8V97053LNLGI8 [IDT]

Low Power Wideband Fractional RF Synthesizer / PLL;
8V97053LNLGI8
型号: 8V97053LNLGI8
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Low Power Wideband Fractional RF Synthesizer / PLL

文件: 总68页 (文件大小:1094K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Power Wideband Fractional  
8V97053L  
Datasheet  
RF Synthesizer / PLL  
General Description  
Features  
The 8V97053L is a high performance Wideband RF Synthesizer /  
PLL optimized for use as the local oscillator (LO) in Multi-Carrier,  
Multi-mode FDD & TDD Base Station radio card. It is offered in a  
compact 5x5, 32-VFQFN package.  
• Dual Differential Outputs  
• Output frequency range: 34.375MHz to 4400MHz (continuous  
range)  
• RF Output Divide by 1, 2, 4, 8, 16, 32, 64  
The 8V97053L Wideband RF Synthesizer / PLL offers a default  
Fractional Mode with the option to use it with an Integer mode. It  
requires an external loop filter.  
• Open Drain Outputs (see Output Distribution Section)  
• Fractional-N synthesizer (also supports Integer-N mode)  
• 16-bit integer and 12-bit fractional  
(16-bit fractional when using the extended registers)  
The 8V97053L with integrated Voltage Controlled Oscillator (VCO)  
supports output frequencies from 34.375MHz to 4400MHz and  
maintains superior phase noise and spurious performance.  
• 3- or 4-wire SPI interface (compatible with 3.3V and 1.8V)  
• Single 3.3V supply  
RF_OUT[A:B] output drivers have independently programmable  
output power ranging from –4dBm to +7dBm. The RF_OUT outputs  
can be muted. The mute function is accessible via a SPI command  
or mute pin.  
• Logic compatibility: 1.8V  
• Integrated high performance low dropout regulators (LDOs) for  
excellent power supply noise rejection  
The operation of the 8V97053L is controlled by writing to registers  
through a 3-wire SPI interface. The 8V97053L also has an additional  
option that allows users to read back values from registers by  
configuring the MUX_OUT pin as a SDO for the SPI interface. The  
SPI interface is compatible with 1.8V logic and tolerant to 3.3V.  
• Programmable output power level: -4dBm to +5dBm  
(up to +7 when using the extended registers)  
• Mute Function  
• Ultra low PN for 1.65GHz LO: -142.21dBc/Hz @ 1MHz Offset,  
(typical)  
In multi-service base stations, very low noise oscillators are required  
to generate a large variety of frequencies to the mixers while  
maintaining excellent phase noise performance and low power. The  
8V97053L offers a large tuning range capable of providing multi-band  
local oscillator (LO) frequency synthesis in multi-mode base stations,  
thus limiting the use of multiple narrow band RF Synthesizers and  
reducing the BOM complexity and cost. The device can operate over  
-40°C to +85°C industrial temperature range.  
• Lock Detect Indicators  
• Input Reference frequency: 5MHz to 310MHz  
• 32-Lead, 5x5 VFQFN package  
• Automatic VCO band selection (Autocal feature)  
• -40°C to +85°C ambient operating temperature  
• Lead-free (RoHS 6) packaging  
• Supports case temperature 105°C operations  
Applications  
• Wireless Infrastructure  
Test Equipment  
• CATV Equipment  
• Military and Aerospace  
• Wireless LAN  
• Clock Generation  
©2016 Integrated Device Technology, Inc.  
1
August 18, 2016  
8V97053L Datasheet  
Table of Contents  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
8V97053L Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Pin Description and Characteristic Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Table 1. Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Table 2. Pin Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Table 3. Supply Pins and Associated Current Return Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Principles of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Synthesizer Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Reference Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Reference Doubler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Table 4A. Lock Detect Precision (LDP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Feedback Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Figure 1. RF Feedback N Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Table 4B. Fractional Spurs Due to the Quantization Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Phase and Frequency Detector (PFD) and Charge Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Figure 2. Simplified PFD Circuit using D-type Flip-flop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
PFD Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
External Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Phase Detector Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Charge Pump High-Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Integrated Low Noise VCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Output Distribution Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Figure 3. Output Clock Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Figure 4. Output Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Output Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Figure 5. Broadband Matching Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Figure 6. Optimal Matching Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Band Selection Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Phase Adjust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Phase Resync . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Figure 7. 12-bit Counter for Fast Lock and Phase Resync . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Fast Lock Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Figure 8. Example of Fast Lock Mode Loop Filter Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
RF Output Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
MUX_OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Table 4C. MUX_OUT Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Power-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Default Power-Up Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Program Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Table 4D. Control Bits Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
©2016 Integrated Device Technology, Inc.  
2
August 18, 2016  
8V97053L Datasheet  
Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 9. SPI Write Cycle Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 10. SPI Read Cycle Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 4E. SPI Read / Write Cycle Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3- or 4-Wire SPI Interface Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 4F. SPI Mode Serial Word Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 5A. Register 0 Bit Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 5B. Register 0: 16-Bit Feedback Divider Integer Value (INT). Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 5C. Register 0: 12-Bit Feedback Divider Fractional Value (FRAC). Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 5D. Register 0: 3-Bit Control Bits. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 6A. Register 1 Bit Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 6B. Register 1: 1-Bit BAND_SEL_DISABLE. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 6C. Register 1: 12-Bit Phase Value (PHASE). Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 6D. Register 1: 12-Bit Modulus Value (MOD). Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 6E. Register 1: 3-Bit Control Bits. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 7A. Register 2 Bit Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 7B. Register 2: 2-Bit NOISE MODE. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 7C. Register 2: 3-Bit MUX_OUT. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 7D. Register 2: 1-Bit REF DOUBLER. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 7E. Register 2: 1-Bit REF DIV2. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 7F. Register 2: 10-Bit R COUNTER (R). Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 7G. Register 2: 1-Bit DOUBLE BUFFER. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 7H. Register 2: 4-Bit Charge Pump Setting (ICP SETTING). Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 7I. Register 2: 1-Bit Lock Detect Function (LDF). Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 7J. Register 2: 1-Bit Lock Detect Precision. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 7K. Register 2: 1-Bit Phase Detector Polarity. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 7L. Register 2: 1-Bit Power Down. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 7M. Register 2: 1-Bit Charge Pump High-Impedance. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 7N. Register 2: 3-Bit Control Bits. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 8A. Register 3 Bit Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 8B. Register 3: 1-Bit Band Select Clock Mode. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 8C. Register 3: 2-Bit Clock Divider Mode. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 8D. Register 3: 12-Bit Clock Divider Value (CLKDIV). Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 8E. Register 3: 3-Bit Control Bits. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Register 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 9A. Register 4 Bit Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 9B. Register 4: 1-Bit Feedback Select. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 9C. Register 4: 3-Bit RF Output Divider (÷ MO) Select. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 9D. Register 4: 8-Bit Band Select Clock Counter. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 9E. Register 4: 1-Bit VCO Power Down. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 9F. Register 4: 1-Bit Mute Till Lock Detect. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 9G. Register 4: 1-Bit RF_OUTB Select. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
©2016 Integrated Device Technology, Inc.  
3
August 18, 2016  
8V97053L Datasheet  
Table 9H. Register 4: 1-Bit RF_OUTB Enable. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Table 9I. Register 4: 2-Bit RF_OUTB Output Power. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Table 9I. Register 4: 1-Bit RF_OUTA Enable. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Table 9J. Register 4: 2-Bit RF_OUTA Output Power. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Table 9K. Register 4: 3-Bit Control Bits. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Register 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Table 10A. Register 5 Bit Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Table 10B. Register 5: 2-Bit LD (Lock Detect) Pin Mode. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Table 10C. Register 5: 3-Bit Control Bits. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Extended Registers, (Registers 6 and 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Register 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Table 11A. Register 6 Bit Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Table 11B. Register 6: 1-Bit Digital Lock Detect. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Table 11C. Register 6: 1-Bit Band Select Status (Read Only). Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Table 11D. Register 6: 2-Bit Extra Lock Detect Precision. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Table 11E. Register 6: 1-Bit Extra Bit of RF_OUTB Power. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Table 11F. Register 6: 1-Bit Extra Bit of RF_OUTA Power. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Table 11G. Register 6: 2-Bit Sigma Delta Modulator Order Configuration. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Table 11H. Register 6: 2-Bit Dither Gain Configuration. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Table 11I. Register 6: 1-Bit Dither Noise Shaping Configuration. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Table 11J. Register 6: 1-Bit Sigma Delta Modulator Type Configuration. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Table 11K. Register 6: 2-Bit VCO Band Selection Accuracy Configuration. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Table 11N. Register 6: 4-Bit Extra Most Significant Bits of Band Select Divider. Function Description . . . . . . . . . . . . . . . . . . . . . . . . .39  
Table 11O. Register 6: 3-Bit Control Bits. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Register 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Table 12A. Register 7 Bit Allocation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Table 12B. Register 7: 1-Bit Loss of Digital Lock. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Table 12C. Register 7: 1-Bit Loss of Analog Lock. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Table 12D. Register 7: 1-Bit SPI Error. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Table 12E. Register 7: 3-Bit Revision ID. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Table 12F. Register 7: 4-Bit Device ID. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Table 12G. Register 7: 1-Bit Resolution Select. Function Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Table 12J. Register 7: 4-Bit Extra Bits of MOD Value. Function Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Table 12K. Register 7: 4-Bit Extra Bits of FRAC Value. Function Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Table 12L. Register 7: 1-Bit SCLKE. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Table 12M. Register 7: 1-Bit READBACK_ADDR. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Table 12N. Register 7: 1-Bit SPI_R_WN. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Table 12O. Register 7: 3-Bit Control Bits. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Table 13. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Table 14A. Power Supply DC Characteristics, VDDX = VDDA = 3.3V ± 5%, TA = -40°C to +85°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Table 14B. Output Divider Incremental Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Table 14C. Typical Current by Power Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Table 14D. LVCMOS DC Characteristics, VDDX = VDDA = 3.3V ± 5%, TA = -40°C to 85°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
©2016 Integrated Device Technology, Inc.  
4
August 18, 2016  
8V97053L Datasheet  
AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Table 15A. AC Characteristics, VDDX = VDDA = 3.3V ± 5%, TA = -40°C to 85°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Table 15B. RF_OUT[A:B] Phase Noise and Jitter Characteristics, VDDX = VDDA = 3.3V ± 5%, TA = -40°C to 85°C . . . . . . . . . . . . . . . . .48  
Phase Noise (Closed-Loop) at 156.25MHz (3.3V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
Phase Noise (Closed-Loop) at 1.76GHz (3.3V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
Phase Noise (Closed-Loop) at 2.05GHz (3.3V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Phase Noise (Open-Loop) at 745MHz (3.3V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Phase Noise Performance (Open-Loop) at 1.1GHz (3.3V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
Phase Noise Performance (Open-Loop) at 1.65GHz (3.3V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
Phase Noise Performance (Open-Loop) at 2.3GHz (3.3V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Phase Noise Performance (Open-Loop) at 3.8GHz (3.3V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Phase Noise Performance (Open-Loop) at 4.4GHz (3.3V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Loop Filter Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
2nd Order Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Figure 11. Typical 2nd Order Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
3rd Order Loop Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 12. Typical 3rd Order Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Recommendations for Unused Input and Output Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Schematic Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Figure 13A. An 8V97053L General Application Schematic Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Figure 13B. Schematic Example for Driving Single Ended Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Power Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Table 16. Thermal Resistance JA for 32 Lead VFQFN, Forced Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Example 2: VCO Frequency Range = 2590MHz to 3624MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
Reliability Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Table 17A. JA vs. Air Flow Table for a 32 lead VFQFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Table 17B. JB vs. Air Flow Table for a 32 lead VFQFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
32-Lead VFQFN Package Outline and Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
32-Lead VFQFN Package Outline and Package Dimensions (Continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Table 18. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Table 19. Pin 1 Orientation in Tape and Reel Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
©2016 Integrated Device Technology, Inc.  
5
August 18, 2016  
8V97053L Datasheet  
8V97053L Block Diagram  
SDO  
MUX_OUT  
Lock  
Detect  
LD  
CP_OUT  
Charge  
Pump  
PFD  
÷R  
÷2  
x2  
REF_IN  
External  
Loop  
Filter  
VTUNE  
16/1`2 or 16/  
16 bit Frac-N  
Divider  
FLSW  
SCLK  
SPI  
SDI  
nCS  
RF_OUTA  
÷M0  
nRF_OUTA  
Logic & Registers  
CE  
RF_OUTB  
nRF_OUTB  
MUTE  
NOTE: 16-Bit Integer / 16-Bit Fractional feedback divider is available when using extended register.  
