8V19N478BDGI [IDT]

FemtoClock NG Jit ter At tenuator and Clock Synthesizer;
8V19N478BDGI
型号: 8V19N478BDGI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

FemtoClock NG Jit ter At tenuator and Clock Synthesizer

文件: 总70页 (文件大小:1217K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
FemtoClock NG Jitter Attenuator  
8V19N478  
Datasheet  
and Clock Synthesizer  
Description  
Features  
High-performance clock RF-PLL:  
The 8V19N478 is a fully integrated FemtoClock NG jitter  
attenuator and clock synthesizer designed as a high-performance  
clock solution for conditioning and frequency/phase management  
of 10/40/100/400 Gigabit-Ethernet line cards. The device is  
optimized to deliver excellent phase noise performance as  
required to drive physical layer devices, and provides the clean  
clock frequencies of 625MHz, 500MHz, 312.5MHz, 250MHz,  
156.25MHz, and 125MHz.  
Optimized for low phase noise: -157.7dBc/Hz (1MHz offset;  
156.25MHz clock), design target  
Integrated phase noise, RMS (12kHz–20MHz): 73fs  
(typical), design target  
Dual-PLL architecture:  
1st-PLL stage with external VCXO for clock jitter attenuation  
2nd-PLL stage with internal FemtoClock NG PLL at  
A two-stage PLL architecture supports both jitter attenuation and  
frequency multiplication. The first stage PLL is the jitter attenuator,  
and uses an external VCXO for best possible phase noise  
characteristics. The second stage PLL locks on the VCXO-PLL  
output signal, and synthesizes the target frequency. This PLL has  
a VCO circuit at 2500MHz.  
2500MHz  
Four output banks with a total of 18 outputs, organized in:  
Three clock banks with one integer frequency divider and  
four differential outputs  
One clock bank with one fractional divider and six  
differential outputs  
The 8V19N478 generates the output clock signals from the VCO  
by frequency division. Four independent frequency dividers are  
available; three support integer-divider ratios, and one integer as  
well as fractional-divider ratios. Delay circuits can be used for  
achieving alignment and controlled phase delay between clock  
signals. The two redundant inputs are monitored for activity. Four  
selectable clock switching modes are provided to handle clock  
input failure scenarios. Auto-lock, individually programmable  
output frequency dividers, and phase adjustment capabilities are  
added for flexibility.  
One VCXO-PLL output bank with one selectable LVDS and  
two LVCMOS outputs  
Four output banks contain a phase delay circuit with steps of  
the VCO clock period (400ps)  
Supported clock output frequencies include:  
From the integer dividers: 2500MHz, 1250MHz, 625MHz,  
500MHz, 312.5MHz, 250MHz, 156.25MHz, and 125MHz  
From the fractional divider: 80–300MHz  
Low-power LVPECL and LVDS outputs support configurable  
signal amplitude, DC and AC coupling, and LVPECL, LVDS,  
and line termination techniques  
The device is configured through an I2C interface and reports lock  
and signal loss status in internal registers and via a lock detect  
(LOCK) output. Internal status bit changes can also be reported  
via the nINT output. The device is ideal for driving converter  
circuits in wireless infrastructure, radar/imaging, and  
Redundant input clock architecture:  
Two inputs  
Individual input signal monitor  
Digital holdover  
instrumentation/medical applications. The device is a member of  
the high-performance clock family from IDT.  
Manual and automatic clock selection  
Hitless switching  
Status monitoring and fault reporting:  
Typical Applications  
Sub 70fs – low phase noise clock generation  
10/40/100 Gigabit-Ethernet line cards  
Wireless Infrastructure  
Input signal status  
Hold-over and reference loss status  
Lock status with one status pin  
Mask-able status interrupt pin  
Voltage supply:  
Reference clock for ADC and DAC circuits  
Radar and Imaging  
Instrumentation and Medical  
Device core supply voltage: 3.3V  
Output supply voltage: 3.3V, 2.5V, or 1.8V  
I/O voltage: 1.8V or 3.3V (selectable), and 3.3V tolerant  
inputs when set to 1.8V  
Package: 11 11 1 mm ball pitch 100-FPBGA  
Temperature range: -40°C to +85°C  
©2018 Integrated Device Technology, Inc  
1
May 15, 2018  
 
 
 
8V19N478 Datasheet  
Contents  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Principles of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Phase-Locked Loop Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Frequency Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
VCXO-PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
FemtoClock NG PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Channel Frequency Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Redundant Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Input Re-Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Holdover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Manual Holdover Control (nHO_EN = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Automatic with Holdover (nHO_EN = 1, nM/A[1:0] = 11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Hold-off Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Revertive Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
VCXO-PLL Lock Detect (LOLV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
FemtoClock NG Loss-of-lock (LOLF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Differential Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Output Phase-Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Status Conditions and Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Serial Control Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Serial Control Port Configuration Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
I2C Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Device Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
PLL Frequency Divider Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
PLL Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Input Selection Mode Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Output Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
General Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Pin Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Clock Phase Noise Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Applications Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
VCXO-PLL Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
©2018 Integrated Device Technology, Inc  
2
May 15, 2018  
8V19N478 Datasheet  
Step-by-step Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
FemtoClock NG PLL Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Output Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
LVPECL-style Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
LVDS-Style Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Power Supply Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Temperature Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Package Outline Drawings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Marking Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
©2018 Integrated Device Technology, Inc  
3
May 15, 2018  
8V19N478 Datasheet  
Block Diagram  
VCXO-PLL  
Loop Filter  
VDD_LCF  
RZ  
CZ  
4.7µF  
CP  
CLK_0  
nCLK_0  
8V19N478  
Clock  
Monitor  
and  
Selector  
CR  
÷PV  
÷MV  
BYPV  
CLK_1  
nCLK_1  
FDF  
OSC  
nOSC  
÷PF  
x2  
PFD  
CP  
LFV  
PFD  
CP  
EXT_SEL  
fVCO  
2400-2500MHz  
LFF  
CPF  
Dual FemtoClockNG  
CZF  
RZF  
FemtoClock NG  
PLL Loop Filter  
÷MF  
Holdover  
SRC  
0
1
LFFR  
QCLK_V  
nQCLK_V  
VCXO-PLL Channel  
QCLK_A[0:3]  
nQCLK_A[0:3]  
÷NA  
(int)  
CLKA  
QCLK_B[0:3]  
nQCLK_B[0:3]  
÷NB  
(int)  
CLKB  
CLKC  
CLKD  
RES_CAL  
2.8k  
QCLK_C[0:3]  
nQCLK_C[0:3]  
÷NC  
(int)  
QCLK_D[0:5]  
nQCLK_D[0:5]  
÷ND  
(frac)  
ADR0  
ADR1  
ADR2  
ADR3  
SCL  
nINT  
I2C  
1.8V/3.3V  
LOCK  
Register  
File  
SDAT  
I2C_A  
©2018 Integrated Device Technology, Inc  
4
May 15, 2018  
 
