83905AG [IDT]

Low Skew, 1:6 Crystal-to- LVCMOS/LVTTL Fanout Buffer; 低偏移, 1 : 6晶体用于─ LVCMOS / LVTTL扇出缓冲器
83905AG
型号: 83905AG
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Low Skew, 1:6 Crystal-to- LVCMOS/LVTTL Fanout Buffer
低偏移, 1 : 6晶体用于─ LVCMOS / LVTTL扇出缓冲器

晶体 时钟发生器 微控制器和处理器 外围集成电路 光电二极管
文件: 总21页 (文件大小:961K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Skew, 1:6 Crystal-to- LVCMOS/LVTTL  
Fanout Buffer  
ICS83905  
DATA SHEET  
General Description  
Features  
The ICS83905 is a low skew, 1-to-6 LVCMOS /  
LVTTL Fanout Buffer and a member of the  
HiPerClockS™ family of High Performance Clock  
Solutions from IDT. The low impedance  
Six LVCMOS / LVTTL outputs  
S
IC  
Outputs able to drive 12 series terminated lines  
Crystal Oscillator Interface  
HiPerClockS™  
Crystal input frequency range: 10MHz to 40MHz  
Output skew: 80ps (maximum)  
LVCMOS/LVTTL outputs are designed to drive 50  
series or parallel terminated transmission lines. The effective  
fanout can be increased from 6 to 12 by utilizing the ability of the  
outputs to drive two series terminated lines.  
RMS phase jitter @ 25MHz, (100Hz – 1MHz): 0.26ps (typical),  
VDD = VDDO = 2.5V  
The ICS83905 is characterized at full 3.3V, 2.5V, and 1.8V, mixed  
3.3V/2.5V, 3.3V/1.8V and 2.5V/1.8V output operating supply  
mode. Guaranteed output and part-to-part skew characteristics  
along with the 1.8V output capabilities makes the ICS83905 ideal  
for high performance, single ended applications that also require a  
limited output voltage.  
Offset  
Noise Power  
100Hz.................-129.7 dBc/Hz  
1kHz...................-144.4 dBc/Hz  
10kHz.................-147.3 dBc/Hz  
100kHz...............-157.3 dBc/Hz  
5V tolerant enable inputs  
Synchronous output enables  
Operating power supply modes:  
Full 3.3V, 2.5V, 1.8V  
Mixed 3.3V core/2.5V output operating supply  
Mixed 3.3V core/1.8V output operating supply  
Mixed 2.5V core/1.8V output operating supply  
Pin Assignments  
0°C to 70°C ambient operating temperature  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
20  
18 17 16  
19  
ICS83905  
packages  
GND  
1
2
3
4
5
BCLK5  
VDDO  
15  
14  
13  
12  
11  
20-Lead VFQFN  
4mm x 4mm x 0.925mm  
package body  
K Package  
GND  
BCLK0  
VDDO  
BCLK4  
GND  
GND  
BCLK1  
Top View  
6
7
8
9 10  
Block Diagram  
XTAL_IN  
XTAL_OUT  
ENABLE2  
GND  
1
2
3
4
5
6
7
8
16  
15  
14  
BCLK0  
ENABLE1  
BCLK5  
BCLK0  
VDDO  
BCLK1  
GND  
13 VDDO  
12  
BCLK1  
BCLK2  
BCLK3  
BCLK4  
BCLK5  
BCLK4  
XTAL_IN  
11  
10 BCLK3  
VDD  
GND  
9
XTAL_OUT  
BCLK2  
ICS83905  
16-Lead SOIC, 150 Mil  
3.9mm x 9.9mm x 1.38mm package body  
M Package  
Top View  
ENABLE 1  
ENABLE 2  
SYNCHRONIZE  
SYNCHRONIZE  
16-Lead TSSOP  
4.4mm x 5.0mm x 0.925mm package body  
G Package  
Top View  
ICS83905AM REVISION B JULY 20, 2009  
1
©2009 Integrated Device Technology, Inc.  
ICS83905 Data Sheet  
LOW SKEW, 1:6 CRYSTAL-TO-LVCMOS/LVTTL FANOUT BUFFER  
Table 1. Pin Descriptions  
Name  
XTAL_OUT  
Type  
Output  
Input  
Description  
Crystal oscillator interface. XTAL_OUT is the output.  
Crystal oscillator interface. XTAL_IN is the input.  
XTAL_IN  
ENABLE1, ENABLE2  
Input  
Clock enable. LVCMOS/LVTTL interface levels. See Table 3.  
BCLK0, BCLK1, BCLK2,  
BCLK3, BCLK4, BCLK5  
Output  
Clock outputs. LVCMOS/LVTTL interface levels.  
GND  
VDD  
VDDO  
nc  
Power  
Power  
Power  
Unused  
Power supply ground.  
Power supply pin.  
Output supply pin.  
No connect.  
Table 2. Pin Characteristics  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
pF  
pF  
pF  
CIN  
Input Capacitance  
4
VDDO = 3.465V  
VDDO = 2.625V  
19  
18  
16  
Power Dissipation Capacitance  
(per output)  
CPD  
VDDO = 2.0V  
VDDO = 3.3V 5ꢀ  
VDDO = 2.5V 5ꢀ  
VDDO = 1.8V 0.2V  
7
7
ROUT  
Output Impedance  
10  
Function Table  
Table 3. Clock Enable Function Table  
Control Inputs  
Outputs  
ENABLE 1  
ENABLE2  
BCLK[0:4]  
BCLK5  
0
0
1
1
0
1
0
1
LOW  
LOW  
LOW  
Toggling  
LOW  
Toggling  
Toggling  
Toggling  
BCLK5  
BCLK0:4  
ENABLE2  
ENABLE1  
Figure 1. Enable Timing Diagram  