Pin Assignment  
31 30 29 28 27 26 25  
32  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
SCLK  
SDI  
VREF  
VCOM  
nCS  
RCP  
CE  
GNDA_VCO  
VTUNE  
8V97053L  
FLSW  
V_CP  
VBIAS  
CP_OUT  
GND_CP  
GNDA_VCO  
VVCO  
9
10 11 12 13 14 15 16  
32-Lead 5mm x 5mm VFQFN  
©2016 Integrated Device Technology, Inc.  
6
August 18, 2016  
8V97053L Datasheet  
Pin Description and Characteristic Tables  
1
Table 1. Pin Description  
Pin  
1
Name  
SCLK  
SDI  
Type  
LVCMOS Input  
Description  
Pulldown Serial Clock Input. High-Impedance CMOS input. 1.8V logic. 3.3V tolerant.  
2
LVCMOS Input  
LVCMOS Input  
Pullup  
Serial Data Input. High-Impedance CMOS input. 1.8V logic. 3.3V tolerant.  
Load Enable. High-Impedance CMOS input. 1.8V logic. 3.3V tolerant. Active  
Low.  
3
4
5
6
nCS  
CE  
Pulldown  
Chip Enable. On logic Low, powers down the device and puts the charge  
pump into High-Impedance mode. Powers up the device on logic High.  
LVCMOS Input  
Analog  
Pullup  
Fast Lock Switch. A connection should be made from the loop filter to this pin  
when using the fast lock mode.  
FLSW  
V_CP  
Charge Pump Power Supply. V_CP must have the same value as VDDA. Place  
decoupling capacitors to the ground plane as close to this pin as possible.  
Power  
Charge Pump Output. When enabled, this output provides ±ICP to the  
external loop filter. The output of the loop filter is connected to VTUNE to drive  
the internal VCO.  
7
CP_OUT  
Analog  
8
9
GND_CP  
GNDA  
Ground  
Ground  
Charge Pump Power Supply Ground.  
Analog Power Supply Ground.  
Analog Supply. This pin ranges from 3.3V ± 5%. VDDA must have the same  
value as VDDD.  
10  
VDDA  
Power  
11  
12  
13  
14  
15  
GNDA_VCO  
RF_OUTA  
nRF_OUTA  
RF_OUTB  
nRF_OUTB  
Ground  
Output  
Output  
Output  
Output  
VCO Analog Power Supply Ground.  
Clock Output pair A. The output level is programmable.  
Clock Output pair A. The output level is programmable.  
Clock Output pair B. The output level is programmable.  
Clock Output pair B. The output level is programmable.  
VCO Supply. This pin ranges from 3.3V ± 5%. VVCO must have the same  
value as VDDA.  
16  
17  
VVCO  
Power  
Power  
VCO Supply. This pin ranges from 3.3V ± 5%. VVCO must have the same  
value as VDDA.  
VVCO  
18  
19  
20  
21  
22  
GNDA_VCO  
VBIAS  
Ground  
Analog  
VCO Analog Power Supply Ground.  
Place decoupling capacitors (10µF) to ground, as close to this pin as possible.  
Control Input to tune the VCO.  
VTUNE  
GNDA_VCO  
RCP  
Ground  
Analog  
VCO Analog Power Supply Ground.  
Sets the charge pump current. Requires external resistor.  
Place decoupling capacitors (1µF – 10µF) to ground, as close to this pin as  
possible.  
23  
24  
25  
VCOM  
VREF  
LD  
Analog  
Analog  
Place decoupling capacitors (10µF) to ground, as close to this pin as possible.  
Lock Detect. Logic High indicates PLL lock. Logic Low indicates loss of PLL  
lock.  
LVCMOS Output  
RF_OUTA and RF_OUTB Power-Down. A logic low on this pin mutes the  
RF_OUT outputs and puts them in High-Impedance.  
26  
27  
MUTE  
GNDD  
LVCMOS Input  
Ground  
Pullup  
Digital Power Supply Ground.  
©2016 Integrated Device Technology, Inc.  
7
August 18, 2016  
8V97053L Datasheet  
1
Table 1. Pin Description (Continued)  
28  
VDDD  
Power  
Digital Supply. VDDD must have the same value as VDDA.  
Reference Input. This CMOS input has a nominal threshold of VDDA/2 and a  
DC equivalent input resistance of 100k. This input can be driven from a TTL  
or CMOS crystal oscillator, or it can be AC-coupled.  
29  
REF_IN  
LVCMOS Input  
Analog  
30  
31  
MUX_OUT  
GND_SD  
LVCMOS Output  
Ground  
Multiplexed Output and Serial Data Out. Refer to Table 4C, Page 18.  
Digital Sigma Delta Modulator Power Supply Ground.  
Digital Sigma Delta Modulator Supply. VDD_SD must have the same value as  
VDDA.  
32  
VDD_SD  
Power  
EP  
Exposed Pad  
Ground  
Must be connected to GND.  
NOTE 1. Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
Cin  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
LVCMOS Output Impedance  
Input Pullup Resistor  
4
ROUT  
MUX_OUT & LD  
38  
51  
51  
RPULLUP  
k  
k  
RPULLDOWN Input Pulldown Resistor  
Table 3. Supply Pins and Associated Current Return Paths  
Power Supply Pin Number  
Power Supply Pin Name  
Associated Ground Pin Number  
Associated Ground Pin Name  
10  
28  
VDDA  
VDDD  
9
GNDA  
GNDD  
27  
32  
VDD_SD  
VVCO  
31  
11, 18, 21  
8
GND_SD  
GNDA_VCO  
GND_CP  
16, 17  
6
V_CP  
©2016 Integrated Device Technology, Inc.  
8
August 18, 2016  
8V97053L Datasheet  
Principles of Operation  
Synthesizer Programming  
The Fractional-N architecture is implemented via a cascaded programmable dual modulus prescaler. The N divider offers a division ratio in the  
feedback path of the PLL, and is given by programming the value of INT, FRAC and MOD in the following equation:  
N = INT + FRAC/MOD  
(1)  
INT is the divide ratio of the binary 16-bits counter (refer to Table 5B, Page 22).  
FRAC is the numerator value of the fractional divide ratio. It is programmable from 0 to (MOD – 1). Refer to Table 5C when in 12-bit mode, or  
Table 12K when in 16-bit mode.  
MOD is the 12-bit or 16-bit modulus. It is programmable from 2 to 4095 in 12-bit mode, and 2 to 65535 in 16-bit mode. Refer to Table 6D when  
in 12-bit mode, or Table 12J when in 16-bit mode.  
The VCO frequency (fVCO) at RF_OUTA or RF_OUTB is given by the following equation:  
f
VCO = fPFD x (INT + FRAC/MOD)  
(2)  
fPFD is the frequency at the input of the Phase and Frequency Detector (PFD).  
The 8V97053L offers an Integer mode. To enable that mode, the user has to program the FRAC value to 0.  
The device’s VCO features three VCO band-splits to cover the entire range with sufficient margin for process, voltage, and temperature  
variations. These are automatically selected by invoking the Autocal feature. The charge pump current is also programmable via the ICP  
SETTING register for maximum flexibility.  
Via Register 4, one can enable RF_OUTA or both outputs. Similarly, one can disable RF_OUTB or both outputs.  
Reference Input Stage  
The 8V97053L features one single-ended reference clock input (REF_IN). This single-ended input can be driven by an ac-coupled sine wave  
or square wave.  
In Power Down mode this input is set to High-Impedance to prevent loading of the reference source.The reference input signal path also  
includes an optional doubler.  
©2016 Integrated Device Technology, Inc.  
9
August 18, 2016  
8V97053L Datasheet  
Reference Doubler  
To improve the phase noise performance of the device, the reference doubler can be used. By using the doubler, the PFD frequency is also  
doubled and the phase noise performance typically improves by 3dB. When operating the device in Fractional mode, the speed of the Sigma  
Delta modulator of the N counter is limited to 125MHz, which is also the maximum PFD frequency that can be used in the fractional mode.  
When the part operates in Integer-N mode, the PFD frequency is limited to 310MHz.  
The user has the possibility to select a higher PFD frequency (up to 310MHz in Integer mode) by doing the following steps using the extended  
registers (Register 6 and 7):  
1. The user needs to increase the size of the Band Select Clock Divider (normally 8-bits) by setting the bit [D6:D3] in the Register 6 to divide  
down to a frequency lower than 500kHz and higher than 125kHz.  
2. Use the Bit[D27:D26] to increase the lock detect precision for the faster PFD frequency.  
The Lock Detect window should be set as large as possible but less than a period of the phase detector. The phase detector frequency should  
be greater than 500kHz.  
Table 4A. Lock Detect Precision (LDP)  
LDP_Ext2  
LDP_Ext1  
LDP  
(D27 of Register 6)  
(D26 of Register 6)  
(D7 of Register 2)  
LDP value (ns)  
0
0
0
0
0
1
10  
6
Use of Extended Register 6  
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
3
3
4
4.5  
1.5  
1.5  
©2016 Integrated Device Technology, Inc.  
10  
August 18, 2016  
8V97053L Datasheet  
Feedback Divider  
The feedback divider N supports fractional division capability in the PLL feedback path. It consists in an integer N divider of 16-bits, and a  
Fractional divider of 12-bits (FRAC) over 12-bits (MOD). FRAC and MOD can be extended to 16-bits when using extended registers.  
To select an integer mode only, the user sets FRAC to 0.  
FROM VCO OUTPOUT  
or FROM M0 OUTPUT  
TO PFD  
N counter  
3rd Order  
ΣΔ Modulator  
12 Bit FRAC  
16 Bit INT  
+
12 Bit MOD  
Figure 1. RF Feedback N Divider  
The 16 INT bits (Bit[D30:D15] in Register 0) set the integer part of the feedback division ratio.  
The 12 FRAC bits (Bit[D14:D3] in Register 0) set the numerator of the fraction that goes into the Sigma Delta modulator. FRAC can be extended  
to 16-bits using the EXT_FRAC bits in Register 7.  
The 12 MOD bits (Bit[D14:D3] in Register 1) set the denominator of the fraction that goes into the Sigma Delta modulator. MOD can be  
extended to 16-bits using the EXT_MOD bits in Register 7.  
From the relation (2), the VCO minimum step frequency is determined by (1/MOD) * fPFD.  
FRAC values from 0 to (MOD – 1) cover channels over a frequency range equal to the PFD reference frequency.  
The PFD frequency is calculated as follows:  
(3)  
Use 2R instead of R if the Reference Divide by 2 is used.   
REFCLK = the input reference frequency (REF_IN)  
D
R
= the input reference doubler (0 if not active or 1 if active)  
= the 10-Bits programmable input reference pre-divider  
The programmable modulus (MOD) is determined based on the input reference frequency (REF_IN) and the desired channelization (or output  
frequency resolution). The high resolution provided on the R counter and the Modulus allows the user to choose from several configuration (by  
using the doubler or not) of the PLL to achieve the same channelization. Using the doubler may offer better phase noise performance. The  
high resolution Modulus also allows to use the same input reference frequency to achieve different channelization requirements. Using a  
unique PFD frequency for several needed channelization requirements allows the user to design a loop filter for the different needed setups  
and ensure the stability of the loop.  
The channelization is given by  
(4)  
In low noise mode (dither disabled), the Sigma Delta modulator can generate some fractional spurs that are due to the quantization noise.  
©2016 Integrated Device Technology, Inc.  
11  
August 18, 2016  
8V97053L Datasheet  
The spurs are located at regular intervals equal to fPFD/L where L is the repeat length of the code sequence in the Sigma Delta modulator. That  
repeat length depends on the MOD value, as described in Table 4B.  
Table 4B. Fractional Spurs Due to the Quantization Noise  
Condition (Dither Disabled)  
L
Spur intervals  
MOD can be divided by 2,   
but not by 3  
2 x MOD  
f
f
PFD/(2*MOD)  
PFD/(3*MOD)  
MOD can be divided by 3,   
but not by 2  
3 x MOD  
6 x MOD  
MOD  
MOD can be divided by 6  
Other conditions  
f
f
PFD/(6*MOD)  
PFD/MOD  
(channel step)  
In order to reduce the spurs, the user can enable the dither function to increase the repeat length of the code sequence in the Sigma Delta  
modulator. The increased repeat length is 221 cycles so that the resulting quantization error is spread to appear like broadband noise. As a  
result, the in-band phase noise may be degraded when using the dither function.  
When the application requires the lowest possible phase noise and when the loop bandwidth is low enough to filter most of the undesirable  
spurs, or if the spurs won’t affect the system performance, it is recommended to use the low noise mode with dither disabled.  