8V19N478 Datasheet  
Pin Assignments  
Figure 1. Pin Assignments for 11 11 1 mm, 100-FPBGA Package (Bottom View )  
nQCLK  
_A0  
QCLK  
_A0  
QCLK  
_D0  
QCLK  
_D1  
QCLK  
_D2  
A
B
C
D
E
F
RES-CAL  
EXT_SEL  
GND  
VDD_CPV  
LFV  
nOSC  
OSC  
nQCLK_V  
QCLK_V  
nINT  
VDD_OSC  
I2C_A  
VDD_I2C  
SDAT  
SCL  
nQCLK  
_A1  
nQCLK  
_D0  
nQCLK  
_D1  
nQCLK  
_D2  
QCLK_A1  
nQCLK  
_A2  
QCLK  
_A2  
QCLK  
_D3  
QCLK  
_D4  
VDD_INP  
CLK_0  
nCLK_0  
GND  
LOCK  
CLK_1  
nCLK_1  
GND  
GND  
GND  
GND  
GND  
nQCLK  
_A3  
QCLK  
_A3  
nQCLK  
_D3  
nQCLK  
_D4  
GND  
ADR3  
VDDO  
_QCLKA  
VDD  
_QCLKA  
nQCLK  
_D5  
QCLK  
_D5  
GND  
ADR2  
VDD  
_QCLKD  
VDDO  
_QCLKD  
GND  
GND  
GND  
ADR1  
ADR0  
GND  
nQCLK  
_B0  
QCLK  
_B0  
VDD  
_QCLKB  
VDD  
_QCLKC  
G
H
J
VDD_CPF  
GND  
GND  
GND  
GND  
GND  
nQCLK  
_B1  
QCLK  
_B1  
VDDO  
_QCLKB  
VDDO  
_QCLKC  
QCLK  
_C0  
nQCLK  
_C0  
CLDO  
CR  
CBIAS  
VDD_LCV  
GND  
nQCLK  
_B2  
QCLK  
_B2  
nQCLK  
_C3  
QCLK  
_C1  
nQCLK  
_C1  
GND  
GND  
GND  
nQCLK  
_B3  
QCLK  
_B3  
QCLK  
_C3  
QCLK  
_C2  
nQCLK  
_C2  
K
GND  
LFF  
LFFR  
VDD_LCF  
GND  
10  
9
8
7
6
5
4
3
2
1
©2018 Integrated Device Technology, Inc  
5
May 15, 2018  
8V19N478 Datasheet  
Pin Descriptions  
[a]  
Table 1. Pin Descriptions  
[b]  
Ball  
Name  
Type  
Description  
A10  
A9  
A8  
A7  
A6  
nQCLK_A0  
QCLK_A0  
RES_CAL  
Output  
Output  
Analog  
Power  
Differential clock output A0 (Channel A). Configurable LVPECL, LVDS style and  
amplitude. Output levels are determined by the V supply voltage.  
DDO_QCLKA  
Connect a 2.8k(1%) resistor to GND for output current calibration.  
V
Positive supply voltage (3.3V) for internal VCXO_PLL circuits.  
DD_CPV  
nOSC  
Input (PD/ PU)  
VCXO non-inverting and inverting differential clock input. Compatible with LVPECL,  
LVDS and LVCMOS signals.  
A5  
nQCLK_V  
Output  
Differential VCXO-PLL clock outputs. Selectable LVPECL, LVDS (2x LVCMOS 1.8V)  
style.  
A4  
A3  
V
Power  
Output  
Positive supply voltage (3.3V) for the VCXO input.  
DD_OSC  
QCLK_D0  
QCLK_D1  
QCLK_D2  
Differential clock output D0 (Channel D). Configurable LVPECL, LVDS style and  
amplitude. Output levels are determined by the V  
supply voltage.  
DDO_QCLKD  
A2  
A1  
Output  
Output  
Differential clock output D1 (Channel D). Configurable LVPECL, LVDS style and  
amplitude. Output levels are determined by the V supply voltage.  
DDO_QCLKD  
Differential clock output D2 (Channel D). Configurable LVPECL, LVDS style and  
amplitude. Output levels are determined by the V supply voltage.  
DDO_QCLKD  
B10  
B9  
B8  
B7  
B6  
nQCLK_A1  
QCLK_A1  
EXT_SEL  
LFV  
Output  
Output  
Differential clock output A1 (Channel A). Configurable LVPECL, LVDS style and  
amplitude. Output levels are determined by the V supply voltage.  
DDO_QCLKA  
Input (PD)  
Output  
Clock reference select. 1.8V interface levels with hysteresis and 3.3V tolerance.  
VCXO-PLL charge-pump output. Connect to the loop filter for the external VCXO.  
OSC  
Input (PD)  
VCXO non-inverting and inverting differential clock input. Compatible with LVPECL,  
LVDS and LVCMOS signals.  
B5  
QCLK_V  
Output  
Differential VCXO-PLL clock outputs. Selectable LVPECL, LVDS/(2x LVCMOS 1.8V)  
style.  
2
B4  
B3  
I2C_A  
Input (PD/ PU)  
Output  
Serial Interface I C addresses. Three-level signals (see Table 15).  
nQCLK_D0  
Differential clock output D0 (Channel D). Configurable LVPECL, LVDS style and  
amplitude. Output levels are determined by the V  
supply voltage.  
DDO_QCLKD  
B2  
B1  
nQCLK_D1  
nQCLK_D2  
Output  
Output  
Differential clock output D1 (Channel D). Configurable LVPECL, LVDS style and  
amplitude. Output levels are determined by the V supply voltage.  
DDO_QCLKD  
Differential clock output D2 (Channel D). Configurable LVPECL, LVDS style and  
amplitude. Output levels are determined by the V supply voltage.  
DDO_QCLKD  
C10  
C9  
C8  
C7  
C6  
nQCLK_A2  
QCLK_A2  
GND  
Output  
Output  
Power  
Power  
Output  
Differential clock output A2 (Channel A). Configurable LVPECL, LVDS style and  
amplitude. Output levels are determined by the V supply voltage.  
DDO_QCLKA  
Ground supply voltage (GND) and ground return path. Connect to board GND (0V).  
Positive supply voltage (3.3V) for the differential inputs (CLK[1:0]).  
V
DD_INP  
LOCK  
PLL lock detect status output for both PLLs. Selectable 1.8V/3.3V LVCMOS/LVTTL  
interface levels.  
C5  
nINT  
Output  
Status output pin for signaling internal changed conditions. Selectable 1.8V/3.3V  
LVCMOS/LVTTL interface levels.  
©2018 Integrated Device Technology, Inc  
6
May 15, 2018  
8V19N478 Datasheet  
Table 1. Pin Descriptions (Cont.)[a]  
[b]  
Ball  
Name  
Type  
Description  
Positive supply voltage (3.3V) for I2C_A.  
C4  
C3  
C2  
V
Power  
Power  
Output  
DD_I2C  
GND  
Ground supply voltage (GND) and ground return path. Connect to board GND (0V).  
Differential clock output D3 (Channel D). Configurable LVPECL, LVDS style and  
QCLK_D3  
amplitude. Output levels are determined by the V  
supply voltage.  
DDO_QCLKD  
C1  
QCLK_D4  
Output  
Differential clock output D4 (Channel D). Configurable LVPECL, LVDS style and  
amplitude. Output levels are determined by the V supply voltage.  
DDO_QCLKD  
D10  
D9  
nQCLK_A3  
QCLK_A3  
GND  
Output  
Output  
Differential clock output A3 (Channel A). Configurable LVPECL, LVDS style and  
amplitude. Output levels are determined by the V supply voltage.  
DDO_QCLKA  
D8  
Power  
Ground supply voltage (GND) and ground return path. Connect to board GND (0V).  
Device clock 0 inverting and non-inverting differential clock input. Inverting input is  
D7  
CLK_0  
Input (PD)  
biased to V  
/2 by default when left floating. Compatible with LVPECL, LVDS and  
DD_V  
LVCMOS signals.  
D6  
CLK_1  
Input (PD)  
Device clock 1 inverting and non-inverting differential clock input. Inverting input is  
biased to V  
/2 by default when left floating. Compatible with LVPECL, LVDS and  
DD_V  
LVCMOS signals.  
D5  
D4  
D3  
D2  
ADR3  
SDAT  
Input (PU/PD)  
I/O (PU)  
Power  
Device mode selection (see Table 12).  
2
I C data input/output. 1.8V interface levels with hysteresis and 3.3V tolerance  
GND  
Ground supply voltage (GND) and ground return path. Connect to board GND (0V).  
nQCLK_D3  
Output  
Differential clock output D3 (Channel D). Configurable LVPECL, LVDS style and  
amplitude. Output levels are determined by the V  
supply voltage.  
DDO_QCLKD  
D1  
nQCLK_D4  
Output  
Differential clock output D4 (Channel D). Configurable LVPECL, LVDS style and  
amplitude. Output levels are determined by the V supply voltage.  
DDO_QCLKD  
E10  
E9  
V
Power  
Power  
Output power supply voltage (3.3V, 2.5V or 1.8V) for the QCLK_A[3:0] outputs.  
Positive supply voltage (3.3V) for Channel A.  
DDO_QCLKA  
V
DD_QCLKA  
E8  
GND  
Power  
Ground supply voltage (GND) and ground return path. Connect to board GND (0V).  
Device clock 0 inverting and non-inverting differential clock input. Inverting input is  
E7  
nCLK_0  
nCLK_1  
Input (PD/ PU)  
biased to V  
/2 by default when left floating. Compatible with LVPECL, LVDS and  
DD_V  
LVCMOS signals.  
E6  
Input (PD/ PU)  
Device clock 1 inverting and non-inverting differential clock input. Inverting input is  
biased to V  
/2 by default when left floating. Compatible with LVPECL, LVDS and  
DD_V  
LVCMOS signals.  
E5  
E4  
E3  
E2  
E1  
F10  
F9  
ADR2  
SCL  
Input (PD/ PU)  
Input (PU)  
Power  
Control input for output Bank D. 3-level signal (see Table 12 and Table 14).  
2
I C clock input. 1.8V interface levels with hysteresis and 3.3V tolerance.  
GND  
Ground supply voltage (GND) and ground return path. Connect to board GND (0V).  
nQCLK_D5  
QCLK_D5  
GND  
Output  
Differential clock output D5 (Channel D). Configurable LVPECL, LVDS style and  
amplitude. Output levels are determined by the V  
supply voltage.  
DDO_QCLKD  
Output  
Power  
Ground supply voltage (GND) and ground return path. Connect to board GND (0V).  
Ground supply voltage (GND) and ground return path. Connect to board GND (0V).  
Ground supply voltage (GND) and ground return path. Connect to board GND (0V).  
GND  
Power  
F8  
GND  
Power  
©2018 Integrated Device Technology, Inc  
7
May 15, 2018  
8V19N478 Datasheet  
Table 1. Pin Descriptions (Cont.)[a]  
[b]  
Ball  
Name  
Type  
Description  
F7  
F6  
F5  
F4  
GND  
GND  
Power  
Ground supply voltage (GND) and ground return path. Connect to board GND (0V).  
Ground supply voltage (GND) and ground return path. Connect to board GND (0V).  
Control input for output Bank B. 3-level signal (see Table 12 and Table 14).  
Power  
ADR1  
ADR0  
Input (PD/ PU)  
Input (PD/ PU)  
Control input for output Bank A and Bank C. Three-level signal (see Table 12 and  
Table 14).  
F3  
F2  
GND  
Power  
Power  
Power  
Output  
Output  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Output  
Output  
Power  
Power  
Analog  
Analog  
Power  
Power  
Output  
Output  
Output  
Output  
Power  
Power  
Analog  
Ground supply voltage (GND) and ground return path. Connect to board GND (0V).  
Positive supply voltage (3.3V) for Channel D.  
V
DD_QCLKD  
F1  
V
Output power supply voltage (3.3V, 2.5V or 1.8V) for the QCLK_D[5:0] outputs.  
DDO_QCLKD  
G10  
G9  
G8  
G7  
G6  
G5  
G4  
G3  
G2  
G1  
H10  
H9  
H8  
H7  
H6  
H5  
H4  
H3  
H2  
H1  
J10  
J9  
nQCLK_B0  
QCLK_B0  
Differential clock output B0 (Channel B). Configurable LVPECL, LVDS style and  
amplitude. Output levels are determined by the V  
supply voltage.  
DDO_QCLKB  
V
Positive supply voltage (3.3V) for Channel B.  
DD_QCLKB  
V
Positive supply voltage (3.3V) for internal FemtoClock NG circuits.  
DD_CPF  
GND  
Ground supply voltage (GND) and ground return path. Connect to board GND (0V).  
Ground supply voltage (GND) and ground return path. Connect to board GND (0V).  
Ground supply voltage (GND) and ground return path. Connect to board GND (0V).  
Positive supply voltage (3.3V) for Channel C.  
GND  
GND  
V
DD_QCLKC  
GND  
Ground supply voltage (GND) and ground return path. Connect to board GND (0V).  
Ground supply voltage (GND) and ground return path. Connect to board GND (0V).  
GND  
nQCLK_B1  
QCLK_B1  
Differential clock output B1 (Channel B). Configurable LVPECL, LVDS style and  
amplitude. Output levels are determined by the V  
supply voltage.  
DDO_QCLKB  
V
Output power supply voltage (3.3V, 2.5V or 1.8V) for the QCLK_B[3:0] outputs.  
Ground supply voltage (GND) and ground return path. Connect to board GND (0V).  
Analog internal LDO bypass for VCO. Connect a 10µF capacitor to GND.  
Internal bias circuit for VCO. Connect a 4.7µF capacitor to GND.  
DDO_QCLKB  
GND  
CLDO  
CBIAS  
GND  
Ground supply voltage (GND) and ground return path. Connect to board GND (0V).  
Output power supply voltage (3.3V, 2.5V or 1.8V) for the QCLK_C[3:0] outputs.  
V
DDO_QCLKC  
QCLK_C0  
nQCLK_C0  
nQCLK_B2  
QCLK_B2  
GND  
Differential clock output C0 (Channel C). Configurable LVPECL, LVDS style and  
amplitude. Output levels are determined by the V  
supply voltage.  
DDO_QCLKC  
Differential clock output B2 (Channel B). Configurable LVPECL, LVDS style and  
amplitude. Output levels are determined by the V supply voltage.  
DDO_QCLKB  
J8  
Ground supply voltage (GND) and ground return path. Connect to board GND (0V).  
Ground supply voltage (GND) and ground return path. Connect to board GND (0V).  
Internal VCO regulator bypass capacitor. Use a 4.7µF capacitor between the CR and  
J7  
GND  
J6  
CR  
the V  
terminals.  
DD_LCF  
J5  
J4  
V
Power  
Power  
Positive supply voltage (3.3V) for the VCXO-PLL.  
DD_LCV  
GND  
Ground supply voltage (GND) and ground return path. Connect to board GND (0V).  
©2018 Integrated Device Technology, Inc  
8
May 15, 2018  
8V19N478 Datasheet  
Table 1. Pin Descriptions (Cont.)[a]  
[b]  
Ball  
Name  
Type  
Description  
Differential clock output C3 (Channel C). Configurable LVPECL, LVDS style and  
J3  
nQCLK_C3  
Output  
amplitude. Output levels are determined by the V supply voltage.  
DDO_QCLKC  
J2  
J1  
QCLK_C1  
nQCLK_C1  
nQCLK_B3  
QCLK_B3  
GND  
Output  
Output  
Output  
Output  
Power  
Output  
Differential clock output C1 (Channel C). Configurable LVPECL, LVDS style and  
amplitude. Output levels are determined by the V supply voltage.  
DDO_QCLKC  
K10  
K9  
K8  
K7  
Differential clock output B3 (Channel B). Configurable LVPECL, LVDS style and  
amplitude. Output levels are determined by the V supply voltage.  
DDO_QCLKB  
Ground supply voltage (GND) and ground return path. Connect to board GND (0V).  
LFF  
Loop filter/charge-pump output for the FemtoClock NG PLL. Connect to the external  
loop filter.  
K6  
K5  
LFFR  
Analog  
Power  
Ground return path pin for the VCO loop filter.  
V
Positive supply voltage (3.3V) for the internal oscillator of the FemtoClock NG PLL.  
For essential information on power supply filtering, see Power Supply Filtering.  
DD_LCF  
K4  
K3  
GND  
Power  
Output  
Ground supply voltage (GND) and ground return path. Connect to board GND (0V).  
nQCLK_C3  
Differential clock output C3 (Channel C). Configurable LVPECL, LVDS style and  
amplitude. Output levels are determined by the V  
supply voltage.  
DDO_QCLKC  
K2  
K1  
QCLK_C2  
Output  
Output  
Differential clock output C2 (Channel C). Configurable LVPECL, LVDS style and  
amplitude. Output levels are determined by the V supply voltage.  
DDO_QCLKC  
nQCLK_C2  
[a] For essential information on power supply filtering, see Power Supply Filtering.  
[b] Pull-up (PU) and pull-down (PD) internal input resistors are indicated in parentheses. For typical values, see Input Characteristics, Table 41.  
Principles of Operation  
Overview  
The device generates low-phase noise, synchronized clock output signals locked to an input reference frequency. The device contains  
two PLLs with configurable frequency dividers. The first PLL (VCXO-PLL, suffix V) uses an external VCXO as the oscillator and provides  
jitter attenuation. The external loop filter is used to set the VCXO-PLL bandwidth frequency in conjunction with internal parameters. The  
second, low-phase noise PLL (FemtoClock NG, suffix F) multiplies the VCXO-PLL frequency to the VCO frequency of 2500MHz. The  
FemtoClock NG PLL is completely internal and provides a central reference timing reference point for all output signals. From this point,  
fully synchronous dividers generate the output frequencies.  
The device has four output channels A – D, four channels with one integer output divider A – C and one channel with a fractional output  
divider (D). The clock outputs are configurable with support for LVPECL and LVDS formats, and a variable output amplitude. In channels  
A – D, the clock phase can be adjusted in phase. Individual outputs, channels, and unused circuit blocks support powered-down states  
for operation at reduced power consumption. The register map, accessible through a selectable I2C interface with read-back capability  
controls the main device settings and delivers device status information. For redundancy purpose, there are two selectable reference  
frequency inputs and a configurable switch logic with manual, auto-selection, and holdover support.  
©2018 Integrated Device Technology, Inc  
9
May 15, 2018  
8V19N478 Datasheet  
Phase-Locked Loop Operation  
Frequency Generation  
The 8V19N478 supports four operation modes: Dual-PLL and VCXO-PLL with jitter attenuation, frequency synthesis, and the buffer/  
divider mode. Frequencies higher than the input frequency can be generated by the device by utilizing one or both PLLs. Using the  
PLL(s) require(s) the user to set the frequency dividers to match input, VCXO and VCO frequency and to achieve frequency and phase  
lock on the used PLLs. The frequency of the external VCXO is chosen by the user. The internal VCO frequency range is 2400–2500MHz.  
Available frequency dividers for each of the four modes are displayed in Table 2. Example divider configurations are shown in Table 3 and  
Table 4.  
Dual-PLL Jitter Attenuation Mode: Input clock jitter is attenuated by the VCXO-PLL (1st stage PLL). The 2nd stage PLL (FemtoClock NG)  
is locked to the 1st stage PLL and synthesizes a frequency in the range of 2400–2500MHz. Output dividers scale the frequency down to  
the target frequency. Dividers PV, MV, PF, MF, Nx, and (optionally) ND require a user configuration. This is the main operation mode of the  
device with the highest flexibility in frequency generation. Best phase noise is achieved with internal frequency doubler turned on.  
VCXO-PLL Jitter Attenuation Mode: Input clock jitter is attenuated by the VCXO-PLL (1st stage PLL). The VCXO-output signal is divided  
by the output dividers to the target frequency. Dividers PV, MV, and Nx require a user configuration. The VCXO sets the highest frequency  
the device can achieve. The output phase noise is equivalent to the phase noise of the VCXO scaled by the output divider.  
Frequency Synthesis Mode: The 1st stage PLL is bypassed. The 2nd stage PLL (FemtoClock NG) is directly locked to the input source  
and synthesizes a frequency in the range of 2400–2500MHz. output dividers scale the frequency down to the target frequency. Dividers  
PV, PF, MF, Nx, and (optionally) ND require a user configuration. This mode is recommend for applications with a low-jitter input source.  
Divider/Buffer Mode: Both PLLs are bypassed. Output dividers scale the input frequency to the target frequency. Dividers PV and Nx  
require a user configuration. In this mode, the PLL frequency specifications do not apply.  
©2018 Integrated Device Technology, Inc  
10  
May 15, 2018  
8V19N478 Datasheet  
Table 2. PLL Divider Values  
Operation  
Frequency  
Synthesis  
Jitter Attenuation  
VCXO-PLL  
Divider/Buffer  
Dual-PLL  
(BYPV 0, SRC 0)  
(BYPV 0,  
SRC 1)  
VCXO-PLL bypassed Both PLLs bypassed  
(BYPV 1, SRC 0) (BYPV 1, SRC 1)  
Divider  
Range  
VCXO-PLL  
1…32767:  
Input clock frequency  
[a]  
Pre-Divider P  
(15 bit)  
V
fVCXO  
-------------------  
MV  
No external VCXO required  
fCLK  
=
PV  
VCXO-PLL  
Feedback Divider  
1…32767:  
(15 bit)  
M
V
FemtoClock NG  
Pre-Divider P  
1…63: (6 bit)  
Input clock  
frequency:  
VCXO frequency:  
F
PF  
---------  
FemtoClock NG  
Feedback  
8 …511: (9 bit)  
PF  
fVCXO = fVCO   
---------  
fCLK = fVCO   
MF  
MF  
Output frequency  
Dividers M  
F
[b]  
f
: Note  
fCLK  
VCO  
[b]  
fOUT  
=
-------------------------  
f
: Note  
[c]  
VCO  
P : Note  
NX PV  
F
[c]  
P : Note  
F
Output Divider Nx 1…160:  
Output frequency  
Output frequency  
Output frequency  
[d]  
(x [A:C])  
(Integer)  
fVCO  
fVCXO  
fVCO  
fOUT  
=
fOUT  
=
fOUT  
=
--------------  
-------------------  
--------------  
NX  
NX  
NX  
Output Divider ND Fractional  
Output frequency  
[e]  
Divider :  
fVCO  
4
fOUT  
=
--------------  
N
: 4…2 – 1:  
INT  
NE  
(Integer part)  
24  
N
: 1…2 – 1:  
FRAC  
NFRAC  
---------------------  
224  
(Fractional part)  
NE = 2 NINT  
+
[a] PV divider settings are in the PV0 register (for CLK_0), and in the PV1 register (for CLK_1). The PV divider is automatically loaded from PV0 or  
PV1 according to the input selection (Clock Selection Settings, Table 11).  
[b] fVCO 2400–2500MHz.  
[c] Set PF to 0.5 in the equation if the frequency doubler is engaged (FDF 1).  
[d] For a list of supported integer output dividers Nx (Table 8).  
[e] Greatest ND fractional divider is 2 (14 [224 – 1] / 224) 29.99999988.  
©2018 Integrated Device Technology, Inc  
11  
May 15, 2018  
 
8V19N478 Datasheet  
VCXO-PLL  
The prescaler PV and the VCXO-PLLs feedback divider MV require configuration to match the input frequency to the VCXO-frequency.  
With the MV and PV divider value range of 15 bit, the device support is very flexible and supports a wide range of input and VCXO-  
frequencies.  
In addition, the range of available inputs and feedback dividers allow to adjust the phase detector frequency independent of the used  
input and VCXO frequencies (Table 3 and Table 4). The VCXO-PLL charge-pump current is controllable via internal registers, and can be  
set in 50µA steps, from 50µA to 1.6mA. The VCXO-PLL can be bypassed (BYPV): when in bypass, the FemtoClock NG PLL locks to the  
pre-divided input frequency.  
Table 3. Example Configurations for fVCXO 125MHz  
VCXO-PLL Divider Settings  
Input Frequency (MHz)  
PV  
MV  
f
(MHz)  
PFD  
19.44  
486  
1
3125  
5
0.04  
20  
5
4
20  
80  
320  
1
25  
16  
64  
1
1.25  
0.390625  
125  
5
5
25  
125  
25  
125  
5
25  
125  
4
5
1
31.25  
3.125  
0.3125  
156.25  
50  
500  
40  
400  
Table 4. Example Configurations for fVCXO 156.25MHz  
VCXO- PLL Divider Settings  
Input Frequency (MHz)  
PV  
MV  
f
(MHz)  
PFD  
19.44  
20  
1944  
400  
4
15625  
3125  
25  
0.01  
0.05  
6.25  
25  
125  
40  
250  
2500  
5
0.625  
0.0625  
31.25  
3.125  
0.3125  
156.25  
15.625  
1.5625  
400  
4
40  
50  
400  
1
500  
1
156.25  
10  
10  
100  
100  
©2018 Integrated Device Technology, Inc  
12  
May 15, 2018  
 
 
8V19N478 Datasheet  
Table 5. VCXO-PLL Bypass Settings  
BYPV  
Operation  
0
1
VCXO-PLL operation.  
VCXO-PLL bypassed and disabled. The reference clock for the FemtoClock NG PLL is the selected input  
clock. The input clock selection must be set to manual by the user. Clock switching and holdover are not  
defined. The device synthesizes an output frequency, but will not attenuate input jitter. An external VCXO  
component and loop filter is not required.  
FemtoClock NG PLL  
The FemtoClock NG PLL is the second stage PLL, and locks to the output signal of the VCXO-PLL (BYPV 0). It requires configuration from  
the frequency doubler FDF, or the pre-divider PF and the feedback divider MF to match the VCXO-PLL frequency to the VCO frequency of  
2500MHz. Best phase noise is typically achieved by engaging the internal frequency doubler (FDF 1, 2). If engaged, the signal from the first  
PLL stage is doubled in frequency, increasing the phase detector frequency of the FemtoClock NG PLL. When the frequency doubler is  
enabled, the frequency pre-divider PF is disabled. If the frequency doubler is not used (FDF 0), the PF pre-divider has to be configured.  
Typically, the PF is set to 1 to keep the phase detector frequency as high as possible. Set the PF to other divider values to achieve specific  
frequency ratios between the first and second PLL stage. This PLL is internally configured to high-bandwidth.  
Table 6. Frequency Doubler  
FDF  
Operation  
0
1
Frequency doubler off. The PF divides the clock signal from the VCXO-PLL or input (in bypass).  
Frequency doubler on (2). A signal from the VCXO-PLL or input (in bypass) is doubled in frequency. The  
PF divider has no effect.  
Table 7. Example PLL Configurations  
FemtoClock NG Divider Settings for VCO 2500MHz  
VCXO-Frequency (MHz)  
FDF  
PF  
MF  
25  
2  
2  
1
1
50  
10  
20  
8
125  
2  
156.25  
16  
©2018 Integrated Device Technology, Inc  
13  
May 15, 2018  
8V19N478 Datasheet  
Channel Frequency Divider  
The device supports four independent output channels A–D. The channels A–C have one configurable integer frequency divider Nx  
(x A – C), that divides the VCO frequency to the desired output frequency with very low phase noise. The integer divider values can be  
selected from the range of 1 to 160 (Table 8). Channel D supports fractional divider ratios (Table 9).  
Table 8. Integer Frequency Divider Settings  
[a]  
Channel Divider Nx  
Output Clock Frequency (MHz) for VCO 2500MHz  
1  
2  
2500  
1250  
3  
833.333  
625  
4  
5  
500  
8  
312.5  
250  
10  
16  
20  
30  
32  
40  
50  
60  
64  
80  
100  
120  
128  
160  
156.25  
125  
83.333  
78.125  
62.5  
50  
41.667  
39.0625  
31.25  
25  
20.833  
19.53125  
15.625  
[a] x A – D.  
Table 9. Typical Fractional Frequency Divider Settings  
[a]  
Channel Divider ND  
Output Clock Frequency (MHz) for VCO 2500MHz  
15.51  
161.1328125  
133.333  
18.75  
[a] Greatest ND fractional divider is 2 (14 [224 – 1] / 224) 29.99999988.  
Table 10. PLL Feedback Path Settings  
SRC  
Operation  
0
1
The output divider input signal is the FemtoClock NG PLL.  
The output divider input signal is the VCXO-PLL output signal. FemtoClock NG PLL is bypassed.  
©2018 Integrated Device Technology, Inc  
14  
May 15, 2018  
 