ICS83905AM REVISION B JULY 20, 2009  
2
©2009 Integrated Device Technology, Inc.  
ICS83905 Data Sheet  
LOW SKEW, 1:6 CRYSTAL-TO-LVCMOS/LVTTL FANOUT BUFFER  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VDD  
Inputs, VI  
4.6V  
-0.5V to VDD + 0.5V  
-0.5V to VDDO+ 0.5V  
Outputs, VO  
Package Thermal Impedance, θJA  
16 Lead SOIC package  
16 Lead TSSOP package  
20 Lead VFQFN package  
78.8°C/W (0 mps)  
100.3°C/W (0 mps)  
57.5°C/W (0 mps)  
Storage Temperature, TSTG  
-65°C to 150°C  
DC Electrical Characteristics  
Table 4A. Power Supply DC Characteristics, VDD = VDDO = 3.3V 5ꢀ, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum  
3.465  
3.465  
10  
Units  
V
VDD  
VDDO  
IDD  
Power Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Output Supply Current  
3.135  
3.3  
V
ENABLE [1:2] = 00  
ENABLE [1:2] = 00  
mA  
mA  
IDDO  
5
Table 4B. Power Supply DC Characteristics, VDD = VDDO = 2.5V 5ꢀ, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
2.375  
Typical  
2.5  
Maximum  
Units  
V
VDD  
VDDO  
IDD  
Power Supply Voltage  
2.625  
2.625  
8
Output Supply Voltage  
Power Supply Current  
Output Supply Current  
2.375  
2.5  
V
ENABLE [1:2] = 00  
ENABLE [1:2] = 00  
mA  
mA  
IDDO  
4
Table 4C. Power Supply DC Characteristics, VDD = VDDO = 1.8V 0.2V, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
1.6  
Typical  
1.8  
Maximum  
Units  
V
VDD  
VDDO  
IDD  
Power Supply Voltage  
2.0  
2.0  
5
Output Supply Voltage  
Power Supply Current  
Output Supply Current  
1.6  
1.8  
V
ENABLE [1:2] = 00  
ENABLE [1:2] = 00  
mA  
mA  
IDDO  
3
ICS83905AM REVISION B JULY 20, 2009  
3
©2009 Integrated Device Technology, Inc.  
ICS83905 Data Sheet  
LOW SKEW, 1:6 CRYSTAL-TO-LVCMOS/LVTTL FANOUT BUFFER  
Table 4D. Power Supply DC Characteristics, VDD = 3.3V 5ꢀ, VDDO = 2.5V 5ꢀ, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum  
3.465  
2.625  
10  
Units  
V
VDD  
VDDO  
IDD  
Power Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Output Supply Current  
2.375  
2.5  
V
ENABLE [1:2] = 00  
ENABLE [1:2] = 00  
mA  
mA  
IDDO  
4
Table 4E. Power Supply DC Characteristics, 3.3V 5ꢀ, VDDO = 1.8V 0.2Vꢀ, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum  
Units  
V
VDD  
VDDO  
IDD  
Power Supply Voltage  
3.465  
2.0  
10  
Output Supply Voltage  
Power Supply Current  
Output Supply Current  
1.6  
1.8  
V
ENABLE [1:2] = 00  
ENABLE [1:2] = 00  
mA  
mA  
IDDO  
3
Table 4F. Power Supply DC Characteristics, VDD = 2.5V 5ꢀ, VDDO = 1.8V 0.2Vꢀ, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
2.375  
Typical  
2.5  
Maximum  
Units  
V
VDD  
VDDO  
IDD  
Power Supply Voltage  
2.625  
2.0  
8
Output Supply Voltage  
Power Supply Current  
Output Supply Current  
1.6  
1.8  
V
ENABLE [1:2] = 00  
ENABLE [1:2] = 00  
mA  
mA  
IDDO  
3
ICS83905AM REVISION B JULY 20, 2009  
4
©2009 Integrated Device Technology, Inc.  
ICS83905 Data Sheet  
LOW SKEW, 1:6 CRYSTAL-TO-LVCMOS/LVTTL FANOUT BUFFER  
Table 4G. LVCMOS/LVTTL DC Characteristics, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
DD = 3.3V 5ꢀ  
VDD = 2.5V 5ꢀ  
Minimum  
2
Typical  
Maximum  
VDD + 0.3  
VDD + 0.3  
VDD + 0.3  
0.8  
Units  
V
V
ENABLE1,  
ENABLE2  
VIH  
Input High Voltage  
1.7  
V
V
DD = 1.8V 0.2V  
VDD = 3.3V 5ꢀ  
0.65 * VDD  
-0.3  
V
V
ENABLE1,  
ENABLE2  
VIL  
Input Low Voltage  
VDD = 2.5V 5ꢀ  
-0.3  
0.7  
V
VDD = 1.8V 0.2V  
-0.3  
0.35 * VDD  
V
VDDO = 3.3V 5ꢀ% NOTE 1  
DDO = 2.5V 5ꢀ% IOH = -1mA  
2.6  
V
V
2.0  
V
VOH  
Output High Voltage  
VDDO = 2.5V 5ꢀ% NOTE 1  
VDDO = 1.8V 0.2V% NOTE 1  
VDDO = 3.3V 5ꢀ% NOTE 1  
VDDO = 2.5V 5ꢀ% IOL = 1mA  
VDDO = 2.5V 5ꢀ% NOTE 1  
1.8  
V
VDDO - 0.3  
0.5  
0.4  
V
V
V
VOL  
Output Low Voltage% NOTE 1  
0.45  
0.35  
V
DDO = 1.8V 0.2V% NOTE 1  
NOTE 1: Outputs terminated with 50to VDDO/2. See Parameter Measurement Information, Output Load Test Circuit diagrams.  
Table 5. Crystal Characteristics  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
Mode of Oscillation  
Frequency  
Fundamental  
10  
40  
50  
7
MHz  
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
Drive Level  
pF  