Phase and Frequency Detector (PFD) and Charge Pump  
The phase detector compares the outputs from the R counter and from the N counter and generates an output corresponding to the phase and  
frequency difference between the two inputs the PFD. The charge pump current is programmable through the serial port (SPI) to several  
different levels.  
The PFD offers an anti-backlash function that helps to avoid any dead zone in the PFD transfer function.  
I
CP  
VDD  
D1  
Q1  
REF_IN x (1+D)/R  
CP_OUT  
DELAY  
VDD  
FB  
D1  
Q1  
I
CP  
Figure 2. Simplified PFD Circuit using D-type Flip-flop  
The Band Select logic operates between 125kHz and 500kHz. The Band Select clock divider needs to be set to divide down the PFD frequency  
to between 125kHz to 500kHz (logic maximum frequency).  
©2016 Integrated Device Technology, Inc.  
12  
August 18, 2016  
8V97053L Datasheet  
PFD Frequency  
The VCO Band Selection can be used while operating at PFD frequencies up to 310MHz.  
If the application requires the PFD frequency to be higher than 125MHz, the user can use one of the following two techniques (Technique A is  
the recommended procedure):  
A.The user can use the extended register ExtBndSelDiv[4:1] bits (Bits[D6:D3]) in Register 6. These additional band select divider bits  
extend the band select divider from 8-bits (available in Register 4) to 12-bits. The four additional band select divider bits in Register 4 are  
the most significant bits of the divide value. For proper VCO band selection, the PFD frequency divided by the band select divide value  
must be 500kHz and 125kHz.  
B.If choosing this second technique, the user must follow the three following steps:  
1. Disable the Phase Adjust function by setting the bit D28 In Register 1 to 0, keep the PFD frequency lower than 125MHz, and program  
the desired VCO frequency.  
2. Enable the phase adjust function by setting BAND_SEL_DISABLE (Bit D28 in Register 1) to 1.  
3. Set the desired PFD frequency and program the relevant   
R divider and N counter values.  
In either technique, the Lock Detect Precision should be programmed to be lower than the PFD period using the bit [D7] in Register 2 and the  
bits [D27:D26] in Register 6 (Refer to Table 4A, Page 10).  
External Loop Filter  
The 8V97053L requires an external loop filter. The design of that filter is application specific. For additional information, refer to the Applications  
Information section.  
Phase Detector Polarity  
The phase detector polarity is set by bit D6 in Register 2. This bit should be set to 1 when using a passive loop filter or a non-inverting active  
loop filter. If an inverting active filter is used, this bit should be set to 0.  
Charge Pump High-Impedance  
In order to put the charge pump into three-state mode, the user must set the bit D4 [CP HIGHZ] in Register 2 to 1. This bit should be set to 0  
for normal operation.  
Integrated Low Noise VCO  
The VCO function of the 8V97053L consists in three separate VCOs. This allows keeping narrow tuning ranges for the VCOs while offering a  
large frequency tuning range for VCO core. Keeping narrow VCO tuning ranges allows for lower VCO sensitivity (KVCO), which results in the  
best possible VCO phase noise and spurious performance.  
The user does not have to select the different VCO bands. The VCO band select logic of the 8V97053L will automatically select the most  
suitable band of operation at power up or when Register 0 is written.  
©2016 Integrated Device Technology, Inc.  
13  
August 18, 2016  
8V97053L Datasheet  
Output Distribution Section  
The 8V97053L device provides two outputs. These two outputs can generate the same frequency (fVCO / M0) or two integer related different  
frequencies (in this case, RF_OUTB would generate a frequency equal to the VCO frequency and RF_OUTA would generate fVCO / M0).  
Figure 3. Output Clock Distribution  
RF_OUT and nRF_OUT are derived from the drain of an NMOS differential pair driven by the VCO output (or by the M0 Divider), as shown in  
Figure 4, Output Stage.  
RF_OUT  
nRF_OUT  
÷ M0  
Figure 4. Output Stage  
Eight programmable output power levels can be programmed from -4dBm to +7dBm (see RF Output Power section).  
The 8V97053L offers an auxiliary output (RF_OUTB). If the auxiliary output stage is not used, it can be powered down by using the  
RF_OutB_En bit in Register 4.  
The supply current to the output stage can be shut down until the part achieves lock. To enable this mode, the user will set the MTLD bit in  
Register 4. The MUTE pin can be used to mute all outputs and be used as a similar function.  
©2016 Integrated Device Technology, Inc.  
14  
August 18, 2016  
8V97053L Datasheet  
Output Matching  
The outputs of the 8V97053L are Open Drain Output and can be matched in different ways.  
A simple broadband matching is to terminate the open drain RF_OUT output with, for example, a 50to VDDA, and with an AC coupling  
capacitor in series. An example of this termination scheme is shown on Figure 5, Broadband Matching Termination.  
Figure 5. Broadband Matching Termination  
This termination scheme allows to provide one of the selected output power on the differential pair when connected to a 50load. (See the  
RF Output Power section for more information about the output power selection).  
The 50resistor connected to VDDA can also be replaced by a choke, for better performance and optimal power transmission.  
The pull up inductor value is frequency dependent. For impedance   
of 50pull-up, the inductance value can be calculated as   
L = 50/(2*3.14*F), where F is operating frequency. In this example,   
L = 3.9nF is for an operating frequency of approximately 2GHz.  
Figure 6. Optimal Matching Termination  
See Applications Information section for more recommendations on the termination scheme.  
Band Selection Disable  
For a given frequency, the output phase can be adjusted when using the Band_Sel_Disable bit (Bit D28 in Register 1). When this bit is enabled  
(Bit D28 set to 1), the part does not do a VCO band selection or phase resync after an update to Register 0.  
When the Band_Sel_Disable bit is set to 0, and when Register 0 is updated, the part proceeds to a VCO band selection, and to a phase resync  
if phase_resync is also enabled in Register 3 (Bits[D16:D15] set to D16 = 1 and D15 = 0).  
The “Band_Sel_Disable” bit is useful when the user wants to make small changes in the output frequency (<1MHz from the nominal frequency)  
without recalibrating the VCO and minimizing the settling time.  
©2016 Integrated Device Technology, Inc.  
15  
August 18, 2016  
8V97053L Datasheet  
Phase Adjust  
The output phase is controlled by the 12-Bit phase value Bits[D26:D15] in Register 1. The output phase can vary over 360° with a 360°/MOD  
step. For dynamic adjustments of the phase after an initial phase setting, it is recommended to select the BAND_SEL_DISABLE function by  
setting the Band_Sel_Disable bit (D28 in Register 1) to 1.  
The PHASE value can be extended to 16-bits when using the extended registers. In this 16 bit mode, both registers 1 and 7 define the PHASE  
value.  
Phase Resync  
The phase alignment function operates based on adjusting the “fractional” phase, so the phase can settle to any one of the MOD phase offsets,  
MOD being the modulus of the fractional feedback divider.  
The phase adjustment can provide a 0-360° of phase adjust, assuming that the output divider ratio is set to 1.  
The phase step is TVCO/MOD for the normal case of fundamental feedback. TVCO is the period of the VCO.  
The feedback select bit (FbkSel bit, Bit D23 in Register 4) gives the choices of fundamental feedback or divided feedback. This bit controls the  
mux that sends the VCO signal or the output divider signal to the feedback loop. The user can get larger phase steps in the divided mode, but  
the phase noise may be degraded, especially in fractional mode. Should the user select this option, the phase adjustment step would be  
~TOUT/MOD, where TOUT is the output signal period.  
When the part is in fractional mode, the device is dithering the feedback divider value. As an example, when using a 4GHz VCO frequency,  
the feedback divider value may dither between Div-by-20 and Div-by-21. Since the period is 250ps, there will be 250ps of jitter added to the  
phase detector. This jitter is filtered by the loop, but can still show up at the output if the loop bandwidth is high. When using a divider before  
the feedback divider, the effective VCO period is increased. If a Div-by-64 is used for example, the period becomes 64x250ps = 16ns. This  
means that there could be an additional 16ns of jitter at the PFD, rather than 250ps. It is more challenging for the loop to filter this larger amount  
of jitter and this will degrade the overall performance of the part, unless the user chooses to use a very low loop bandwidth. With normal loop  
bandwidth configurations (for optimal noise), the phase noise would be degraded when using a divided feedback mode.  
The Phase Resync is controlled by setting Bits[D16:D15] in Register 3 to D16 = 1 and D15 = 0. When phase resync is used, an internal timer  
generates sync signals every TSYNC where:  
TSYNC = ClkDiv x MOD x TPFD  
(5)  
ClkDiv = the value (from 1 and 4095) programmed in the 12-bit clock counter in Bits[D14:D3] in Register 3. The 12-bit counter is used as a  
timer for Fast Lock and for the Phase Resync function.  
MOD = the Modulus value (Bits[D14:D3] of Register 1)  
TPFD = the PFD period  
In Equation 5, the minimum of either MOD value or 4095 is used for calculating TSYNC when in 16-bit mode.  
Figure 7. 12-bit Counter for Fast Lock and Phase Resync  
After the user program a frequency, the second sync pulse coming from the 12-bit counter, after the nCS is asserted high, is used to  
resynchronize the output phase to the input phase. To ensure that the PLL is locked before to resynchronize the output phase, TSYNC must  
be larger than the worst case lock time.  
©2016 Integrated Device Technology, Inc.  
16  
August 18, 2016  
8V97053L Datasheet  
Fast Lock Function  
The device uses a fast-lock mode to decrease lock time.  
In order to allow the Fast Lock mode, the Fast Lock Switch (FLSW) is shorted to Ground and the charge pump current (ICP) is changed  
temporarily until the Fast Lock mode is disabled.  
The loop bandwidth needs to be increased temporarily in order to allow a faster lock time. By doing this, the loop filter needs to be initially  
designed so that it addresses the risk of instability of having the zero and the poles too close to the actual bandwidth knee, when the user  
switches to a fast lock mode.  
The loop bandwidth is proportional to:  
RS and ICP (BW ~ RS * ICP)  
Where:  
BW = the loop bandwidth  
RS = the damping resistor  
ICP = the programmable charge pump current  
In order to enable the fast lock mode, the charge pump current is increased to the maximum value in order to increase the loop bandwidth. In  
parallel, the FLSW filter is set to ON so that the RS value is ¼ of its initial value in order to maintain the loop stability. By doing so, the zero and  
the first pole are moved (by a factor of 4x in the example below), so that the zero and the pole are kept at a suitable distance around the loop  
bandwidth.  
Figure 8. Example of Fast Lock Mode Loop Filter Topology  
In the example of Figure 8, Example of Fast Lock Mode Loop Filter Topology, the damping resistor RS is equal to:  
RS1 + RS2 in normal mode (FSLW switch OFF), with RS2 = 3 * RS1  
When the FLSW switch is ON, the damping resistor value is reduced by ¼ of its initial value (RS = RS1).  
The second pole defined by R3 and C3 need needs to be designed so that there is no risk of instability when widening the loop bandwidth.  
©2016 Integrated Device Technology, Inc.  
17  
August 18, 2016  
8V97053L Datasheet  
RF Output Power  
For RF_OUTA and RF_OUTB, the output power can be programmed from -4dBm to +7dBm.  
Refer to Table 9I, Page 33, Table 9J, Table 11E, Page 37 and Table 11F in the Register Map section for more information.  
MUX_OUT  
MUX_OUT is a multipurpose output that can be programmed to provide the user with some internal status and values for test and debugging  
purpose. In addition, MUX_OUT can also be programmed to provide an additional Serial Data Out Pin for a 4-wire SPI interface when needed.  
The MUX_OUT function is described in the Table 4C and can be programmed in Bits[D28:D26] in Register 2.  
Table 4C. MUX_OUT Pin Configuration  
MUX_OUT Register Value  
MUX_OUT Function  
High-Impedance Output  
VDDD  
000  
001  
010  
011  
100  
101  
110  
111  
GNDD  
R Counter Output  
N counter Output  
Reserved  
Lock Detect  
MUX_OUT configured as SDO  
Power-Down Mode  
When power-down is activated, the following events occur:  
1. Counters are forced to their load state conditions  
2. VCO is powered down  
3. Charge pump is forced into three-state mode  
4. Digital lock detect circuitry is reset  
5. RF_OUT buffers are disabled  
6. The input stage is powered down and set to High-Impedance  
7. Input registers remain active and capable of loading and latching data  
©2016 Integrated Device Technology, Inc.  
18  
August 18, 2016  
8V97053L Datasheet  
Default Power-Up Conditions  
All the RF outputs are muted at power up until the loop is locked. Refer to the Register Map section for default values in registers.  