 
8V19N478 Datasheet  
Redundant Inputs  
The two inputs are compatible with LVDS and LVPECL signal formats, and also support single-ended LVCMOS signals. For applicable  
input interface circuits, see Applications Information.  
Definitions  
Primary clock – The CLK_n input selected by the selection logic.  
Secondary clock – The CLK_n input not selected by the selection logic.  
PLL reference clock – The CLK_n input selected as the PLL reference signal by the selection logic. In automatic switching mode, the  
selection can be overwritten by a state machine.  
Monitoring  
Loss of Input Signal (LOS)  
In operation, a clock input is declared invalid (LOS) with the corresponding ST_CLK_n and LS_CLK_n indicator bits set after a specified  
number of consecutive clock edges. If differential input signals are applied, the input will also detect an LOS condition in case of a zero  
differential input voltage.  
The device supports LOS detect circuits, one for each input. The signal detect circuits compare the signals at the CLK_0 and CLK_1  
inputs to the internal frequency-divided signals from the VCXO-PLL (Figure 2). The loss-of-signal fault condition is declared upon three or  
more missing clock input edges. LOS requires configuration of the N_MON[4:0] frequency divider setting to individually match the input  
frequencies CLK_n to the VCXO frequency: fVCXO N_MON[4:0] fCLK_n. For instance, if one of the input frequencies is 25MHz and a  
125MHz VCXO is used, set N_MON[4:0]  5. For configuration details see Table 11. Then, LOS is declared after three consecutive  
missing clock edges. LOS is signaled through the ST_CLK_n (momentary) and LS_CLK_n (sticky, resettable) status bits. and can be  
reported as an interrupt signal on the nINT output. The LOS circuit requires the jitter attenuation mode of the device (BYPV 0). LOS  
does not detect frequency errors.  
Figure 2. LOS Detect Circuit  
fCLK_0  
CLK_0  
nCLK_0  
fCLK_1  
÷PV  
CLK_1  
nCLK_1  
Input Select  
LOS  
Detector 0  
ST_CLK_0, LS_CLK_0  
N_MON[4:0]  
÷1, ÷2, ..., ÷40  
fVCXO  
LOS  
Detector 1  
ST_CLK_1, LS_CLK_1  
VCXO  
Input Re-Validation  
A clock input is declared valid and the corresponding LOS bit is reset after the clock input signal returned for user-configurable number of  
consecutive input periods. This re-validation of the selected input clock is controlled by the CNTV setting (verification pulse counter).  
©2018 Integrated Device Technology, Inc  
15  
May 15, 2018  
 
8V19N478 Datasheet  
Clock Selection  
The device supports five input selection modes: manual with and without holdover, short-term holdover, and two automatic switch modes.  
Table 11. Clock Selection Settings  
Mode  
Flags  
Name  
Description  
Application  
Input selection follows user-configuration of the EXT_SEL pin or INT_SEL register bit as set by nEXT_INT with  
holdover. Input selection is never changed by the internal state machine.  
LOS on the primary reference clock:  
Selected  
Active reference stays selected, and the PLLs  
may stall. The device will not go into holdover.  
1
0[a]  
input  
Manual  
Holdover  
Control  
Manual change of the reference clock:  
The device will go into holdover, and the  
hold-off down-counter (CNTH) starts. The  
device initiates a clock switch after expiration  
of the hold-off counter. Duration of holdover is  
set by CNTH CNTR / fVCXO. Holdover is  
terminated even if the secondary clock input is  
bad (LOS), (Manual Holdover Control  
(nHO_EN = 0).  
Startup and  
external  
selection  
control with  
holdover  
0
X
X
LOS  
status  
(default)  
LOS status  
of selected  
input  
Selected  
input[c]  
0[b]  
Input selection follows user-configuration of the EXT_SEL pin or INT_SEL register bit as set by nEXT_INT.  
Input selection is never changed by the internal state machine.  
LOS on the primary reference clock:  
Selected  
Active reference stays selected and the PLLs  
may stall. Device will not go into holdover.  
1
0
Manual  
Control  
input  
1
0
0
External  
selection  
control  
LOS  
status  
Manual change of the reference clock:  
The device will not go into holdover and will  
attempt to lock to the newly selected  
reference.  
Actual LOS  
status of  
selected  
input  
Selected  
input  
1
Input selection follows LOS status. A failing input clock will cause an LOS event for that clock input. If the  
selected clock has an LOS event, the device will immediately initiate a clock fail-over switch.  
LOS on the primary reference clock:  
The device will switch to the secondary clock  
without holdover. Input selection is  
determined by a state machine and may differ  
from the user’s clock selection.  
Actual LOS  
status of  
selected  
input  
determined  
by state  
machine  
Selected  
input  
determined  
by state  
machine  
No valid clock scenario: If no valid input  
1
1
Multiple  
inputs with  
qualified  
clock  
1
0
1
Automatic clocks exist, the device will not attempt to  
switch, and will not enter the holdover state.  
The PLL is not locked. Re-validation of all  
LOS  
status  
input clocks will result in the PLL to attempt to  
lock on that input clock (Revertive Switching).  
signals  
Manual change of the reference clock:  
The device will switch to the newly selected  
clock without holdover. If the newly selected  
clock is not valid, the PLL may stall.  
Actual LOS  
status of  
selected  
input  
Selected  
input  
©2018 Integrated Device Technology, Inc  
16  
May 15, 2018  
 
8V19N478 Datasheet  
Table 11. Clock Selection Settings (Cont.)  
Mode  
Flags  
Name  
Description  
Application  
Input selection follows user-configuration of EXT_SEL pin or INT_SEL register bit as set by nEXT_INT.  
Selection is never changed by the internal state machine (see Holdover).  
LOS on the primary reference clock:  
A failing reference clock will cause an LOS  
0
Use if a  
single  
reference is  
occasionally  
interrupted  
Short-term  
Holdover  
event. If the selected reference fails, the  
device will enter holdover immediately.  
Re-validation of the selected input clock is  
controlled by the CNTV setting. A successful  
re-validation will result in the PLL to re-lock on  
that input clock.  
LOS status  
for duration  
of LOS until  
revalidation  
1
1
0
LOS  
status  
Selected  
input  
For  
holdover  
duration  
Input selection follows LOS status. A failing input clock will cause an LOS event for that clock input. If the  
selected clock has an LOS event, the device will go into holdover and switches input clocks after the hold-off  
counter expires.  
LOS on the primary reference clock, or  
Manual change of the reference clock:  
The device will go into holdover and the  
hold-off down-counter (CNTH) starts. The  
device initiates a clock fail-over switch to a  
valid secondary clock input after expiration of  
the hold-off counter. Duration of holdover is  
set by CNTH CNTR/ fVCXO. The holdover is  
terminated prior hold-off count-down if the  
primary clock revalidates or is terminated by a  
manual change of the reference clock. See  
Automatic with Holdover (nHO_EN = 1,  
Automatic  
with  
Holdover  
0
Selected  
input  
1
1
1
Actual LOS  
status of  
selected  
input  
LOS  
status  
Multiple  
inputs  
determined  
by state  
machine  
For  
holdover  
duration  
nM/A[1:0] = 11), and Revertive Switching.  
No valid clock scenario: The device remains  
in holdover if the secondary input clock is  
invalid.  
[a] For the duration of an invalid input signal (LOS).  
[b] For the duration of holdover.  
[c] Delayed by holdover period.  
©2018 Integrated Device Technology, Inc  
17  
May 15, 2018  
8V19N478 Datasheet  
Holdover  
In holdover state, the output frequency and phase is derived from an internal, digital value based on previous frequency and phase  
information. Holdover characteristics are defined in Table 48.  
Manual Holdover Control (nHO_EN 0)  
This is the default switching mode of the device. The switch control is manual: The EXT_SEL pin or the INT_SEL bit as set by nEXT_INT  
determines the selected reference clock input. If the selection is changed by the user, the device will enter holdover until the CNTH[7:0]  
counter expires. Then, the new reference is selected (input switch). Application for this mode is startup and external selection control.  
ST_REF – Status of selected reference clock  
ST_CLK_n – Both will reflect the status of the corresponding input  
ST_SEL – The new selection  
nST_HOLD 0 for the duration of holdover  
Automatic w ith Holdover (nHO_EN 1, nM/A[1:0] 11)  
If an LOS event is detected on the active reference clock:  
1. Holdover begins immediately  
2. Corresponding ST_REF and LS_REF go low immediately  
3. Hold-off countdown begins immediately  
During this time, both input clocks continue to be monitored and their respective ST_CLK, LS_CLK flags are active. LOS events will be  
indicated on ST_CLK, LS_CLK when they occur.  
If the active reference clock resumes and is validated during the hold-off countdown:  
1. Its ST_CLK status flag will return high and the LS_CLK is available to be cleared by an I2C write of 1 to that register bit  
2. No transitions will occur of the active REF clock; ST_SEL does not change  
3. Revertive bit has no effect during this time (whether 0 or 1)  
When the hold-off countdown reaches zero:  
If the active reference has resumed and has been validated during the countdown, it will maintain being the active reference clock:  
1. ST_SEL does not change  
2. ST_REF returns to 1  
3. LS_REF can be cleared by an I2C write of 1 to that register  
4. Holdover turns off and the VCXO-PLL attempts to lock to the active reference clock  
If the active reference has not resumed, but the other clock input CLK_n is validated, then:  
1. ST_SEL1:0 changes to the new active reference  
2. ST_REF returns to 1  
3. LS_REF can be cleared by an I2C write of 1 to that register  
4. Holdover turns off  
If there is no validated CLK:  
1. ST_SEL does not change  
2. ST_REF remains low  
3. LS_REF cannot be cleared by an I2C write of 1 to that register  
4. Holdover remains active  
Revertive capability returns if REVS 1.  
©2018 Integrated Device Technology, Inc  
18  
May 15, 2018  
8V19N478 Datasheet  
Hold-off Counter  
A configurable down-counter applicable to the Automatic with Holdover and Manual with Holdover selection modes. The purpose of this  
counter is a deferred, user-configurable input switch. The counter expires when a zero-transition occurs; this triggers a new reference  
clock selection. The counter is clocked by the frequency-divided VCXO-PLL signal. The CNTR setting determines the hold-off counter  
frequency divider and the CNTH setting the start value of the hold-off counter. For instance, set CNTR to a value of 131072 to achieve  
953.67Hz (or a period of 1.048ms at fVCXO 125MHz): the 8-bit CNTH counter is clocked by 953.67Hz and the user-configurable hold-off  
period range is:  
0ms (CNTR 0x00) to 267ms (CNTR 0xFF). After the counter expires, it reloads automatically from the CNTH I2C register. After the  
LOS status bit (LS_CLK_n) for the corresponding input CLK_n has been cleared by the user, the input is enabled for generating a new  
LOS event.  
The CNTR counter is only clocked if the device is configured in the clock selection modes, Automatic with Holdover and the selected  
reference clock experiences an LOS event, or in the Manual with Holdover mode with manual switching. Otherwise, the counter is  
automatically disabled (not clocked).  
Revertive Switching  
Revertive switching is only applicable to the two automatic switch modes shown in Table 11. Revertive switching enabled: Re-validation  
of any non-selected input clock(s) will cause a new input selection according to the user-preset input priorities (revertive switch). An input  
switch is only done if the re-validated input has a higher priority than the currently selected reference clock. Revertive switching disabled:  
Re-validation of a non-selected input clock has no impact on the clock selection. The default setting is revertive switching disabled.  
VCXO-PLL Lock Detect (LOLV)  
The VCXO-PLL lock detect circuit uses the signal phase difference at the phase detector as Loss-of-lock criteria. Loss-of-lock is reported  
if the actual phase difference is larger than a configurable phase detector window set by the LOCK_TH[14:0] configuration bits. A  
Loss-of-lock state is reported through the nST_LOLV and nLS_LOLV status bits (Table 21). The VCXO-PLL lock detect function requires  
to set FVCV 0.  
Table 12. ADR3 Selection Table  
ADR3  
Device Mode  
Low  
Default modes:  
Outputs – disabled  
Inputs – unused  
Middle  
High  
Default frequency profile with 25MHz input  
Default frequency profile with 20MHz input  
©2018 Integrated Device Technology, Inc  
19  
May 15, 2018  
8V19N478 Datasheet  
Table 13. Input Path Pin Configuration Table  
SEL_BITS_MASTER(REG20,  
D0)  
X
L
X
0
M
0
1
X
X
ADR3  
REFin  
H
REF = 25MHZ  
REF = 20MHZ  
PV Divide  
REG16[7:0], 17[6:0]  
REF/ PV  
160  
156.25kHz  
1000  
156.25kHz  
128  
160  
125kHz  
1250  
125kHz  
128  
REG16[7:0], 17[6:0]  
REF/ PV  
REF into PD  
MV Divide  
FB into PD  
lock_th  
REG18[7:0], 19[6:0]  
FB/ MV  
REG18[7:0], 19[6:0]  
FB/ MV  
REG21[7:0], 22[6:0]  
REG25[5:0]  
REG25[7]  
0
REG21[7:0], 22[6:0]  
REG25[5:0]  
REG25[7]  
0
PF  
X
X
PF Doubler  
REF into PD  
MF  
on  
on  
312.5MHz  
8
312.5MHz  
8
REG26[7:0], 27[0]  
0
REG26[7:0], 27[0]  
0
FB into PD  
BYPV  
312.5MHz  
off  
312.5MHz  
off  
REG23[0]  
REG24[0]  
REG28[7]  
REG28[6]  
REG28[4:0]  
REG30[4:0]  
REG32[7:3]  
0
REG23[0]  
REG24[0]  
REG28[7]  
REG28[6]  
REG28[4:0]  
REG30[4:0]  
REG32[7:3]  
0
SRC  
on  
on  
Polarity  
positive  
off  
positive  
off  
FVCV  
CPV  
750µA  
5.8mA  
8
750µA  
5.8mA  
8
CPF  
N_MON  
LOS Monitoring Frequency  
MODE_BLOCK  
nHO_EN  
nEXT_INT  
nMA[1:0]  
CNTV  
19.5MHz  
on  
19.5MHz  
on  
REG32[2]  
REG32[1]  
REG32[0]  
REG33[3:2]  
REG35[1:0]  
REG32[2]  
REG32[1]  
REG32[0]  
REG33[3:2]  
REG35[1:0]  
off  
off  
external  
manual  
2
external  
manual  
2
©2018 Integrated Device Technology, Inc  
20  
May 15, 2018  
 
8V19N478 Datasheet  
Table 14. Output Frequency Pin Configuration Table  
Output Bank A and C  
ADR0  
Output Type  
Divide Ratio  
FOUT (MHz)  
Swing Level  
Low  
Middle  
High  
LVPECL  
LVDS  
20  
16  
16  
125  
750mV  
500mV  
750mV  
Total outputs per  
bank: 4, with 1 integer  
divider  
156.25  
156.25  
LVPECL  
Output Bank B  
ADR1  
Output Type  
Divide Ratio  
FOUT (MHz)  
Swing Level  
Low  
Middle  
High  
LVPECL  
LVDS  
20  
16  
16  
125  
750mV  
500mV  
750mV  
Total of 4 outputs with  
1 integer divider  
156.25  
156.25  
LVPECL  
Output Bank D  
ADR2  
Output Type  
Divide Ratio  
FOUT (MHz)  
Swing Level  
Total of 6 outputs with  
1 fractional divider  
Low  
Middle  
High  
LVPECL  
LVDS  
20  
16  
16  
125  
750mV  
500mV  
750mV  
156.25  
156.25  
LVPECL  
Table 15. I2C Address Selection Table  
I2C_A  
Output Type  
I2C_A[1]  
I2C_A[0]  
Low  
Middle  
High  
Address 1  
Address 2  
Address 3  
0
0
1
0
1
1
The 8V19N478 can be configured via pin or I2C. ADR3/2/1/0 provides a specific set of configuration options for input and output paths. In  
addition, the initialization sequence of the device is controlled by the ADR3 pin and the synchronization of the outputs by transition from  
Low to Middle or High.  
Table 16. Initialization Sequence Control  
Initialization  
In Pin Mode, Triggered by:  
init_clk  
pb_cal  
relock  
OE  
(Pin I2C_A3 = M or H) + IBM die powered up  
(Pin I2C_A3 = M or H) + IBM die powered up  
Completion of init_clk sequence (above)  
Completion of init_clk sequence (above)  
©2018 Integrated Device Technology, Inc  
21  
May 15, 2018  
 
8V19N478 Datasheet  
The pin configuration is overridden by I2C programming of the register map. The I2C_A pin set the Address as shown in following table.  
Table 17. I2C Address  
1
I2C_A1  
I2C_A0  
R
W
I2C_A  
D8, D9  
DA, DB  
DE, DF  
1101  
1101  
1101  
1
1
1
0
0
1
0
1
1
1
1
1
0
0
0
L
M
H
Address 1  
Address 2  
Address 3  
The default values of the register map are Read back by the I2C in the Pin-Strap configuration mode.  
FemtoClock NG Loss-of-lock (LOLF)  
FemtoClock NG-PLL loss-of-lock is signaled through the nST_LOLF (momentary), and nLS_LOLF (sticky, resettable) status bits, and can  
reported as hardware signal on the LOCK_V output as well as an interrupt signal on the nINT output.  
Differential Outputs  
Table 18. Output Features  
[a]  
Output  
Style  
Amplitude  
Disable  
Power Down  
Termination  
[b]  
LVPECL  
LVDS  
50to VTT  
350 – 850mV  
4 steps  
QCLK_y  
Yes  
Yes  
100differential  
50to VTT  
100differential  
LVPECL  
LVDS  
LVCMOS[c]  
350 – 850mV  
4 steps  
Yes  
Yes  
Yes  
Yes  
QCLK_V  
1.8V  
[a] Amplitudes are measured single-ended.  
[b] For VTT (Termination voltage) values (see Table 50).  
[c] LVCMOS style: nQCLK_V and QCLK_V are complementary.  
©2018 Integrated Device Technology, Inc  
22  
May 15, 2018  
 