1
mW  
ICS83905AM REVISION B JULY 20, 2009  
5
©2009 Integrated Device Technology, Inc.  
ICS83905 Data Sheet  
LOW SKEW, 1:6 CRYSTAL-TO-LVCMOS/LVTTL FANOUT BUFFER  
AC Electrical Characteristics  
Table 6A. AC Characteristics, VDD = VDDO = 3.3V 5ꢀ,TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical Maximum  
Units  
Using External Crystal  
10  
40  
MHz  
fMAX  
Output Frequency  
Using External Clock  
Source NOTE 1  
DC  
100  
MHz  
ps  
tsk(o)  
Output Skew% NOTE 2, 3  
80  
25MHz, Integration Range:  
100Hz – 1MHz  
tjit(Ø)  
RMS Phase Jitter (Random)% NOTE 4  
0.13  
ps  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
20ꢀ to 80ꢀ  
200  
48  
800  
52  
4
ps  
ENABLE1  
ENABLE2  
ENABLE1  
ENABLE2  
cycles  
cycles  
cycles  
cycles  
Output Enable  
Time% NOTE 5  
tEN  
4
4
Output Disable  
Time% NOTE 5  
tDIS  
4
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions.  
All parameters measured at ƒfMAX using a crystal input unless noted otherwise.  
Terminated at 50to VDDO/2.  
NOTE 1: XTAL_IN can be overdriven relative to a signal a crystal would provide.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at VDDO/2.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 4: See phase noise plot.  
NOTE 5: These parameters are guaranteed by characterization. Not tested in production.  
Table 6B. AC Characteristics, VDD = VDDO = 2.5V 5ꢀ,TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
Using External Crystal  
10  
40  
MHz  
fMAX  
Output Frequency  
Using External Clock  
Source NOTE 1  
DC  
100  
80  
MHz  
ps  
tsk(o)  
Output Skew% NOTE 2, 3  
25MHz, Integration Range:  
100Hz – 1MHz  
tjit  
RMS Phase Jitter (Random)% NOTE 4  
0.26  
ps  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
20ꢀ to 80ꢀ  
200  
47  
800  
53  
4
ps  
ENABLE1  
ENABLE2  
ENABLE1  
ENABLE2  
cycles  
cycles  
cycles  
cycles  
Output Enable  
Time% NOTE 5  
tEN  
4
4
Output Disable  
Time% NOTE 5  
tDIS  
4
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions.  
All parameters measured at ƒfMAX using a crystal input unless noted otherwise.  
Terminated at 50to VDDO/2.  
NOTE 1: XTAL_IN can be overdriven relative to a signal a crystal would provide.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at VDDO/2.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 4: See phase noise plot.  
NOTE 5: These parameters are guaranteed by characterization. Not tested in production.  
ICS83905AM REVISION B JULY 20, 2009  
6
©2009 Integrated Device Technology, Inc.  
ICS83905 Data Sheet  
LOW SKEW, 1:6 CRYSTAL-TO-LVCMOS/LVTTL FANOUT BUFFER  
Table 6C. AC Characteristics, VDD = VDDO = 1.8V 0.2V,TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
Using External Crystal  
10  
40  
MHz  
fMAX  
Output Frequency  
Using External Clock  
Source NOTE 1  
DC  
100  
80  
MHz  
ps  
tsk(o)  
Output Skew% NOTE 2, 3  
25MHz, Integration Range:  
100Hz – 1MHz  
tjit(Ø)  
RMS Phase Jitter (Random)  
0.27  
ps  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
20ꢀ to 80ꢀ  
200  
47  
900  
53  
4
ps  
ENABLE1  
cycles  
cycles  
cycles  
cycles  
Output Enable  
Time% NOTE 4  
tEN  
ENABLE2  
ENABLE1  
ENABLE2  
4
4
Output Disable  
Time% NOTE 4  
tDIS  
4
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions.  
All parameters measured at ƒfMAX using a crystal input unless noted otherwise.  
Terminated at 50to VDDO/2.  
NOTE 1: XTAL_IN can be overdriven relative to a signal a crystal would provide.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at VDDO/2.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65..  
NOTE 4: These parameters are guaranteed by characterization. Not tested in production.  
Table 6D. AC Characteristics, VDD = 3.3V 5ꢀ, VDDO = 2.5V 5ꢀ,TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
Using External Crystal  
10  
40  
MHz  
fMAX  
Output Frequency  
Using External Clock  
Source NOTE 1  
DC  
100  
80  
MHz  
ps  
tsk(o)  
Output Skew% NOTE 2, 3  
25MHz, Integration Range:  
100Hz – 1MHz  
tjit  
RMS Phase Jitter (Random)  
0.14  
ps  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
