Speaker Supply Leakage  
Current  
I
1
uA  
%
PVDD  
PVDD=3.6V RL=8,P = 0.5W  
87  
87  
83  
83  
O
PVDD=5V RL=8,P = 1W  
O
Efficiency  
h
PVDD=3.6V RL=4,P = 1W  
O
PVDD=5V RL=4,P = 2W  
O
Analog Voltage Reference Levels  
-AVDD  
+100mV  
Charge Pump Output  
V-  
-5%  
-
+5%  
V
Microphone Bias  
Bias Voltage  
V
2.5  
-
V
MICBIAS  
BIAS current Source  
3
mA  
dB  
dB  
3.3V<PVDD<5.25V  
3.0V<PVDD<3.3V  
80  
40  
Power Supply Rejection Ratio PSRR  
MICBIAS  
Digital Input/Output  
ADC/DAC BCLK input rate  
Fmax  
30  
MHz  
clocks/  
frame  
I2S BCLK/LRCLK ratio  
32  
1022  
0.7x  
DVDD_  
IO  
Input High Level  
Input LOW Level  
V
V
V
IH  
0.3x  
DVDD_IO  
V
IL  
Output High Level  
Output LOW Level  
Input Capacitance  
Input Leakage  
V
V
I
I
=-1mA  
OH  
0.9x DVDD_IO  
0.1xDVDD_IO  
V
V
OH  
=1mA  
OL  
OL  
5
pF  
uA  
-0.9  
0.9  
ESD / Latchup  
IEC1000-4-2  
1
2
4
Level  
Class  
Class  
JESD22-A114-B  
JESD22-C101  
Table 86. Device Characteristics  
1.Ratio of Full Scale signal to idle channel noise output is measured “A weighted” over a 20 Hz to a 20 kHz bandwidth.  
(AES17-1991 Idle Channel Noise or EIAJ CP-307 Signal-to-noise Ratio).  
2.THD+N ratio as defined in AES17 and outlined in AES6id,non-weighted, swept over 20 Hz to 20 kHz bandwidth.  
71  
V1.2 1/12  
ACS422MX68  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
7.3. Typical Power Consumption  
DVDD_IO  
DVDD_CORE  
(V)  
IDVDD_I IDVDD_CO  
IAVDD  
(mA)  
IPVDD  
(mA)  
PTOTAL  
(mW)  
AVDD PVDD  
Mode  
Notes  
O
RE  
(V)  
(V)  
(mA)  
(mA)  
Playback to  
Headphone  
only  
Full scale 1Vrms/10Kohm, does not  
include PLL/clock buffer section.  
fs=48kHz, stereo.  
1.9  
3.6  
1.9  
1.9  
1.9  
1.9  
11  
60  
<1  
8
0
0
2
2
2
2
8
8
9
6
40  
Playback to  
Headphone  
only  
Full scale 800mVrms/16ohm; does  
not include PLL/clock buffer section.  
fs=48kHz, stereo.  
1.9  
1.9  
1.9  
3.6  
3.6  
3.6  
133  
Playback to  
Speaker  
only  
Full scale 500mW/8ohms; includes  
1206 load but not PLL/clock buffer section.  
fs=48kHz, stereo.  
329  
0
Full scale 500mVrms; does not  
include PLL/clock buffer section.  
fs=48kHz, stereo.  
Record only  
28  
Table 87. Typical Power Consumption  
7.4. Low Power Mode Power Consumption  
DVDD_IO  
DVDD_CORE  
(V)  
IDVDD_I IDVDD_CO  
IAVDD  
(mA)  
IPVDD  
(mA)  
PTOTAL  
(mW)  
AVDD PVDD  
Mode  
Notes  
O
RE  
(V)  
(V)  
(mA)  
(mA)  
Playback to  
Headphone  
only  
Full scale 1Vrms/10Kohm, does not  
include PLL/clock buffer section.  
fs=48kHz, stereo.  
1.9  
3.6  
1.9  
1.9  
1.9  
1.9  
1.9  
7
49  
<1  
3
<1  
<1  
336  
0
2
2
7
7
7
5
4
29  
Playback to  
Headphone  
only  
Full scale 707mVrms/16ohm/1%;  
does not include PLL/clock buffer  
section. fs=48kHz, stereo.  
1.9  
1.9  
1.9  
1.9  
3.6  
3.6  
3.6  
3.6  
110  
Playback to  
Speaker  
only  
500mW/8ohms; includes load but not  
1228 PLL/clock buffer section. fs=48kHz,  
stereo.  
2
Full scale 500mVrms; does not  