Program Modes  
Table 4D and the Register Map indicate how the program modes are set up in the 8V97053L.  
Table 4D. Control Bits Configuration  
Control Bits (CB)  
C3  
0
C2  
0
C1  
0
Register  
Register 0  
0
0
1
Register 1  
0
1
0
Register 2  
0
1
1
Register 3  
1
0
0
Register 4  
1
0
1
Register 5  
1
1
0
Extended Register 6  
Extended Register 7  
1
1
1
Double Buffering  
The following bits are Doubled Buffered:  
1. PHASE (Bits[D26:D15] in Register 1)  
2. MOD (Bits[D14:D3] in Register 1)  
3. REF DOUBLER (Bit D25 in Register 2)  
4. REF DIV2 (Bit D24 in Register 2)  
5. R COUNTER (Bits[D23:D14] in Register 2)  
6. ICP SETTING (Bits[D12:D9] in Register 2)  
The user must proceed to the following steps before any value written in these bits are used.  
1. The new values are written in the double buffered bits  
2. A new Write is performed on Register 0  
The RF DIVIDER value in Register 4 (Bits[D22:D20]) is also double buffered, but only if the DOUBLE BUFFER bit (Bit D13 in Register 2) is  
set to 1.  
©2016 Integrated Device Technology, Inc.  
19  
August 18, 2016  
8V97053L Datasheet  
Timing Characteristics  
tSU tH  
tLO tHI  
tPW  
nCS  
SCLK  
SDI  
D31  
D30  
D29  
D28  
D1  
D0  
Start Write Command  
Complete Write Command  
Figure 9. SPI Write Cycle Timing Diagram  
tPW  
nCS  
SCLK  
D1  
D0  
SDI  
SDO (SCLKE = 1)  
SDO (SCLKE = 0)  
D31  
D30  
D29  
D28  
D1  
D0  
D31  
D30  
D29  
D28  
D1  
D0  
Start Read Transmission  
Complete read command (Write to Register 7)  
Complete Read Transmission  
Figure 10. SPI Read Cycle Timing Diagram  
Table 4E. SPI Read / Write Cycle Timing Parameters  
Symbol  
fCLK  
tSU  
Parameter  
Minimum  
Maximum  
Unit  
MHz  
ns  
SCLK Frequency  
-
20  
-
nCS, SDI Setup Time to SCLK  
SCLK to nCS, SDI Hold Time  
SCLK Low Pulse Width  
SCLK High Pulse Width  
nCS De-asserted Pulse Width  
10  
10  
25  
25  
20  
tH  
-
ns  
tLO  
-
ns  
tHI  
-
ns  
tPW  
-
ns  
©2016 Integrated Device Technology, Inc.  
20  
August 18, 2016  
8V97053L Datasheet  
3- or 4-Wire SPI Interface Description  
The 8V97053L has a serial control port capable of responding as a slave in an SPI compatible configuration to allow access to any of the  
internal registers (see section, “Register Map” on page 22) for device programming or examination of internal status. See the specific sections  
for each register for details on meanings and default conditions.  
SPI mode slave operation requires that a device external to the 8V97053L has performed any necessary serial bus arbitration and/or address  
decoding at the level of the board or system. The 8V97053L begins a cycle by detecting an asserted (low) state on the nCS input at a rising  
edge of SCLK. This is also coincident with the first bit of data being shifted into the device. In SPI mode, the first bit is the Most Significant Bit  
(MSB) of the data word being written. Data must be written in 32-bit words, with nCS remaining asserted and one data bit being shifted in to  
the 8V97053L on every rising edge of SCLK. If nCS is de-asserted (high) at any time except after the complete 32nd SCLK cycle, this is treated  
as an error and the shift register contents are discarded. No data is written to any internal registers. If nCS is de-asserted (high) as expected  
at a time at least tSU after the 32nd falling edge of SCLK, then this will result in the shift register contents being acted on according to the control  
bit in it.  
It is recommended to write the registers in reverse sequential order, starting with the highest register number first and ending with Register 0.  
The word format of the 32-bit quantity in the shift register is shown in Table 4F. The register fields in the 8V97053L have been organized so  
that the three LSBs in each 32-bit register row are not used for data transfer. These bits will represent the base address for the 32-bit register  
row.  
To perform a register Read, the user needs set the MUX_OUT bits (Bits[28:D26]) in Register 2 to 111 to configure the MUX_OUT pin as SDO.  
Register 7 (Instruction register) needs to be set for Read operation. Bit D3 of Register 7 will set the Read or Write command, and Bits[D4:D6]  
determine the read back address.  
If a read operation is requested, 32-bits of read data will be provided in the immediately subsequent access. nCS must be de-asserted (high)  
for at least tPW, and then reasserted (low).  
If SCLKE = 1 (default condition), one data bit will be transmitted on the SDO output at the falling edge of nCS and each falling edge of SCLK  
as long as nCS remains asserted (low), and the master device should capture data on the rising edge of SCLK. If SCLKE = 0, one data bit will  
be transmitted on the SDO output at each rising edge of SCLK as long as nCS remains asserted (low), and the master device should capture  
data on the falling edge of SCLK.  
If nCS is de-asserted (high) before 32-bits of read data have been shifted out, the read cycle will be considered to be completed. If nCS remains  
asserted (low) longer than 32-bit times, then the data during those extra clock periods will be undefined. The MSB of the data will be presented  
first.  
Table 4F. SPI Mode Serial Word Structure  
MSB  
31  
LSB  
0
Bit #  
5
4
3
2
1
Meaning  
Width  
D[31:3]  
29  
Control Bits  
3
©2016 Integrated Device Technology, Inc.  
21  
August 18, 2016  
8V97053L Datasheet  
Register Map  
Register 0  
Table 5A. Register 0 Bit Allocation  
FEEDBACK DIVIDER FRACTIONAL VALUE  
(FRAC)  
CONTROL  
BITS  
FEEDBACK DIVIDER INTEGER VALUE (INT)  
Table 5B. Register 0: 16-Bit Feedback Divider Integer Value (INT). Function Description  
Name  
Description  
Factory Default  
Function  
0000 0000 0000 0000 = Not allowed  
0000 0000 0000 0001 = Not allowed  
...  
0000 0000 0000 0111 = Not allowed  
0000 0000 0000 1000 = 8  
0000 0000 0110 0100  
(INT = 100)  
NDiv[16:1]  
Feedback Divider Integer Value (INT)  
0000 0000 0001 0111 = 23  
0000 0000 0001 1000 = 24  
1111 1111 1111 1111 = 65,535  
1
Table 5C. Register 0: 12-Bit Feedback Divider Fractional Value (FRAC). Function Description  
Name  
Description  
Factory Default  
Function  
0000 0000 0000 = 0  
0000 0000 0001 = 1  
0000 0000 0000  
(FRAC = 0)  
FDiv[12:1]  
Feedback Divider Fractional Value (FRAC)  
1111 1111 1111 = 4095  
NOTE 1. This table is used when bit 16b_12b_sel is set to 0 (default). If the 16b_12b_sel is set to 1, refer to Table 12K, Page 42.  
©2016 Integrated Device Technology, Inc.  
22  
August 18, 2016  
8V97053L Datasheet  
1
Table 5D. Register 0: 3-Bit Control Bits. Function Description  
Name  
Description  
Function  
000 = Register 0 is programmed  
CB[3:1]  
Control Bits  
NOTE 1. The user has to set CB[3:1] to 000 in order to write to Register 0.  
©2016 Integrated Device Technology, Inc.  
23  
August 18, 2016  
8V97053L Datasheet  
Register 1  
Table 6A. Register 1 Bit Allocation  
CONTROL  
BITS  
RESERVED  
PHASE VALUE (PHASE)  
MODULUS VALUE (MOD)  
Table 6B. Register 1: 1-Bit BAND_SEL_DISABLE. Function Description  
Name  
Description  
Factory Default  
Function  
0 = VCO Band Selection occurs after a Write to Register 0  
Band_Sel_Disable BAND_SEL_DISABLE  
0
1 = VCO Band selection is not active and hold to previous VCO band  
selection  
Table 6C. Register 1: 12-Bit Phase Value (PHASE). Function Description  
16b_12b_sel  
Name  
Description  
(Bit D20, Register7)  
Factory Default  
Function  
0000 0000 0000 = 0  
0000 0000 0001 = 1  
…...  
0
0000 0000 0001  
1111 1111 1111 = 4095  
0000 0000 0000 = 0  
0000 0000 0001 = 16  
…...  
Phase [12:1]  
PHASE  
1
0000 0000 0001  
1111 1111 1111 = 65520  
©2016 Integrated Device Technology, Inc.  
24  
August 18, 2016  
8V97053L Datasheet  
1
Table 6D. Register 1: 12-Bit Modulus Value (MOD). Function Description  
Name  
Description  
Factory Default  
Function  
0000 0000 0000 = Not Allowed  
0000 0000 0001 = Not Allowed  
0000 0000 0010 = 2  
Mod[12:1]  
MOD  
0000 0000 0010  
1111 1111 1111 = 4095  
NOTE 1. This table is used when bit D20 in Register 7 (16b_12B_sel) is set to 0 (default). If 16b_12b_sel is set to 1, refer to Table 12J, Page  
42.  
1
Table 6E. Register 1: 3-Bit Control Bits. Function Description  
Name  
Description  
Function  
CB[3:1]  
Control Bits  
001 = Register 1 is programmed  
NOTE 1. The user has to set CB[3:1] to 001 in order to write to Register 1.  
©2016 Integrated Device Technology, Inc.  
25  
August 18, 2016  
8V97053L Datasheet  
Register 2  
Table 7A. Register 2 Bit Allocation  
CONTROL  
BITS  
MUX_OUT  
R COUNTER  
ICP SETTING  
Table 7B. Register 2: 2-Bit NOISE MODE. Function Description  
Name  
Description  
Factory Default  
Function  
00 = Low Noise Mode (Dither OFF)  
01 = Reserved  
ModeNoise[2:1]  
NOISE MODE  
00  
10 = Reserved  
11 = Low Spur Mode (Dither Enabled)  
Table 7C. Register 2: 3-Bit MUX_OUT. Function Description  
Name  
Description  
Factory Default  
Function  
000 = High-Impedance output  
001 = VDDD  
010 = GNDD  
011 = R counter output  
100 = N counter output  
101 = Reserved  
MUX_OUT[3:1]  
MUX_OUT  
000  
110 = Lock Detect  
111 = MUX_OUT configured as SDO  
©2016 Integrated Device Technology, Inc.  
26  
August 18, 2016  
8V97053L Datasheet  
Table 7D. Register 2: 1-Bit REF DOUBLER. Function Description  
Name  
Description  
Factory Default  
Function  
0 = Disabled  
1 = Enabled  
RefDoub  
REF DOUBLER  
0
Table 7E. Register 2: 1-Bit REF DIV2. Function Description  
Name  
Description  
Factory Default  
Function  
0 = Disabled  
1 = Enabled  
RDIV2  
REF DIV2  
0
Table 7F. Register 2: 10-Bit R COUNTER (R). Function Description  
Name  
Description  
Factory Default  
Function  
00 0000 0000 = Not Allowed  
00 0000 0001 = 1  
00 0000 0010 = 2  
R[10:1]  
R
00 0000 0001  
11 1111 1111 = 1023  
1
Table 7G. Register 2: 1-Bit DOUBLE BUFFER. Function Description  
Name  
Description  
Factory Default  
Function  
0 = Disabled  
1 = Enabled  
DoubBuff1  
DOUBLE BUFFER  
0
NOTE 1. Bit D13 enables or disables Double Buffering of Bits[D22:D20] in Register 4. Refer to Program Modes section.  
©2016 Integrated Device Technology, Inc.  
27  
August 18, 2016  
8V97053L Datasheet  
Table 7H. Register 2: 4-Bit Charge Pump Setting (ICP SETTING). Function Description  
Name  
Description  
Factory Default  
Function  
Icp (mA) assuming RCP = 5.1k  
0000 = 0.31  
0001 = 0.63  
0010 = 0.94  
0011 = 1.25  
0100 = 1.56  
0101 = 1.88  
0110 = 2.19  
ChrgPmp[4:1]  
ICP SETTING  
0000  
0111 = 2.50  
1000 = 2.81  
1001 = 3.13  
1010 = 3.44  
1011 = 3.75  
1100 = 4.06  
1101 = 4.38  
1110 = 4.69  
1111 = 5.00  
1
Table 7I. Register 2: 1-Bit Lock Detect Function (LDF). Function Description  
Name  
Description  
Factory Default  
Function  
0 = 40 consecutive cycles (recommended for FRAC-N mode)  
1 = 5 consecutive cycles (recommended for INT-N mode)  
LDF  
LDF  
0
NOTE 1. LDF controls the number of PFD cycles that needs to be considered by the Lock Detect function to decide if the part has achieved  
lock.  