20ꢀ to 80ꢀ  
48  
52  
800  
4
ps  
200  
ENABLE1  
cycles  
cycles  
cycles  
cycles  
Output Enable  
Time% NOTE 4  
tEN  
ENABLE2  
ENABLE1  
ENABLE2  
4
4
Output Disable  
Time% NOTE 4  
tDIS  
4
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions.  
All parameters measured at ƒfMAX using a crystal input unless noted otherwise.  
Terminated at 50to VDDO/2.  
NOTE 1: XTAL_IN can be overdriven relative to a signal a crystal would provide.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at VDDO/2.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 4: These parameters are guaranteed by characterization. Not tested in production.  
ICS83905AM REVISION B JULY 20, 2009  
7
©2009 Integrated Device Technology, Inc.  
ICS83905 Data Sheet  
LOW SKEW, 1:6 CRYSTAL-TO-LVCMOS/LVTTL FANOUT BUFFER  
Table 6E. AC Characteristics, VDD = 3.3V 5ꢀ, VDDO = 1.8V 0.2V,TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
Using External Crystal  
10  
40  
MHz  
fMAX  
Output Frequency  
Using External Clock  
Source NOTE 1  
DC  
100  
80  
MHz  
ps  
tsk(o)  
Output Skew% NOTE 2, 3  
25MHz, Integration Range:  
100Hz – 1MHz  
tjit  
RMS Phase Jitter (Random)  
0.18  
ps  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
20ꢀ to 80ꢀ  
200  
48  
900  
52  
4
ps  
ENABLE1  
cycles  
cycles  
cycles  
cycles  
Output Enable  
Time% NOTE 4  
tEN  
ENABLE2  
ENABLE1  
ENABLE2  
4
Output Disable  
Time% NOTE 4  
tDIS  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions.  
All parameters measured at ƒfMAX using a crystal input unless noted otherwise.  
Terminated at 50to VDDO/2.  
NOTE 1: XTAL_IN can be overdriven relative to a signal a crystal would provide.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at VDDO/2.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65..  
NOTE 4: These parameters are guaranteed by characterization. Not tested in production.  
Table 6F. AC Characteristics, VDD = 2.5V 5ꢀ, VDDO = 1.8V 0.2V, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
Using External Crystal  
10  
40  
MHz  
fMAX  
Output Frequency  
Using External Clock  
Source NOTE 1  
DC  
100  
80  
MHz  
ps  
tsk(o)  
Output Skew% NOTE 2, 3  
25MHz, Integration Range:  
100Hz – 1MHz  
tjit  
RMS Phase Jitter (Random)  
0.19  
ps  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
20ꢀ to 80ꢀ  
200  
47  
900  
53  
4
ps  
ENABLE1  
cycles  
cycles  
cycles  
cycles  
Output Enable  
Time% NOTE 4  
tEN  
ENABLE2  
ENABLE1  
ENABLE2  
4
4
Output Disable  
Time% NOTE 4  
tDIS  
4
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions.  
All parameters measured at ƒfMAX using a crystal input unless noted otherwise.  
Terminated at 50to VDDO/2.  
NOTE 1: XTAL_IN can be overdriven relative to a signal a crystal would provide.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at VDDO/2.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 4: These parameters are guaranteed by characterization. Not tested in production.  
ICS83905AM REVISION B JULY 20, 2009  
8
©2009 Integrated Device Technology, Inc.  
ICS83905 Data Sheet  
LOW SKEW, 1:6 CRYSTAL-TO-LVCMOS/LVTTL FANOUT BUFFER  
Typical Phase Noise at 25MHz (2.5V Core/2.5V Output)  
25MHz  
RMS Phase Jitter (Random)  
100Hz to 1MHz = 0.26ps (typical)  
Raw Phase Noise Data  
Offset Frequency (Hz)  
Typical Phase Noise at 25MHz (3.3VCore/3.3V Output)  
.25MHz  
RMS Phase Jitter (Random)  
100Hz to 1MHz = 0.13ps (typical)  
Raw Phase Noise Data  
Offset Frequency (Hz)  
ICS83905AM REVISION B JULY 20, 2009  
9
©2009 Integrated Device Technology, Inc.  
ICS83905 Data Sheet  
LOW SKEW, 1:6 CRYSTAL-TO-LVCMOS/LVTTL FANOUT BUFFER  
Parameter Measurement Information  
1.65V 5ꢀ  
1.25V 5ꢀ  
SCOPE  
SCOPE  
V
V
V
V
DD,  
DD,  
DDO  
DDO  
Qx  
Qx  
LVCMOS  
LVCMOS  
GND  
GND  
-1.65V 5ꢀ  
-1.25 5ꢀ  
3.3V Core/3.3V LVCMOS Output Load AC Test Circuit  
2.5V Core/2.5V LVCMOS Output Load AC Test Circuit  
2.05V 5ꢀ  
1.25V 5ꢀ  
0.9V 0.1V  
SCOPE  
SCOPE  
V
DD  
V
V
DD,  
DDO  
V
DDO  
Qx  
Qx  
LVCMOS  
GND  
LVCMOS  
GND  
-0.9V 0.1V  
-1.25 5ꢀ  
1.8V Core/1.8V LVCMOS Output Load AC Test Circuit  