 
8V19N478 Datasheet  
Table 19. Individual Clock Output Settings  
[b]  
Output Power  
Termination  
State  
Amplitude (mV)  
1
0
Off  
On  
X
0
100differential or no termination  
100differential (LVDS)  
X
0
1
Off  
Disable[c]  
X
X
XX  
00  
01  
10  
11  
XX  
00  
01  
10  
11  
X
Enable  
350  
500  
700  
850  
X
1
50to VTT[d] (LVPECL)  
0
1
Disable  
Enable  
350  
500  
700  
850  
[a] Power-down modes are available for the individual channels A – D and the outputs QCLK_y (A0 – D3).  
[b] Output amplitudes of 700mV and 850mV require a 3.3V output supply (VDDO_V). 350mV and 500mV output amplitudes support  
DDO_V 2.5V and 1.8V.  
V
[c] Differential output is disabled in static low/high state.  
[d] For VTT (Termination voltage) values, see Table 50.  
Output Phase-Delay  
Output phase delay is supported in each channel. The selected VCO frequency sets the delay unit to 1/fVCO  
.
Table 20. Delay Circuit Settings  
Delay Circuit  
Unit  
Steps  
Range  
1
--------------  
fVCO  
Clock Phase   
256  
0–102ns  
CLK_x  
fVCO 2500MHz:  
400ps  
©2018 Integrated Device Technology, Inc  
23  
May 15, 2018  
8V19N478 Datasheet  
Status Conditions and Interrupts  
The 8V19N478 has an interrupt output to signal changes in status conditions. Settings for status conditions may be accessed in the  
Status registers. The device has several conditions that can indicate faults and status changes in the operation of the device. These are  
shown in Table 21 and can be monitored directly in the status registers. Status bits (named: ST_condition) are read-only and reflect the  
momentary device status at the time of read-access. Several status bits are also copied into latched bit positions (named: LS_condition).  
The latched version is controlled by the corresponding fault and status conditions and remains set (“sticky”) until reset by the user by  
writing “1” to the status register bit. The reset of the status condition has only an effect if the corresponding fault condition is removed,  
otherwise, the status bit will set again. Setting a status bit on several latched registers can be programmed to generate an interrupt signal  
(nINT) via settings in the Interrupt Enable bits (named: IE_condition). A setting of “0” in any of these bits will mask the corresponding  
latched status bits from affecting the interrupt status pin. Setting all IE bits to 0 has the effect of disabling interrupts from the device.  
Table 21. Status Bit Functions  
Status Bit  
Function  
Status if Bit is:  
Interrupt  
Enable Bit  
Momentary  
Latched  
Description  
CLK 0 input status  
1
0
ST_CLK_0  
ST_CLK_1  
nST_LOLV  
nST_LOLF  
nST_HOLD  
ST_VCOF  
ST_SEL  
LS_CLK_0  
LS_CLK_1  
nLS_LOLV  
nLS_LOLF  
nLS_HOLD  
Active  
Active  
LOS  
LOS  
IE_CLK_0  
IE_CLK_1  
IE_LOLV  
IE_LOLF  
IE_HOLD  
CLK 1 input status  
VCXO-PLL loss of lock  
FemtoClock NG-PLL loss of lock  
Holdover  
Locked  
Loss-of-lock  
Loss-of-lock  
Locked  
Not in holdover  
Not completed  
Device in holdover  
Completed  
FemtoClock NG VCO calibration  
Clock input selection  
0 CLK_0  
1 CLK_1  
Valid reference[a]  
Reference lost  
ST_REF  
LS_REF  
PLL reference status  
IE_REF  
[a] Manual and short-term holdover mode: 0 indicates if the selected reference is lost, 1 if not lost.  
Automatic mode: will transition to 0 while the input clock is lost and during input selection by priority.  
Will transition to 1 once a new reference is selected.  
Automatic with holdover mode: 0 indicates the reference is lost and still in holdover.  
Interrupts are cleared by resetting the appropriate bit(s) in the latched register after the underlying fault condition has been resolved.  
When all valid interrupt sources have been cleared in this manner, this will release the nINT output until the next unmasked fault.  
Table 22. LOCK Function  
Status Bit (PLL)  
[a]  
[b]  
nLS_LOLV (VCXO-PLL)  
nLS_LOLF (FemtoClock NG)  
Status Reported on LOCK Output  
Locked  
Locked  
Locked  
Not locked  
Locked  
1
0
0
0
Not locked  
Not locked  
Not locked  
[a] Hardware interrupts on nINT required to set the IE_LOLV, IE_LOLF bits to “enable interrupt”.  
[b] SELSV1 controls the logic level 1.8V/3.3V of LOCK and nINT outputs.  
©2018 Integrated Device Technology, Inc  
24  
May 15, 2018  
 
8V19N478 Datasheet  
Serial Control Port  
Serial Control Port Configuration Description  
The 8V19N478 has a serial control port that can respond as a slave in an I2C compatible configuration at a base address of  
11011[I2C_A1, I2C_A0]b, to allow access to any of the internal registers for device programming or examination of internal status. The  
I2C_A[1:0] bits of the I2C interface address are set by the logic state of the three-level pin, I2C_A (see Table 17). If more than one  
8V19N478 is connected to the same I2C bus, set I2C_A to a different state on each device to avoid address conflicts.  
All registers are configured to have default values. For details, see the specifics for each register. Default values for registers are set after  
reset by the configuration pins.  
I2C Mode Operation  
The I2C interface fully supports v1.2 of the I2C Specification for Normal and Fast mode operation. The interface acts as a slave device on  
the I2C bus at 100kHz or 400kHz using a fixed base address of 11011[I2C_A1, I2C_A0]b.  
The I2C interface accepts byte-oriented block write and block read operations (see Figure 3 and Figure 4). One address byte specifies  
the register address of the byte position of the first register to write or read. Data bytes (registers) are accessed in sequential order from  
the lowest to the highest byte (most significant bit first). Read and write block transfers can be stopped after any complete byte transfer.  
During a write operation, data is moved into the registers byte by byte and before a STOP bit is received.  
For full electrical I2C compliance, it is recommended to use external pull-up resistors for SDATA and SCLK. The internal pull-up resistors  
have a size of 51ktypical.  
Figure 3. I2C Write Data (Master Transmit, Slave Receive) From Any Register Address  
1 1 0 1 1 I2C_A1 I2C_A0  
Slav e Device Address  
0
nW  
A7 to A0  
Register Address  
D7 to D0  
(Register Address)  
D7 to D0  
(Register Address+1)  
D7 to D0  
(Register Address+n)  
S
A
A
A
A
...  
A
A
P
SDA  
Write to slave to the specified register address A[7:0]. The slave auto-increments the register address and data is written sequentially.  
S
Start (Master)  
P
Stop (Master)  
A
Acknowledge (Slave to Master)  
Master transmit, Slave Receive  
Slave transmit, Master Receive  
©2018 Integrated Device Technology, Inc  
25  
May 15, 2018  
 