Table 7J. Register 2: 1-Bit Lock Detect Precision. Function Description  
Name  
Description  
Factory Default  
Function  
0 = 10ns  
1 = 6ns  
LDP  
LDP  
0
Table 7K. Register 2: 1-Bit Phase Detector Polarity. Function Description  
Name  
Description  
Factory Default  
Function  
0 = NEGATIVE  
1 = POSITIVE  
PD_Pol  
PD POLARITY  
1
©2016 Integrated Device Technology, Inc.  
28  
August 18, 2016  
8V97053L Datasheet  
Table 7L. Register 2: 1-Bit Power Down. Function Description  
Name  
Description  
Factory Default  
Function  
0 = Disabled  
1 = Enabled  
PwrDwn  
POWER DOWN  
0
Table 7M. Register 2: 1-Bit Charge Pump High-Impedance. Function Description  
Name  
Description  
Factory Default  
Function  
0 = Disabled  
1 = Enabled  
CP_HIGHZ  
CP HIGHZ  
0
1
Table 7N. Register 2: 3-Bit Control Bits. Function Description  
Name  
Description  
Function  
010 = Register 2 is programmed  
CB[3:1]  
Control Bits  
NOTE 1. The user has to set CB[3:1] to 010 in order to write to Register 2.  
©2016 Integrated Device Technology, Inc.  
29  
August 18, 2016  
8V97053L Datasheet  
Register 3  
Table 8A. Register 3 Bit Allocation  
CONTROL  
BITS  
RESERVED  
CLOCK COUNTER VALUE  
1
Table 8B. Register 3: 1-Bit Band Select Clock Mode. Function Description  
Name  
Description  
Factory Default  
Function  
0 = LOW (125kHz)  
BandSelCM  
BAND SELECT (CLOCK RATE)  
0
1 = HIGH (up to 500kHz logic sequence for  
Faster Lock applications)  
NOTE 1. BAND SELECT (CLOCK RATE) selects the speed of the logic sequence for the band selection. BandSelCM = 1 sets the logic se-  
quence rate faster, which is recommended for fast lock operation and when high PFD frequencies are used. BandSelCM = 0 is rec-  
ommended when low PFD frequencies (125kHz) are used. When using BandSelCM = 1, the value of the BAND SELECT CLOCK  
COUNTER (BndSelDiv[8:1]) must be less than or equal to 254.  
Table 8C. Register 3: 2-Bit Clock Divider Mode. Function Description  
Name  
Description  
Factory Default  
Function  
00 = Clock Divider OFF  
01 = Fast Lock Enabled  
10 = Resync Enabled  
11 = Reserved  
ClkDivMode[2:1] CLK DIV MODE  
00  
Table 8D. Register 3: 12-Bit Clock Divider Value (CLKDIV). Function Description  
Name  
Description  
Factory Default  
Function  
0000 0000 0000 = Not allowed  
0000 0000 0001 = 1  
0000 0000 0010 = 2  
ClkDiv[12:1]  
CLKDIV  
0000 0000 0001  
1111 1111 1111 = 4095  
©2016 Integrated Device Technology, Inc.  
30  
August 18, 2016  
8V97053L Datasheet  
1
Table 8E. Register 3: 3-Bit Control Bits. Function Description  
Name  
Description  
Function  
011 = Register 3 is programmed  
CB[3:1]  
CONTROL BITS  
NOTE 1. The user has to set CB[3:1] to 011 in order to write to Register 3.  
©2016 Integrated Device Technology, Inc.  
31  
August 18, 2016  
8V97053L Datasheet  
Register 4  
Table 9A. Register 4 Bit Allocation  
BAND SELECT CLOCK  
COUNTER  
CONTROL  
BITS  
RESERVED  
Table 9B. Register 4: 1-Bit Feedback Select. Function Description  
Name  
Description  
Factory Default  
Function  
0 = Divided  
FbkSel  
FEEDBACK SELECT  
1
1 = Fundamental  
Table 9C. Register 4: 3-Bit RF Output Divider (÷ MO) Select. Function Description  
Name  
Description  
Factory Default  
Function  
000 = Div by 1  
001 = Div by 2  
010 = Div by 4  
011 = Div by 8  
100 = Div by 16  
101 = Div by 32  
110 = Div by 64  
111 = Reserved  
RFDiv[3:1]  
RF OUTPUT DIVIDER  
000  
©2016 Integrated Device Technology, Inc.  
32  
August 18, 2016  
8V97053L Datasheet  
1
Table 9D. Register 4: 8-Bit Band Select Clock Counter. Function Description  
Name  
Description  
Factory Default  
Function  
0000 0000 = Not Allowed  
0000 0001 = 1  
0000 0010 = 2  
...  
BndSelDiv[8:1]  
BAND SELECT CLOCK COUNTER  
0000 0001  
1111 1111 = 255  
NOTE 1. BAND SELECT CLOCK COUNTER sets the value of the divider for the band select logic clock input. By default, the output frequency  
of the R counter is used to clock the band select logic. If this frequency is larger than 125kHz, the Band Select Clock counter can  
be used to divide the R counter output to a smaller frequency suitable for the band selection logic.  
Table 9E. Register 4: 1-Bit VCO Power Down. Function Description  
Name  
Description  
Factory Default  
Function  
0 = VCO Powered Up  
VCOPwrDwn  
VCO POWER DOWN  
0
1 = VCO Powered Down  
Table 9F. Register 4: 1-Bit Mute Till Lock Detect. Function Description  
Name  
Description  
Factory Default  
Function  
0 = Mute Disabled  
1 = Mute Enabled  
MTLD  
MTLD  
0
Table 9G. Register 4: 1-Bit RF_OUTB Select. Function Description  
Name  
Description  
Factory Default  
Function  
0 = Divided Output  
1 = Fundamental  
RF_OUTB_Sel  
RF_OUTB SELECT  
0
Table 9H. Register 4: 1-Bit RF_OUTB Enable. Function Description  
Name  
Description  
Factory Default  
Function  
0 = Disabled (High-Impedance)  
1 = Enabled1  
RF_OUTB_En  
RF_OUTB ENABLE  
0
NOTE 1. RF_OUTA must also be enabled.  
Table 9I. Register 4: 1-Bit RF_OUTA Enable. Function Description  
Name  
Description  
Factory Default  
Function  
0 = Disabled1 (High-Impedance)  
1 = Enabled  
RF_OUTA_En  
RF_OUTA ENABLE  
0
NOTE 1. RF_OUTB will also disable.  
©2016 Integrated Device Technology, Inc.  
33  
August 18, 2016  
8V97053L Datasheet  
1
Table 9J. Register 4: 2-Bit RF_OUTA Output Power. Function Description  
Name  
Description  
Factory Default  
Function  
00 = -4dBm  
01 = -1dBm  
10 = +2dBm  
11 = +5dBm  
RF_OUTA_Pwr[2:1]  
RF_OUTA OUTPUT POWER  
10  
NOTE 1. fRF_OUT = 34.375MHz.  
1
Table 9K. Register 4: 3-Bit Control Bits. Function Description  
Name  
Description  
Function  
100 = Register 4 is programmed  
CB[3:1]  
CONTROL BITS  
NOTE 1. The user has to set CB[3:1] to 100 in order to write to Register 4.  
©2016 Integrated Device Technology, Inc.  
34  
August 18, 2016  
8V97053L Datasheet  
Register 5  
1
Table 10A. Register 5 Bit Allocation  
CONTROL  
BITS  
RESERVED  
RESERVED  
NOTE 1. D19 and D20 must be set to 1.  
Table 10B. Register 5: 2-Bit LD (Lock Detect) Pin Mode. Function Description  
Name  
Description  
Factory Default  
Function  
00 = Low  
01 = Digital Lock Detect  
10 = Low  
LDPInMode[2:1]  
LD PIN MODE  
01  
11 = High  
1
Table 10C. Register 5: 3-Bit Control Bits. Function Description  
Name  
Description  
Function  
CB[3:1]  
CONTROL BITS  
101 = Register 5 is programmed  
NOTE 1. The user has to set CB[3:1] to 101 in order to write to Register 5.  
©2016 Integrated Device Technology, Inc.  
35  
August 18, 2016  
8V97053L Datasheet  
Extended Registers, (Registers 6 and 7)  
Register 6  
1 2 3  
Table 11A. Register 6 Bit Allocation  
EXT_BND_SE CONTROL  
RESERVED (RO)  
L_DIV  
BITS  
NOTE 1. It is recommended that the user writes to Register 0 after writing to Register 6.  
NOTE 2. Bit D7 must be set to 0 for correct operation.  
NOTE 3. RO Bits are Read Only Bits.  
Table 11B. Register 6: 1-Bit Digital Lock Detect. Function Description  
Name  
Description  
Function  
0 = PLL Not Locked  
DigLock  
DIGITAL LOCK  
1 = PLL Locked (according LDF and LDP in Register 2)  
Table 11C. Register 6: 1-Bit Band Select Status (Read Only). Function Description  
Name  
Description  
Function  
0 = Band Selection Not Complete  
1 = Band Selection Complete  
Band_select_done  
BAND_SELECT_DONE  
©2016 Integrated Device Technology, Inc.  
36  
August 18, 2016  
8V97053L Datasheet  
1
Table 11D. Register 6: 2-Bit Extra Lock Detect Precision. Function Description  
Function  
Name  
Description  
Factory Default  
Extra Bit  
LDP Bits in Register 2  
Value  
10ns  
6ns  
0
1
0
1
0
1
0
1
00  
3ns  
01  
10  
11  
3ns  
LDP_EXT  
LDP_Ext[2:1]  
00  
Extra Lock Detect Precision  
4ns  
4.5ns  
1.5ns  
1.5ns  
NOTE 1. LDP_Ext[2:1] are Extra Lock Detect Precision bits. When these bits are set to 00, then the precision of the Lock Detect precision  
only relies on the LDP bit in Register 2, so that the lock detect window is 10ns or 6ns, depending on the LDP bit in Register 2. For  
high PFD frequencies, the 6ns window may be larger than the entire ref/FB period. The LDP_ext bits reduce the size of the lock  
detect window to the value described in Table 11B, Page 36, allowing an accurate lock detection with higher PFD frequencies.  
1 2  
Table 11E. Register 6: 1-Bit Extra Bit of RF_OUTB Power. Function Description  
Function  
RF_OUTB OUTPUT POWER Bits  
Name  
Description  
Factory Default  
Extra Bit  
in Register 4  
Value (dBm)  
00  
01  
10  
11  
00  
01  
10  
11  
-4  
-1  
0
+2  
+5  
+2  
+5  
+6  
+7  
rf_outb_hi_pwr  
RF_OUTB_HI_PWR  
0
1
NOTE 1. RF_OUTB_HI_PWR is an Extra Bit of RF_OUTB Power that increases the output power to the RF_OUTB output.  
NOTE 2. fRF_OUT = 34.375MHz.  
©2016 Integrated Device Technology, Inc.  
37  
August 18, 2016  
8V97053L Datasheet  
1 2  
Table 11F. Register 6: 1-Bit Extra Bit of RF_OUTA Power. Function Description  
Function  
RF_OUTA OUTPUT POWER Bits  
in Register 4  
Name  
Description  
Factory Default  
Extra Bit  
Value (dBm)  
00  
01  
10  
11  
00  
01  
10  
11  
-4  
-1  
0
+2  
+5  
+2  
+5  
+6  
+7  
rf_outa_hi_pwr  
RF_OUTA_HI_PWR  
0
1
NOTE 1. RF_OUTA_HI_PWR is an Extra Bit of RF_OUTA Power that increases the output power to the RF_OUTA output.  
NOTE 2. fRF_OUT = 34.375MHz.  
Table 11G. Register 6: 2-Bit Sigma Delta Modulator Order Configuration. Function Description  
Name  
Description  
Factory Default  
Function  
00 = OFF. The device operates in integer mode and the fractional  
part is ignored.  