include PLL/clock buffer section.  
fs=48kHz, stereo.  
Record only  
Record only  
1
17  
12  
Full scale 500mVrms; does not  
include PLL/clock buffer section.  
fs=8kHz, stereo.  
3
0
<1  
Table 88. Low power mode power consumption  
Low Power Settings  
1) DAC/ADC modulators set to half rate  
2) Constant Output Power function disabled  
3) All unused functions disabled (for example, Input PGA, Input mux, and ADC disabled for playback  
tests)  
4) Register 0x73=0x06  
5) Register 0x75=0x02  
6) PLL block power consumption not included  
72  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
8. REGISTER MAP  
Register  
(D15:9)  
Name  
Remarks  
Bit[7]  
Bit[6]  
Bit[5]  
Bit[4]  
Bit[3]  
Bit[2]  
Bit[1]  
Bit[0]  
Default  
R0 (00h)  
R1 (01h)  
HPVOLL  
HPVOLR  
SPKVOLL  
SPKVOLR  
DACVOLL  
DACVOLR  
ADCVOLL  
ADCVOLR  
INVOLL  
INVOLR  
VUCTL  
Left HP volume  
Right HP volume  
SPKR Left volume  
SPKR Right volume  
Left DAC volume  
Right DAC volume  
Left ADC volume  
Right ADC volume  
Left Input volume  
Right Input volume  
Volume Update Control  
ADC input mode  
ADCL signal path  
ADCR signal path  
ALC0  
HPVOL_L[6:0]  
HPVOL_R[6:0]  
SPKVOL_L[6:0]  
SPKVOL_R[6:0]  
77h  
77h  
6Fh  
6Fh  
FFh  
FFh  
BFh  
BFh  
17h  
17h  
C0h  
00h  
00h  
00h  
00h  
7Bh  
00h  
32h  
00h  
0Ah  
00h  
00h  
08h  
12h  
08h  
12h  
00h  
00h  
00h  
09h  
R2 (02h)  
R3 (03h)  
R4 (04h)  
DACVOL_L[7:0]  
R5 (05h)  
DACVOL_R[7:0]  
ADCVOL_L[7:0]  
ADCVOL_R[7:0]  
R6 (06h)  
R7 (07h)  
R8 (08h)  
IZCL  
IZCR  
INVOL_L  
INVOL_R  
ADCVOLU DACVOLU  
R9 (09h)  
R10 (0Ah)  
R11 (0Bh)  
R12 (0Ch)  
R13 (0Dh)  
R14 (0Eh)  
R15 (0Fh)  
R16 (10h)  
R17 (11h)  
R18 (12h)  
R19 (13h)  
R20 (14h)  
R21 (15h)  
R22 (16h)  
R23 (17h)  
R24 (18h)  
R25 (19h)  
R26 (1Ah)  
R27 (1Bh)  
R28 (1Ch)  
R29 (1Dh)  
ADCFade  
DACFade  
INVOLU  
SPKVOLU  
HPVOLU  
DS  
INMODE  
INSELL  
INSELR  
ALC0  
INSEL_L[1:0]  
INSEL_R[1:0]  
MICBST_L[1:0]  
MICBST_R[1:0]  
ALC MODE  
ALCL[3:0]  
ALCSEL[1:0]  
ALC1  
ALC1  
MAXGAIN[2:0]  
MINGAIN[2:0]  
DCY[3:0]  
ALC2  
ALC2  
HLD[3:0]  
ATK[3:0]  
NGG[1:0]  
ALC3  
ALC3  
NGATE  
AIC1  
Noise Gate  
NGTH[4:0]  
MS  
NGAT  
FORMAT[1:0]  
BLRCM[2:0]  
Audio Interface 1  
Audio Interface 2  
Audio Interface 3  
ADC Control  
BCLKINV  
DACDSEL[1:0]  
LRP  
WL[1:0]  
AIC2  
ADCDSEL[1:0]  
TRI  
AIC3  
ADOPDD  
ALRPDD  
ABCPDD  
ADCMU  
DDIPDD  
HPOR  
DLRPDD  
ADCHPDR  
ABM[2:0]  
DBCPDD  
CNVRTR0  
ADCSR  
CNVRTR1  
DACSR  
PWRM1  
PWRM2  
CTL  
ADCPOLR  
ABCM[1:0]  
DACPOLR DACPOLL  
DBCM[1:0]  
ADCPOLL  
AMONOMIX[1:0]  
ADCHPDL  
ADC Sample rate  
DAC Control  
ABR[1:0]  
DACMU  
DBR[1:0]  
DMONOMIX[1:0]  
DEEMPH  
ADCR  
DAC Sample rate  
Pwr Mgmt (1)  
DBM[2:0]  
MICB  
BSTL  
BSTR  
HPL  
PGAL  
PGAR  
SPKL  
ADCL  
SPKR  
DIGENB  
VREF  
Pwr Mgmt (2)  
D2S  
HPR  
Additional control  
Temp Sensor Control  
HPSWEN  
HPSWPOL  
EQ2SW1  
EQ2SW0  
EQ1SW1  
EQ1SW0  
TSDEN  
TOEN  
THERMTS  
TripHighStat TripLowStat  
TripSplit[1:0]  
IncRatio[1:0]  
TripShift[1:0]  
IncStep[1:0]  
Poll[1:0]  
Speaker Thermal Algorithm  
Control  
InstCutMod  
R30 (1Eh)  
THERMSPKR1  
ForcePwd  
e
DecStep[1:0]  
81h  
R31 (1Fh)  
R32 (20h)  
R33 (21h)  
R34 (22h)  
CONFIG0  
CONFIG1  
GAINCTL  
COP1  
CONFIG0  
CONFIG1  
ASDM1  
EQ2_EN  
ASDM0  
DSDM1  
EQ2_BE1  
DSDM0  
dc_bypass sd_force_on  
A0h  
00h  
24h  
08h  
EQ2_BE2  
EQ2_BE0  
EQ1_EN  
EQ1_BE2  
EQ1_BE1  
EQ1_BE0  
Gain Control  
zerodet_flag  
COPAtten  
zerodetlen1 zerodetlen0  
HDeltaEn  
auto_mute  
Constant Output Power1  
COPGain  
COPTarget[4:0]  
HDCOMP  
MODE  
R35 (23h)  
COP2  
Constant Output Power2  
AvgLength[3:0]  
MonRate[1:0]  
02h  
R36 (24h)  
R37 (25h)  
R38 (26h)  
R39 (27h)  
R40 (28h)  
R41 (29h)  
R42(2Ah)  
R43 (2Bh)  
R44 (2Ch)  
R45 (2Dh)  
R46 (2Eh)  
R47 (2Fh)  
R48 (30h)  
DMICCTL  
CLECTL  
MUGAIN  
COMPTH  
CMPRAT  
CATKTCL  
CATKTCH  
CRELTCL  
CRELTCH  
LIMTH  
D-Mic Control  
CMPLMTCTL  
DMicEn  
DMono  
Lvl_Mode  
CLEMUG4  
DMPhAdj1  
WindowSel  
CLEMUG3  
COMPTH3  
CMPRAT3  
CATKTC3  
CATKTC11  
CRELTC3  
CRELTC11  
LIMTH3  
DMPhAdj0  
Exp_En  
DMRate1  
Limit_En  
DMRate0  
Comp_En  
CLEMUG0  
COMPTH0  
CMPRAT0  
CATKTC0  
CATKTC8  
CRELTC0  
CRELTC8  
LIMTH0  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
CLEMakeUpGain  
CLEMUG2  
COMPTH2  
CMPRAT2  
CATKTC2  
CATKTC10  
CRELTC2  
CRELTC10  
LIMTH2  
CLEMUG1  
COMPTH1  
CMPRAT1  
CATKTC1  
CATKTC9  
CRELTC1  
CRELTC9  
LIMTH1  
Compressor Threshold  
Compressor Ratio  
COMPTH7  
COMPTH6  
COMPTH5  
COMPTH4  
CMPRAT4  
CATKTC4  
CATKTC12  
CRELTC4  
CRELTC12  
LIMTH4  
Comp Attack time const Low  
Comp Attack time const High  
Comp release time const Low  
Comp release time const High  
Limiter Threshold  
CATKTC7  
CATKTC15  
CRELTC7  
CRELTC15  
LIMTH7  
CATKTC6  
CATKTC14  
CRELTC6  
CRELTC14  
LIMTH6  
CATKTC5  
CATKTC13  
CRELTC5  
CRELTC13  
LIMTH5  
LIMTGT  
Limiter Target  
LIMTGT7  
LATKTC7  
LATKTC15  
LIMTG6  
LIMTGT5  
LATKTC5  
LATKTC13  
LIMTGT4  
LATKTC4  
LATKTC12  
LIMTGT3  
LATKTC3  
LATKTC11  
LIMTGT2  
LATKTC2  
LATKTC10  
LIMTGT1  
LATKTC1  
LATKTC9  
LIMTGT0  
LATKTC0  
LATKTC8  
LATKTCL  
LATKTCH  
Limiter Attack time constant Low  
Limiter Attack time constant High  
LATKTC6  
LATKTC14  
Limiter Release time constant  
Low  
R49 (31h)  
LRELTCL  
LRELTC7  
LRELTC6  
LRELTC5  
LRELTC4  
LRELTC3  
LRELTC2  
LRELTC1  
LRELTC0  
00h  
Limiter Release time constant  
High  
R50 (32h)  
R51 (33h)  
LRELTCH  
EXPTH  
LRELTC15  
EXPTH7  
LRELTC14  
EXPTH6  
LRELTC13  
EXPTH5  
LRELTC12  
EXPTH4  
LRELTC11  
EXPTH3  
LRELTC10  
EXPTH2  
LRELTC9  
EXPTH1  
LRELTC8  
EXPTH0  
00h  
00h  
Expander Threshold  
Table 89. Register Map  
73  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
Register  
(D15:9)  
Name  
Remarks  
Bit[7]  
Bit[6]  
Bit[5]  
Bit[4]  
Bit[3]  
Bit[2]  
Bit[1]  
Bit[0]  
Default  
R52 (34h)  
R53 (35h)  
EXPRAT  
Expander Ratio  
EXPRAT2  
XATKTC2  
EXPRAT1  
XATKTC1  
EXPRAT0  
XATKTC0  
00h  
00h  
Expander Attack time constant  
Low  
XATKTCL  
XATKTC7  
XATKTC15  
XRELTC7  
XRELTC15  
XATKTC6  
XATKTC14  
XRELTC6  
XRELTC14  
XATKTC5  
XATKTC13  
XRELTC5  
XRELTC13  
XATKTC4  
XATKTC12  
XRELTC4  
XATKTC3  
XATKTC11  
XRELTC3  
Expander Attack time constant  
High  
R54 (36h)  
R55 (37h)  
R56 (38h)  
XATKTCH  
XRELTCL  
XRELTCH  
XATKTC10  
XRELTC2  
XATKTC9  
XRELTC1  
XATKTC8  
XRELTC0  
00h  
00h  
00h  
Expander Release time constant  
Low  
Expander Release time constant  
High  
XRELTC12  
3DEN  
XRELTC11  
TEEN  
XRELTC10  
TNLFBYP  
XRELTC9  
BEEN  
XRELTC8  
BNLFBYP  
R57 (39h)  
R58 (3Ah)  
R59 (3Bh)  
R60 (3Ch)  
R61 (3Dh)  
R62 (3Eh)  
R63 (3Fh)  
R64 (40h)  
R65 (41h)  
R66-123  
FXCTL  
DACCRWRL  
DACCRWRM  
DACCRWRH  
DACCRRDL  
DACCRRDM  
DACCRRDH  
DACCRADDR  
DCOFSEL  
RSVD  
Effects Control  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
05h  
NA  
DACCRAM_WRITE_LO  
DACCRAM_WRITE_MID  
DACCRAM_WRITE_HI  
DACCRAM_READ_LO  
DACCRRAM_READ_MID  
DACCRRAM_READ_HI  
DACCRAM_ADDR  
DACCRWD[7:0]  
DACCRWD[15:8]  
DACCRWD[23:16]  
DACCRRD[7:0]  
DACCRRD[15:8]  
DACCRRD[23:16]  
DACCRADD[7:0]  
DC_COEF_SEL  
dc_coef_sel[2:0]  
RSVD  
R124(7Ch)  
R125(7Dh)  
R126(7Eh)  
R127(7Fh)  
R128(80h)  
DEVADR  
I2C Device Address  
Device IDLow  
Device ID High  
Device Revision  
Reset  
ADDR7  
DID7  
ADDR6  
DID6  
ADDR5  
DID5  
ADDR4  
DID4  
ADDR3  
DID3  
ADDR2  
DID2  
ADDR1  
DID1  
ADDR0  
DID0  
D2h  
1
DEVIDL  
xxh  
1
DEVIDH  
DID15  
MAJ3  
DID14  
MAJ2  
DID13  
MAJ1  
DID12  
MAJ0  
DID11  
MNR3  
DID10  
MNR2  
DID9  
DID8  
xxh  
2
REVID  
MNR1  
MNR0  
xxh  
RESET  
Writing 0x85 to this register resets all registers to their default state  
RSVD  
00h  
NA  
R129-R135  
(81h - 87h)  
Reserved  
THERMSPKR2  
Reserved  
Speaker Thermal Algorithm  
Status  
ForcePwd  
Status  
R136(88h)  
VolStatus[6:0]  
RSVD  
08h  
NA  
R137-R255  
(88h-FFh)  
Table 89. Register Map  
1. Device ID is dependent upon clock programming.  
2. For device revision information, please contact IDT.  
Note:  
Registers not described in this map should be considered “reserved”.  
Numerous portions of the register map are compatible with popular codecs from other vendors.  
74  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
9. PIN INFORMATION  
9.1. ACS422MA68 Pin Diagram  
Vref  
AVSS  
AVDD  
01  
03  
05  
07  
09  
11  
13  
15  
17  
51  
49  
47  
45  
43  
41  
39  
37  
35  
PVDD  
AVSS  
AVDD  
02  
04  
06  
08  
10  
12  
14  
16  
50  
48  
46  
44  
42  
40  
38  
36  
PVDD  
SPKR +  
SPKR -  
PVSS  
AFILT2  
AFILT1  
PVSS  
PVSS  
NC  
PVSS  
NC  
RIN3  
ACS422MA68  
(Top View)  
LIN3  
DVDD_CORE  
DVSS  
PVDD  
TEST  
DVDDIO  
PVDD  
DACBCLK  
DACLRCLK  
DACDIN  
ADCBCLK  
ADCLRCLK  
VDD_PLL2  
VSS_XTAL  
VDD_XTAL  
NC  
Figure 33. ACS422MA68 Pinout  