8V19N478 Datasheet  
Figure 4. I2C Read Data (Slave Transmit, Master Receive) From Any Register Address  
1 1 0 1 1 I2C_A1 I2C_A0  
Sl av e Devic e Address  
0
nW  
A7 to A0  
Register Address  
1 1 0 1 1 ADR1 ADR0  
Sl av e Devic e Address  
1
R
D7 to D0  
(Register Address)  
D7 to D0  
(Register Address+n)  
S
A
A
Sr  
A
A
...  
A
A
P
SDA  
Read from slave from the specified register address A[7:0]. Data is transmitted to the master after a change of the transfer direction with a repeated start. The  
slave auto-increments the register address and transmits register data to the master sequentially.  
S
P
A
A
A
Sr  
Start (Master)  
Repeated start (Master)  
Stop (Master)  
Acknowledge (Slave to Master)  
Acknowledge (Master to Slave)  
Not Acknowledge (Master to Slave)  
Master transmit, Slave Receive  
Slave transmit, Master Receive  
Register Descriptions  
This section contains all addressable registers, sorted by function, followed by a detailed description of each bit field for each register.  
Several functional blocks with multiple instances in this device have individual registers controlling their settings, but since the registers  
have an identical format and bit meaning, they are described only once, with an additional table to indicate their addresses and default  
values. All writable register fields will come up with a default values as indicated in the Factory Defaults column unless altered by values  
loaded from non-volatile storage during the initialization sequence.  
Fixed read-only bits will have defaults as indicated in their specific register descriptions. Read-only status bits will reflect valid status of  
the conditions they are designed to monitor once the internal power-up reset has been released. Unused registers and bit positions are  
Reserved. Reserved bit fields may be used for an internal debug test and debug functions.  
Table 23. Configuration Registers  
Register Address  
Register Description  
0x00  
0x01  
SRESET  
I2C Address (I2C only)  
Reserved  
0x02–0x0F  
0x10–0x11  
0x12–0x13  
0x14  
PLL Frequency Divider: PV  
PLL Frequency Divider: MV  
SEL_BITS_MASTER  
LOCK_TH  
0x15–0x16  
0x17  
PLL Control: BYPV  
0x18  
PLL Control: SRC  
0x19  
PLL Frequency Divider: PF, FDF  
PLL Frequency Divider: MF[7:0]  
PLL Frequency Divider: MF[8]  
PLL Control  
0x1A  
0x1B  
0x1C–0x1E  
©2018 Integrated Device Technology, Inc  
26  
May 15, 2018  
8V19N478 Datasheet  
Table 23. Configuration Registers (Cont.)  
Register Address  
Register Description  
0x1F  
0x20–0x23  
0x24–0x26  
0x27  
I/O Voltage Select  
Input Selection  
Channel A  
Reserved  
0x28–0x2B  
0x2C–0x2E  
0x2F  
Output States QCLK_A0 – QCLK_A3  
Channel B  
Reserved  
0x30–0x33  
0x34–0x36  
0x37  
Output States QCLK_B0 – QCLK_B3  
Channel C  
Reserved  
0x38–0x3B  
0x3C–0x42  
0x43  
Output States QCLK_C0 – QCLK_C3  
Channel D  
Reserved  
0x44–0x49  
0x4A  
Output States QCLK_D0 – QCLK_D5  
Reserved  
0x4B  
QCLKV  
0x4C  
Interrupt Enable  
Reserved  
0x4D  
0x4E–0x4F  
0x50  
Reserved  
Status (Latched)  
Status (Momentary)  
Reserved  
0x51  
0x52  
0x53  
Reserved  
0x54  
Reserved  
0x55–0x57  
0x58  
General Control  
Channel Enable A–D, QCLKV  
Reserved  
0x59–0x5B  
0x5C–0x5E  
0x5F–0x60  
0x61–0x62  
0x63  
Reserved  
Reserved  
Reserved  
Reserved  
©2018 Integrated Device Technology, Inc  
27  
May 15, 2018  
8V19N478 Datasheet  
Device Configuration Registers  
Table 24. Device Configuration Register Bit Field Locations  
Bit Field Location  
Register Address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x00  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
SRESET  
0x01  
0x1F  
Reserved  
Reserved  
I2C_A[6:0]  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
SELSV  
Table 25. Device Configuration Register Descriptions  
Register Description  
Default  
(Binary)  
Bit Field Name  
Field Type  
Description  
Soft Reset:  
R/W  
0
0 Normal operation.  
SRESET  
Value:  
1 Register reset. The device loads the default values into the register 0x02-0xFF.  
not reset  
Auto-Clear  
The content of the register addresses 0x00, 0x01 and the serial interface engine are  
not reset.  
I2C Device Address (I2C only):  
This read-only register stores the binary I2C device address:  
11011[I2C_A[1]][I2C_A[0]].  
11011  
I2C_A[6:0]  
SELSV  
R
[I2C_A1[1]]  
[I2C_A0[0]]  
Bits D1 and D0 are determined by the I2C_A pin. For I2C_A[1:0] values based on  
I2C_A level, see Table 15.  
Select  
LOCK/nINT  
voltage  
Selects the voltage level of the LOCK and nINT outputs:  
SELSV:  
1
0 LOCK, nINT interface pins are 1.8V  
1 LOCK, nINT interface pins are 3.3V (default)  
level  
Value: 3.3V  
R/W  
©2018 Integrated Device Technology, Inc  
28  
May 15, 2018  
8V19N478 Datasheet  
PLL Frequency Divider Registers  
Table 26. PLL Frequency Divider Register Bit Field Locations  
Bit Field Location  
Register Address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x10  
PV[7:0]  
PV[14:8]  
MV[7:0]  
0x11  
0x12  
0x13  
Reserved  
Reserved  
Reserved  
MV[14:8]  
Reserved  
SEL_BITS_  
MASTER  
0x14  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x15  
0x16  
0x19  
0x1A  
0x1B  
LOCK_TH[7:0]  
LOCK_TH[14:8]  
PF[5:0]  
Reserved  
FDF  
Reserved  
Reserved  
MF[7:0]  
Reserved Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
MF8  
Table 27. PLL Frequency Divider Register Descriptions  
Register Description  
Field  
Type  
Default  
(Binary)  
Bit Field Name  
Description  
VCXO-PLL Input Frequency Pre-Divider:  
000 0100  
0000 0000  
The value of the frequency divider (binary coding).  
Range: ÷1 to ÷32767  
PV[14:0]  
R/W  
R/W  
R/W  
Value: ÷1024  
000 0100  
VCXO-PLL Feedback-Divider:  
0000 0000  
The value of the frequency divider (binary coding).  
Range: ÷1 to ÷32767  
MV[14:0]  
Value: ÷1024  
0
Input Path Configuration Control:  
0 = Input path settings determined by ADR3 control pin.  
1 = Input path settings determined by register settings over I2C.  
SEL_BITS_MASTER  
For input path configurations see Table 13.  
©2018 Integrated Device Technology, Inc  
29  
May 15, 2018  
8V19N478 Datasheet  
Table 27. PLL Frequency Divider Register Descriptions  
Register Description  
Field  
Type  
Default  
(Binary)  
Bit Field Name  
Description  
PLL Lock Detect Phase Window Threshold:  
The device reports VCXO-PLL lock when the phase difference between the internal  
signals fREF and fVCXO_REF are lower than or equal to the phase difference set by  
LOCK_TH[14:0] for more than 1000 fVCXO_DIV clock cycles.  
000 0000  
1000 0000  
LOCK_TH[14:0]  
R/W  
R/W  
Requires MV 4. Set LOCK_TH[14:0] < MV.  
Value: 128  
(fREF fCLK ÷ PV is the internal output of the PV divider,  
fVCXO_DIV fVCXO ÷ MV is the internal output of the MV divider.)  
FemtoClock NG Pre-Divider:  
The value of the frequency divider (binary coding)  
Range: ÷1 to ÷63  
00 0001  
PF[5:0]  
Value: ÷1  
00 0000: PF is bypassed  
Frequency Doubler:  
The input frequency of the FemtoClock NG PLL (2nd stage) is:  
0 The output signal of the BYPV multiplexer, divided by the PF divider.  
1 The output signal of the BYPV multiplexer, doubled in frequency.  
Use this setting to improve phase noise. The PF divider has no effect if FDF 1.  
0
FDF  
R/W  
R/W  
Value:  
fVCXO ÷ PF  
FemtoClock NG Feedback-Divider:  
The value of the frequency divider (binary coding).  
Range: ÷8 to ÷511  
0 0001 1000  
Value: ÷24  
MF[8:0]  
©2018 Integrated Device Technology, Inc  
30  
May 15, 2018  
8V19N478 Datasheet  
PLL Control Registers  
Table 28. PLL Control Bit Field Locations  
Bit Field Location  
D4  
Register Address  
D7  
D6  
D5  
D3  
D2  
D1  
D0  
0x17  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
OSVEN  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
BYPV  
0x18  
0x1C  
0x1D  
0x1E  
Reserved  
POLV  
Reserved  
FVCV  
Reserved  
Reserved  
CPV[4:0]  
SRC  
Reserved  
Reserved  
Reserved  
Reserved  
OFFSET[4:0]  
CPF[4:0]  
Reserved  
Table 29. PLL Control Register Descriptions  
Register Description  
Default  
(Binary)  
Bit Field Name  
Field Type  
Description  
0
VCXO-PLL Bypass:  
0 VCXO-PLL is enabled.  
BYPV  
R/W  
VCXO-PLL 1 VCXO-PLL is disabled and bypassed.  
enabled  
0
FemtoClock NG PLL Bypass:  
0 FemtoClock NG PLL is enabled.  
SRC  
R/W  
R/W  
PLL  
enabled  
1 FemtoClock NG PLL is disabled and bypassed. The VCXO-PLL output signal is  
frequency divided by the channel dividers.  
0
VCXO Polarity:  
0 Positive polarity. Use for an external VCXO with a positive f(VC) characteristics  
1 Negative polarity. Use for an external VCXO with a negative f(VC) characteristics  
POLV  
Value:  
Positive  
Polarity  
VCXO-PLL Force VC Control Voltage:  
1
0 Normal operation.  
1 Forces the voltage at the LFV control pin (VCXO input) to VDD_V/2. VCXO-PLL  
unlocks and the VCXO is forced to its mid-point frequency. FVCV 1 is the default  
setting at startup to center the VCXO frequency. FVCV should be cleared after startup to  
enable the PLL to lock to the reference frequency.  
FVCV  
R/W  
R/W  
Value:  
Value: LFV  
VDD_V/2  
VCXO-PLL Charge-Pump Current:  
0 1111  
Controls the charge-pump current ICPV of the VCXO-PLL. Charge pump current is the  
binary value of this register plus one multiplied by 50µA.  
CPV[4:0]  
ICPV 50µA (CPV[4:0] + 1)  
Value:  
0.8mA  
CPV[4:0] 00000 sets ICPV to the min. current of 50µA. Maximum charge-pump  
current is 1.6 mA. Default setting is 0.8mA: ((15 + 1) 50µA).  
©2018 Integrated Device Technology, Inc  
31  
May 15, 2018  
8V19N478 Datasheet  
Table 29. PLL Control Register Descriptions (Cont.)  
Register Description  
Default  
(Binary)  
Bit Field Name  
Field Type  
Description  
VCXO-PLL Offset Enable:  
0 No offset.  
OSVEN  
R/W  
0
1 Offset enabled. A static phase offset of OFFSET[4:0] is applied to the PFD of the  
VCXO-PLL.  
VCXO-PLL Static Phase Offset:  
Controls the static phase detector offset of the VCXO-PLL. Phase offset is the binary  
value of this register multiplied by 0.9of the PFD input signal,  
0 0000  
(OFFSET [4:0] fPFD ÷ 400). The maximum offset is 31 0.927.9  
Setting OFFSET to 0.0eliminates the thermal noise of an offset current. If the  
VCXO-PLL input jitter period TJIT exceeds the average input period: set OFFSET to a  
value larger than fPFD TJIT 400 to achieve a better charge-pump linearity and lower  
in-band noise of the PLL.  
OFFSET[4:0]  
R/W  
R/W  
Value: 0  
FemtoClock NG PLL Charge-Pump Current:  
1 1000  
Controls the charge-pump current ICPF of the FemtoClock NG PLL. The charge-pump  
current is the binary value of this register plus one multiplied by 200µA.  
CPF[4:0]  
ICPF 200µA (CPF[4:0] + 1)  
Value:  
1.4mA  
CPV[4:0] 00000 sets ICPF to the minimum current of 200µA. Maximum charge-pump  
current is 6.4 mA. Default setting is 1.4 mA: ((6 + 1) 200µA).  
©2018 Integrated Device Technology, Inc  
32  
May 15, 2018  
8V19N478 Datasheet  
Input Selection Mode Registers  
Table 30. Input Selection Mode Register Bit Field Locations  
Bit Field Location  
Register Address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x20  
VCXO_DIV[4:0]  
MODE_BLOCK  
nHO_EN  
Reserved  
nEXT_INT  
0x21  
0x22  
0x23  
Reserved  
Reserved  
Reserved  
Reserved  
REVS  
nM/A[1:0]  
INT_SEL  
CNTH[7:0]  
CNTR[1:0]  
Reserved  
Reserved  
CNTV[1]  
CNTV[0]  
Table 31. Input Selection Mode Registers  
Register Description  
Default  
(Binary)  
Bit Field Name  
Field Type  
Description  
Clock Frequency Divider for the input activity monitor:  
The clock activity monitor compares the device input frequency (fIN) to the frequency of  
the VCXO divided by VCXO_DIV. For optimal operation of the activity monitor, the  
frequency fVCXO ÷ VCXO_DIV should match the input frequency.  
E.g. for fIN 61.44MHz and fVCXO 61.44MHz, set VCXO_DIV ÷1.  
For fIN 25MHz and fVCXO 125MHz, set FCXO_DIV ÷5.  
VCXO_DIV[4:0]  
00000  
VCXO_DIV[4:0]  
R/W  
0XX 00   
÷1  
100 00 ÷2 101 00 ÷3 110 00 ÷4 111 00 ÷5  
100 01 ÷4 101 01 ÷6 110 01 ÷8 111 01 ÷10  
Value: ÷1  
0XX 01   
÷2  
100 10 ÷8 101 10   
110 10   
÷16  
111 10 ÷20  
111 11 ÷40  
÷12  
100 11   
0XX 10   
÷4  
÷16  
101 11   
110 11   
÷32  
÷24  
0XX 11   
÷8  
Inactive Input Clock Block:  
0
MODE_BLOCK  
nHO_EN  
R/W  
R/W  
0 Both input clock signals CLK0 and CLK1 are routed to the input clock multiplexer.  
1 The input clock that is currently not active is gated off (blocked).  
Value:  
Not blocked  
Manual Holdover Control:  
1
0 Enter holdover on a manual input reference switch.  
Value:  
Using the EXT_SEL control pin or the INT_SEL control bit, as defined by nEXT_INT for  
manual reference switching. nMA[1:0] has no meaning.  
Enter  
Holdover  
Disabled  
1 The device switching and holdover modes are controlled by nMA[1:0].  
©2018 Integrated Device Technology, Inc  
33  
May 15, 2018  
8V19N478 Datasheet  
Table 31. Input Selection Mode Registers (Cont.)  
Register Description  
Default  
(Binary)  
Bit Field Name  
Field Type  
Description  
0
Input Clock Selection:  
0 The EXT_SEL pin (B3) controls the input clock selection.  
nEXT_INT  
R/W  
Value:  
1 The INT_SEL bit (register 0x21, D0) controls the input clock selection.  
External  
selection  
Revertive Switching:  
The revertive input switching setting is only applicable to the two automatic selection  
modes shown in Table 11. If nM/A[1:0] X0, the REVS setting has no meaning.  
0
0 Disabled: Re-validation of the non-selected input clock has no impact on the clock  
REVS  
R/W  
selection.  
Value: Off  
1 Enabled: Re-validation of the non-selected input clock will cause a new input  
selection according to the pre-set input priorities (revertive switch).  
Default setting is revertive switching turned off.  
Reference Input Selection Mode:  
In any of the manual selection modes (nM/A[1:0] 00 or 10), the VCXO-PLL reference  
input is selected by INT_SEL. In any of the automatic selection modes, the VCXO-PLL  
reference input is selected by an internal state machine according to the input LOS states  
and the priorities in the input priority registers.  
00  
nM/A[1:0]  
R/W  
Value:  
Manual  
selection  
00 Manual selection (no holdover)  
01 Automatic selection (no holdover)  
10 Short-term holdover  
11 Automatic selection with holdover  
VCXO-PLL Input Reference Selection:  
0
Controls the selection of the VCXO-PLL reference input in internal (nEXT_INT 1), and  
in manual selection mode (nHO_EN 1, nM/A[1:0] 00 or 10).  
In external (nEXT_INT 0) and in automatic selection modes (nM/A[1:0] X1), INT_SEL  
has no meaning.  
INT_SEL  
R/W  
R/W  
Value:  
CLK0  
0 CLK_0 is the selected VCXO-PLL reference clock.  
1 CLK_1 is the selected VCXO-PLL reference clock.  
selected  
Short-term Holdover: Hold-off counter period. The device initiates a clock fail-over switch  
upon counter expiration (zero transition). The counters start to counts backwards after an  
LOS event is detected. The hold-off counter period is determined by the binary number of  
VCXO-PLL output pulses divided by CNTR[1:0]. With a VCXO frequency of 125MHz and  
CNTR[1:0] 10, the counter has a period of  
1000 0000  
CNTH[7:0]  
Value:  
134ms  
(1.048ms binary setting). After each zero-transition, the counter automatically re-loads  
to the setting in this register.  
The default setting is 134ms (VCXO 125MHz: 1/125MHz 217 128).  
©2018 Integrated Device Technology, Inc  
34  
May 15, 2018  
8V19N478 Datasheet  
Table 31. Input Selection Mode Registers (Cont.)  
Register Description  
Default  
(Binary)  
Bit Field Name  
Field Type  
Description  
Short-term Holdover Reference Divider  
CNTR[1:0]  
CNTH frequency (period; range)  
125MHz VCXO  
156.25MHz VCXO  
10  
00 fVCXO ÷ 215  
01 fVCXO ÷ 216  
10 fVCXO ÷ 217  
Revalidation Counter:  
3814Hz  
(0.262ms; 0ms – 66.8ms)  
4768Hz  
(0.209ms; 0ms – 53.4ms)  
CNTR[1:0]  
R/W  
Value: 217  
1907Hz  
(0.524ms; 0ms – 133ms)  
2384Hz  
(0.419ms; 0ms – 106.9ms)  
953Hz  
(1.048ms; 0ms – 267ms)  
1192Hz  
(0.838ms; 0ms – 213.9ms)  
Controls the number of required consecutive, valid input reference pulses for clock  
re-validation on CLK_n for the number of input periods. At an LOS event, the re-validation  
counter loads this setting from the register and counts down by one with every valid,  
consecutive input signal period. Missing input edges (for one input period) will cause this  
counter to re-load its setting. An input is re-validated when the counter transitions to zero  
and the corresponding LOS flag is reset.  
10  
CNTV[1:0]  
R/W  
Value: 32  
00 2 (shortest possible)  
01 16  
10 32  
11 64  
©2018 Integrated Device Technology, Inc  
35  
May 15, 2018  
8V19N478 Datasheet  
Channel Registers  
The content of the channel registers set the channel state, the clock divider the clock phase delay and the power-down state.  
Table 32. Channel Register Bit Field Locations  
Bit Field Location  
Register Address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x24: Channel A  
0x2C: Channel B  
0x34: Channel C  
0x40: Channel D  
N_A[7:0]  
N_B[7:0]  
N_C[7:0]  
N_D[7:0]  
0x25: Channel A  
0x2D: Channel B  
0x35: Channel C  
0x41: Channel D  
CLK_A[7:0]  
CLK_B[7:0]  
CLK_C[7:0]  
CLK_D[7:0]  
0x26: Channel A  
0x2E: Channel B  
0x36: Channel C  
PD_A  
PD_B  
PD_C  
SEL_ BITS_A  
SEL_ BITS_B  
SEL_BITS_C  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
D_DIV_FRAC D_DIV_FRAC  
0x42: Channel D  
PD_D  
CH_D_OUT SEL_BITS_D  
[1]  
[0]  
0x3C: Channel D  
0x3D: Channel D  
0x3E: Channel D  
N_D_FRAC[7:0]  
N_D_FRAC[15:8]  
N_D_FRAC[23:16]  
0x3F: Channel D Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
N_D_INT[3:0]  
EN_QCLK_  
V
EN_QCLK_  
C
0x58  
Reserved  
EN_QCLK_A EN_QCLK_B  
EN_QCLK_D  
©2018 Integrated Device Technology, Inc  
36  
May 15, 2018  
8V19N478 Datasheet  
Table 33. Channel Register Descriptions[a]  
Register Description  
Default  
(Binary)  
Bit Field Name  
Field Type  
Description  
Output Frequency Divider N:  
N_x[7:0] Divider Value  
1000 0000  
0000 0000  
0000 0001  
0000 0010  
0000 0011  
0000 0100  
0000 0110  
÷1  
÷2  
÷3  
÷4  
÷5  
÷6  
÷8  
0100 0011  
0100 0100  
0100 0110  
÷10  
÷12  
÷16  
0100 1011  
0100 1100  
÷20  
÷24  
0100 0110  
Value: ÷16  
0101 0011  
0100 1110  
0101 0100  
÷30  
÷32  
÷36  
N_x[7:0]  
R/W  
0101 1011  
0101 0110  
÷40  
÷48  
0110 0011  
÷50  
0110 0100  
0101 1110  
÷60  
÷64  
0101 1111  
0110 0110  
0110 1110  
0111 1011  
÷72  
÷80  
÷96  
÷100  
0111 1100  
0111 0110  
÷120  
÷128  
0111 1110  
÷160  
Fractional Output Divider, Fractional Part:  
0110 0000  
0000 0000  
0000 0000  
Together with N_E_INT, forms the fractional output divider ND value.  
NFRAC  
N_D_FRAC[23:0]  
R/W  
NE = 2 NINT +  
---------------------  
224  
Value:  
6,291,456  
The default value is ND 2 (9 + 0.4371839761732) 18.8743679523.  
Greatest ND fractional divider is 2 (14 + [224 – 1] / 224) 29.99999988.  
©2018 Integrated Device Technology, Inc  
37  
May 15, 2018  
8V19N478 Datasheet  
Table 33. Channel Register Descriptions[a] (Cont.)  
Register Description  
Default  
(Binary)  
Bit Field Name  
Field Type  
Description  
Fractional Output Divider, Integer Part:  
See N_D_FRAC[23:0]  
1001  
N_D_INT[3:0]  
R/W  
Value: 9  
Greatest ND fractional divider is 2 (14 + [224 – 1] / 224) 29.99999988.  
CLK_x Phase Delay:  
CLK_x[7:0]  
fVCO 2500MHz:  
CLK_x[7:0]  
Delay in ps  CLK_x 400ps (256 steps)  
CLK_x[7:0] Delay (fVCO 2500MHz)  
R/W  
0000 0000  
fVCO 2500MHz  
0000 0000  
0000 0001  
0ps  
400ps  
1111 1111  
102ns  
0
0 Channel x is powered up  
1 Channel x is power down  
PD_x  
EN_x  
R/W  
R/W  
R/W  
Value:  
Power-up  
0
QCLK_x Channel Output Enable:  
0 All outputs of channel x are disabled at the logic low state.  
1 All outputs of channel x are enabled.  
Value:  
Disabled  
0
QCLK_V Output Enable:  
0 QCLK_V is disabled at the logic low state.  
1 QCLK_V is enabled.  
EN_QCLK_V  
Value:  
Disabled  
©2018 Integrated Device Technology, Inc  
38  
May 15, 2018  
8V19N478 Datasheet  
Table 33. Channel Register Descriptions[a] (Cont.)  
Register Description  
Default  
(Binary)  
Bit Field Name  
Field Type  
Description  
Bank x Configuration Control:  
0 Nx[5:0], PD_X, EN_X settings determined by ADRn control pin.  
1 Nx[5:0], PD_X, EN_X settings determined by register settings over I2C.  
SEL_BITS_x  
R/W  
0
Where:  
n = 0 for Channels A and C  
n = 1 for Channel B  
n = 2 for Channel D  
D_DIV_FRAC[1:0]:  
Post-divider ratio for Bank D fractional divider:  
00 ÷1  
D_DIV_FRAC[1:0]  
R/W  
R/W  
0
0
01 ÷2  
10 ÷4  
11 Reserved  
CH_D_OUT:  
Controls which the divider is used to provide output frequency for Bank D:  
CH_D_OUT  
0 Integer divider D (ND configures this)  
1 Fractional mode (ND_FINT, ND_FRAC, and ND_DIVF configure this)  
[a] x A, B, C, D.  
©2018 Integrated Device Technology, Inc  
39  
May 15, 2018  
8V19N478 Datasheet  
Output Registers  
The content of the output registers set the power-down state, the output style and amplitude.  
Table 34. Output Register Bit Field Locations  
Bit Field Location  
Register Address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A_A0[0]  
A_A1[0]  
A_A2[0]  
A_A3[0]  
0x28: QCLK_A0  
0x29: QCLK_A1  
0x2A: QCLK_A2  
0x2B: QCLK_A3  
PD_A0  
PD_A1  
PD_A2  
PD_A3  
STYLE_A0  
STYLE_A1  
STYLE_A2  
STYLE_A3  
A_A0[1]  
A_A1[1]  
A_A2[1]  
A_A3[1]  
Reserved  
Reserved  
Reserved  
Reserved  
A_B0[0]  
A_B1[0]  
A_B2[0]  
A_A3[0]  
0x30: QCLK_B0  
0x31: QCLK_B1  
0x32: QCLK_B2  
0x33: QCLK-B3  
PD_B0  
PD_B1  
PD_B2  
PD_B3  
STYLE_B0  
STYLE_B1  
STYLE_B2  
STYLE_A3  
A_B0[1]  
A_B1[1]  
A_B2[1]  
A_A3[1]  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
A_C0[0]  
A_C1[0]  
A_C2[0]  
A_C3[0]  
0x38: QCLK_A0  
0x39: QCLK_A1  
0x3A: QCLK_A2  
0x3B: QCLK_A3  
PD_C0  
PD_C1  
PD_C2  
PD_C3  
STYLE_C0  
STYLE_C1  
STYLE_C2  
STYLE_C3  
A_C0[1]  
A_C1[1]  
A_C2[1]  
A_C3[1]  
0x44: QCLK_D0  
0x45: QCLK_D1  
0x46: QCLK_D2  
0x47: QCLK_D3  
0x48: QCLK_D4  
0x49: QCLK_D5  
PD_D0  
PD_D1  
PD_D2  
PD_D3  
PD_D4  
PD_D5  
STYLE_D0  
STYLE_D1  
STYLE_D2  
STYLE_D3  
STYLE_D4  
STYLE_D5  
A_D0[1]  
A_D1[1]  
A_D2[1]  
A_D3[1]  
A_D4[1]  
A_D5[1]  
A_D0[0]  
A_D1[0]  
A_D2[0]  
A_D3[0]  
A_D4[0]  
A_D5[0]  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x4B: QCLK_V  
PD_V  
STYLE__V1 STYLE__V0  
A_V[1]  
A_V[0]  
©2018 Integrated Device Technology, Inc  
40  
May 15, 2018  
8V19N478 Datasheet  
Table 35. Output Register Descriptions[a]  
Register Description  
Default  
(Binary)  
Bit Field Name  
Field Type  
Description  
0
0 Output QCLK_y is powered-up.  
1 Output QCLK_y is power-down.  
PD_y  
R/W  
Value:  
Power-up  
1
0 Output QCLK_V is powered-up.  
1 Output QCLK_V is power-down.  
PD_V  
R/W  
Value:  
Power-dow  
n
10  
QCLK_y, QCLK_V Output Amplitude  
Setting for STYLE 0 (LVDS)  
Setting for STYLE 1 (LVPECL)  
A_y[1:0]  
A_V[1:0]  
STYLE_y  
R/W  
R/W  
R/W  
Value:  
700mV  
A[1:0] 00: 350mV  
A[1:0] 01: 500mV  
A[1:0] 10: 700mV  
A[1:0] 11: 850mV  
Termination: 100across  
A[1:0] 00: 350mV  
A[1:0] 01: 500mV  
A[1:0] 10: 700mV  
A[1:0] 11: 850mV  
Termination: 50to VTT  
10  
Value:  
700mV  
[b]  
1
QCLK_y Output Format:  
0 Output is LVDS (Requires LVDS 100output termination)  
Value:  
1 Output is LVPECL (Requires LVPECL 50output termination of to the specified  
LVPECL  
recommended termination voltage).  
QCLK_V Output Format:  
01  
00 Output is LVDS (Requires LVDS 100output termination).  
01 Output is LVPECL (Requires LVPECL 50termination to VTT[b]).  
STYLE_V[1:0]  
R/W  
Value:  
LVPECL  
1x Both QCLK_V and nQCLK_V are single-ended LVCMOS 1.8V outputs, QCLK_V  
and nQCLK_V are complementary (180º phase difference).  
[a] y A0,A1,A2,A3,B0,B1,B2,B3,C0,C1,C2,C3,D0,D1,D2,D3,D4,D5.  
[b] For VTT (Termination voltage) values (Table 50).  
©2018 Integrated Device Technology, Inc  
41  
May 15, 2018  
8V19N478 Datasheet  
Status Registers  
Table 36. Status Register Bit Field Locations  
Bit Field Location  
D4  
Register Address  
D7  
D6  
D5  
D3  
D2  
D1  
IE_CLK_1  
D0  
0x4C  
Reserved  
Reserved  
IE_LOLF  
IE_LOLV  
IE_REF  
IE_HOLD  
IE_CLK_0  
0x50  
0x51  
0x53  
Reserved  
Reserved  
Reserved  
Reserved  
ST_SEL  
nLS_LOLF  
nLS_LOLV  
LS_REF  
ST_REF  
Reserved  
nLS_HOLD LS_CLK_1  
nST_HOLD ST_CLK_1  
LS_CLK_0  
ST_CLK_0  
Reserved  
nST_LOLF nST_LOLV  
Reserved  
Reserved  
Reserved  
ST_CAL  
Reserved  
Table 37. Status Register Descriptions[a]  
Register Description  
Default  
(Binary)  
Bit Field Name  
Field Type  
Description  
Interrupt Enable for FemtoClock NG PLL Loss-of-lock:  
0 Disabled: Setting nLS_LOLF will not cause an interrupt on nINT.  
IE_LOLF  
R/W  
0
1 Enabled: Setting nLS_LOLF will assert the nINT output (nINT 0, interrupt).  
Interrupt Enable for VCXO-PLL Loss-of-lock:  
IE_LOLV  
IE_CLK_n  
IE_REF  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0 Disabled: Setting nLS_LOLV will not cause an interrupt on nINT.  
1 Enabled: Setting nLS_LOLV will assert the nINT output (nINT 0, interrupt).  
Interrupt Enable for CLKn input Loss-of-signal:  
0 Disabled: Setting LS_CLK_n will not cause an interrupt on nINT.  
1 Enabled: Setting LS_CLK_n will assert the nINT output (nINT 0, interrupt).  
Interrupt Enable for LS_REF:  
0 Disabled: Any changes to LS_REF will not cause an interrupt on nINT.  
1 Enabled: Any changes to LS_REF will assert the nINT output (nINT 0, interrupt).  
Interrupt Enable for Holdover:  
IE_HOLD  
0 Disabled: Setting nLS_HOLD will not cause an interrupt on nINT.  
1 Enabled: Setting nLS_HOLD will assert the nINT output (nINT 0, interrupt).  
FemtoClock NG PLL Loss-of-lock (latched status of nST_LOLF):  
Read 0  1 Loss-of-lock events detected after the last status latch clear.  
Read 1 No Loss-of-lock detected after the last status latch clear.  
Write 1 Clear status latch (clears pending nLS_LOLF interrupt).  
nLS_LOLF  
nLS_LOLV  
R/W  
R/W  
VCXO-PLL Loss-of-lock (latched status of nST_LOLV):  
Read 0  1 Loss-of-lock events detected after the last status latch clear.  
Read 1 No Loss-of-lock detected after the last nLS_LOLV clear.  
Write 1 Clear status latch (clears pending nLS_LOLV interrupt).  
©2018 Integrated Device Technology, Inc  
42  
May 15, 2018  
8V19N478 Datasheet  
Table 37. Status Register Descriptions[a] (Cont.)  
Register Description  
Default  
(Binary)  
Bit Field Name  
Field Type  
Description  
Input CLK_n Status (latched status of ST_CLK_n):  
Read 0  1 LOS events detected on CLK_n after the last LS_CLK_n clear.  
Read 1 No loss-of-signal detected on CLK_n input after the last LS_CLK_n clear.  
Write 1 Clear LS_CLK_n status latch (clears pending LS_CLK_n interrupts on nINT).  
LS_CLK_n  
R/W  
Input Selection (momentary):  
Reference input selection status of the state machine. In any input selection mode,  
reflects the input selected by the state machine.  
ST_SEL  
R
0 CLK_0  
1 CLK_1  
FemtoClock NG PLL Loss-of-lock (momentary):  
Read 0  1 Loss-of-lock events detected  
Read 1 No Loss-of-lock detected  
nST_LOLF  
nST_LOLV  
ST_CLK_n  
LS_REF  
R
R
A latched version of this status bit is available (nLS_LOLF).  
VCXO-PLL Loss-of-lock (momentary):  
Read 0  1 Loss-of-lock events detected  
Read 1 No Loss-of-lock detected  
A latched version of this status bits is available (nLS_LOLV).  
Input CLK_n Status (momentary):  
0 LOS detected on CLK_n.  
R
1 No LOS detected, CLK_n input is active.  
A latched version of this status bits are available (LS_CLK_n).  
PLL Reference Status (latched status of ST_REF):  
Read 0 Reference is lost since last reset of this status bit.  
Read 1 Reference is valid since last reset of this status bit.  
Write 1 Clear LS_REF status latch (clears pending LS_REF interrupts on nINT).  
R/W  
R/W  
Holdover Status Indicator (latched status of ST_HOLD):  
Read 0 VCXO-PLL has entered holdover state 1 times after reset of this status bit.  
Read 1 VCXO-PLL is (or attempts to) lock(ed) to an input clock.  
Write 1 Clear status latch (clears pending nLS_HOLD interrupt).  
nLS_HOLD  
FemtoClock NG PLL Calibration Status (momentary):  
ST_VCOF  
ST_REF  
R
R
Read 0 FemtoClock NG PLL auto-calibration is completed.  
Read 1 FemtoClock NG PLL calibration is active (not completed).  
Input Reference Status.  
0 No input reference present.  
1 Input reference is present at the clock selected input clock.  
©2018 Integrated Device Technology, Inc  
43  
May 15, 2018  
8V19N478 Datasheet  
Table 37. Status Register Descriptions[a] (Cont.)  
Register Description  
Default  
(Binary)  
Bit Field Name  
Field Type  
Description  
Holdover Status Indicator (momentary):  
0 VCXO-PLL in holdover state, not locked to any input clock.  
1 VCXO-PLL is (or attempts to) lock(ed) to input clock.  
A latched version of this status bit is available (nLS_HOLD).  
nST_HOLD  
R
FemtoClock NG PLL Calibration Status (momentary):  
ST_CAL  
R
Read 0 FemtoClock NG PLL auto-calibration is completed.  
Read 1 FemtoClock NG PLL calibration is active (not completed).  
[a] CLKn CLK0, CLK1.  
General Control Registers  
Table 38. General Control Register Bit Field Locations  
Bit Field Location  
D4  
Register Address  
D7  
D6  
D5  
D3  
D2  
D1  
D0  
0x55  
INIT_CLK  
0x56  
0x57  
RELOCK  
PB_CAL  
Table 39. General Control Register Descriptions  
Register Description  
Default  
(Binary)  
Bit Field Name  
Field Type  
Description  
W only  
Set INIT_CLK 1 to initialize divider functions. Required as part of the startup  
procedure.  
INIT_CLK  
X
X
Auto-Clear  
W only  
Setting this bit to 1 will force the FemtoClock NG PLL to re-lock.  
RELOCK  
PB_CAL  
Auto-Clear  
Precision Bias Calibration:  
Setting this bit to 1 will start the calibration of an internal precision bias current source.  
The bias current is used as reference for outputs configured as LVDS, and as reference  
for the charge-pump currents. This bit will auto-clear after the calibration completed. Set  
as part of the startup procedure.  
W only  
X
Auto-Clear  
©2018 Integrated Device Technology, Inc  
44  
May 15, 2018  
8V19N478 Datasheet  
Electrical Characteristics  
Absolute Maximum Ratings  
The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the  
device. Functional operation of the 8V19N478 at absolute maximum ratings is not implied. Exposure to absolute maximum rating  
conditions may affect device reliability.  
Table 40. Absolute Maximum Ratings  
Item  
Rating  
Supply Voltage, VDD_V and VDDO_V  
Inputs  
3.6V  
-0.5V to VDD_V 0.5V  
-0.5V to VDDO_V 0.5V  
Outputs, VO (LVCMOS)  
Outputs, IO (LVPECL)  
Continuous Current  
Surge Current  
50mA  
100mA  
Outputs, IO (LVDS)  
Continuous Current  
Surge Current  
50mA  
100mA  
Operating Junction Temperature, TJ  
Storage Temperature, TSTG  
ESD – Human Body Model[a]  
125C  
-65C to 150C  
2000V  
ESD – Charged Device Model[a]  
500V  
[a] According to JEDEC JS-001-2012/JESD22-C101.  
©2018 Integrated Device Technology, Inc  
45  
May 15, 2018  
 
8V19N478 Datasheet  
Pin Characteristics  
Table 41. Input Characteristics, VDD_V 3.3V ±5%, VDDO_V (3.3V, 2.5V or 1.8V) ±5%, TA = -40°C to +85°C  
Symbol  
Parameter  
Test Conditions  
OSC, nOSC  
Minimum  
Typical  
Maximum  
Units  
Input Capacitance  
2
2
4
4
pF  
pF  
[a]  
CIN  
Other inputs  
RPU  
RPD  
Input Pull-Up Resistor  
nCLK_0, nCLK_1  
51  
51  
k  
k  
Input Pull-Down Resistor  
CLK_0, nCLK_0, CLK_1, nCLK_1,  
EXT_SEL, ADR1/MISO, I2C  
ROUT  
LVCMOS Output Impedance nINT, LOCK  
25[b]  
W
[a] Guaranteed by design.  
[b] Design target specifications.  
DC Characteristics  
The device is configured to the maximum values of register settings, all outputs enabled in LVDS mode, and amplitude of 850mV.  
Process variation is included for the maximum current consumption.  
Table 42. Pow er Supply DC Characteristics, VDD_V 3.3V ±5%, VDDO_V (3.3V, 2.5V, or 1.8V) ±5%,  
TA = -40°C to +85°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
VDD_V  
Core Supply Voltage  
3.135  
1.71  
3.3  
1.8, 2.5, 3.3  
580  
3.465  
3.465  
1024  
V
V
VDDO_V Output Supply Voltage  
IDD_V Power Supply Current  
mA  
©2018 Integrated Device Technology, Inc  
46  
May 15, 2018  
8V19N478 Datasheet  
Table 43. Typical Pow er Supply DC Current Characteristics, VDD_V 3.3V ±5%, VDDO_V (3.3V, 2.5V, or  
1.8V) ±5%, TA = -40°C to +85°C[a]  
Test Case  
[b]  
[b]  
[c]  
[c]  
[c]  
[c]  
Symbol  
Supply Pin Current  
VDDO_QCLKA _QCLKB  
1
2
3
4
5
6
Units  
,
3.3  
3.3  
3.3  
LVPECL  
On  
3.3  
LVPECL  
On  
1.8  
LVPECL  
On  
1.8  
LVPECL  
On  
V
Style  
LVDS  
On  
LVDS  
On  
QCLK_A[3:0],  
QCLK_B[3:0]  
State  
Amplitude  
700  
850  
850  
700  
500  
350  
mV  
V
VDDO_QCLKC _QCLKD  
,
3.3  
3.3  
3.3  
3.3  
1.8  
1.8  
Style  
LVDS  
On  
LVDS  
On  
LVPECL  
On  
LVPECL  
On  
LVDS  
On  
LVDS  
On  
QCLK_C[3:0],  
QCLK_D[5:0]  
State  
Amplitude  
700  
850  
850  
700  
500  
350  
mV  
A
IDD_COA Current through VDDO_QCLKA pin  
IDD_CA Current through VDD_QCLKA pin  
IDD_COB Current through VDDO_QCLKB pin  
IDD_CB Current through VDD_QCLKB pin  
IDD_COC Current through VDDO_QCLKC pin  
IDD_CC Current through VDD_QCLKC pin  
IDD_COD Current through VDDO_QCLKD pin  
0.088  
0.039  
0.088  
0.034  
0.088  
0.039  
0.132  
0.044  
0.009  
0.013  
0.077  
0.060  
0.014  
0.056  
0.006  
0.787  
2.596  
2.596  
0.109  
0.039  
0.109  
0.034  
0.109  
0.039  
0.164  
0.044  
0.009  
0.013  
0.081  
0.060  
0.014  
0.056  
0.006  
0.887  
2.928  
2.928  
0.135  
0.037  
0.131  
0.038  
0.135  
0.036  
0.188  
0.045  
0.009  
0.013  
0.080  
0.060  
0.014  
0.055  
0.006  
0.982  
3.242  
2.165  
0.123  
0.037  
0.118  
0.038  
0.122  
0.036  
0.170  
0.045  
0.009  
0.013  
0.080  
0.060  
0.014  
0.055  
0.006  
0.927  
3.058  
2.051  
0.104  
0.037  
0.099  
0.038  
0.139  
0.036  
0.196  
0.045  
0.009  
0.013  
0.080  
0.060  
0.014  
0.055  
0.006  
0.931  
2.267  
2.025  
0.090  
0.037  
0.087  
0.038  
0.119  
0.036  
0.167  
0.045  
0.009  
0.013  
0.080  
0.060  
0.014  
0.055  
0.006  
0.857  
2.132  
1.881  
A
A
A
A
A
A
IDD_CD  
IDD_SPI  
IDD_INP  
Current through VDD_QCLKD pin  
Current through VDD_I2C pin  
Current through VDD_INP pin  
A
A
A
IDD_LCV Current through VDD_LCV pin  
IDD_LCF Current through VDD_LCF pin  
IDD_CPV Current through VDD_CPV pin  
IDD_CPF Current through VDD_CPF pin  
IDD_OSC Current through VDD_OSC pin  
IDD_TOT Total Device Current Consumption  
PTOT, SYS Total System Power Consumption[d]  
A
A
A
A
A
A
W
W
PTOT  
Total Device Power Consumption  
[a] Design target specifications.  
[b] fCLK (input) 40MHz, fVCXO 156.25MHz, fVCO 2500MHz, PV 160, MV 625, MF 8, FDF 1. Supply current is independent of the output  
frequency configuration used for this table: QCLKA[3:0] 41.66MHz, QCLKB[3:0] 500MHz, QCLKC[3:0] 31.25MHz, QCLKD[5:0] 500MHz.  
QCLK_y outputs terminated according to amplitude settings: LVPECL outputs terminated to VTT  
.
[c] fCLK (input) 125MHz, fVCXO 156.25MHz, fVCO 2500MHz, PV 1024, MV 1280, MF 8, FDF 1. Supply current is independent of the  
output frequency configuration used for this table: QCLKA[3:0] 125MHz, QCLKB[3:0] 156.25MHz, QCLKC[3:0] 250MHz,  
QCLKD[5:0] 312.5MHz. QCLK_y outputs terminated according to amplitude settings: LVPECL outputs terminated to VTT  
.
[d] Includes total device power consumption and the power dissipated in external output termination components.  
©2018 Integrated Device Technology, Inc  
47  
May 15, 2018  
 
 
8V19N478 Datasheet  
Table 44. LVCMOS DC Characteristics, VDD_V 3.3V ±5%, VDDO_V (3.3V, 2.5V, or 1.8V) ±5%,  
TA = -40°C to +85°C[a]  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
Control inputs, (1.8V/JESD7A-8 logic, input hysteresis and 3.3V tolerance)  
-0.3  
VI  
VT  
VT-  
VH  
Input Voltage  
VDD_V  
1.365  
1.170  
0.780  
150  
V
V
Positive-going Input Threshold Voltage  
Negative-going Input Threshold Voltage  
Hysteresis Voltage  
0.660  
0.495  
0.165  
V
VT– VT-  
V
Input High Current  
Input (PD)[b] and  
Input (PD/PU)[c]  
VDD_V 3.3V, VIN 3.3V  
µA  
IIH  
Input (PU)[d]  
Input (PD)[b]  
5
Input Low Current  
VDD_V 3.465V, VIN 0V  
-5  
µA  
Input (PU)[d] and  
Input (PD/PU)[c]  
-150  
IIL  
Control outputs ADR1/MISO (when output), nINT, LOCK configured to 3.3V (SELSV0 0, SELSV1 0)  
VOH  
VOL  
Output High Voltage ADR1/MISO (when  
output), nINT,  
Output Low Voltage  
LOCK  
IOH -4mA  
IOL 4mA  
2.0  
V
V
0.55  
Control outputs ADR1/MISO (when output), nINT, LOCK configured to 1.8V (SELSV0 1, SELSV1 1)  
VOH  
VOL  
Output High Voltage  
Output Low Voltage  
IOH -4mA  
IOL 4mA  
1.35  
1.8  
V
V
0.45  
Clock outputs QCLK_V, nQCLK_V configured to LVCMOS (STYLE_V[1:0] 1)  
VOH  
VOL  
Output High Voltage  
Output Low Voltage  
IOH -8mA  
IOL 8mA  
1.35  
1.8  
V
V
0.45  
[a] Design target specifications.  
[b] EXT_SEL.  
[c] I2C_A, ADR3, ADR2, ADR1, ADR0.  
[d] SDAT, SCL.  
Table 45. Differential Input DC Characteristics, VDD_V 3.3V ±5%, VDDO_V (3.3V, 2.5V, or 1.8V) ±5%,  
TA = -40°C to +85°C  
Symbol  
Parameter  
Pull-down inputs[a]  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VDD_V VIN 3.465V  
150  
150  
µA  
µA  
Input  
High Current  
IIH  
Pull-down/pull-up  
inputs[b]  
Pull-down inputs[a]  
VDD_V 3.465V, VIN 0V  
-150  
-150  
µA  
µA  
Input  
Low Current  
IIL  
Pull-down/pull-up  
inputs[b]  
[a] Non-Inverting inputs: CLK_0, CLK_1, OSC.  
[b] Inverting inputs: nCLK_0, nCLK_1, nOSC.  
©2018 Integrated Device Technology, Inc  
48  
May 15, 2018  
 
 
 
 
 
8V19N478 Datasheet  
Table 46. LVPECL DC Characteristics (QCLK_y, STYLE 1), VDD_V 3.3V ±5%, VDDO_V (3.3V, 2.5V, or  
1.8V) ±5%, TA = -40°C to +85°C[a]  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
VDDO_V - 1.034 VDDO_V - 0.892 VDDO_V - 0.750  
VDDO_V - 1.057 VDDO_V - 0.912 VDDO_V - 0.768  
VDDO_V - 1.092 VDDO_V - 0.950 VDDO_V - 0.808  
VDDO_V - 1.087 VDDO_V - 0.960 VDDO_V - 0.833  
VDDO_V - 1.413 VDDO_V - 1.265 VDDO_V - 1.117  
VDDO_V - 1.574 VDDO_V - 1.420 VDDO_V - 1.266  
VDDO_V - 1.782 VDDO_V - 1.633 VDDO_V - 1.485  
VDDO_V - 1.918 VDDO_V - 1.778 VDDO_V - 1.638  
350mV amplitude setting  
500mV amplitude setting  
700mV amplitude setting  
850mV amplitude setting  
350mV amplitude setting  
500mV amplitude setting  
700mV amplitude setting  
850mV amplitude setting  
V
V
V
V
V
V
V
V
VOH  
Output High Voltage[b][c]  
VOL  
Output Low Voltage[b][c]  
[a] Design target specifications.  
[b] Outputs terminated with 50to VTT. For termination voltage VTT values (Table 50).  
[c] 700mV and 850mV amplitude settings are only available at VDDO_V 2.5V.  
Table 47. LVDS DC Characteristics (QCLK_y, STYLE = 0), VDD_V = 3.3V ± 5%, VDDO_V = (3.3V, 2.5V, or  
1.8V) ±5%, TA = -40°C to +85°C[a]  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
VDDO_V - 1.034 VDDO_V - 0.947 VDDO_V - 0.862  
VDDO_V - 1.133 VDDO_V - 1.045 VDDO_V - 0.961  
VDDO_V - 1.229 VDDO_V - 1.142 VDDO_V - 1.056  
VDDO_V - 1.316 VDDO_V - 1.226 VDDO_V - 1.138  
350mV amplitude setting  
500mV amplitude setting  
700mV amplitude setting  
850mV amplitude setting  
V
V
VOS  
Offset Voltage[b][c]  
V
V
25  
50  
VOS  
VOS Magnitude Change  
mV  
[a] Design target specifications.  
[b] VOS changes with VDD  
[c] 700mV and 850mV amplitude settings are only available at VDDO_V 2.5V.  
.
©2018 Integrated Device Technology, Inc  
49  
May 15, 2018  
 
 
8V19N478 Datasheet  
AC Characteristics  
Table 48. AC Characteristics, VDD_V = 3.3V ±5%, VDDO_V = (3.3V, 2.5V, or 1.8V) ±5%,  
TA = -40°C to +85°C[a][b]  
Symbol  
Parameter  
Input Frequency  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
fIN  
CLK_n  
0.008  
10  
250  
250  
250  
MHz  
MHz  
MHz  
fVCXO  
VCXO Frequency  
156.25  
Phase-Frequency Detector  
Frequency  
FemtoClock NG  
fPFD, F  
fVCO  
VCO Frequency Range  
2400  
2400  
1200  
600  
300  
240  
150  
120  
80  
2500  
2500  
1250  
625  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
QCLK_y, N  1  
QCLK_y, N  2  
QCLK_y, N  4  
QCLK_y, N  8  
QCLK_y, N  10  
QCLK_y, N  16  
QCLK_y, N  20  
Integer  
Divider  
312.5  
250  
Output  
fOUT  
Frequency  
156.25  
125  
Fractional QCLK_D, ND range: 29.99 to 8.33  
Divider  
300  
Integer output divider N[A:C]  
0
ppb  
ppb  
fOUT  
Output Frequency Accuracy  
Fractional output divider ND,  
10  
fOUT 156.25MHz  
Input Voltage  
Amplitude[c]  
CLK_n  
CLK_n  
0.15  
0.3  
1.2  
2.4  
V
V
VIN  
Differential  
VDIFF_IN Input Voltage  
Amplitude[c] [d]  
Common Mode Input Voltage  
Output Duty Cycle  
1.0  
45  
VDD_V – (VIN /  
V
VCMR  
odc  
)
2
QCLK_y  
50  
55  
%
Output Rise/Fall Time,  
Differential  
QCLK_y (LVPECL), 20% to 80%  
QCLK_y (LVDS), 20% to 80%  
LVCMOS outputs, 20%-80%  
350mV amplitude setting  
500mV amplitude setting  
700mV amplitude setting  
850mV amplitude setting  
350mV amplitude setting  
500mV amplitude setting  
700mV amplitude setting  
850mV amplitude setting  
200  
300  
1.2  
ps  
tR / tF  
ps  
Output Rise/Fall Time  
ns  
351  
477  
388  
528  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
LVPECL  
Output Voltage Swing,  
Peak-to-peak, 156.25MHz  
645  
711  
770  
850  
[e]  
VO(PP)  
702  
776  
LVPECL  
954  
1055  
1422  
1700  
Differential Output Voltage  
Swing, Peak-to-peak,  
156.25MHz  
1290  
1540  
©2018 Integrated Device Technology, Inc  
50  
May 15, 2018  
8V19N478 Datasheet  
Table 48. AC Characteristics, VDD_V = 3.3V ±5%, VDDO_V = (3.3V, 2.5V, or 1.8V) ±5%,  
TA = -40°C to +85°C[a][b] (Cont.)  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
350mV amplitude setting  
500mV amplitude setting  
700mV amplitude setting  
850mV amplitude setting  
350mV amplitude setting  
500mV amplitude setting  
700mV amplitude setting  
850mV amplitude setting  
QCLK_y (same N divider)  
265  
362  
340  
465  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
ps  
LVDS  
Output Voltage Swing,  
Peak-to-peak, 156.25MHz  
611  
676  
746  
818  
[f]  
VOD  
530  
680  
LVDS  
724  
929  
Differential Output Voltage  
Swing, Peak-to-peak,  
156.25MHz  
1222  
1492  
1351  
1635  
60  
50  
Output Skew[g] [h]  
All delays set to 0  
tsk(o)  
QCLK_y (any N divider, incident rising  
edge)  
ps  
LOS State Detected  
(measured in input reference  
periods)  
fIN 125MHz  
fIN 125MHz  
2
3
TIN  
ms  
tD, LOS  
PLL re-lock time after a short-term  
holdover scenario. Measured from LOS  
to both PLLs lock-detect asserted;  
hold-off timer 200,  
VCXO-PLL bandwidth 30Hz, 100Hz  
initial frequency error <200ppm  
300  
30Hz -  
30.2  
tD, LOCK PLL Lock Detect  
100Hz -  
22.6  
Refer to PLL lock detect tD,LOCK  
.
30Hz -  
0.049  
20  
ns  
Reference point: final value of clock  
output phase after all phase transitions  
settled.  
PLL Lock Residual Time  
Error  
tD, RES  
100Hz -  
0.191  
Max. frequency deviation during a  
holdover duration of 200ms and after the  
clock re-validate event  
30Hz -  
1.57  
±5.0  
ppm  
fHOLD Holdover Accuracy  
100Hz -  
3.34  
[a] Design target specifications.  
[b] Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted  
in a test socket with maintained transverse airflow greater than 500lfpm. The device will meet specifications after thermal equilibrium has been  
reached under these conditions.  
[c] VIL should not be less than -0.3V and VIH should not be greater than VDD_V  
[d] Common Mode Input Voltage is defined as the cross-point voltage.  
.
[e] LVPECL outputs terminated with 50to VDDO_V – 1.6V (350mV amplitude setting), VDDO_V – 1.75V (500mV amplitude setting),  
VDDO_V – 1.95V (700mV amplitude setting), VDDO_V – 2.1V (850mV amplitude setting).  
[f] LVDS outputs terminated 100across terminals.  
[g] This parameter is defined in accordance with JEDEC standard 65.  
[h] Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the differential cross points.  
©2018 Integrated Device Technology, Inc  
51  
May 15, 2018  
8V19N478 Datasheet  
Table 49. Clock Phase Noise Characteristics (fVCXO 156.25MHz), VDD_V 3.3V ±5%,  
[a][b][c]  
VDDO_V (3.3V, 2.5V, or 1.8V) ±5%, TA = -40°C to +85°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
Clock RMS  
Phase Jitter  
(Random)  
156.25MHz Integration Range: 12kHz – 20MHz  
65  
58  
fs  
fs  
tjit(Ø)  
250MHz  
500MHz  
Integration Range: 12kHz – 20MHz  
(10)  
Clock  
10Hz offset (determined by VCXO)  
100Hz offset (determined by VCXO)  
1kHz offset from carrier  
-66.8  
-85.7  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
N
Single-side  
Band Phase  
Noise  
(100)  
N
(1k)  
-116.3  
-133  
-110  
-120  
N
(integer divider)  
(10k)  
10kHz offset from carrier  
N
(100k)  
100kHz offset from carrier  
1MHz offset from carrier  
-137.6  
-145.4  
-157.5  
N
(1M)  
-142  
-150  
N
10MHz offset from carrier and  
noise floor  
(10M)  
N
(10)  
Clock  
250MHz  
10Hz offset (determined by VCXO)  
100Hz offset (determined by VCXO)  
1kHz offset from carrier  
-73.8  
-91.4  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
N
Single-side  
Band Phase  
Noise  
(100)  
N
(1k)  
-122.0  
-138.9  
-143.8  
-151.3  
-160.9  
N
(integer divider)  
(10k)  
10kHz offset from carrier  
-130  
-135  
-150  
-155  
N
(100k)  
100kHz offset from carrier  
1MHz offset from carrier  
N
(1M)  
N
10MHz offset from carrier and  
noise floor  
(10M)  
N
(10)  
Clock  
156.25MHz 10Hz offset (determined by VCXO)  
100Hz offset (determined by VCXO)  
1kHz offset from carrier  
-77.8  
-95.8  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
N
Single-side  
Band Phase  
Noise  
(100)  
N
(1k)  
-126.9  
-142.9  
-148  
N
(integer divider)  
(10k)  
10kHz offset from carrier  
N
(100k)  
100kHz offset from carrier  
N
(1M)  
1MHz offset from carrier  
-155.3  
-162.8  
N
10MHz offset from carrier and  
noise floor  
(10M)  
N
(10)  
Clock  
125MHz  
10Hz offset (determined by VCXO)  
100Hz offset (determined by VCXO)  
1kHz offset from carrier  
-80.8  
-97.9  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
N
Single-side  
Band Phase  
Noise  
(100)  
N
(1k)  
-128.5  
-144.7  
-149.9  
-156.8  
-162.2  
-120  
-130  
-135  
-150  
-155  
N
(10k)  
10kHz offset from carrier  
N
(100k)  
100kHz offset from carrier  
1MHz offset from carrier  
N
(1M)  
N
10MHz offset from carrier and  
noise floor  
(10M)  
N
©2018 Integrated Device Technology, Inc  
52  
May 15, 2018  
8V19N478 Datasheet  
[a] Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted  
in a test socket with maintained transverse airflow greater than 500lfpm. The device will meet specifications after thermal equilibrium has been  
reached under these conditions.  
[b] Phase noise specifications are applicable for all outputs active, Nx not equal.  
[c] VCXO characteristics: 156.25MHz and phase noise -67.9dBc/Hz at 10Hz, -97.9dBc/Hz at 100Hz, -121.9dBc/Hz at 1kHz, -141.9dBc/Hz at 10kHz,  
-152.9dBc/Hz at 100kHz.  
Clock Phase Noise Characteristics  
VCXO characteristics: 156.25MHz and phase noise -67.9dBc/Hz at 10Hz, -97.9dBc/Hz at 100Hz, -121.9dBc/Hz at 1kHz, -141.9dBc/Hz at  
10kHz, -152.9dBc/Hz at 100kHz.  
Input reference frequency: 20MHz  
VCXO-PLL bandwidth: 30Hz  
VCXO-PLL charge pump current: 0.75mA  
FemtoClock-NG PLL bandwidth: 342kHz  
VDD_V 3.3V, TA 25°C  
Figure 5. 312.5MHz Output Phase Noise  
©2018 Integrated Device Technology, Inc  
53  
May 15, 2018  
 
8V19N478 Datasheet  
Figure 6. 125MHz Output Phase Noise  
©2018 Integrated Device Technology, Inc  
54  
May 15, 2018  
8V19N478 Datasheet  
Figure 7. 156.25MHz Output Phase Noise  
©2018 Integrated Device Technology, Inc  
55  
May 15, 2018  
8V19N478 Datasheet  
Figure 8. 250MHz Output Phase Noise  
©2018 Integrated Device Technology, Inc  
56  
May 15, 2018  
8V19N478 Datasheet  
Figure 9. 500MHz Output Phase Noise  
©2018 Integrated Device Technology, Inc  
57  
May 15, 2018  
8V19N478 Datasheet  
Applications Information  
VCXO-PLL Loop Filter  
Each of the two PLLs uses a loop filter with external components. The value of the external components depends on the desired loop  
bandwidth for each PLL, the input clock frequency, and in the case of the VCXO-PLL on the external VCXO component. For the  
VCXO-PLL (first PLL stage), a 2nd or 3rd order loop filter may be used. The loop filter of the VCXO-PLL is connected to the device  
through the LFV charge-pump input. The filter output is connected to the control voltage input of the external VCXO. The FemtoClock NG  
PLL (second PLL stage) may use a 2nd order loop filter. The LFF output of the device connects to filter input and LFFR to the filter output.  
Typical loop filters are shown in Figure 10 (2nd order) in Figure 11 (3rd order) and are discussed below. Step by step calculations to  
determine the value of the loop filter components values are shown.  
Figure 10. Second-Order Loop Filter  
VCXO  
LFV Output  
Control Input  
(charge pump)  
CZ  
CP  
RZ  
Step-by-step Calculation  
Step 1: Determine the desired loop bandwidth fC. fC must satisfy the following condition:  
f
PD  
---------- » 20  
f
C
Where fPD is the input frequency of the VCXO-PLL phase detector frequency.  
Step 2: Calculate RZ by:  
2 f M  
C
V
R
= ---------------------------------------------------  
Z
I
K  
CP  
VCXO  
Where ICP is the VCXO-PLL charge-pump current and KVCXO is the gain of the VCXO component (consult the datasheet of the external  
VCXO for its gain parameter). MV is the effective feedback divider:  
f
VCXO  
M
=
------------------------  
V
f
PD  
f
VCXO is the frequency of the external VCXO component.  
©2018 Integrated Device Technology, Inc  
58  
May 15, 2018  
 
8V19N478 Datasheet  
Step 3: Calculate CZ by:  
f
C
=  
------  
f
Z
C
Z
=
--------------------------------------------  
2 f R  
C
Z
α is ratio between the loop bandwidth and the filter zero. fZ is the filter zero. α should be greater than 3.  
Step 4: Calculate CP by:  
C
Z
  