01 = 1st order  
10 = 2nd order  
11 = 3rd order  
SDMOrder[2:1]  
SDM_ORDER  
11  
Table 11H. Register 6: 2-Bit Dither Gain Configuration. Function Description  
Name  
Description  
Factory Default  
Function  
0 = LSB Dither (Recommended)  
1 = LSB x4 Dither  
DitherG  
DITHER GAIN  
0
Table 11I. Register 6: 1-Bit Dither Noise Shaping Configuration. Function Description  
Name  
Description  
Factory Default  
Function  
0 = Dither Noise Shaping Disabled  
1 = Dither Noise Shaping Enabled  
ShapeDitheren  
SHAPE_DITHER_EN  
1
Table 11J. Register 6: 1-Bit Sigma Delta Modulator Type Configuration. Function Description  
Name  
Description  
Factory Default  
Function  
00 = Reserved  
01 = SSMF-II  
10 = SSMF-I  
11 = SSMF-B  
SDMType[2:1]  
SDM_TYPE  
01  
©2016 Integrated Device Technology, Inc.  
38  
August 18, 2016  
8V97053L Datasheet  
Table 11K. Register 6: 2-Bit VCO Band Selection Accuracy Configuration. Function Description  
Name Description Factory Default Function  
00 = 1 cycle of the band select clock (output of the Band Select Divider)  
01 = 2 cycles  
10 = 4 cycles  
11 = Reserved  
band_select_acc[2:1] BAND_SELECT_ACC 00  
1 2  
Table 11N. Register 6: 4-Bit Extra Most Significant Bits of Band Select Divider. Function Description  
Name  
Description  
Factory Default  
Value  
Function  
0000 = [BSCC_R4]  
0001 =[BSCC_R4]+256  
0010 = [BSCC_R4] + 512  
….…  
BSCC_R4 +  
[EXT_BND_SEL_DIV]x256  
ExtBndSelDiv[4:1]  
EXT_BND_SEL_DIV  
0000  
1111 = [BSCC_R4]+3840  
NOTE 1. EXT_BND_SEL_DIV are Extra 4 MSBs that extend the Band Select Clock Counter in Register 4. These additional bits are necessary  
for band selection to divide down to <500kHz when high PFD frequencies are used.  
NOTE 2. BSCC_R4 is the BAND SELECT CLOCK COUNTER value in Register 4.  
1
Table 11O. Register 6: 3-Bit Control Bits. Function Description  
Name  
Description  
Function  
CB[3:1]  
CONTROL BITS  
110 = Register 6 is programmed  
NOTE 1. The user has to set CB[3:1] to 110 in order to write to Register 6.  
©2016 Integrated Device Technology, Inc.  
39  
August 18, 2016  
8V97053L Datasheet  
Register 7  
1 2  
Table 12A. Register 7 Bit Allocation  
REV_ID  
(RO)  
CONTROL  
BITS  
DEV_ID (RO)  
EXT_MOD  
EXT_FRAC  
NOTE 1. SB Bits are Sticky Bits and need to be cleared.  
NOTE 2. RO Bits are Read Only Bits.  
1
Table 12B. Register 7: 1-Bit Loss of Digital Lock. Function Description  
Name  
Description  
Function  
0 = Locked since last time register was cleared  
Loss_Dig_Lock  
LOSS_DIG_LOCK  
1 = Loss of Digital Lock since last time register was cleared  
NOTE 1. This bit is a sticky bit and needs to be cleared with a SPI write of 1 to detect further Loss of Digital Lock occurrences.  
1
Table 12C. Register 7: 1-Bit Loss of Analog Lock. Function Description  
Name  
Description  
Function  
0 = Band Selection remained the same since last time register was cleared  
1 = Band selection occurred since last time register was cleared  
Loss_Anlg_Lock  
LOSS_ANLG_LOCK  
NOTE 1. This bit is a sticky bit and needs to be cleared with a SPI write of 1 to detect further Band Selection occurrences.  
1
Table 12D. Register 7: 1-Bit SPI Error. Function Description  
Name  
Description  
Function  
0 = No SPI write error detection  
1 = SPI Write error  
Spi_error  
SPI_ERROR  
NOTE 1. Spi_error Bit goes high if the SPI interface detects a cycle with the incorrect number of SCLK cycles between nCS asserted Low  
and nCS asserted High. The SPI interface expects 32 clock cycles between nCS asserted Low and nCS asserted High. Any  
Read/Write via the SPI interface with more or less than 32 clock cycles will result in the Spi_error Bit switched to 1. This bit is a sticky  
bit and needs to be cleared with a SPI write of 1 in order to detect further possible SPI Write/Read errors.  
©2016 Integrated Device Technology, Inc.  
40  
August 18, 2016  
8V97053L Datasheet  
Table 12E. Register 7: 3-Bit Revision ID. Function Description  
Name  
Description  
Factory Default  
Rev_ID[3:1]  
REV_ID  
001  
Table 12F. Register 7: 4-Bit Device ID. Function Description  
Name  
Description  
Factory Default  
Dev_ID[4:1]  
DEV_ID  
0110  
Table 12G. Register 7: 1-Bit Resolution Select. Function Description  
Name  
Description  
Factory Default  
Function  
0 = FRAC, PHASE and MOD set to 12-Bit resolution,  
Bit[D19:D8] set to 0 and unused  
16b_12b_sel  
16b_12b_SEL  
0
1 = FRAC, PHASE and MOD set to 16-Bit resolution  
©2016 Integrated Device Technology, Inc.  
41  
August 18, 2016  
8V97053L Datasheet  
1
Table 12J. Register 7: 4-Bit Extra Bits of MOD Value. Function Description  
Function  
EXT_MOD  
0000  
Name  
Description  
Factory Default  
MOD  
Value  
Not Allowed  
0001  
Not Allowed  
0000 0000 0000  
0000 0000 0001  
1111 1111 1111  
0010  
2
. . . .  
. . . .  
15  
1111  
0000  
16  
ext_mod[4:1]  
EXT_MOD  
0000  
. . . .  
. . . .  
31  
1111  
. . . .  
0000  
65520  
. . . .  
. . . .  
1111  
65535  
NOTE 1. Bit D20 in Register 7 (16b_12b_SEL) is required to be set to 1 when using this table. If Bit D20 in Register 7 (16b_12b_SEL) is set  
to 0, refer to Table 6D, Page 25.  
1
Table 12K. Register 7: 4-Bit Extra Bits of FRAC Value. Function Description  
Function  
Name  
Description  
Factory Default  
FRAC  
EXT_FRAC  
0000  
0001  
. . . .  
Value  
0
1
0000 0000 0000  
. . . .  
15  
1111  
0000  
. . . .  
16  
ext_fdiv[4:1]  
EXT_FRAC  
0000  
0000 0000 0001  
. . . .  
31  
1111  
. . . .  
0000  
. . . .  
65520  
. . . .  
1111 1111 1111  
1111  
65535  
NOTE 1. Bit D20 in Register 7 (16b_12b_SEL) is required to be set to 1 when using this table. If Bit D20 in Register 7 (16b_12b_SEL) is set  
to 0, refer to Table 5C, Page 22.  
©2016 Integrated Device Technology, Inc.  
42  
August 18, 2016  
8V97053L Datasheet  
Table 12L. Register 7: 1-Bit SCLKE. Function Description  
Name  
Description  
Factory Default  
Function  
0 = Output Data in a Read Cycle on a Rising Edge of SCLK  
Sclke  
SCLKE  
1
1 = Output Data in a Read Cycle on a Falling Edge of  
SCLK  
1
Table 12M. Register 7: 1-Bit READBACK_ADDR. Function Description  
Name  
Description  
Function  
000 = Register 0  
001 = Register 1  
010 = Register 2  
011 = Register 3  
100 = Register 4  
101 = Register 5  
110 = Register 6  
111 = Register 7  
Rd_Addr[3:1]  
READBACK_ADDR  
NOTE 1. In order to Read a register, the user must write to Register 7 first and set the SPI_R_WN Bit to 1 (READ) and indicate the address  
of the register to read in the READBACK_ADDR Bit (Bits[D6:D4]).  
1
Table 12N. Register 7: 1-Bit SPI_R_WN. Function Description  
Name  
Description  
Factory Default  
Function  
0 = WRITE  
1 = READ  
SPI_R_WN  
SPI_R_WN  
0
NOTE 1. Writing this bit to a ‘1’ will allow the user to read back the register selected in READBACK_ADDR on the next 32 SCLK cycle. This  
bit will revert back to ‘0’ once it is written with ‘1’ and will not retain the ‘1’ value.  
1
Table 12O. Register 7: 3-Bit Control Bits. Function Description  
Name  
Description  
Function  
CB[3:1]  
CONTROL BITS  
111 = Register 7 is programmed  
NOTE 1. The user has to set CB[3:1] to 111 in order to write to Register 7.  
©2016 Integrated Device Technology, Inc.  
43  
August 18, 2016  
8V97053L Datasheet  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum  
Ratings may cause permanent damage to the device.   
These ratings are stress specifications only. Functional operation of  
product at these conditions or any conditions beyond   
those listed in the DC Characteristics or AC Characteristics is not  
implied. Exposure to absolute maximum rating conditions for   
extended periods may affect product reliability.  
Table 13. Absolute Maximum Ratings  
Item  
Rating  
3.63V  
3.63V  
Supply Voltage, VDDX  
Analog Supply Voltage, VDDA  
Input, VI  
REF_IN  
-0.5 to VDDA + 0.5V  
Other Inputs (MUTE, SDI, FLSW, VTUNE  
)
Outputs, VO  
-0.5 to VDDA + 0.5V  
-0.5 to VDDA + 0.5V  
RF_OUTA-B, nRF_OUTA-B  
Outputs, VO (SCLK, LD, nCS, MUX_OUT)  
Outputs, IO  
Continuous Current  
Surge Current  
40mA  
65mA  
Outputs, IO (SCLK, LD, nCS, MUX_OUT)  
Continuous Current  
8mA  
13mA  
Surge Current  
Junction Temperature, TJ  
Storage Temperature, TSTG  
125°C  
-65°C to 150°C  
NOTE: VDDX denotes VDDD, V_CP, VDD_SD, VVCO.  
©2016 Integrated Device Technology, Inc.  
44  
August 18, 2016  
8V97053L Datasheet  
DC Electrical Characteristics  
1 2 3  
Table 14A. Power Supply DC Characteristics, VDDX = VDDA = 3.3V ± 5%, TA = -40°C to +85°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
Maximum  
Units  
V
VDDX  
VDDA  
Core Supply Voltage  
3.3  
3.3  
95  
3.465  
3.465  
105  
Analog Supply Voltage  
Power Supply Current  
3.135  
V
4
IDDX  
mA  
RF_OUTA / nRF_OUTA - Active  
RF_OUTB / nRF_OUTB - Muted  
60  
80  
37  
75  
100  
45  
mA  
mA  
mA  
RF_OUTA / nRF_OUTA - Active  
RF_OUTB / nRF_OUTB - Active  
5
IDDA  
Analog Supply Current  
RF_OUTA / nRF_OUTA - Muted  
RF_OUTB / nRF_OUTB - Muted  
IVCO  
VCO Supply Current  
Power Down Mode  
60  
15  
mA  
mA  
20  
NOTE 1. VDDX denotes VDDD, V_CP, VDD_SD, VVCO.  
NOTE 2. RF Outputs Terminated 50to VDDA.  
NOTE 3. Output Power set to +2dBm.  
NOTE 4. IDDX denotes IDDD + I_CP + IDD_SD + IVCO.  
NOTE 5. IDDA is dependent on the value of the M0 output divider. The numbers indicated for IDDA show the current consumption when using  
the output divider M0 = 64, for which IDDA is higher than when using any other M0 divider value.  
1
Table 14B. Output Divider Incremental Current  
Parameter  
Test Conditions  
Divide by 2  
Minimum  
Typical  
8.0  
Maximum  
Units  
mA  
mA  
mA  
mA  
mA  
mA  
Divide by 4  
7.0  
Divide by 8  
1.5  
Output Divider Supply Current  
Divide by 16  
Divide by 32  
Divide by 64  
1.5  
1.5  
1.5  
NOTE 1. RF Output divider (÷MO) has an incremental increase in current as the divider value increases. This specification is the incremental  
current change per output divider step. For example, current of divide-by-2 is 8mA more than divide-by-1, current of divide-by-4 is  
7mA more than divide-by-2, and so on. The total increase from ÷1 to ÷64 is 8mA + 7mA + 1.5mA + 1.5mA + 1.5mA + 1.5mA = 21mA.  
©2016 Integrated Device Technology, Inc.  