75  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
9.2. ACS422MD68 Pin Diagram  
Vref  
AVSS  
AVDD  
01  
03  
05  
07  
09  
11  
13  
15  
17  
51  
49  
47  
45  
43  
41  
39  
37  
35  
PVDD  
AVSS  
AVDD  
02  
04  
06  
08  
10  
12  
14  
16  
50  
48  
46  
44  
42  
40  
38  
36  
PVDD  
SPKR +  
SPKR -  
PVSS  
AFILT2  
AFILT1  
DMIC_DAT  
DMIC_CLK  
PVSS  
PVSS  
NC  
PVSS  
NC  
ACS422MD68  
(Top View)  
DVDD_CORE  
DVSS  
PVDD  
TEST  
DVDDIO  
PVDD  
DACBCLK  
DACLRCLK  
DACDIN  
ADCBCLK  
ADCLRCLK  
VDD_PLL2  
VSS_XTAL  
VDD_XTAL  
NC  
Figure 34. ACS422MD68 Pinout  
76  
V1.2 1/12  
ACS422MX68  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
9.3. Pin Tables  
9.3.1.  
Power Pins  
Internal Pull-up  
Pull-down  
Pin Name  
Pin Function  
I/O  
Pin location  
PVDD  
PVSS  
BTL supply  
BTL supply  
I(Power)  
I(Power)  
I(Power)  
I(Power)  
I(Power)  
I(Power)  
I(Power)  
I(Power)  
I/O(Power)  
I/O(Power)  
O(Power)  
I(Power)  
I(Power)  
I(Power)  
I(Power)  
I(Power)  
I(Power)  
I(Power)  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
40, 41, 50,51  
44, 45, 46, 47  
DVDD_Core  
DVDDIO  
DVSS  
DSP and other core logic+clocks  
10  
12  
2
2
Interface (I S, I C, GPIO)  
Digital return  
11  
AVDD  
Analog core supply  
Analog return  
4, 5, 56  
2, 3, 57  
64  
AVSS  
CPVDD  
CAP+  
Charge pump supply  
Flying cap  
63  
CAP-  
Flying cap  
60, 61  
58, 59  
62  
V-  
Negative Analog supply (Bypass cap)  
Charge pump group  
PLL supply  
CPGND  
VDD_PLL1  
VDD_PLL3  
VDD_PLL2  
VDD_XTAL  
VSS_PLL  
VSS_XTAL  
21  
PLL supply  
31  
PLL supply  
38  
Oscillator supply  
PLL return  
36  
32  
Oscillator return  
37  
Table 90. Power Pins  
Total Pins: 30  
9.3.2.  
Reference Pins  
Internal Pull-up  
Pull-down  
Pin Name  
Pin Function  
I/O  
Pin location  
MICBIAS  
AFILT1  
AFILT2  
Vref  
2.5V 1.5 mA microphone bias  
ADC input filter cap  
O(Analog)  
I(Analog)  
I(Analog)  
I(Analog)  
None  
None  
None  
None  
53  
7
ADC input filter cap  
6
VREF reference pin (bypass)  
1
Table 91. Reference Pins  
Total Pins: 4  
77  
V1.2 1/12  
ACS422MX68  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
9.3.3.  
Analog Input Pins  
Internal Pull-up  
Pull-down  
Pin Name  
Pin Function  
I/O  
Pin location  
LIN1  
RIN1  
LIN2  
RIN2  
Left Input #1  
Right Input #1  
Left Input #2  
Right Input #2  
I(Analog)  
I(Analog)  
I(Analog)  
I(Analog)  
None  
None  
None  
None  
66  
65  
68  
67  
LIN3  
DMIC_CLK  
Left Input #3 for ACS422A00  
Digital Mic Clock for ACS422D00  
I(Analog)  
I(Analog)  
None  
None  
9
8
RIN3  
DMIC_DAT  
Right Input #3 for ACS422A00  
Digital Mic Data for ACS422D00  
Table 92. Analog Input Pins  
Total Pins: 6  
9.3.4.  
Analog Output Pins  
Internal Pull-up  
Pull-down  
Pin Name  
Pin Function  
I/O  
Pin location  
HP_L  
HP_R  
Headphone output  
Headphone output  
O(Analog)  
O(Analog)  
O(Analog)  