C
=
--------------  
P
f
P
=  
------  
f
C
fP is the pole and β is ratio between the pole and the loop bandwidth. β should be greater than 3.  
Step 5: Verify that the phase margin PM is greater than 50°.  
b – 1  
PM = atan  
--------------------  
2   
b
C
Z
C
P
b =  
+ 1  
--------  
Example calculation: The Block Diagram shows a 2nd order loop filter for the VCXO-PLL. In this example, the VCXO-PLL reference  
frequency is 122.88MHz, and an external VCXO component of 122.88MHz is used. The desired VCXO-PLL loop bandwidth fC is 40Hz. To  
achieve the desired loop bandwidth with small size loop filter components, set the PLL frequency pre-divider PV, and the PLL feedback  
divider MV to 1024. According to the step 1 instruction, fPD is 120kHz. This satisfies the condition fPD/fC >> 20. RZ is calculated 32.2k.  
The VCXO gain KVCXO used for the device reference circuit is 10kHz/V. The charge-pump current of the VCXO-PLL is configurable from  
50µA to 1200µA. The charge-pump current is programmed to ICP 800uA. For α 8, CZ is calculated to be 0.99µF. CZ greater than this  
value assures α > 12. For example, the actual chosen value is the standard capacitor value of 1µF. For β 5, CP is calculated 24.7nF.  
The standard capacitor value of CP 27ps ensures β > 7.  
©2018 Integrated Device Technology, Inc  
59  
May 15, 2018  
8V19N478 Datasheet  
Figure 11. Third-Order Loop Filter  
VCXO  
LFV Output  
Control Input  
(charge pump)  
RP2  
CP2  
CZ  
CP  
RZ  
Figure 11 shows a third-order loop filter. The filter is equivalent to the 2nd order filter in Figure 12 with the addition components RP2 and  
C
P2. The additional components RP2 and CP2 should be calculated as shown:  
R
C  
Z
P
C
=
-------------------------  
P2  
R
  
P2  
R
1.5 R  
P2  
Z
is the ratio between the 1st pole and the 2nd pole. should be greater than 3.  
Example calculation for the 3rd order loop filter shown in Figure 11: Equivalent to the 2nd order loop filter calculation, RZ 33k, CZ   
1µF, and CP 27nF. RP2 should be in the range of 0.5·RZ < RP2 < 2.5·RZ, for instance 51k With   4, CP2 is 4.37nF (select 4.7µF).  
FemtoClock NG PLL Loop Filter  
Figure 12 shows a 2nd order loop filter for the FemtoClock NG PLL. This loop filter is equivalent to Figure 10 and uses the loop filter  
components RZF (RZ), CZF (CZ), and CPZ (CP). The VCO frequency of the FemtoClock NG PLL is 2500MHz.  
Figure 12. 2nd Order Loop Filer for FemtoClock NG PLL  
LFFR  
CZF  
CPF  
RZF  
LFF  
Example calculation for the 2nd order loop filter shown in Figure 12: the FemtoClock NG receives its reference frequency from the  
VCXO output. With the PF pre-divider set to 1, the phase detector frequency is also 122.88MHz. The PLL feedback divider must be set to  
MF 24 in order to locate the VCO frequencies in its center range. A target PLL loop bandwidth fC is 80kHz satisfies the condition in step  
1. The gain of the internal VCO is 30MHz/V and the charge-pump current ICP is set to 3.6mA. Using the formula for RZ in step 2, RZF is  
calculated 103(chose the standard value of 100; using the formula for CZ in step 3, CZF is calculated 88nF for α 4. A capacitor  
larger than 88nF should be used for CZF to assure that the α is greater than 4, for instance the standard component capacitor value  
100nF.  
With β 6, CPZ is calculated to be 3.6nF as shown in step 4. A capacitor less than 3.6nF should be used for CPZ to assure that β remains  
greater than 6, for instance the standard capacitor value of 1nF is selected for CPZ. The selected 2nd order loop filter components are  
R
ZF 100CZF 100nF and CPZ 1nF.  
©2018 Integrated Device Technology, Inc  
60  
May 15, 2018  
 
 
8V19N478 Datasheet  
Output Termination  
LVPECL-style Outputs  
Differential outputs configured to LVPECL-style are an open-emitter type, and require a termination with a DC current path to GND. This  
section displays parallel and thevenin termination, Y-termination and source termination for various output supply (VDDO_V), and  
amplitude settings. VTT is the termination voltage.  
Figure 13. LVPECL Parallel Termination 1  
VDD_v  
Zo = 50  
Zo = 50  
+
-
R2  
50  
R1  
50  
LVPECL Driv er  
High Impedance Input  
N o Built- in T er mination  
VTT  
Table 50. Termination Voltage VTT (Figure 13)[a]  
LVPECL Amplitude (mV)  
V (V)  
TT  
350  
500  
700  
850  
VDDO_V – 1.60  
VDDO_V – 1.75  
V
V
DDO_V – 1.95  
DDO_V – 2.10  
[a] Output power supplies supporting 3.3V, 2.5V and 1.8V are VDDO_QCLKA, VDDO_QCLKB, VDDO_QCLKC and  
VDDO_QCLKD  
.
©2018 Integrated Device Technology, Inc  
61  
May 15, 2018  
 
8V19N478 Datasheet  
Figure 14. LVPECL Parallel Termination 2  
VD D_v  
VDD_v  
R1  
R3  
+
-
Zo = 50  
Zo = 50  
R2  
R4  
LVPECL Driv er  
High Impedance Input  
N o Built-in Termination  
Table 51. Termination Resistor Values (Figure 14)  
[a]  
V
(V)  
LVPECL Amplitude (mV)  
R1, R3 ()  
R2, R4 ()  
DDO_V  
350  
500  
700  
850  
350  
500  
700  
850  
350  
500  
97.1  
106.5  
122  
103.1  
94.3  
84.6  
78.6  
78.1  
71.4  
64.1  
59.5  
56.3  
50  
3.3  
137.5  
138.8  
166.7  
227.3  
312.5  
450  
2.5  
1.8  
[a] Output power supplies supporting 3.3V, 2.5V, and 1.8V are VDDO_QCLKA, VDDO_QCLKB, VDDO_QCLKC and VDDO_QCLKD  
.
©2018 Integrated Device Technology, Inc  
62  
May 15, 2018  
 
8V19N478 Datasheet  
Figure 15. LVPECL Y-Termination  
VDD_v  
Zo = 50  
Zo = 50  
+
-
R2  
50  
R1  
50  
LVPECL Driv er  
High Impedance Input  
N o Built-in Termination  
C1  
0. 1uF(opt ional)  
R3  
Table 52. Termination Resistor Values (Figure 15)  
[a]  
V
(V)  
LVPECL Amplitude (mV)  
R3 ()  
DDO_V  
3.3  
350, 500, 700, 850  
350, 500, 700, 850  
350, 500  
50  
18  
0
2.5  
1.8  
[a] Output power supplies supporting 3.3V, 2.5V, and 1.8V are VDDO_QCLKA, VDDO_QCLKB, VDDO_QCLKC and VDDO_QCLKD  
.
Figure 16. LVPECL Source Termination  
VDD_v  
LVPECL Driv er  
Zo = 50  
Zo = 50  
+
-
R3  
100  
R2  
R1  
High Impedance Input  
No Built-in Termination  
Table 53. Termination Resistor Values (Figure 16)  
[a]  
V
(V)  
LVPECL Amplitude (mV)  
R1, R2 ()  
DDO_V  
3.3  
350, 500, 700, 850  
350, 500, 700, 850  
350  
100 – 200  
80 – 150  
50 – 100  
2.5  
1.8  
[a] Output power supplies supporting 3.3V, 2.5V, and 1.8V are VDDO_QCLKA, VDDO_QCLKB, VDDO_QCLKC and VDDO_QCLKD  
.
©2018 Integrated Device Technology, Inc  
63  
May 15, 2018  
 
 
8V19N478 Datasheet  
LVDS-Style Outputs  
LVDS style outputs support fully differential terminations. LVDS does not require board level pull-down resistors for DC termination.  
Figure 17 and Figure 18 show typical termination examples with DC coupling for the LVDS style driver. In these examples, the receiver is  
high input impedance without built-in termination. LVDS-style with a differential termination is preferred for best common-mode rejection  
and lowest device power consumption.  
Figure 17. LVDS Termination  
VCC=3.3V  
Zo = 50  
Zo = 50  
+
-
R1  
100  
LVDS Style Driver  
High Impedance Input  
No Built-in Termination  
Figure 18. LVDS Termination (Alternative)  
VDD_v  
Zo = 50  
Zo = 50  
+
-
R2  
50  
R1  
50  
LVDS St yle Driver  
High Impedance Input  
N o Built- in T er mination  
C1  
0. 1uF (opt ional )  
©2018 Integrated Device Technology, Inc  
64  
May 15, 2018  
 
 
8V19N478 Datasheet  
Power Supply Filtering  
Please refer to the document 8V19N470 Hardware Design Guide for comprehensive information about power supply and isolation, loop  
filter design for VCXO and VCO, schematics, input and output interfaces/terminations and an example schematics. This document shows  
a recommended power supply filter schematic in which the device is operated at VDD_V = 3.3V (the output supply voltages of VDDO_V  
=
3.3V, 2.5V, and 1.8V are supported). This example focuses on power supply connections and is not configuration specific. Refer to the  
pin description and functional tables in the datasheet to ensure that the logic control inputs are properly set for the application.  
As with any high-speed analog circuitry, the power supply pins are vulnerable to the board supply or device generated noise. This device  
requires an external voltage regulator for the VDD_V pins for isolation of board supply noise. This regulator (example component:  
PS7A8300RGT) is indicated in the schematic by the power supply, VREG_3.3V. Consult the voltage regulator specification for details for  
the required performance. To achieve optimum jitter performance, power supply isolation is required to minimize device generated noise.  
The VDD_LCF terminal requires the cleanest power supply. The device provides separate power supplies to isolate any high switching  
noise from coupling into the internal PLLs and into other outputs as shown. In order to achieve the best possible filtering, it is  
recommended that the placement of the filter components be on the device side of the PCB as close to the power pins as possible. If  
space is limited, the 0.1µF and 0.01µF capacitors in each power pin filter should be placed on the device side. The other components  
can be on the opposite side of the PCB. To set configuration pins, pull-up and pull-down resistors can all be placed on the PCB side,  
opposite the device side, to free up device side area if necessary.  
Power supply filter recommendations are a general guideline to be used for reducing external noise from coupling into the devices. The  
filter performance is designed for a wide range of noise frequencies. This low-pass filter starts to attenuate noise at approximately 10kHz.  
If a specific frequency noise component is known, such as switching power supplies frequencies, it is recommended that component  
values be adjusted and if required, additional filtering be added. Additionally, good general design practices for power plane voltage  
stability suggests adding bulk capacitance in the local area of all devices.  
Thermal Characteristics  
Table 54. Thermal Characteristics for the 100-FPBGA Package[a]  
Multi-Layer PCB, JEDEC Standard Test Board  
[b]  
Symbol  
Thermal Parameter  
Junction-to-ambient  
Condition  
Value  
Unit  
0m/s air flow  
1m/s air flow  
2m/s air flow  
3m/s air flow  
4m/s air flow  
5m/s air flow  
24.06  
20.89  
19.07  
18.05  
17.46  
17.03  
8.54  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
JA  
Junction-to-case  
JC  
JB  
JB  
Junction-to-board[c]  
Junction-to-board[d]  
6.43  
4.15  
[a] Standard JEDEC 2S2P multilayer PCB.  
[b] Estimated thermal values.  
[c] Thermal model where the majority (>90%) of the heat dissipated in the component is conducted through the package bottom (balls).  
TB is measured on or near the component lead.  
[d] Thermal model where the heat dissipated to the ambient from all directions. TB is measured on or near the component lead.  
©2018 Integrated Device Technology, Inc  
65  
May 15, 2018  
8V19N478 Datasheet  
Temperature Considerations  
The device supports applications in a natural convection environment as long as the junction temperature does not exceed the specified  
junction temperature TJ. In applications where the heat dissipates through the PCB, JB is the correct metric to calculate the junction  
temperature. The following calculation uses the junction-to-board thermal characterization parameter JB to calculate the junction  
temperature (TJ). Care must be taken to not exceed the maximum allowed junction temperature TJ of 125 °C.  
The junction temperature TJ is calculated using the following equation: T = T + P  
  
TOT JB  
J
B
where:  
TJ is the junction temperature at steady state conditions in °C.  
TB is the board temperature at steady state condition in °C, measured on or near the component lead.  
JB is the thermal characterization parameter to report the difference between TJ and TB.  
PTOT is the total device power dissipation.  
Maximum power dissipation scenario: With the maximum allowed junction temperature and the maximum device power consumption and  
at the maximum supply voltage of 3.3V + 5%, the maximum supported board temperature can be determined. In the device configuration  
for the maximum power consumption, IDD_V is 1.024A. In this configuration, all outputs are active and configured to LVDS, the output  
amplitude is set to 850mV and outputs use a 100 Ohm termination:  
Total system power dissipation (incl. termination resistor power): PTOT = VDD_V, MAX · IDD_V, MAX = 3.465V · 1.024A = 3.548W  
In this scenario and with the Theta_JB thermal model, the maximum supported board temperature is as follows:  
TB, MAX = TJ_MAX - Theta_JB · PTOT  
TB, MAX = 125°C - 6.43°C/W · 3.548W = 102.2°C  
Table 55. Typical Power Consumption  
Device  
Theta JB Thermal model  
[a]  
[b]  
IDD_TOT  
A
PTOT  
W
T
T
J
B, MAX  
Test Case  
C
C
1b  
2b  
3c  
4c  
5c  
6c  
0.787  
0.887  
0.982  
0.927  
0.931  
0.857  
2.596  
2.928  
2.165  
2.051  
2.025  
1.881  
101.7  
103.8  
98.9  
98.2  
98.0  
97.1  
108.3  
106.2  
111.1  
111.8  
112.0  
112.9  
[a] Junction temperature at board temperature TB = 85°C  
[b] Maximum board temperature for junction temperature < 125°C: TB, MAX = TJ, MAX - JB x PTOT  
.
Package Outline Draw ings  
The package outline drawings are appended at the end of this document and are accessible from the link below. The package information  
is the most current data available.  
www.idt.com/document/psc/bdbdg100-package-outline-110-mm-sq-body-10-mm-pitch-cabga  
©2018 Integrated Device Technology, Inc  
66  
May 15, 2018  
8V19N478 Datasheet  
Marking Diagram  
1. Line 1 and Line 2 is the part number.  
2. “#” denotes stepping.  
3. “YYWW” denotes: “YY” is the last two digits of the year, and “WW” is a work week number  
that the part was assembled.  
4. “$” denotes the mark code.  
Ordering Information  
Part/Order Number  
Marking  
Package  
Shipping Packaging  
Temperature  
8V19N478BDGI  
8V19N478BDGI8  
IDT8V19N478BDGI  
IDT8V19N478BDG  
11 11 1 mm 100-FPBGA  
11 11 1 mm 100-FPBGA  
Tray  
-40°C to +85°C  
-40°C to +85°C  
Tape and Reel  
Glossary  
Abbreviation  
Description  
Index n  
Index x  
Index y  
VDD_v  
Denominates an clock input. Range: 0 to 1.  
Denominates a channel, channel frequency divider and the associated configuration bits. Range: A, B, C, D.  
Denominates a QCLK output and associated configuration bits. Range: A0, A1, A2, B0, B1, B2, C0, C1, D0, D1.  
Denominates core voltage supply pins. Range: VDD_QCLKA, VDD_QCLKB, VDD_QCLKC, VDD_QCLKD, VDD_I2C, VDD_INP  
,
VDD_LCV, VDD_LCF, VDD_CPV, VDD_CPF and VDD_OSC  
.
VDDO_v  
Denominates output voltage supply pins. Range: VDDO_QCLKA, VDDO_QCLKB, VDDO_QCLKC and VDDO_QCLKD  
.
status_condition  
Status conditions are: LOLV (Loss of VCXO-PLL lock), LOLF (Loss of FemtoClock NG-PLL lock) and LOS (Loss of  
input signal).  
[...]  
Index brackets describe a group associated with a logical function or a bank of outputs.  
List of discrete values.  
{…}  
Suffix V  
Suffix F  
Denominates a function associated with the VCXO-PLL.  
Denominates a function associated with the 2nd stage PLL (FemtoClock NG).  
©2018 Integrated Device Technology, Inc  
67  
May 15, 2018  
8V19N478 Datasheet  
Revision History  
Revision Date  
Description of Change  
Added Figure 5 (312.5MHz Output Phase Noise)  
Initial release.  
May 15, 2018  
May 2, 2018  
Corporate Headquarters  
6024 Silver Creek Valley Road  
San Jose, CA 95138 USA  
www.IDT.com  
Sales  
Tech Support  
1-800-345-7015 or 408-284-8200  
Fax: 408-284-2775  
www.IDT.com/go/sales  
www.IDT.com/go/support  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as “IDT”) reserve the right to modify the products and/or specifications described herein at any time,  
without notice, at IDT’s sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same  
way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability  
of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not  
convey any license under intellectual property rights of IDT or any third parties.  
IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be rea-  
sonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property  
of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. Integrated Device Technology, Inc All rights reserved.  
©2018 Integrated Device Technology, Inc  
68  
May 15, 2018  

相关型号:

8V19N478BDGI8

FemtoClock NG Jit ter At tenuator and Clock Synthesizer
IDT

8V19N490A

JESD204B/C Clock Jitter Attenuator
RENESAS

8V2BC

Silicon Epitaxial Planar Zener Diodes
SEMTECH

8V2BCA

Silicon Epitaxial Planar Zener Diodes
SEMTECH

8V2BCB

Silicon Epitaxial Planar Zener Diodes
SEMTECH

8V2BCC

Silicon Epitaxial Planar Zener Diodes
SEMTECH

8V2BS

SILICON PLANAR ZENER DIODES
SEMTECH

8V2BSA

SILICON PLANAR ZENER DIODES
SEMTECH

8V2BSB

SILICON PLANAR ZENER DIODES
SEMTECH

8V2BSC

SILICON PLANAR ZENER DIODES
SEMTECH

8V2HC

SILICON PLANAR ZENER DIODES
SEMTECH

8V2HCA

SILICON PLANAR ZENER DIODES
SEMTECH