45  
August 18, 2016  
8V97053L Datasheet  
1
Table 14C. Typical Current by Power Domain  
Pin Name  
V_CP  
Pin Number  
Typical Current  
Unit  
mA  
mA  
mA  
mA  
mA  
6
24  
15  
0.5  
6
VVCO  
16, 17  
28  
VDDD  
VDD_SD  
VDDA  
32  
10  
52  
NOTE 1. Operating conditions are:  
REF_IN = 25MHz  
INT = 100 (integer mode)  
RF Divider = ÷1  
RF_OUTA = RF_OUTB = 2.5GHz  
RFPOWER = -1dBm  
Charge Pump = 0.31mA  
1
Table 14D. LVCMOS DC Characteristics, VDDX = VDDA = 3.3V ± 5%, TA = -40°C to 85°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
1.8  
Typical  
Maximum  
Units  
V
MUTE, CE  
VDDx  
VDDx  
0.6  
VIH  
Input High Voltage  
Input Low Voltage  
Input High Current  
SDI, SCLK, nCS  
1.5  
V
VIL  
-0.3  
V
SDI, MUTE, CE  
SCLK, nCS  
VDDx = 3.465V, VIN = 1.8V  
VDDx = 3.465V, VIN = 1.8V  
5
µA  
µA  
µA  
µA  
V
IIH  
150  
SDI, MUTE, CE  
SCLK, nCS  
V
DDx = 3.465V, VIN = 0V  
DDx = 3.465V, VIN = 0V  
-150  
-5  
IIL  
Input Low Current  
V
VOH  
VOL  
Output High Voltage MUX_OUT, LD  
Output Low Voltage MUX_OUT, LD  
VDDx = 3.465V; IOH = -500µA  
VDDx = 3.465V; IOL = 500µA  
VDDX - 0.4  
0.4  
V
NOTE 1. VDDX denotes VDDD, V_CP, VDD_SD, VVCO.  
©2016 Integrated Device Technology, Inc.  
46  
August 18, 2016  
8V97053L Datasheet  
AC Electrical Characteristics  
1
Table 15A. AC Characteristics, VDDX = VDDA = 3.3V ± 5%, TA = -40°C to 85°C  
Symbol  
Parameter  
Test Conditions  
Ref Doubler Disabled  
Ref Doubler Enabled  
Biased at VDDA/23  
Minimum  
Typical  
Maximum  
Units  
MHz  
MHz  
V
5
5
310  
100  
REF_IN  
Input Reference Frequency2  
VPP  
Input Sensitivity  
VCO Frequency  
Output Frequency  
REF_IN  
0.7  
VDDA  
4400  
4400  
125  
fVCO  
Fundamental VCO Mode  
Divider Values: 1, 2, 4, 8, 16, 32, 64  
Fractional Mode  
2200  
34.375  
MHz  
MHz  
MHz  
MHz  
MHz/V  
fRF_OUT  
fPFD  
PFD Frequency  
Integer Mode  
310  
KVCO  
tLOCK  
VCO Sensitivity  
PLL Lock Time  
40  
Time from Low to High nCS until  
at Normal Mode, Low to High LD  
200  
µs  
-
-
-
Output Power Variation  
RF Output Power  
±1  
dB  
dBm  
V
Muted, (M0 1)  
80  
Min/Max VCO Tuning Voltage  
0.5 / 2.5  
NOTE 1. VDDX denotes VDDD, V_CP, VDD_SD, VVCO.  
NOTE 2. For REF_IN <10MHz, the slew rate must be >21V/µs.  
NOTE 3. AC-coupling the reference signal ensures VDDA/2 biasing.  
©2016 Integrated Device Technology, Inc.  
47  
August 18, 2016  
8V97053L Datasheet  
1 2  
Table 15B. RF_OUT  
Phase Noise and Jitter Characteristics, VDDX = VDDA = 3.3V ± 5%, T = -40°C to 85°C  
[A:B]  
A
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
f = 156.25MHz  
Integration Range: 12kHz - 20MHz  
220  
218  
166  
fs  
f = 2.05GHz  
Integration Range: 12kHz - 20MHz  
tjit(Ø)  
RMS Phase Jitter (Random)  
fs  
fs  
f = 1.76GHz  
Integration Range: 12kHz - 20MHz  
N(100k)  
N(800k)  
N(1M)  
N(5M)  
N(10M)  
N()  
100kHz Offset from Carrier  
800kHz Offset from Carrier  
1MHz Offset from Carrier  
5MHz Offset from Carrier  
10MHz Offset from Carrier  
Noise Floor (30MHz from Carrier)  
100kHz Offset from Carrier  
800kHz Offset from Carrier  
1MHz Offset from Carrier  
5MHz Offset from Carrier  
10MHz Offset from Carrier  
Noise Floor (30MHz from Carrier)  
100kHz Offset from Carrier  
800kHz Offset from Carrier  
1MHz Offset from Carrier  
5MHz Offset from Carrier  
10MHz Offset from Carrier  
Noise Floor (30MHz from Carrier)  
100kHz Offset from Carrier  
800kHz Offset from Carrier  
1MHz Offset from Carrier  
5MHz Offset from Carrier  
10MHz Offset from Carrier  
Noise Floor (30MHz from Carrier)  
100kHz Offset from Carrier  
800kHz Offset from Carrier  
1MHz Offset from Carrier  
5MHz Offset from Carrier  
10MHz Offset from Carrier  
Noise Floor (30MHz from Carrier)  
-122.76  
-146.18  
-147.80  
-155.36  
-156.50  
-157.31  
-114.07  
-136.57  
-138.67  
-151.50  
-154.42  
-155.93  
-114.30  
-139.19  
-141.38  
-152.70  
-154.39  
-155.79  
-108.48  
-131.19  
-133.38  
-147.77  
-152.47  
-155.77  
-103.22  
-127.59  
-129.92  
-145.39  
-150.27  
-153.72  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
RF Output  
Phase Noise Performance  
@ 745MHz (Open Loop)  
N(100k)  
N(800k)  
N(1M)  
N(5M)  
N(10M)  
N()  
RF Output  
Phase Noise Performance  
@ 1.1GHz (Open Loop)  
N(100k)  
N(800k)  
N(1M)  
N(5M)  
N(10M)  
N()  
RF Output  
Phase Noise Performance  
@ 1.65GHz (Open Loop)  
N(100k)  
N(800k)  
N(1M)  
N(5M)  
N(10M)  
N()  
RF Output  
Phase Noise Performance  
@ 2.3GHz (Open Loop)  
N(100k)  
N(800k)  
N(1M)  
N(5M)  
N(10M)  
N()  
RF Output  
Phase Noise Performance  
@ 3.8GHz (Open Loop)  
©2016 Integrated Device Technology, Inc.  
48  
August 18, 2016  
8V97053L Datasheet  
1 2  
Table 15B. RF_OUT  
Phase Noise and Jitter Characteristics, VDDX = VDDA = 3.3V ± 5%, T = -40°C to 85°C  
[A:B]  
A
Symbol  
N(100k)  
N(800k)  
N(1M)  
N(5M)  
N(10M)  
N()  
Parameter  
Test Conditions  
100kHz Offset from Carrier  
800kHz Offset from Carrier  
1MHz Offset from Carrier  
5MHz Offset from Carrier  
10MHz Offset from Carrier  
Noise Floor (30MHz from Carrier)  
Minimum  
Typical  
Maximum  
Units  
-100.26  
-125.80  
-128.17  
-143.81  
-148.47  
-153.01  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
RF Output  
Phase Noise Performance  
@ 4.4GHz (Open Loop)  
Spurious Signals  
Due to PFD Frequency  
fPFD = 50MHz;  
RF_OUTA = 2.2GHz  
-
-74  
dBc  
RF Output Phase Noise  
Performance @ 745MHz  
(Open Loop)  
N(100k)  
100kHz Offset from Carrier  
-106.75  
dBc/Hz  
NOTE 1. VDDX denotes VDDD, V_CP, VDD_SD, VVCO.  
NOTE 2. RF_OUT[A:B] output power setting = +2dBm.  
©2016 Integrated Device Technology, Inc.  
49  
August 18, 2016  
8V97053L Datasheet  
Phase Noise (Closed-Loop) at 156.25MHz (3.3V)  
Offset Frequency (Hz)  
Phase Noise (Closed-Loop) at 1.76GHz (3.3V)  
Offset Frequency (Hz)  
©2016 Integrated Device Technology, Inc.  
50  
August 18, 2016  
8V97053L Datasheet  
Phase Noise (Closed-Loop) at 2.05GHz (3.3V)  
Offset Frequency (Hz)  
Phase Noise (Open-Loop) at 745MHz (3.3V)  
Offset Frequency (Hz)  
©2016 Integrated Device Technology, Inc.  
51  
August 18, 2016  
8V97053L Datasheet  
Phase Noise Performance (Open-Loop) at 1.1GHz (3.3V)  
Offset Frequency (Hz)  
Phase Noise Performance (Open-Loop) at 1.65GHz (3.3V)  
Offset Frequency (Hz)  
©2016 Integrated Device Technology, Inc.  
52  
August 18, 2016  
8V97053L Datasheet  
Phase Noise Performance (Open-Loop) at 2.3GHz (3.3V)  
Offset Frequency (Hz)  
Phase Noise Performance (Open-Loop) at 3.8GHz (3.3V)  
Offset Frequency (Hz)  
©2016 Integrated Device Technology, Inc.  
53  
August 18, 2016  
8V97053L Datasheet  
Phase Noise Performance (Open-Loop) at 4.4GHz (3.3V)  
Offset Frequency (Hz)  
©2016 Integrated Device Technology, Inc.  
54  
August 18, 2016  
8V97053L Datasheet  
Applications Information  
Loop Filter Calculations  
nd  
2
Order Loop Filter  
This section helps design a 2nd order loop filter for the 8V97053L. A general 2nd order loop filter is shown in Figure 11, Typical 2nd Order Loop  
Filter. Step-by-step calculations to determine Rz, Cz and Cp values for a desired loop bandwidth are described below. Required parameters  
are provided. A spreadsheet for calculating the loop filter values is also available.  
RZ  
Cp  
CZ  
Figure 11. Typical 2nd Order Loop Filter  
1. Determine desired loop bandwidth fc.  
2. Calculate Rz:  
2**fc* N  
Rz   
Icp* Kvco  
Where,  
Icp is charge pump current. Icp is programmable from 310µA to 5mA.  
N is effective feedback divider. N must be programmed into the following value.  
Fvco  
N   
Fpd  
FVCO is VCO frequency.   
VCO frequency range: 2200MHz to 4400MHz  
Fpd is phase detector input frequency.  
F _ ref  
Fpd   
Pv  
F_ref is reference clock (REF_IN) input frequency.  
Pv is overall pre-divider setting.  
Kvco is VCO gain. Kvco = 40MHz/V  
©2016 Integrated Device Technology, Inc.  
55  
August 18, 2016  
8V97053L Datasheet  
3. Calculate Cz:  
Cz   
2** fc* Rz  
Where,  
= fc/ fz, user can determine an number.   
> 6 is recommended.  
fz is frequency at zero.  
4. Calculate Cp:  
Cz  
Cp   
*   
Where,  
= fp/fc, user can determine number.   
> 4 is recommended.  
fp is frequency at pole.  
5. Verify Phase Margin (PM)  
Where,  
Cz  
b 1  
Cp  
The phase margin (PM) should be greater than 50°.  
A spreadsheet for calculating the loop filter component values is available at www.IDT.com. To use the spreadsheet, the user simply enters the  
following parameters:  
fc, F_ref, PV, Icp, FVCO, and .  
The spreadsheet will provide the component values, Rz, Cz and Cp as the result. The spreadsheet also calculates the maximum phase margin  
for verification.  
©2016 Integrated Device Technology, Inc.  
56  
August 18, 2016  
8V97053L Datasheet  
3rd Order Loop Filter  
This section helps design a 3rd order loop filter for the 8V97053L. A general 3rd order loop filter is shown in Figure 12, Typical 3rd Order Loop Filter  
.
RP2  
RZ  
CP2  
C
Cp  
P
C
Z
rd  
Figure 12. Typical 3 Order Loop Filter  
The Rz, Cz and Cp can be calculated as 2nd order loop filter.   
The following equation help determine the 3rd order loop filter Rp2 and Cp2.  
Pick an Rp2 value. Rp2 ~ 1.5xRz is suggested.  
Where,  
is ratio between the 1st pole frequency and the 2nd pole frequency. > 4 is recommended.  
Recommendations for Unused Input and Output Pins  
Inputs:  
LVCMOS Control Pins  
All control pins have internal pullup and pulldown resistors; additional resistance is not required but can be added for additional protection. A  
1kresistor can be used.  
Outputs:  
Output Pins  
For any unused output, it can be left floating and disabled.  
©2016 Integrated Device Technology, Inc.  
57  
August 18, 2016  
8V97053L Datasheet  
Schematic Example  
Figure 13A and Figure 13B show general application schematic examples for the 8V97053L.  