O(Analog)  
None  
None  
None  
None  
54  
55  
43  
42  
Class D R+  
Class D R-  
BTL Right positive output  
BTL Right negative output  
Table 93. Analog Output Pins  
Total Pins: 4  
9.3.5.  
Data and Control Pins  
Internal Pull-up  
Pull-down  
Pin  
location  
Pin Name  
Pin Function  
I/O  
2
ADCBCLK  
ADCLRCLK  
ADCDOUT  
DACBCLK  
DACLRCLK  
DACDIN  
ADC I S shift clock  
I/O(Digital)  
I/O(Digital)  
O(Digital)  
I/O(Digital)  
I/O(Digital)  
I(Digital)  
Pull-Down  
Pull-Down  
Pull-Down  
Pull-Down  
Pull-Down  
Pull-Down  
Pull-Up  
16  
17  
18  
13  
14  
15  
19  
20  
52  
39  
2
ADC I S framing clock  
2
ADC I S output data  
2
DAC I S shift clock  
2
DAC I S framing clock  
2
DAC I S input data  
2
I2C_SCL  
I2C_SDA  
HP_DET  
SCL I C shift clock  
I(Digital)  
2
SDA I C shift data  
I(Digital)  
Pull-Up  
Headphone jack detection  
Reserved test pin  
I(Digital)  
Pull-Up  
TEST  
I(Analog)  
None  
Table 94. Data and Control Pins  
Total Pins: 10  
78  
V1.2 1/12  
ACS422MX68  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
9.3.6.  
PLL Pins and No Connects  
Internal Pull-up  
Pull-down  
Pin Name  
Pin Function  
Crystal input  
No Connects  
I/O  
Pin location  
XTAL_IN  
NC  
I(XTAL)  
None  
34  
22-30, 33,  
35, 42-43  
Table 95. PLL and NC Pins  
Total Pins: 14  
79  
V1.2 1/12  
ACS422MX68  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
10.PACKAGE INFORMATION  
10.1. Package Drawing  
Note: To create a thermal pad size follow “D2” and “E2” value. Ignore “P” and “k”  
Figure 35. Package Outline  
10.2. Pb Free Process- Package Classification Reflow Temperatures  
3
3
3
Package Thickness  
<1.6mm  
Volume mm <350  
Volume mm 350 - 2000  
Volume mm >2000  
o
o
o
260 + 0 C*  
260 + 0 C*  
260 + 0 C*  
o
o
o
1.6mm - 2.5mm  
> or = 2.5mm  
260 + 0 C*  
250 + 0 C*  
245 + 0 C*  
o
o
o
250 + 0 C*  
245 + 0 C*  
245 + 0 C*  
*Tolerance: The device manufacturer/supplier shall assure process compatibility up to and including the stated classification  
temperature (this means Peak reflow temperature +0 oC. For example 260 oC+0 oC) at the rated MSL level.  
Table 96. Reflow Temperatures  
Note: IDT’s package thicknesses are <2.5mm and <350 mm3, so 260 applies in every case.  
80  
V1.2 1/12  
ACS422MX68  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
11. APPLICATION INFORMATION  
For application information, please see reference designs and application notes available on  
www.idt.com.  
12.ORDERING INFORMATION  
ACS422MA68TAGyyX  
ACS422MD68TAGyyX  
TLA package, Analog Microphone  
TLA package, Digital Microphone  
yy = silicon revision, contact IDT for current part number.  
13.DISCLAIMER  
While the information presented herein has been checked for both accuracy and reliability, manufac-  
turer assumes no responsibility for either its use or for the infringement of any patents or other rights  
of third parties, which would result from its use. No other circuits, patents, or licenses are implied.  
This product is intended for use in normal commercial applications. Any other applications, such as  
those requiring extended temperature range, high reliability, or other extraordinary environmental  
requirements, are not recommended without additional processing by manufacturer. Manufacturer  
reserves the right to change any circuitry or specifications without notice. Manufacturer does not  
authorize or warrant any product for use in life support devices or critical medical instruments.  
81  
V1.2 1/12  
©2011 INTEGRATED DEVICE TECHNOLOGY, INC.  
ACS422MX68  
ACS422Mx68  
LOW-POWER, HIGH-FIDELITY, INTEGRATED CODEC  
14.DOCUMENT REVISION HISTORY  
Revision  
Date  
Description of Change  
0.5  
June 2011  
initial release  
Removed Preliminary and Confidential status from datasheet. Updated TAG/TLA package diagram.  
Removed applications section, see reference design and application notes on www.idt.com, updates  
to the electrical characteristics. Compressor/limiter configuration section separated. Updated audio  
output references to include 2W at 4ohms. Added DDX(TM) name and logo.  
1.0  
July 2011  
Changed 40mW to 35mW on headphone output and changed Power Supply Rejection Ration  
maximum from 5.5 V to 5.25 V.  
1.1  
1.2  
November 2011  
January 2012  
Corrected the I/O type for the Analog output pins. Corrected the pin location in Analog output pin  
table for the BTL outputs.  
6024 Silver Creek Valley Road  
San Jose, California 95138  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications de-  
scribed herein at any time and at IDT’s sole discretion. All information in this document, including descriptions of product features and perfor-  
mance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined  
in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained  
herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT’s  
products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This  
document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be  
reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own  
risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, in-  
cluding protected names, logos and designs, are the property of IDT or their respective third party owners.  

相关型号:

IDT

ACS422MX00

PORTABLE CONSUMER CODEC
IDT

ACS422MX68

PORTABLE CONSUMER CODEC
IDT

ACS422X67

PORTABLE CONSUMER CODEC
IDT

ACS521D

Radiation Hardened 8-Bit Magnitude Comparator
INTERSIL

ACS521D/SAMPLE

AC SERIES, 8-BIT IDENTITY COMPARATOR, INVERTED OUTPUT, CDIP20, SIDE BRAZED, CERAMIC, DIP-20
RENESAS

ACS521D/SAMPLE-02

AC SERIES, 8-BIT IDENTITY COMPARATOR, INVERTED OUTPUT, CDIP20, SIDE BRAZED, CERAMIC, DIP-20
RENESAS

ACS521DMSH

ACS521DMSH
RENESAS

ACS521DMSR

ACS521DMSR
RENESAS

ACS521HMSR

Radiation Hardened 8-Bit Magnitude Comparator
INTERSIL

ACS521HMSR-02

Identity Comparator, AC Series, 8-Bit, Inverted Output, CMOS
RENESAS