3.3V Core/2.5V LVCMOS Output Load AC Test Circuit  
2.4V 0.9V  
0.9V 0.1V  
1.6V 0.025ꢀ  
0.9V 0.1V  
SCOPE  
SCOPE  
V
V
DD  
DD  
V
V
DDO  
DDO  
Qx  
Qx  
GND  
GND  
LVCMOS  
LVCMOS  
-0.9V 0.1V  
-0.9V 0.1V  
3.31.8V Core/1.8V LVCMOS Output Load AC Test Circuit  
2.5V Core/1.8V LVCMOS Output Load AC Test Circuit  
ICS83905AM REVISION B JULY 20, 2009  
10  
©2009 Integrated Device Technology, Inc.  
ICS83905 Data Sheet  
LOW SKEW, 1:6 CRYSTAL-TO-LVCMOS/LVTTL FANOUT BUFFER  
Parameter Measurement Information, continued  
Phase Noise Plot  
VCCO  
2
Qx  
Phase Noise Mask  
VCCO  
2
Qy  
tsk(b)  
Offset Frequency  
f1  
f2  
RMS Jitter = Area Under the Masked Phase Noise Plot  
Output Skew  
RMS Phase Jitter  
VDD  
2
BCLK[0:5]  
80ꢀ  
tF  
tPW  
80ꢀ  
tR  
tPERIOD  
20ꢀ  
20ꢀ  
BCLK[0:5]  
tPW  
x 100ꢀ  
odc =  
tPERIOD  
Output Rise/Fall Time  
Output Duty Cycle/Pulse Width/Period  
ICS83905AM REVISION B JULY 20, 2009  
11  
©2009 Integrated Device Technology, Inc.  
ICS83905 Data Sheet  
LOW SKEW, 1:6 CRYSTAL-TO-LVCMOS/LVTTL FANOUT BUFFER  
Application Information  
Crystal Input Interface  
Figure 2 shows an example of ICS83905 crystal interface with a  
parallel resonant crystal. The frequency accuracy can be fine tuned  
by adjusting the C1 and C2 values. For a parallel crystal with loading  
capacitance CL = 18pF, to start with, we suggest C1 = 15pF and C2  
= 15pF. These values may be slightly fine tuned further to optimize  
the frequency accuracy for different board layouts. Slightly increasing  
the C1 and C2 values will slightly reduce the frequency. Slightly  
decreasing the C1 and C2 values will slightly increase the frequency.  
For the oscillator circuit below, R1 can be used, but is not required.  
For new designs, it is recommended that R1 not be used.  
XTAL_IN  
C1  
15p  
X1  
18pF Parallel Crystal  
0
XTAL_OUT  
C2  
R1 (optional)  
15p  
Figure 2. Crystal Input Interface  
LVCMOS to XTAL Interface  
The XTAL_IN input can accept a single-ended LVCMOS signal  
through an AC coupling capacitor. A general interface diagram is  
shown in Figure 3. The XTAL_OUT pin can be left floating. The input  
edge rate can be as slow as 10ns. For LVCMOS inputs, it is  
recommended that the amplitude be reduced from full swing to half  
swing in order to prevent signal interference with the power rail and  
to reduce noise. This configuration requires that the output  
impedance of the driver (Ro) plus the series resistance (Rs) equals  
the transmission line impedance. In addition, matched termination at  
the crystal input will attenuate the signal in half. This can be done in  
one of two ways. First, R1 and R2 in parallel should equal the  
transmission line impedance. For most 50applications, R1 and R2  
can be 100. This can also be accomplished by removing R1 and  
making R2 50. By overdriving the crystal oscillator, the device will  
be functional, but note, the device performance is guaranteed by  
using a quartz crystal.  
VCC  
VCC  
R1  
0.1µf  
50  
Ro  
Rs  
XTAL_IN  
R2  
Zo = Ro + Rs  
XTAL_OUT  
Figure 3. General Diagram for LVCMOS Driver to XTAL Input Interface  
ICS83905AM REVISION B JULY 20, 2009  
12  
©2009 Integrated Device Technology, Inc.  
ICS83905 Data Sheet  
LOW SKEW, 1:6 CRYSTAL-TO-LVCMOS/LVTTL FANOUT BUFFER  
VFQFN EPAD Thermal Release Path  
In order to maximize both the removal of heat from the package and  
the electrical performance, a land pattern must be incorporated on  
the Printed Circuit Board (PCB) within the footprint of the package  
corresponding to the exposed metal pad or exposed heat slug on the  
package, as shown in Figure 4. The solderable area on the PCB, as  
defined by the solder mask, should be at least the same size/shape  
as the exposed pad/slug area on the package to maximize the  
thermal/electrical performance. Sufficient clearance should be  
designed on the PCB between the outer edges of the land pattern  
and the inner edges of pad pattern for the leads to avoid any shorts.  
and dependent upon the package power dissipation as well as  
electrical conductivity requirements. Thus, thermal and electrical  
analysis and/or testing are recommended to determine the minimum  
number needed. Maximum thermal and electrical performance is  
achieved when an array of vias is incorporated in the land pattern. It  
is recommended to use as many vias connected to ground as  
possible. It is also recommended that the via diameter should be 12  
to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is  
desirable to avoid any solder wicking inside the via during the  
soldering process which may result in voids in solder between the  
exposed pad/slug and the thermal land. Precautions should be taken  
to eliminate any solder voids between the exposed heat slug and the  
land pattern. Note: These recommendations are to be used as a  
guideline only. For further information, please refer to the Application  
Note on the Surface Mount Assembly of Amkor’s  
While the land pattern on the PCB provides a means of heat transfer  
and electrical grounding from the package to the board through a  
solder joint, thermal vias are necessary to effectively conduct from  
the surface of the PCB to the ground plane(s). The land pattern must  
be connected to ground through these vias. The vias act as “heat  
pipes”. The number of vias (i.e. “heat pipes”) are application specific  
Thermally/Electrically Enhance Leadframe Base Package, Amkor  
Technology.  
SOLDER  
SOLDER  
PIN  
PIN  
EXPOSED HEAT SLUG  
PIN PAD  
GROUND PLANE  
LAND PATTERN  
(GROUND PAD)  
PIN PAD  
THERMAL VIA  
Figure 4. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale)  
Recommendations for Unused Input and Output Pins  
Inputs:  
Outputs:  
LVCMOS Control Pins  
LVCMOS Outputs  
All control pins have internal pull-ups or pull-downs% additional  
resistance is not required but can be added for additional protection.  
A 1kresistor can be used.  
All unused LVCMOS output can be left floating. There should be no  
trace attached.  
ICS83905AM REVISION B JULY 20, 2009  
13  
©2009 Integrated Device Technology, Inc.  
ICS83905 Data Sheet  
LOW SKEW, 1:6 CRYSTAL-TO-LVCMOS/LVTTL FANOUT BUFFER  
Layout Guideline  
Figure 5 shows an example of ICS83905 applications schematic. In  
this example, the device is operated at VDD = 3.3V and VDDO = 3.3V.  
The decoupling capacitors should be loacted as close as possible to  
the power pins. The input is driven by an 18pF load resonant quartz  
crystal. The tuning capacitors (C1, C2) are fairly accurate, but minor  
adjustments might be required. For the LVCMOS output drivers, two  
termination examples are shown in the schematic. For additonal  
termination, examples are shown in the LVCMOS Termination  
Applications Note.  
VDDO = 3.3V  
R2  
VDD = 3.3V  
31  
Zo = 50 Ohm  
CL = 18 pf  
C2  
C1  
15pf  
15pF  
LVCMOS  
U1  
1
16  
15  
14  
13  
12  
11  
10  
9
XTAL_OUT  
ENABLE 2  
GND  
XTAL_I N  
ENABLE 2  
VDDO  
ENABLE 1  
2
3
4
5
6
7
8
ENABLE 1  
BCLK5  
VDDO  
BCLK4  
GND  
VDD  
BCLK0  
VDDO  
R3  
BCLK1  
GND  
100  
BCLK3  
VDD  
Zo = 50 Ohm  
BCLK2  
R4  
ICS83905I  
100  
LVCMOS  
VDD  
VDDO  
C5  
Optional Termination  
C3  
C4  
C6  
.1uF  
10uF  
.1uF  
.1uF  
Unused outputs can be left floating. There should be  
no trace attached to unused outputs. Device  
characterized and specification limits set with all  
outputs terminated.  
Figure 5. Schmatic of Recommended Layout  
ICS83905AM REVISION B JULY 20, 2009  
14  
©2009 Integrated Device Technology, Inc.  
ICS83905 Data Sheet  
LOW SKEW, 1:6 CRYSTAL-TO-LVCMOS/LVTTL FANOUT BUFFER  
Power Considerations  
This section provides information on power dissipation and junction temperature for the ICS83905.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS83905 is the sum of the core power plus the analog power plus the power dissipated in the load(s). The  
following is the power dissipation for VDD = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
Power (core)MAX = VDD_MAX * (IDD + IDDO) = 3.465V *(10mA + 5mA) = 51.9mW  
Output Impedance ROUT Power Dissipation due to Loading 50to VDD/2  
Output Current IOUT = VDD_MAX / [2 * (50+ ROUT)] = 3.465V / [2 * (50+ 7)] = 30.4mA  
Power Dissipation on the ROUT per LVCMOS output  
Power (ROUT) = ROUT * (IOUT)2 = 7* (30.4mA)2 = 6.5mW per output  
Total Power Dissipation on the ROUT  
Total Power (ROUT) = 6.5mW * 6 = 39mW  
Dynamic Power Dissipation at 25MHz  
Power (25MHz) = CPD * Frequency * (VDD)2 = 19pF * 25MHz * (3.465V)2 = 5.70mW per output  
Total Power (25MHz) = 5.70mW * 6 = 34.2mW  
Total Power Dissipation  
Total Power  
= Power (core)MAX + Total Power (ROUT) + Total Power (25MHz)  
= 51.98mW + 39mW + 34.2mW  
= 125.1mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The  
maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming no air flow and  
a multi-layer board, the appropriate value is 100.3°C/W per Table 7 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.125W *100.3°C/W = 82.5°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of  
board (multi-layer).  
Table 7. Thermal Resistance θJA for 16 Lead TSSOP, Forced Convection  
θJA by Velocity  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
100.3°C/W  
96.0°C/W  
93.9°C/W  
ICS83905AM REVISION B JULY 20, 2009  
15  
©2009 Integrated Device Technology, Inc.  
ICS83905 Data Sheet  
LOW SKEW, 1:6 CRYSTAL-TO-LVCMOS/LVTTL FANOUT BUFFER  
Reliability Information  
Table 8A. θJA vs. Air Flow Table for a 16 Lead TSSOP  
θJA vs. Air Flow  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
100.3°C/W  
96.0°C/W  
93.9°C/W  
Table 8B. θJA vs. Air Flow Table for a 16 Lead SOIC  
θJA vs. Air Flow  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
78.8°C/W  
71.1°C/W  
66.2°C/W  
Table 8C. θJA vs. Air Flow Table for a 20 Lead VFQFN  
θJA vs. Air Flow  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
57.5°C/W  
50.3°C/W  
45.1°C/W  
Transistor Count  
The transistor count for ICS83905: 339  
Pin compatible to MPC905  
ICS83905AM REVISION B JULY 20, 2009  
16  
©2009 Integrated Device Technology, Inc.  
ICS83905 Data Sheet  
LOW SKEW, 1:6 CRYSTAL-TO-LVCMOS/LVTTL FANOUT BUFFER  
Package Outline and Package Dimensions  
Package Outline - G Suffix for 16 Lead TSSOP  
Package Outline - M Suffix for 16 Lead SOIC  
Table 9B. Package Dimensions for 16 Lead SOIC  
All Dimensions in Millimeters  
Table 9A. Package Dimensions for 16 Lead TSSOP  
All Dimensions in Millimeters  
Symbol  
Minimum  
Maximum  
Symbol  
Minimum  
Maximum  
N
A
A1  
B
C
D
E
16  
N
A
16  
1.35  
0.10  
0.33  
0.19  
9.80  
3.80  
1.75  
0.25  
0.51  
0.25  
10.00  
4.00  
1.20  
0.15  
1.05  
0.30  
0.20  
5.10  
A1  
A2  
b
0.5  
0.80  
0.19  
0.09  
4.90  
c
D
e
1.27 Basic  
E
6.40 Basic  
H
h
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
E1  
e
4.30  
4.50  
0.65 Basic  
L
L
0.45  
0°  
0.75  
8°  
α
α
aaa  
0.10  
Reference Document: JEDEC Publication 95, MS-012  
Reference Document: JEDEC Publication 95, MO-153  
ICS83905AM REVISION B JULY 20, 2009  
17  
©2009 Integrated Device Technology, Inc.  
ICS83905 Data Sheet  
LOW SKEW, 1:6 CRYSTAL-TO-LVCMOS/LVTTL FANOUT BUFFER  
Package Outline and Package Dimensions  
Package Outline - K Suffix for 32 Lead VFQFN  
(Ref.)  
Seating Plane  
N & N  
(N -1)x e  
(Ref.)  
Even  
A1  
IndexArea  
L
A3  
E2  
e
2
N
N
(Ty p.)  
If N & N  
are Even  
Anvil  
Singulation  
1
2
(N -1)x e  
OR  
(Ref.)  
E2  
2
TopView  
D
b
(Ref.)e  
N &N  
Odd  
Thermal  
Base  
A
D2  
2
0. 08  
C
Chamfer 4x  
0.6 x 0.6 max  
OPTIONAL  
D2  
C
NOTE: The following package mechanical drawing is a generic  
drawing that applies to any pin count VFQFN package. This drawing  
is not intended to convey the actual pin count or pin layout of this  
device. The pin count and pinout are shown on the front page. The  
package dimensions are in Table 9C below.  
Table 9C. Package Dimensions  
JEDEC Variation: VGGD-1/-5  
All Dimensions in Millimeters  
Symbol  
Minimum  
Nominal  
Maximum  
N
20  
A
0.80  
0
1.00  
0.05  
A1  
A3  
0.25 Ref.  
b
ND & NE  
D & E  
D2 & E2  
e
0.18  
0.30  
5
4.00 Basic  
1.95  
0.35  
2.25  
0.75  
0.50 Basic  
L
Reference Document: JEDEC Publication 95, MO-220  
ICS83905AM REVISION B JULY 20, 2009  
18  
©2009 Integrated Device Technology, Inc.  
ICS83905 Data Sheet  
LOW SKEW, 1:6 CRYSTAL-TO-LVCMOS/LVTTL FANOUT BUFFER  
Ordering Information  
Table 10. Ordering Information  
Part/Order Number  
83905AM  
83905AMT  
83905AMLF  
83905AMLFT  
83905AG  
Marking  
Package  
16 Lead SOIC  
16 Lead SOIC  
Shipping Packaging  
Tube  
2500 Tape & Reel  
Tube  
2500 Tape & Reel  
Tube  
2500 Tape & Reel  
Tube  
2500 Tape & Reel  
Tray  
2500 Tape & Reel  
Tray  
Temperature  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
83905AM  
83905AM  
83905AML  
83905AML  
83905AG  
83905AG  
83905AGL  
83905AGL  
83905A  
“Lead-Free” 16 Lead SOIC  
“Lead-Free” 16 Lead SOIC  
16 Lead TSSOP  
83905AGT  
16 Lead TSSOP  
83905AGLF  
83905AGLFT  
83905AK  
83905AKT  
83905AKLF  
83905AKLFT  
“Lead-Free” 16 Lead TSSOP  
“Lead-Free” 16 Lead TSSOP  
20 Lead VFQFN  
20 Lead VFQFN  
“Lead-Free” 20 Lead VFQFN  
“Lead-Free” 20 Lead VFQFN  
83905A  
3905AL  
3905AL  
2500 Tape & Reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal  
commercial applications. Any other applications, such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not  
recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product  
for use in life support devices or critical medical instruments.  
ICS83905AM REVISION B JULY 20, 2009  
19  
©2009 Integrated Device Technology, Inc.  
ICS83905 Data Sheet  
LOW SKEW, 1:6 CRYSTAL-TO-LVCMOS/LVTTL FANOUT BUFFER  
Revision History Sheet  
Rev  
Table  
Page  
Description of Change  
Date  
A
2
Added Enable Timing Diagram.  
3/28/05  
1
5 - 7  
8
Features Section - added RMS Phase Jitter bullet.  
B
T6A - T6F  
T9  
AC Characteristics Tables - added RMS Phase Jitter specs.  
Added Phase Noise Plot.  
4/8/05  
B
B
14  
Ordering Information Table - added TSSOP, non-LF part number.  
4/25/05  
5/16/05  
11  
12  
Added Crystal Input Interface in Application Section.  
Added Schematic layout.  
3
Absolute Maximum Ratings - corrected 20 lead VFQFN package Thermal Impedance.  
Added Recommendations for Unused Input and Output Pins.  
B
B
11  
13  
10/2/06  
7/9/07  
Corrected Theta JA Air Flow Table for 20 lead VFQFN.  
11  
12  
17  
Added LVCMOS to XTAL Interface section.  
Added Thermal Release Path section.  
T9  
AC Characteristics Table - added lead-free marking for 20 lead VFQFN package.  
3
Absolute Maximum Ratings - updated TSSOP and VFQFN Thermal Impedance.  
Updated Thermal Release Path section.  
12  
14  
16  
B
B
1/24/08  
7/20/09  
T7B - T7C  
Updated TSSOP and VFQFN Thermal Impedance.  
Added note to VFQFN Package Outline.  
15  
Added Power Considerations section.  
Converted datasheet format.  
ICS83905AM REVISION B JULY 20, 2009  
20  
©2009 Integrated Device Technology, Inc.  
ICS83905 Data Sheet  
LOW SKEW, 1:6 CRYSTAL-TO-LVCMOS/LVTTL FANOUT BUFFER  
6024 Silver Creek Valley Road Sales  
Technical Support  
800-345-7015 (inside USA)  
netcom@idt.com  
+408-284-8200 (outside USA) +480-763-2056  
Fax: 408-284-2775  
San Jose, California 95138  
www.IDT.com/go/contactIDT  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in this document,  
including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not  
guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the  
suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any  
license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT  
product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third  
party owners.  
Copyright 2009. All rights reserved.  

相关型号:

83905AGI

Clock Generator, PDSO16
IDT

83905AGILF

LVCMOS/ LVTTL Fanout Buffer
IDT

83905AGILFT

TSSOP-16, Reel
IDT

83905AGIT

Clock Generator, PDSO16
IDT

83905AGLF

Low Skew, 1:6 Crystal-to- LVCMOS/LVTTL Fanout Buffer
IDT

83905AGLFT

Low Skew, 1:6 Crystal-to- LVCMOS/LVTTL Fanout Buffer
IDT

83905AGT

Low Skew, 1:6 Crystal-to- LVCMOS/LVTTL Fanout Buffer
IDT

83905AGTI

暂无描述
IDT

83905AIL

LOW SKEW, 1:6 CRYSTAL INTERFACE-TO LVCMOS/LVTTL FANOUT BUFFER
ICSI

83905AK

Low Skew, 1:6 Crystal-to- LVCMOS/LVTTL Fanout Buffer
IDT

83905AKI

Clock Generator
IDT

83905AKLF

Low Skew, 1:6 Crystal-to- LVCMOS/LVTTL Fanout Buffer
IDT