For power rails, bypass capacitors must be provided to all power supply pins. Suggest at least one bypass capacitor per power pin. Value can  
be ranged from 0.01uF or 0.1uF. Mix values of bypass capacitor can help filtering wider range of power supply noise.  
The 8V97053L input is high impedance. The input termination depends on the driver type termination requirements. In these examples, the  
8V97053L REF_IN input is terminated with a matched load termination. For transmission line with characteristic impedance Zo = 50, the  
termination resistor R8 is 50. The input is self biased to proper DC offset after the AC coupling.  
The loop filter values can be calculated to meet the loop bandwidth requirement. Please refer to the section, "Loop Filter Calculations" for  
detailed calculations. For fast lock mode, the loop filter can be configured as Fast Lock Loop Filter Option 1 or Fast Lock Loop Filter Option 2  
shown in Figure 13A.  
Fast Lock Loop Filter Option 1 is Parallel Resistor Configuration. For normal operating mode, only R5 is active and R5 = Rs, where Rs is the  
resistor value for normal operating mode loop bandwidth. In fast lock mode, the combination of R4 in parallel with R5 is active. For example,  
in normal operation mode, if the charge pump current is set at 0000 (ICP = 310uA), then, in fast lock mode, the loop bandwidth is set larger by  
increasing the charge pump current to ICP~5mA (ICP setting = 1111 or 16 times the normal charge pump current). The combination of the R4  
and R5 in parallel is 1/4 * Rs.  
Fast Lock Loop Filter Option 2 is Series Resistor Configuration.   
For normal operating mode, both R6 and R7 are active and   
R6 + R7 = Rs. For fast lock mode, only R6 is active. For example, in normal operation mode, if the charge pump current is set at 0000 (ICP =  
310uA), then, in fast lock mode, the loop bandwidth is set larger by increasing the charge pump current to ICP~5mA (ICP setting = 1111 or 16  
times the normal charge pump current).   
The sum of R6 and R7 equals to Rs, i.e. R6 + R7 = Rs.   
R6 = 1/4 * Rs and R7 = 3/4 * Rs.  
The 8V97053L output pull-up loading can be resistors or inductors. The pull up resistor value is typically 50. Resistor pull up loading covers  
wide range of output frequencies. For inductor pull up loading, the inductor value is frequency dependent. One inductor value cannot cover all  
the output frequency range. This example shows the L = 3.9nF that is suitable for approximately 2GHz operating frequency. The output can  
also drive single ended LO input. Figure 13B shows an example of the 8V97053L output driving single ended LO input of the mixer through an  
LC balun. The LC balun component values are frequency dependent. These values can be adjusted to optimize the performance. Single ended  
LO receiver input also can tap to one side of the differential driver using resistor loading or inductor loading. For single ended LO input, both  
sides of the differential driver still need to be loaded with pull up. The output power level can also be adjusted further through programming.  
©2016 Integrated Device Technology, Inc.  
58  
August 18, 2016  
8V97053L Datasheet  
Inductor Loading  
C1  
C2  
C3  
C6  
1u  
VDD  
C4  
C5  
10u  
0.1u  
0.1u  
0.1u  
10u  
R1  
4.7k  
V_vco  
L2  
3.9n  
L1  
3.9n  
Resistor Loading  
nREF_OUTA  
REF_OUTA  
VDD  
VDD  
R2  
50  
R1  
50  
25  
26  
27  
28  
29  
30  
31  
32  
16  
VDD  
LD  
VVCO  
nRF_OUTB  
RF_OUTB  
nRF_OUTA  
RF_OUTA  
GNDA_VCO  
VDDA  
15  
14  
13  
12  
11  
10  
9
C7  
1n  
C8  
1n  
MUTE  
Zdiff=100  
GNDD  
VDDD  
REF_IN  
MUX_OUT  
GND_SD  
VDD_SD  
nREF_OUTA  
REF_OUTA  
C9  
1n  
RF Mixer  
LO input  
Zo = 50  
R8  
50  
RF IN  
GNDA  
C10  
33  
E_PAD  
1n  
Zo = 50  
U1  
VDD  
CP_OUT  
VTUNE  
SPI Compatible Serial Bus  
C11  
R5  
R3  
C12  
C13  
Loop Filter  
All power supply pins require Bypass capacitors  
without Fast Lock  
Fast Lock Loop Filter Options 2  
R3  
Fast Lock Loop Filter Options 1  
CP_OUT  
C11  
VTUNE  
R3  
CP_OUT  
VTUNE  
C13  
C11  
R6  
R4  
FLSW  
FLSW  
C12  
R5  
C12  
C13  
R7  
Figure 13A. An 8V97053L General Application Schematic Example  
©2016 Integrated Device Technology, Inc.  
59  
August 18, 2016  
8V97053L Datasheet  
Resistor Loading  
Inductor Loading  
VDD  
VDD  
R2  
50  
R1  
50  
L2  
L1  
3.9n  
3.9n  
C1  
C2  
nREF_OUTA  
REF_OUTA  
C3  
C6  
1u  
nREF_OUTA  
REF_OUTA  
C4  
C5  
10u  
0.1u  
C9  
0.1u  
C9  
0.1u  
10u  
R1  
4.7k  
V_v co  
VDD  
RF to IF Dual Down  
converter Mixer  
VDD  
L2  
L1  
RFin_A  
IFout_A  
25  
26  
27  
28  
29  
30  
31  
32  
16  
LD  
VVCO  
nRF_OUTB  
RF_OUTB  
nRF_OUTA  
RF_OUTA  
GNDA_VCO  
VDDA  
15  
14  
13  
12  
11  
10  
9
C7  
1n  
C8  
1n  
VDD  
MUTE  
C9  
IDT F1100  
IDT F1102  
IDT F1150  
IDT F1152  
IDT F1160  
IDT F1178  
GNDD  
VDDD  
REF_IN  
MUX_OUT  
GND_SD  
VDD_SD  
LO input  
Zo = 50  
C14  
RF IN  
R8  
50  
GNDA  
L3  
33  
E_PAD  
C15  
U1  
RFin_B  
IFout_B  
VDD  
R3  
VTUNE  
C13  
SPI Compatible Serial Bus  
C11  
R5  
R4  
Optional  
C12  
All power supply pins require Bypass capacitors  
Figure 13B. Schematic Example for Driving Single Ended Mixer  
©2016 Integrated Device Technology, Inc.  
60  
August 18, 2016  
8V97053L Datasheet  
Power Considerations  
The 8V97053L device was designed and characterized to operate within the ambient industrial temperature range of -40°C to +85°C. The  
ambient temperature represents the temperature around the device, not the junction temperature. When using the device in extreme cases,  
such as maximum operating frequency and high ambient temperature, external air flow may be required in order to ensure a safe and reliable  
junction temperature. Extreme care must be taken to avoid exceeding 125°C junction temperature. The power calculation example below was  
generated using a typical configuration. For many applications, the power consumption can vary depending on configuration. Please contact  
IDT technical support for any concerns on calculating the power dissipation for your own specific configuration.  
Example 1: VCO Frequency Range = 1991MHz to 2846MHz  
1. Power Dissipation.  
The total power dissipation for the 8V97053L is the sum of the core power plus the power dissipation in the output driver.   
The following is the power dissipation for VDD = 3.465V, which gives worse case results.  
Power (core)MAX = VDD_MAX * (IDDA + IVCO + ICP + IDD_SD + IDDD MAX  
)
= VDD_MAX * (IDDA + IDDX)MAX =   
3.465V * (100mA + 105) = 710.33mW  
Total Power (with two outputs active at 2dBm output power level) = 710.33mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad, and directly affects the reliability of the device. The  
maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond  
wire and bond pad temperature remains below 125°C.  
The equation for Tj is as follows: Tj = JA * Pd_total + TA  
Tj = Junction Temperature  
JA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance JA must be used. Assuming no air flow and  
a multi-layer board, the appropriate value is 34.34°C/W per Table 16 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs active is:  
85°C + 0.710W * 34.34°C/W = 109.39°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of  
board (multi-layer).  
Table 16. Thermal Resistance JA for 32 Lead VFQFN, Forced Convection  
JA by Velocity  
0
Meters per Second  
1
2
Multi-Layer PCB, JEDEC Standard Test Boards  
34.34°C/W  
30.7°C/W  
29.12°C/W  
©2016 Integrated Device Technology, Inc.  
61  
August 18, 2016  
8V97053L Datasheet  
Example 2: VCO Frequency Range = 2590MHz to 3624MHz  
1. Power Dissipation.  
The total power dissipation for the 8V97053L is the sum of the core power plus the power dissipation in the output driver.   
The following is the power dissipation for VDD = 3.465V, which gives worse case results.  
Power (core)MAX = VDD_MAX * (IDDA + IVCO + ICP + IDD_SD + IDDD MAX  
)
= VDD_MAX * (IDDA + IDDX)MAX =   
3.465V * (90mA + 95mA) = 640mW  
Total Power (with two outputs active at 2dBm output power level) = 640mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad, and directly affects the reliability of the device. The  
maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond  
wire and bond pad temperature remains below 125°C.  
The equation for Tj is as follows: Tj = JA * Pd_total + TA  
Tj = Junction Temperature  
JA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance JA must be used. Assuming no air flow and  
a multi-layer board, the appropriate value is 34.34°C/W per Table 16.  
Therefore, Tj for an ambient temperature of 85°C with all outputs active is:  
85°C + 0.640W * 34.34°C/W = 107°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of  
board (multi-layer).  
©2016 Integrated Device Technology, Inc.  
62  
August 18, 2016  
8V97053L Datasheet  
Reliability Information  
Table 17A. JA vs. Air Flow Table for a 32 lead VFQFN  
JA vs. Air Flow  
Meters per Second  
0
1
2
Multi-Layer PCB, JEDEC Standard Test Boards  
34.34°C/W  
30.7°C/W  
29.12°C/W  
Table 17B. JB vs. Air Flow Table for a 32 lead VFQFN  
JB vs. Air Flow  
Meters per Second  
0
Multi-Layer PCB, JEDEC Standard Test Boards  
0.472°C/W  
NOTE: JB is independent of airflow.  
Transistor Count  
The 8V97053L transistor count is: 404,777  
©2016 Integrated Device Technology, Inc.  
63  
August 18, 2016  
8V97053L Datasheet  
32-Lead VFQFN Package Outline and Package Dimensions  
©2016 Integrated Device Technology, Inc.  
64  
August 18, 2016  
8V97053L Datasheet  
32-Lead VFQFN Package Outline and Package Dimensions (Continued)  
©2016 Integrated Device Technology, Inc.  
65  
August 18, 2016  
8V97053L Datasheet  
Ordering Information  
Table 18. Ordering Information  
Part/Order Number  
8V97053LNLGI  
Marking  
Package  
Shipping Packaging  
Tray  
Temperature  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
IDT8V97053LNLGI  
IDT8V97053LNLGI  
IDT8V97053LNLGI  
32-lead VFQFN, Lead Free  
32-lead VFQFN, Lead Free  
32-lead VFQFN, Lead Free  
8V97053LNLGI8  
8V97053LNLGI/W  
Tape & Reel  
Tape & Reel  
Table 19. Pin 1 Orientation in Tape and Reel Packaging  
Part Number Suffix  
Pin 1 Orientation  
Illustration  
CARRIER TAPE TOPSIDE  
(Round Sprocket Holes)  
Correct Pin 1 ORIENTATION  
NLGI8  
Quadrant 1 (EIA-481-C)  
USER DIRECTION OF FEED  
Correct Pin 1 ORIENTATION  
CARRIER TAPE TOPSIDE  
(Round Sprocket Holes)  
NLGI/W  
Quadrant 2 (EIA-481-D)  
USER DIRECTION OF FEED  
©2016 Integrated Device Technology, Inc.  
66  
August 18, 2016  
8V97053L Datasheet  
Revision History  
Revision Date  
Description of Change  
This is the first release of the 8V97053L Datasheet.  
August 18, 2016  
©2016 Integrated Device Technology, Inc.  
67  
August 18, 2016  
Corporate Headquarters  
6024 Silver Creek Valley Road  
San Jose, CA 95138 USA  
Sales  
Tech Support  
email: clocks@idt.com  
1-800-345-7015 or 408-284-8200  
Fax: 408-284-2775  
www.IDT.com  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in  
this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined  
in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether  
express or implied, including, but not limited to, the suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This  
document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably  
expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or  
other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications, such as  
those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any  
circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Product specification subject to change without notice. Other trademarks and service marks used herein, including protected  
names, logos and designs, are the property of IDT or their respective third party owners.  
Copyright ©2016 Integrated Device Technology, Inc. All rights reserved.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY