72V51246L7-5BBG [IDT]

FIFO, 32KX36, 4ns, Synchronous, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, PLASTIC, BGA-256;
72V51246L7-5BBG
型号: 72V51246L7-5BBG
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

FIFO, 32KX36, 4ns, Synchronous, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, PLASTIC, BGA-256

LTE 先进先出芯片
文件: 总56页 (文件大小:536K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3.3VMULTI-QUEUEFLOW-CONTROLDEVICES  
(4QUEUES)36BITWIDECONFIGURATION  
589,824bits  
1,179,648bits  
2,359,296bits  
IDT72V51236  
IDT72V51246  
IDT72V51256  
4 bit parallel flag status on both read and write ports  
FEATURES:  
Provides continuous PAE and PAF status of up to 4 Queues  
Global Bus Matching - (All Queues have same Input Bus Width  
and Output Bus Width)  
User Selectable Bus Matching Options:  
- x36in to x36out  
- x18in to x36out  
- x9in to x36out  
- x36in to x18out  
- x36in to x9out  
Choose from among the following memory density options:  
IDT72V51236  
IDT72V51246  
IDT72V51256  
Total Available Memory = 589,824 bits  
Total Available Memory = 1,179,648 bits  
Total Available Memory = 2,359,296 bits  
Configurable from 1 to 4 Queues  
Queues may be configured at master reset from the pool of  
Total Available Memory in blocks of 256 x 36  
Independent Read and Write access per queue  
User programmable via serial port  
Default multi-queue device configurations  
-IDT72V51236: 4,096 x 36 x 4Q  
FWFT mode of operation on read port  
Packet mode operation  
Partial Reset, clears data in single Queue  
Expansion of up to 8 multi-queue devices in parallel is available  
JTAG Functionality (Boundary Scan)  
Available in a 256-pin PBGA, 1mm pitch, 17mm x 17mm  
HIGH Performance submicron CMOS technology  
Industrial temperature range (-40°C to +85°C) is available  
-IDT72V51246: 8,192 x 36 x 4Q  
-IDT72V51256: 16,384 x 36 x 4Q  
100% Bus Utilization, Read and Write on every clock cycle  
166 MHz High speed operation (6ns cycle time)  
3.7ns access time  
Individual, Active queue flags (OV, FF, PAE, PAF, PR)  
FUNCTIONALBLOCKDIAGRAM  
MULTI-QUEUE FLOW-CONTROL DEVICE  
WADEN  
FSTR  
RADEN  
ESTR  
RDADD  
REN  
Q0  
WRADD  
WEN  
6
5
RCLK  
WCLK  
OE  
Q
out  
D
in  
x9, x18, x36  
DATA OUT  
x9, x18, x36  
DATA IN  
OV  
FF  
PAF  
Q3  
PR  
PAE  
PAFn  
4
PAEn/PRn  
4
5937 drw01  
IDTandtheIDTlogoareregisteredtrademarksofIntegratedDeviceTechnology,Inc  
JUNE 2003  
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES  
1
2003 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice.  
DSC-5937/9  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
Apacketmode ofoperationis alsoprovidedwhenthe device is configured  
for36bitinputand36bitoutputportsizes.ThePacketmodeprovidestheuser  
withaflagoutputindicatingwhenatleastone(ormore)packetsofdatawithina  
queueisavailableforreading.ThePacketReadyprovidestheuserwithameans  
bywhichtomarkthestartandendofpacketsofdatabeingpassedthroughthe  
queues. The multi-queue device then provides the user with an internally  
generatedpacketreadystatus perqueue.  
Theuserhasfullflexibilityconfiguringqueueswithinthedevice,beingable  
toprogramthetotalnumberofqueues between1and4,theindividualqueue  
depthsbeingindependentofeachother.Theprogrammableflagpositionsare  
alsouserprogrammable.Allprogrammingisdoneviaadedicatedserialport.  
Iftheuserdoesnotwishtoprogramthemulti-queuedevice,adefaultoptionis  
availablethatconfiguresthedeviceinapredeterminedmanner.  
DESCRIPTION:  
The IDT72V51236/72V51246/72V51256 multi-queue flow-control de-  
vicesaresinglechipwithinwhichanywherebetween1and4discreteFIFO  
queuescanbesetup.Allqueueswithinthedevicehaveacommondatainput  
bus,(writeport)andacommondataoutputbus,(readport).Datawritteninto  
the write portis directedtoa respective queue via aninternalde-multiplex  
operation,addressedbytheuser.Datareadfromthereadportisaccessed  
froma respective queue via aninternalmultiplexoperation,addressedby  
the user. Data writes and reads can be performed at high speeds up to  
166MHz,withaccesstimesof3.7ns.Datawriteandreadoperationsaretotally  
independent of each other, a queue maybe selected on the write port and  
adifferentqueueonthereadportorbothportsmayselectthesamequeue  
simultaneously.  
BothMasterResetandPartialResetpinsareprovidedonthisdevice.AMaster  
Reset latches in all configuration setup pins and must be performed before  
programmingofthedevicecantakeplace.APartialResetwillresetthereadand  
writepointersofanindividualqueue,providedthatthequeueisselectedonboth  
thewriteportandreadportatthetimeofpartialreset.  
AJTAGtestportisprovided,herethemulti-queueflow-controldevicehasa  
fullyfunctionalBoundaryScanfeature,compliantwithIEEE1149.1Standard  
TestAccessPortandBoundaryScanArchitecture.  
The device provides FullflagandOutputValidflagstatus forthe queue  
selectedforwriteandreadoperations respectively.AlsoaProgrammable  
AlmostFullandProgrammableAlmostEmptyflagforeachqueueisprovided.  
Two 4 bit programmable flag busses are available, providing status of all  
queues,includingqueuesnotselectedforwriteorreadoperations,theseflag  
busses provide an individual flag per queue.  
BusMatchingisavailableonthisdevice,eitherportcanbe9bits,18bits  
or 36 bits wide provided that at least one port is 36 bits wide. When Bus  
Matchingisusedthedeviceensuresthelogicaltransferofdatathroughput  
inaLittleEndianmanner.  
SeeFigure1,Multi-QueueFlow-ControlDeviceBlockDiagramforanoutline  
ofthefunctionalblockswithinthedevice.  
2
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
D
D
= TEOP  
= TSOP  
D
35  
34  
in  
x9, x18, x36  
2
D - D  
0
35  
WCLK  
WEN  
TMS  
TDI  
INPUT  
DEMUX  
JTAG  
TDO  
TCK  
Logic  
5
WRADD  
WADEN  
Write Control  
Logic  
TRST  
Write Pointers  
PR  
Packet Mode  
Logic  
4
PAF  
General Flag  
Monitor  
PRn/PAEn  
FSTR  
PAFn  
4
FSYNC  
Upto 4  
FIFO  
Queues  
FXO  
FXI  
OV  
Active Q  
Flags  
PAE  
0.5 Mbit  
1.1 Mbit  
2.3 Mbit  
Dual Port  
Memory  
Active Q  
Flags  
FF  
PAF  
PAE  
General Flag  
Monitor  
SI  
SO  
SCLK  
Serial  
Multi-Queue  
Programming  
ESTR  
ESYNC  
EXI  
SENI  
SENO  
EXO  
Read Pointers  
FM  
IW  
OW  
BM  
Reset  
Logic  
6
RDADD  
RADEN  
Read Control  
Logic  
MAST  
PKT  
REN  
RCLK  
ID0  
ID1  
ID2  
DF  
Device ID  
3 Bit  
OUTPUT  
MUX  
PAE/ PAF  
Offset  
2
Q
Q
= REOP  
= RSOP  
DFM  
35  
34  
OUTPUT  
REGISTER  
PRS  
MRS  
5937 drw02  
OE  
Q - Q  
35  
0
Q
x9, x18, x36  
out  
Figure 1. Multi-Queue Flow-Control Device Block Diagram  
3
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINCONFIGURATION  
A1 BALL PAD CORNER  
A
D14  
D15  
D13  
D16  
D12  
D11  
D10  
D9  
D7  
D6  
D4  
D3  
D1  
D0  
TCK  
TMS  
TDO  
TDI  
ID1  
ID0  
Q3  
Q2  
Q6  
Q9  
Q8  
Q7  
Q12  
Q11  
Q14  
Q13  
Q15  
Q19  
B
C
D
E
F
Q5  
TRST  
VCC  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
D17  
D18  
D19  
D8  
D5  
D2  
GND  
VCC  
ID2  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Q0  
VCC  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
Q1  
Q4  
Q10  
Q16  
Q24  
Q27  
Q30  
Q33  
PKT  
GND  
BM  
Q17  
Q21  
Q23  
Q26  
Q29  
Q32  
Q35  
MAST  
IW  
Q18  
Q20  
Q22  
Q25  
Q28  
Q31  
Q34  
FM  
VCC  
VCC  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
VCC  
VCC  
VCC  
D20  
D23  
D26  
D21  
D24  
D27  
D22  
D25  
D28  
VCC  
VCC  
VCC  
VCC  
VCC  
GND  
VCC  
VCC  
GND  
GND  
VCC  
VCC  
G
H
J
D29  
D32  
GND  
GND  
SI  
D30  
D31  
D34  
D35  
GND  
DF  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
GND  
GND  
VCC  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
GND  
GND  
VCC  
VCC  
VCC  
D33  
VCC  
VCC  
GND  
GND  
DFM  
K
VCC  
VCC  
L
OW  
M
N
P
R
T
SENO  
SENI  
OE  
SO  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
GND  
VCC  
GND  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
RDADD0 RDADD1  
WRADD1 WRADD0  
SCLK  
RDADD2 GND  
GND  
FF  
OV  
PAE  
GND  
GND  
GND  
WADEN  
PAF3  
DNC  
DNC  
DNC  
DNC  
PAE3 RDADD3 RDADD4 RDADD5  
PAF  
PRS  
PR  
WRADD3 WRADD2 FSYNC  
FSTR  
PAF2  
PAF1  
DNC  
DNC  
DNC  
DNC  
DNC  
DNC  
PAE2  
PAE1  
RADEN ESTR  
ESYNC  
EXI  
WEN  
MRS  
REN  
WRADD4  
FXI  
FXO  
PAF0  
WCLK  
RCLK  
PAE0  
EXO  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
5937 drw03  
NOTE:  
1. DNC - Do Not Connect.  
PBGA (BB256-1, order code: BB)  
TOP VIEW  
4
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
provides a user programmable almost full flag for all 4 queues and when a  
respectivequeueisselectedonthewriteport,thealmostfullflagprovidesstatus  
for that queue. Conversely, the read port has an output valid flag, providing  
statusofthedatabeingreadfromthequeueselectedonthereadport.Aswell  
astheoutputvalidflagthedeviceprovidesadedicatedalmostemptyflag.This  
almostemptyflagissimilartothealmostemptyflagofaconventionalIDTFIFO.  
Thedeviceprovidesauserprogrammablealmostemptyflagforall4queues  
andwhenarespectivequeueisselectedonthereadport,thealmostemptyflag  
providesstatusforthatqueue.  
DETAILEDDESCRIPTION  
MULTI-QUEUE STRUCTURE  
The IDT multi-queue flow-control device has a single data input port and  
singledataoutputportwithupto4FIFOqueuesinparallelbufferingbetween  
thetwoports.Theusercansetupbetween1and4Queueswithinthedevice.  
Thesequeuescanbeconfiguredtoutilizethetotalavailablememory,providing  
theuserwithfullflexibilityandabilitytoconfigurethequeuestobevariousdepths,  
independentofoneanother.  
PROGRAMMABLE FLAG BUSSES  
MEMORYORGANIZATION/ALLOCATION  
Inadditiontothesededicatedflags,full&almostfullonthewriteportandoutput  
valid&almostemptyonthereadport,therearetwoflagstatusbusses.Analmost  
fullflagstatusbusisprovided,thisbusis4bitswide.Also,analmostemptyflag  
statusbusisprovided,againthisbusis4bitswide.Thepurposeoftheseflag  
bussesistoprovidetheuserwithameansbywhichtomonitorthedatalevels  
withinqueuesthatmaynotbeselectedonthewriteorreadport.Asmentioned,  
thedeviceprovidesalmostfullandalmostemptyregisters(programmableby  
the user) for each of the 4 queues in the device.  
The4bitPAEnand4bitPAFnbussesprovideadiscretestatusoftheAlmost  
EmptyandAlmostFullconditionsofall4queue's.Ifthedeviceisprogrammed  
for less than 4 queue's, then there will be a corresponding number of active  
outputs onthePAEnandPAFnbusses.  
Theflagbussescanprovideacontinuousstatusofallqueues.Ifdevicesare  
connectedinexpansionmodetheindividualflagbussescanbeleftinadiscrete  
form,providingconstantstatusofallqueues,orthebussesofindividualdevices  
canbe connectedtogethertoproduce a single bus of4bits. The device can  
then operate in a "Polled" or "Direct" mode.  
Whenoperatinginpolledmodetheflagbusprovidesstatusofeachdevice  
sequentially,thatis,oneachrisingedgeofaclocktheflagbusisupdatedtoshow  
thestatusofeachdeviceinorder.Therisingedgeofthewriteclockwillupdate  
theAlmostFullbusandarisingedgeonthereadclockwillupdatetheAlmost  
Emptybus.  
Thememoryisorganizedintowhatisknownasblocks,eachblockbeing  
256x36bits.Whentheuserisconfiguringthenumberofqueuesandindividual  
queuesizestheusermustallocatethememorytorespectivequeues,inunits  
ofblocks,thatis,asinglequeuecanbemadeupfrom0tomblocks,wherem  
isthetotalnumberofblocksavailablewithinadevice.Alsothetotalsizeofany  
given queue must be in increments of 256 x36. For the IDT72V51236/  
72V51246andIDT72V51256theTotalAvailableMemoryis64,128and256  
blocks respectively(ablockbeing256x36). Queues canbebuiltfromthese  
blocks to make any size queue desired and any number of queues desired.  
BUS WIDTHS  
Theinputportiscommontoallqueueswithinthedevice,asistheoutputport.  
ThedeviceprovidestheuserwithBusMatchingoptionssuchthattheinputport  
andoutputportcanbeeitherx9,x18orx36bitswideprovidedthatatleastone  
of the ports is x36 bits wide, the read and write port widths being set  
independentlyofoneanother.Becausetheportsarecommontoallqueuesthe  
widthofthequeuesisnotindividuallyset,sothattheinputwidthofallqueues  
are equal and the output width of all queues are equal.  
WRITING TO & READING FROM THE MULTI-QUEUE  
Databeingwrittenintothedeviceviatheinputportisdirectedtoadiscrete  
queueviathewritequeueselectaddressinputs.Conversely,databeingread  
fromthedevicereadportisreadfromaqueueselectedviathereadqueueselect  
addressinputs.Datacanbesimultaneouslywrittenintoandreadfromthesame  
queueordifferentqueues.Onceaqueueisselectedfordatawritesorreads,  
the writing and reading operation is performed in the same manner as  
conventionalIDTsynchronous FIFO,utilizingclocks andenables,thereis a  
singleclockandenableperport.Whenaspecificqueueisaddressedonthe  
writeport,dataplacedonthedatainputsiswrittentothatqueuesequentially  
basedontherisingedgeofawriteclockprovidedsetupandholdtimesaremet.  
Conversely,dataisreadontotheoutputportafteranaccesstimefromarising  
edge on a read clock.  
Theoperationofthewriteportiscomparabletothefunctionofaconventional  
FIFOoperatinginstandardIDTmode.Writeoperationscanbeperformedon  
thewriteportprovidedthatthequeuecurrentlyselectedisnotfull,afullflagoutput  
provides status of the selected queue. The operation of the read port is  
comparabletothefunctionofaconventionalFIFOoperatinginFWFTmode.  
Whenaqueueis selectedontheoutputport,thenextwordinthatqueuewill  
automaticallyfallthroughtotheoutputregister.Allsubsequentwordsfromthat  
queue require an enabled read cycle. Data cannot be read from a selected  
queueifthatqueueisempty,thereadportprovidesanOutputValidflagindicating  
whendata readoutis valid. Ifthe userswitches toa queue thatis empty, the  
lastwordfromtheprevious queuewillremainontheoutputregister.  
Asmentioned,thewriteporthasafullflag,providingfullstatusoftheselected  
queue.Alongwiththefullflagadedicatedalmostfullflagisprovided,thisalmost  
fullflagissimilartothealmostfullflagofaconventionalIDTFIFO.Thedevice  
Whenoperatingindirectmodethedevicedrivingtheflagbusisselectedby  
theuser.Theuseraddresses thedevicethatwilltakecontrolofarespective  
flagbus, these PAFnand PAEnflagbusses operatingindependentlyofone  
another.AddressingoftheAlmostFullflagbus is doneviathewriteportand  
addressingoftheAlmostEmptyflagbus is doneviathereadport.  
PACKETMODE  
Themulti-queueflow-controldevicealsooffersaPacketMode”operation.  
PacketModeisuserselectableandrequiresthedevicetobeconfiguredwith  
bothwrite andreadports as 36bits wide. Inpacketmode, users candefine  
thelengthofpacketsorframebyusingthetwomostsignificantbitsofthe36-  
bitword.Bit34isusedtomarktheStartofPacket(SOP)andbit35isusedto  
markthe EndofPacket(EOP)as showninTable 5).Whenwritingdata into  
agivenqueue,thefirstwordbeingwrittenismarked,bytheusersettingbit34  
astheStartofPacket”(SOP)andthelastwordwrittenismarkedastheEnd  
of Packet” (EOP) with all words written between the Start of Packet (SOP)  
marker(bit34)andtheEndofpacket(EOP)packetmarker(bit35)constituting  
theentirepacket.Apacketcanbeanylengththeuserdesires,uptothetotal  
availablememoryinthemulti-queueflow-controldevice.Thedevicemonitors  
theSOP(bit34)andlooksforthewordthatcontainstheEOP(bit35).Theread  
port is supplied with an additional status flag, Packet Ready. The Packet  
Ready(PR)flaginconjunctionwithOutputValid(OV)indicateswhenatleast  
onepacket isavailabletoread.Wheninpacketmodethealmostemptyflag  
status,providespacketreadyflagstatusforindividualqueues.  
5
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
EXPANSION  
deviceutilizingallmemoryblocksavailabletoproduceasinglequeue.Thisis  
Expansionofmulti-queuedevicesisalsopossible,upto8devicescanbe thedeepestqueuethatcansetupwithinadevice.  
connectedinaparallelfashionprovidingthepossibilityofbothdepthexpansion  
For queue expansion of the 4 queue device, a maximum number of 32 (8  
or queue expansion. Depth Expansion means expanding the depths of x4)queuesmaybesetup,eachqueuebeing2Kx36deep,iflessqueuesare  
individual queues. Queue expansion means increasing the total number of setup,thenmorememoryblockswillbeavailabletoincreasequeuedepthsif  
queuesavailable.Depthexpansionispossiblebyvirtueofthefactthatmore desired.Whenconnectingmulti-queuedevicesinexpansionmodeallrespec-  
memoryblocks withinamulti-queuedevicecanbeallocatedtoincreasethe tive input pins (data & control) and output pins (data & flags), should be  
depth of a queue. For example, depth expansion of 8 devices provides the connected”togetherbetweenindividualdevices.  
possibilityof8queuesof64Kx36deep,eachqueuebeingsetupwithinasingle  
6
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS  
Symbol  
Name  
I/OTYPE  
Description  
BM  
BusMatching  
LVTTL ThispinissetupbeforeMasterResetandmustnottoggleduringanydeviceoperation.Thispinisused  
INPUT alongwithIWandOWtosetupthemulti-queueflow-controldevicebuswidth.PleaserefertoTable3  
fordetails.  
D[35:0]  
Din  
DataInputBus  
LVTTL These are the 36data inputpins. Data is writtenintothe device via these inputpins onthe rising edge  
INPUT ofWCLKprovidedthatWEN is LOW.Note,thatinPacketmodeD32-D35maybeusedas packet  
markers,pleaseseepacketreadyfunctionaldiscussionformoredetail.Duetobusmatchingnotallinputs  
maybe used, anyunusedinputs shouldbe tiedLOW.  
DF(1)  
DefaultFlag  
DefaultMode  
LVTTL Iftheuserrequiresdefaultprogrammingofthemulti-queuedevice,thispinmustbesetupbeforeMaster  
INPUT Resetandmustnottoggleduringanydeviceoperation.Thestateofthisinputatmasterresetdetermines  
the value of the PAE/PAF flag offsets. If DF is LOW the value is 8, if DF is HIGH the value is 128.  
(1)  
DFM  
LVTTL The multi-queue device requires programmingaftermasterreset. The usercandothis seriallyvia the  
INPUT serialport,ortheusercanusethedefaultmethod.IfDFMisLOWatmasterresetthenserialmodewillbe  
selected,ifHIGHthendefaultmodeisselected.  
ESTR  
PAEn Flag Bus  
Strobe  
LVTTL IfdirectoperationofthePAEnbushasbeenselected,theESTRinputisusedinconjunctionwithRCLK  
INPUT andtheRDADDbustoselectadeviceforitsqueuestobeplacedontothePAEnbusoutputs.Adevice  
addressed via the RDADD bus is selected on the rising edge of RCLK provided that ESTR is HIGH. If  
Polledoperationshasbeenselected,ESTRshouldbetiedinactive,LOW.Note,thataPAEnflagbus  
selectioncannotbemade,(ESTRmustNOTgoactive)untilprogrammingoftheparthasbeencompleted  
andSENO has gone LOW.  
ESYNC  
EXI  
PAEn Bus Sync  
LVTTL ESYNCisanoutputfromthemulti-queuedevicethatprovidesasynchronizingpulseforthePAEnbus  
OUTPUT duringPolledoperationofthePAEnbus.DuringPolledoperationeachdevicesqueuestatusflagsare  
loadedontothePAEnbusoutputssequentiallybasedonRCLK.ThefirstRCLKrisingedgeloadsdevice1  
ontoPAEn,thesecondRCLKrisingedgeloadsdevice2andsoon.DuringtheRCLKcyclethataselected  
device is placed on to the PAEn bus, the ESYNC output will be HIGH.  
PAEn/PRnBus  
ExpansionIn  
LVTTL The EXIinputis usedwhenmulti-queue devices are connectedinexpansionmode andPolled PAEn/  
INPUT PRnbus operationhas beenselected. EXIofdevice ‘Nconnects directlytoEXOofdevice N-1’. The  
EXI receives a token from the previous device in a chain. In single device mode the EXI input must be  
tiedLOWifthePAEn/PRnbusisoperatedindirectmode.IfthePAEn/PRnbusisoperatedinpolledmode  
theEXIinputmustbeconnectedtotheEXOoutputofthesamedevice.InexpansionmodetheEXIof  
thefirstdeviceshouldbetiedLOW,whendirectmodeisselected.  
EXO  
PAEn/PRnBus  
ExpansionOut  
LVTTL EXOis anoutputthatis usedwhenmulti-queuedevices areconnectedinexpansionmodeandPolled  
OUTPUT PAEn/PRnbusoperationhasbeenselected.EXOofdeviceNconnectsdirectlytoEXIofdeviceN+1’.  
ThispinpulsesHIGHwhendeviceNplacesitsPAEstatusontothePAEn/PRnbuswithrespecttoRCLK.  
This pulse (token) is then passed on to the next device in the chain N+1’ and on the next RCLK rising  
edgethefirstquadrantofdeviceN+1willbeloadedontothePAEn/PRnbus.Thiscontinuesthroughthe  
chainandEXOofthelastdeviceisthenloopedbacktoEXIofthefirstdevice.TheESYNCoutputofeach  
deviceinthechainprovides synchronizationtotheuserofthis loopingevent.  
FF  
Full Flag  
LVTTL This pinprovides thefullflagoutputfortheactivequeue,thatis,thequeueselectedontheinputport  
OUTPUT forwriteoperations,(selectedviaWCLK,WRADDbusandWADEN).OntheWCLKcycleafteraqueue  
selection,thisflagwillshowthestatusofthenewlyselectedqueue.Datacanbewrittentothisqueueon  
thenextcycleprovidedFF is HIGH.This flaghas High-Impedancecapability,this is importantduring  
expansionofdevices,whentheFFflagoutputofupto8devicesmaybeconnectedtogetheronacommon  
line.ThedevicewithaqueueselectedtakescontroloftheFFbus,allotherdevicesplacetheirFFoutput  
intoHigh-Impedance.Whenaqueueselectionismadeonthewriteportthisoutputwillswitchfrom  
High-ImpedancecontrolonthenextWCLKcycle.ThisflagissynchronizedtoWCLK.  
(1)  
FM  
Flag Mode  
LVTTL Thispinissetupbeforeamasterresetandmustnottoggleduringanydeviceoperation.Thestateofthe  
INPUT FMpinduringMasterResetwilldetermine whetherthe PAFnandPAEnflagbusses operate ineither  
PolledorDirectmode.Ifthis pinis HIGHthemodeis Polled,ifLOWthenitwillbeDirect.  
FSTR  
PAFn Flag Bus  
Strobe  
LVTTL IfdirectoperationofthePAFnbushasbeenselected,theFSTRinputisusedinconjunctionwithWCLK  
INPUT andtheWRADDbustoselectadeviceforitsqueuestobeplacedontothePAFnbusoutputs.Adevice  
addressedviatheWRADDbus is selectedontherisingedgeofWCLKprovidedthatFSTRis HIGH.If  
7
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol  
Name  
I/OTYPE  
Description  
FSTR  
(Continued) Strobe  
PAFn Flag Bus  
LVTTL Polledoperations has beenselected,FSTRshouldbetiedinactive,LOW.Note,thataPAFnflagbus  
INPUT selectioncannotbemade,(FSTRmustNOTgoactive)untilprogrammingoftheparthasbeencompleted  
andSENO has gone LOW.  
FSYNC  
FXI  
PAFn Bus Sync  
LVTTL FSYNCisanoutputfromthemulti-queuedevicethatprovidesasynchronizingpulseforthePAFnbus  
OUTPUT duringPolledoperationofthePAFnbus.DuringPolledoperationeachquadrantofqueuestatusflags  
is loadedontothePAFnbus outputs sequentiallybasedonWCLK.ThefirstWCLKrisingedgeloads  
device 1 on to the PAFn bus outputs, the second WCLK rising edge loads device 2 and so on. During  
the WCLKcycle thata selecteddevice is placedontothe PAFnbus, the FSYNCoutputwillbe HIGH.  
PAFnBus  
ExpansionIn  
LVTTL The FXI input is used when multi-queue devices are connected in expansion mode and Polled PAFn  
INPUT bus operation has been selected. FXI of device N’ connects directly to FXO of device N-1’. The FXI  
receives a tokenfromthe previous device ina chain. Insingle device mode the FXIinputmustbe tied  
LOWifthePAFnbusisoperatedindirectmode.IfthePAFnbusisoperatedinpolledmodetheFXIinput  
mustbeconnectedtotheFXOoutputofthesamedevice.InexpansionmodetheFXIofthefirstdevice  
shouldbetiedLOW,whendirectmodeisselected.  
FXO  
PAFnBus  
ExpansionOut  
LVTTL FXOisanoutputthatisusedwhenmulti-queuedevicesareconnectedinexpansionmodeandPolled  
OUTPUT PAFnbusoperationhasbeenselected.FXOofdeviceNconnectsdirectlytoFXIofdeviceN+1’.This  
pinpulsesHIGHwhendeviceNplacesitsPAFstatusontothePAFnbuswithrespecttoWCLK.Thispulse  
(token)isthenpassedontothenextdeviceinthechainN+1’andonthenextWCLKrisingedgethefirst  
quadrantofdevice N+1willbe loadedontothe PAFnbus. This continues throughthe chainandFXO  
ofthelastdeviceisthenloopedbacktoFXIofthefirstdevice.TheFSYNCoutputofeachdeviceinthe  
chainprovidessynchronizationtotheuserofthisloopingevent.  
(1)  
ID[2:0]  
Device ID Pins  
LVTTL Forthe4Qmulti-queuedevicetheWRADDaddressbusis5bitsandRDADDaddressbusis6bitswide.  
INPUT Whenaqueueselectiontakesplacethe3MSbsofthisaddressbusareusedtoaddressthespecificdevice  
(theLSbsareusedtoaddressthequeuewithinthatdevice).Duringwrite/readoperationsthe3MSbs  
oftheaddressarecomparedtothedeviceIDpins.ThefirstdeviceinachainofMulti-Queues(connected  
inexpansionmode),maybesetupas000,thesecondas001’andsoonthroughtodevice8whichis  
111,howevertheIDdoesnothavetomatchthedeviceorder.Insingledevicemodethesepinsshould  
besetupas000’andthe3MSbsoftheWRADDandRDADDaddressbussesshouldbetiedLOW.The  
ID[2:0]inputssetuparespectivedevicesIDduringmasterreset.TheseIDpinsmustnottoggleduring  
any device operation. Note, the device selected as the Master’ does not have to have the ID of 000.  
(1)  
IW  
InputWidth  
LVTTL ThispinisusedinconjunctionwithOWandBMtosetuptheinputandoutputbuswidthstobeacombination  
INPUT of x9, x18 or x36, (providing that one port is x36).  
(1)  
MAST  
MasterDevice  
LVTTL ThestateofthisinputatMasterResetdetermineswhetheragivendevice(withinachainofdevices),isthe  
INPUT MasterdeviceoraSlave.IfthispinisHIGH,thedeviceisthemaster,ifitisLOWthenitisaSlave.Themaster  
deviceisthefirsttotakecontrolofalloutputsafteramasterreset,allslavedevicesgotoHigh-Impedance,  
preventingbuscontention.Ifamulti-queuedeviceisbeingusedinsingledevicemode,thispinmust  
be setHIGH.  
MRS  
OE  
MasterReset  
OutputEnable  
LVTTL AmasterresetisperformedbytakingMRSfromHIGHtoLOW,toHIGH.Deviceprogrammingisrequired  
INPUT aftermasterreset.  
LVTTL TheOutputenablesignalisanAsynchronoussignalusedtoprovidethree-statecontrolofthemulti-queue  
INPUT dataoutputbus,Qout.IfadevicehasbeenconfiguredasaMaster”device,theQoutdataoutputswill  
beinaLowImpedanceconditioniftheOEinputisLOW.IfOEisHIGHthentheQoutdataoutputswillbe  
inHighImpedance.IfadeviceisconfiguredaSlave”device,thentheQoutdataoutputswillalwaysbe  
inHighImpedanceuntilthatdevicehasbeenselectedontheReadPort,atwhichpointOEprovidesthree-  
stateofthatrespectivedevice.  
OV  
OutputValidFlag  
LVTTL Thisoutputflagprovidesoutputvalidstatusforthedatawordpresentonthemulti-queueflow-controldevice  
OUTPUT dataoutputport,Qout.Thisflagistherefore,2-stagedelayedtomatchthedataoutputpathdelay.That  
is,thereisa2RCLKcycledelayfromthetimeagivenqueueisselectedforreads,tothetimetheOVflag  
representsthedatainthatrespectivequeue.Whenaselectedqueueonthereadportisreadtoempty,  
the OV flagwillgoHIGH, indicatingthatdata onthe outputbus is notvalid. TheOV flagalsohas High-  
Impedancecapability, requiredwhenmultipledevicesareusedandtheOVflagsaretiedtogether.  
8
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol  
Name  
I/OTYPE  
Description  
(1)  
OW  
OutputWidth  
LVTTL ThispinissetupduringMasterResetandmustnottoggleduringanydeviceoperation.Thispinisused  
INPUT inconjunctionwithIWandBMtosetupthedatainputandoutputbus widths tobeacombinationofx9,  
x18 or x36, (providing that one port is x36).  
PAE  
Programmable  
Almost-EmptyFlag  
LVTTL ThispinprovidestheAlmost-Emptyflagstatusforthequeuethathasbeenselectedontheoutputport  
OUTPUT for read operations, (selected via RCLK, RDADD and RADEN). This pin is LOW when the selected  
queueisalmost-empty.ThisflagoutputmaybeduplicatedononeofthePAEnbuslines.Thisflagis  
synchronizedtoRCLK.  
PAEn/PRn Programmable  
Almost-EmptyFlag  
Bus/PacketReady  
FlagBus  
LVTTL On the 4Q device the PAEn/ PRn bus is 4 bits wide. During a Master Reset this bus is setup for either  
OUTPUT AlmostEmptymodeorPacketmode.Thisoutputbusprovides PAE/PRnstatusofall4queues,within  
aselecteddevice.DuringQueueread/writeoperationstheseoutputsprovideprogrammableempty  
flagstatusorpacketreadystatus,ineitherdirectorpolledmode.Themodeofflagoperationisdetermined  
duringmasterresetviathestateoftheFMinput.ThisflagbusiscapableofHigh-Impedancestate,this  
isimportantduringexpansionofmulti-queuedevices.DuringdirectoperationthePAEn/PRnbusis  
updatedtoshowthePAE/PRstatusofqueueswithinaselecteddevice.SelectionismadeusingRCLK,  
ESTR and RDADD. During Polled operation the PAEn/PRn bus is loaded with the PAE/ PRn status  
ofmulti-queueflow-controldevicessequentiallybasedontherisingedgeofRCLK.PAEorPRoperation  
isdeterminedbythestateofPKTduringmasterreset.  
PAF  
Programmable  
Almost-FullFlag  
LVTTL ThispinprovidestheAlmost-Fullflagstatusforthequeuethathasbeenselectedontheinput portfor  
OUTPUT writeoperations,(selectedviaWCLK,WRADDandWADEN).ThispinisLOWwhentheselectedqueue  
isalmost-full.ThisflagoutputmaybeduplicatedononeofthePAFnbuslines.Thisflagissynchronized  
toWCLK.  
PAFn  
Programmable  
LVTTL Onthe4QdevicethePAFnbusis4bitswide.ThisoutputbusprovidesPAFstatusofall4queues,within  
Almost-FullFlagBus OUTPUT aselecteddevice.DuringQueueread/writeoperationstheseoutputsprovideprogrammablefullflag  
status,ineitherdirectorpolledmode.Themodeofflagoperationisdeterminedduringmasterreset  
viathestateoftheFMinput.ThisflagbusiscapableofHigh-Impedancestate,thisisimportantduring  
expansionofmulti-queue devices. Duringdirectoperationthe PAFnbus is updatedtoshowthe PAF  
statusofaqueueswithinaselecteddevice.SelectionismadeusingWCLK,FSTR,WRADDandWADEN.  
DuringPolledoperationthePAFnbusisloadedwiththePAFstatusofmulti-queueflow-controldevices  
sequentiallybasedontherisingedgeofWCLK.  
(1)  
PKT  
PacketMode  
LVTTL ThestateofthispinduringaMasterResetwilldeterminewhetherthepartisoperatinginPacketmode  
INPUT providingbothaPacketReady(PR)outputandaProgrammableAlmostEmpty(PAE)discreteoutput,  
or standard mode, providing a (PAE) output only. If this pin is HIGH during Master Reset the part will  
operateinpacketmode,ifitisLOWthenalmostemptymode.Ifpacketmodehasbeenselectedtheread  
portflagbusbecomespacketreadyflagbus,PRnandthediscretepacketreadyflag,PRisfunctional.  
Ifalmostemptyoperationhasbeenselectedthentheflagbusprovidesalmostemptystatus,PAEnand  
thediscretealmostemptyflag,PAEisfunctional,thePRflagisinactiveandshouldnotbeconnected.Packet  
Readyutilizesusermarkedlocationstoidentifystartandendofpacketsbeingwrittenintothedevice.  
PacketModecanonlybeselectedifboththeinputportwidthandoutputportwidthare36bits.  
PR  
PacketReadyFlag  
LVTTL IfpacketmodehasbeenselectedthisflagoutputprovidesPacketReadystatusofthequeueselected  
forreadoperations.DuringamasterresetthestateofthePKTinputdetermineswhetherPacketmode  
ofoperationwillbeused.IfPacketmodeisselected,thentheconditionofthePRflagandOVsignalare  
assertedindicates a packetis readyforreading. The usermustmarkthe startofa packetandthe end  
ofapacketwhenwritingdataintoaqueue.UsingtheseStartOfPacket(SOP)andEndOfPacket  
(EOP)markers,themulti-queuedevicesetsPRLOWifoneormorecomplete”packetsareavailable  
inthequeue.Acompletepacket(s)mustbewrittenbeforetheuserisallowedtoswitchqueues.  
PRS  
PartialReset  
LVTTL APartialResetcanbeperformedonasinglequeueselectedwithinthemulti-queuedevice.BeforeaPartial  
INPUT Resetcanbe performedona queue, thatqueue mustbe selectedonboththe write portandreadport  
2clockcycles beforetheresetis performed.APartialResetis thenperformedbytakingPRS LOWfor  
one WCLK cycle and one RCLK cycle. The Partial Reset will only reset the read and write pointers to  
thefirstmemorylocation,noneofthedevicesconfigurationwillbechanged.  
9
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol  
Name  
I/OTYPE  
Description  
Q[35:0]  
Qout  
DataOutputBus  
LVTTL Thesearethe36dataoutputpins.Dataisreadoutofthedeviceviatheseoutputpinsontherisingedge  
OUTPUT ofRCLKprovidedthatRENis LOW,OEis LOWandthequeueis selected.Note,thatinPacketmode  
Q32-Q35maybeusedaspacketmarkers,pleaseseepacketreadyfunctionaldiscussionformoredetail.  
Duetobus matchingnotalloutputs maybeused,anyunusedoutputs shouldnotbeconnected.  
RADEN  
RCLK  
ReadAddress  
Enable  
LVTTL The RADENinputis usedinconjunctionwithRCLKandthe RDADDaddress bus toselecta queue to  
INPUT bereadfrom.AqueueaddressedviatheRDADDbusisselectedontherisingedgeofRCLKprovided  
thatRADENisHIGH.RADENshouldbeasserted(HIGH)onlyduringaqueuechangecycle(s).RADEN  
shouldnotbepermanentlytiedHIGH.RADENcannotbeHIGHforthesameRCLKcycleasESTR.Note,  
thatareadqueueselectioncannotbemade,(RADENmustNOTgoactive)untilprogrammingofthepart  
has beencompletedandSENO has goneLOW.  
ReadClock  
LVTTL Whenenabledby REN, the risingedge ofRCLKreads data fromthe selectedqueue via the output  
INPUT bus Qout. The queue to be read is selected via the RDADD address bus and a rising edge of RCLK  
whileRADENisHIGH.ArisingedgeofRCLKinconjunctionwithESTRandRDADDwillalsoselectthe  
devicetobeplacedonthePAEn/PRnbusduringdirectflagoperation.Duringpolledflagoperationthe  
PAEn/PRnbusiscycledwithrespecttoRCLKandtheESYNCsignalissynchronizedtoRCLK.ThePAE,  
PR andOV outputs are allsynchronizedtoRCLK. Duringdevice expansionthe EXOandEXIsignals  
are based on RCLK. RCLK must be continuous and free-running.  
RDADD  
[5:0]  
Read Address Bus  
LVTTL For the 4Q device the RDADD bus is 6 bits. The RDADD bus is a dual purpose address bus. The first  
INPUT functionofRDADDistoselectaqueuetobereadfrom.Theleastsignificant2bitsofthebus,RDADD[1:0]  
areusedtoaddress1of4possiblequeueswithinamulti-queuedevice.Addresspin,RDADD[2]provides  
the user with a Null-Q address. If the user does not wish to address one of the 4 queues, a Null-Q can  
beaddressedusingthispin.TheNull-Qoperationisdiscussedinmoredetaillater.Themostsignificant  
3bits,RDADD[5:3]areusedtoselect1of8possiblemulti-queuedevices thatmaybeconnectedin  
expansionmode.These3MSbswilladdressadevicewiththematchingIDcode.Theaddresspresent  
ontheRDADDbuswillbeselectedonarisingedgeofRCLKprovidedthatRADENisHIGH,(note,that  
datacanbeplacedontotheQoutbus,readfromthepreviouslyselectedqueueonthisRCLKedge).On  
thenextrisingRCLKedgeafterareadqueueselect,adatawordfromthepreviousqueuewillbeplaced  
ontotheoutputs,Qout,regardlessoftheRENinput.TwoRCLKrisingedgesafterreadqueueselect,data  
willbeplacedontotheQoutoutputsfromthenewlyselectedqueue,regardlessofRENduetothefirst  
wordfallthrougheffect.  
The secondfunctionofthe RDADDbus is toselectthe device ofqueues tobe loadedontothe PAEn/  
PRnbus duringstrobedflagmode.Themostsignificant3bits,RDADD[5:3]areagainusedtoselect1  
of8possiblemulti-queuedevicesthatmaybeconnectedinexpansionmode.AddressbitsRDADD[2:0]  
aredont careduringdeviceselection.ThedeviceaddresspresentontheRDADDbuswillbeselected  
onthe risingedge ofRCLKprovidedthatESTRis HIGH, (note, thatdata canbe placedontothe Qout  
bus, read from the previously selected Queue on this RCLK edge). Please refer to Table 2for details  
on RDADD bus.  
REN  
ReadEnable  
LVTTL TheRENinputenablesreadoperationsfromaselectedqueuebasedonarisingedgeofRCLK.Aqueue  
INPUT tobereadfromcanbeselectedviaRCLK,RADENandtheRDADDaddressbusregardlessofthestate  
ofREN.DatafromanewlyselectedqueuewillbeavailableontheQoutoutputbusonthesecondRCLK  
cycleafterqueueselectionregardlessofRENduetotheFWFToperation.Areadenableisnotrequired  
to cycle the PAEn/PRn bus (in polled mode) or to select the device , (in direct mode).  
SCLK  
SerialClock  
LVTTL Ifserialprogrammingofthemulti-queuedevicehasbeenselectedduringmasterreset,theSCLKinput  
INPUT clockstheserialdatathroughthemulti-queuedevice.DatasetupontheSIinputisloadedintothedevice  
ontherisingedgeofSCLKprovidedthatSENIisenabled,LOW.Whenexpansionofdevicesisperformed  
theSCLKofalldevices shouldbeconnectedtothesamesource.  
SENI  
SerialInputEnable  
LVTTL Duringserialprogrammingofamulti-queuedevice,dataloadedontotheSIinputwillbeclockedintothe  
INPUT part(via a risingedge ofSCLK), providedthe SENI inputofthatdevice is LOW. Ifmultiple devices are  
cascaded,theSENIinputshouldbeconnectedtotheSENOoutputofthepreviousdevice.Sowhenserial  
loadingofagivendeviceiscomplete,itsSENOoutputgoesLOW,allowingthenextdeviceinthechain  
tobeprogrammed(SENOwillfollowSENIofagivendeviceoncethatdeviceisprogrammed).TheSENI  
inputofthe masterdevice (orsingle device), shouldbe controlledbythe user.  
10  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol  
Name  
I/OTYPE  
Description  
SENO  
SerialOutputEnable LVTTL Thisoutputisusedtoindicatethatserialprogrammingordefaultprogrammingofthemulti-queuedevice  
OUTPUT hasbeencompleted.SENOfollowsSENIonceprogrammingofadeviceiscomplete.Therefore,SENO  
willgoLOWafterprogrammingprovidedSENIisLOW,onceSENIistakenHIGHagain,SENOwillalso  
goHIGH.WhentheSENOoutputgoesLOW,thedeviceisreadytobeginnormalread/writeoperations.  
Ifmultipledevicesarecascadedandserialprogrammingofthedeviceswillbeused,theSENOoutput  
shouldbeconnectedtotheSENIinputofthenextdeviceinthechain.Whenserialprogrammingofthe  
firstdeviceiscomplete,SENOwillgoLOW,therebytakingthe SENIinputofthenextdeviceLOWand  
soonthroughoutthe chain. Whena givendevice inthe chainis fullyprogrammedtheSENO output  
essentiallyfollowstheSENIinput.TheusershouldmonitortheSENOoutputofthefinaldeviceinthechain.  
WhenthisoutputgoesLOW,serialloadingofalldeviceshasbeencompleted.  
SI  
SerialIn  
LVTTL Duringserialprogrammingthispinisloadedwiththeserialdatathatwillconfigurethemulti-queue  
INPUT devices. Data present on SI will be loaded on a rising edge of SCLK provided that SENI is LOW. In  
expansionmodetheserialdatainputisloadedintothefirstdeviceinachain.Whenthatdeviceisloaded  
anditsSENOhasgoneLOW,thedatapresentonSIwillbedirectlyoutputtotheSOoutput.TheSOpin  
ofthefirstdeviceconnectstotheSIpinofthesecondandsoon.Themulti-queuedevicesetupregisters  
areshiftregisters.  
SO  
SerialOut  
LVTTL Thisoutputisusedinexpansionmodeandallowsserialdatatobepassedthroughdevicesinthechain  
OUTPUT tocompleteprogrammingofalldevices.TheSIofadeviceconnectstoSOofthepreviousdeviceinthe  
chain. The SOofthe finaldevice ina chainshouldnotbe connected.  
(2)  
TCK  
JTAGClock  
LVTTL ClockinputforJTAGfunction.Oneoffourterminals requiredbyIEEEStandard1149.1-1990.Test  
INPUT operationsofthedevicearesynchronoustoTCK.DatafromTMSandTDIaresampledontherisingedge  
ofTCKandoutputschangeonthefallingedgeofTCK.IftheJTAGfunctionisnotusedthissignalneeds  
tobe tiedtoGND.  
(2)  
TDI  
JTAGTestData  
Input  
LVTTL One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan  
INPUT operation,testdataseriallyloadedviatheTDIontherisingedgeofTCKtoeithertheInstructionRegister,  
IDRegisterandBypass Register.Aninternalpull-upresistorforces TDIHIGHifleftunconnected.  
(2)  
TDO  
JTAGTestData  
Output  
LVTTL One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan  
OUTPUT operation,testdataseriallyloadedoutputviatheTDOonthefallingedgeofTCKfromeithertheInstruction  
Register,IDRegisterandBypassRegister.Thisoutputishighimpedanceexceptwhenshifting,whilein  
SHIFT-DR and SHIFT-IR controller states.  
TMS(2)  
JTAGModeSelect  
JTAGReset  
LVTTL TMSisaserialinputpin.OneoffourterminalsrequiredbyIEEEStandard1149.1-1990.TMSdirectsthe  
INPUT devicethroughitsTAPcontrollerstates.Aninternalpull-upresistorforcesTMSHIGHifleftunconnected.  
(2)  
TRST  
LVTTL TRSTisanasynchronousresetpinfortheJTAGcontroller.TheJTAGTAPcontrollerdoesnotautomatically  
INPUT resetuponpower-up,thusitmustberesetbyeitherthissignalorbysettingTMS=HIGHforfiveTCKcycles.  
IftheTAPcontrollerisnotproperlyresetthentheoutputswillalwaysbeinhigh-impedance.IftheJTAG  
function is used but the user does not want to use TRST, then TRST can be tied with MRS to ensure  
properqueue operation. Ifthe JTAGfunctionis notusedthenthis signalneeds tobe tiedtoGND. An  
internalpull-upresistorforcesTRSTHIGHifleftunconnected.  
WADEN  
WCLK  
WriteAddressEnable LVTTL TheWADENinputisusedinconjunctionwithWCLKandtheWRADDaddressbustoselectaqueueto  
INPUT bewritteninto.AqueueaddressedviatheWRADDbusisselectedontherisingedgeofWCLKprovided  
thatWADENisHIGH.WADENshouldbeasserted(HIGH)onlyduringaqueuechangecycle(s).WADEN  
shouldnotbepermanentlytiedHIGH.WADENcannotbeHIGHforthesameWCLKcycleasFSTR.Note,  
thatawritequeueselectioncannotbemade,(WADENmustNOTgoactive)untilprogrammingofthe  
parthas beencompletedandSENO has goneLOW.  
WriteClock  
LVTTL WhenenabledbyWEN,therisingedgeofWCLKwritesdataintotheselectedqueueviatheinputbus,  
INPUT Din.ThequeuetobewrittentoisselectedviatheWRADDaddressbusandarisingedgeofWCLKwhile  
WADENisHIGH.ArisingedgeofWCLKinconjunctionwithFSTRandWRADDwillalsoselectthedevice  
tobeplacedonthePAFnbusduringdirectflagoperation.Duringpolledflagoperationthe PAFnbusis  
cycledwithrespecttoWCLKandtheFSYNCsignalissynchronizedtoWCLK.ThePAFn,PAFandFF  
outputsareallsynchronizedtoWCLK.DuringdeviceexpansiontheFXOandFXIsignalsarebasedon  
WCLK.TheWCLKmustbecontinuousandfree-running.  
11  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol  
Name  
I/OTYPE  
Description  
WEN  
WriteEnable  
LVTTL The WEN input enables write operations to a selected queue based on a rising edge of WCLK.  
INPUT AqueuetobewrittentocanbeselectedviaWCLK,WADENandtheWRADDaddress bus regardless  
ofthestateofWEN.DatapresentonDincanbewrittentoanewlyselectedqueueonthesecondWCLK  
cycleafterqueueselectionprovidedthatWENisLOW.AwriteenableisnotrequiredtocyclethePAFn  
bus (in polled mode) or to select the device , (in direct mode).  
WRADD  
[4:0]  
WriteAddressBus  
LVTTL Forthe 4Qdevice the WRADDbus is 5bits. The WRADDbus is a dualpurpose address bus. The first  
INPUT functionofWRADDistoselectaqueuetobewrittento.Theleastsignificant2bitsofthebus,WRADD[1:0]  
areusedtoaddress1of4possiblequeueswithinamulti-queuedevice.Themostsignificant 3bits,  
WRADD[4:2]areusedtoselect1of8possiblemulti-queuedevicesthatmaybeconnectedinexpansion  
mode. These 3 MSbs will address a device with the matching ID code. The address present on the  
WRADDbuswillbeselectedonarisingedgeofWCLKprovidedthatWADENisHIGH,(note,thatdata  
presentontheDinbuscanbewrittenintothepreviouslyselectedqueueonthisWCLKedgeandonthe  
nextrisingWCLKalso,providingthatWENis LOW).TwoWCLKrisingedges afterwritequeueselect,  
datacanbewrittenintothenewlyselectedqueue.  
The secondfunctionofthe WRADDbus is toselectthe device ofqueues tobe loadedontothe PAFn  
bus duringstrobedflagmode.Themostsignificant3bits,WRADD[4:2]areagainusedtoselect1of8  
possiblemulti-queuedevicesthatmaybeconnectedinexpansionmode.AddressbitsWRADD[1:0]  
aredontcareduringdeviceselection.ThedeviceaddresspresentontheWRADDbuswillbeselected  
ontherisingedgeofWCLKprovidedthatFSTRisHIGH,(note,thatdatacanbewrittenintothepreviously  
selectedqueue onthis WCLKedge). Please refertoTable 1fordetails onthe WRADDbus.  
VCC  
GND  
+3.3VSupply  
GroundPin  
Power These are VCC power supply pins and must all be connected to a +3.3V supply rail.  
Ground These are Ground pins and must all be connected to the GND supply rail.  
NOTES:  
1. Inputs should not change after Master Reset.  
2. These pins are for the JTAG port. Please refer to pages 51-55 and Figures 31-33.  
12  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
ABSOLUTEMAXIMUMRATINGS  
RECOMMENDED DC OPERATING  
CONDITIONS  
Symbol  
Rating  
Com'l & Ind'l  
Unit  
Symbol  
Parameter  
SupplyVoltage(Com'l/Ind'l)  
Min. Typ.  
Max.  
3.45  
0
Unit  
V
VTERM  
TerminalVoltage  
with respect to GND  
–0.5to+4.5  
V
(1)  
VCC  
3.15  
0
3.3  
0
TSTG  
IOUT  
StorageTemperature  
DCOutputCurrent  
–55 to +125  
–50 to +50  
°C  
mA  
GND SupplyVoltage(Com'l/Ind'l)  
V
VIH  
VIL  
TA  
InputHighVoltage(Com'l/Ind'l)  
InputLowVoltage(Com'l/Ind'l)  
OperatingTemperatureCommercial  
OperatingTemperatureIndustrial  
2.0  
0
VCC+0.3  
0.8  
V
NOTE:  
V
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause  
permanent damage to the device. This is a stress rating only and functional operation  
of the device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect reliability.  
+70  
°C  
°C  
TA  
-40  
+85  
NOTE:  
1. VCC = 3.3V ± 0.15V, JEDEC JESD8-A compliant.  
DCELECTRICALCHARACTERISTICS  
(Commercial: VCC = 3.3V ± 0.15V, TA = 0°C to +70°C;Industrial: VCC = 3.3V ± 0.15V, TA = 40°C to +85°C; JEDEC JESD8-A compliant)  
Symbol  
Parameter  
Min.  
Max.  
Unit  
(1)  
ILI  
InputLeakageCurrent  
OutputLeakageCurrent  
–10  
–10  
2.4  
10  
10  
µA  
µA  
V
ILO(2)  
VOH  
Output Logic 1Voltage, IOH = –8 mA  
Output Logic 0Voltage, IOL = 8 mA  
Active Power Supply Current  
StandbyCurrent  
0.4  
100  
25  
VOL  
V
ICC1(3,4,5)  
ICC2(3,6)  
mA  
mA  
NOTES:  
1. Measurements with 0.4 VIN VCC.  
2. OE VIH, 0.4 VOUT VCC.  
3. Tested with outputs open (IOUT = 0).  
4. RCLK and WCLK toggle at 20 MHz and data inputs switch at 10 MHz.  
5. Typical ICC1 = 16 + 3.14*fS + 0.02*CL*fS (in mA) with VCC = 3.3V, tA = 25°C, fS = WCLK frequency = RCLK frequency (in MHz, using TTL levels), data switching at fS/2,  
CL = capacitive load (in pF).  
6. RCLK and WCLK, toggle at 20 MHz.  
The following inputs should be pulled to GND: WRADD, RDADD, WADEN, RADEN, FSTR, ESTR, SCLK, SI, EXI, FXI and all Data Inputs.  
The following inputs should be pulled to VCC: WEN, REN, SENI, PRS, MRS, TDI, TMS and TRST.  
All other inputs are don't care, and should be pulled HIGH or LOW.  
CAPACITANCE(TA = +25°C, f = 1.0MHz)  
Symbol  
Parameter(1)  
Conditions  
Max.  
Unit  
(2)  
CIN  
Input  
VIN = 0V  
10  
pF  
Capacitance  
(1,2)  
COUT  
Output  
VOUT = 0V  
10  
pF  
Capacitance  
NOTES:  
1. With output deselected, (OE VIH).  
2. Characterized values, not currently tested.  
13  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
AC TEST LOADS  
6
V
CC/2  
5
4
3
2
1
50  
Z0 = 50Ω  
I/O  
5937 drw04  
20 30 50 80 100  
Capacitance (pF)  
200  
5937 drw04a  
Figure 2a. AC Test Load  
Figure 2b. Lumped Capacitive Load, Typical Derating  
ACTESTCONDITIONS  
InputPulseLevels  
GND to 3.0V  
1.5ns  
InputRise/FallTimes  
InputTimingReferenceLevels  
OutputReferenceLevels  
OutputLoad  
1.5V  
1.5V  
See Figure 2a & 2b  
OUTPUT ENABLE & DISABLE TIMING  
Output  
Enable  
Output  
Disable  
V
IH  
IL  
OE  
V
tOE &  
tOLZ  
tOHZ  
Output  
Normally  
LOW  
V
CC/2  
V
CC/2  
100mV  
100mV  
100mV  
VOL  
V
OH  
Output  
Normally  
HIGH  
100mV  
VCC/2  
VCC/2  
5937 drw04b  
14  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
ACELECTRICALCHARACTERISTICS  
(Commercial: VCC = 3.3V ± 0.15V, TA = 0°C to +70°C;Industrial: VCC = 3.3V ± 0.15V, TA = 40°C to +85°C; JEDEC JESD8-A compliant)  
Commercial  
Com'l & Ind'l(1)  
IDT72V51236L6  
IDT72V51246L6  
IDT72V51256L6  
IDT72V51236L7-5  
IDT72V51246L7-5  
IDT72V51256L7-5  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
fS  
Clock Cycle Frequency (WCLK & RCLK)  
DataAccessTime  
0.6  
6
166  
3.7  
3.7  
3.7  
3.7  
10  
0.6  
7.5  
3.5  
3.5  
2.0  
0.5  
2.0  
0.5  
10  
133  
4
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tA  
tCLK  
tCLKH  
tCLKL  
tDS  
Clock Cycle Time  
4
Clock High Time  
2.7  
2.7  
2
Clock Low Time  
DataSetupTime  
tDH  
DataHoldTime  
0.5  
2
tENS  
EnableSetupTime  
tENH  
tRS  
EnableHoldTime  
0.5  
10  
ResetPulseWidth  
tRSS  
ResetSetupTime  
15  
15  
tRSR  
tPRSS  
tPRSH  
tOLZ(OE-Qn)(2)  
ResetRecoveryTime  
10  
10  
PartialResetSetup  
2.0  
0.5  
0.6  
0.6  
0.6  
100  
45  
2.5  
0.5  
0.6  
0.6  
0.6  
100  
45  
PartialResetHold  
OutputEnabletoOutputinLow-Impedance  
OutputEnabletoOutputinHigh-Impedance  
OutputEnabletoDataOutputValid  
Clock Cycle Frequency (SCLK)  
Serial Clock Cycle  
(2)  
tOHZ  
4
tOE  
4
fC  
10  
20  
20  
4
tSCLK  
tSCKH  
tSCKL  
tSDS  
20  
Serial Clock High  
Serial Clock Low  
45  
45  
SerialDataInSetup  
20  
20  
tSDH  
tSENS  
tSENH  
tSDO  
tSENO  
tSDOP  
tSENOP  
tPCWQ  
tPCRQ  
tAS  
Serial Data In Hold  
1.2  
20  
1.2  
20  
SerialEnableSetup  
SerialEnableHold  
1.2  
1.5  
1.5  
20  
1.2  
1.5  
1.5  
20  
SCLK to Serial Data Out  
SCLK to Serial Enable Out  
SerialDataOutPropagationDelay  
SerialEnablePropagationDelay  
ProgrammingCompletetoWriteQueueSelection  
ProgrammingCompletetoReadQueueSelection  
AddressSetup  
20  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
4
5
20  
20  
2.5  
1
3.0  
1
tAH  
Address Hold  
tWFF  
tROV  
tSTS  
tSTH  
tQS  
Write Clock to Full Flag  
ReadClocktoOutputValid  
StrobeSetup  
2
2
5
4
StrobeHold  
0.5  
2
0.5  
2.5  
0.5  
0.6  
0.6  
0.6  
0.6  
QueueSetup  
tQH  
QueueHold  
0.5  
0.6  
0.6  
0.6  
0.6  
tWAF  
tRAE  
tPAF  
tPAE  
WCLK to PAF flag  
RCLK to PAE flag  
4
Write ClocktoSynchronous Almost-FullFlagBus  
4
Read Clock to Synchronous Almost-Empty Flag Bus  
4
NOTES:  
1. Industrial temperature range product for the 7-5ns is available as a standard device. All other speed grades are available by special order.  
2. Values guaranteed by design, not currently tested.  
15  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
ACELECTRICALCHARACTERISTICS(CONTINUED)  
(Commercial: VCC = 3.3V ± 0.15V, TA = 0°C to +70°C;Industrial: VCC = 3.3V ± 0.15V, TA = 40°C to +85°C; JEDEC JESD8-A compliant)  
Commercial  
Com'l & Ind'l(1)  
IDT72V51236L6  
IDT72V51246L6  
IDT72V51256L6  
IDT72V51236L7-5  
IDT72V51246L7-5  
IDT72V51256L7-5  
Symbol  
Parameter  
Min.  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
4.5  
6
Max.  
Min.  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
5.75  
7.5  
7.5  
7.5  
12  
Max.  
4
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(2)  
tPAELZ  
RCLK to PAE Flag Bus to Low-Impedance  
RCLK to PAE Flag Bus to High-Impedance  
WCLK to PAF Flag Bus to Low-Impedance  
WCLK to PAF Flag Bus to High-Impedance  
WCLKtoFullFlagtoHigh-Impedance  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
(2)  
tPAEHZ  
4
(2)  
tPAFLZ  
4
(2)  
tPAFHZ  
4
(2)  
tFFHZ  
4
(2)  
tFFLZ  
WCLKtoFullFlagtoLow-Impedance  
4
(2)  
tOVLZ  
RCLKtoOutputValidFlagtoLow-Impedance  
RCLKtoOutputValidFlagtoHigh-Impedance  
WCLK to PAF Bus Sync to Output  
WCLK to PAF Bus Expansion to Output  
RCLK to PAE Bus Sync to Output  
4
(2)  
tOVHZ  
4
tFSYNC  
tFXO  
4
4
tESYNC  
tEXO  
4
RCLK to PAE Bus Expansion to Output  
RCLK to Packet Ready Flag  
4
tPR  
4
tSKEW1  
tSKEW2  
tSKEW3  
tSKEW4  
tSKEW5  
tXIS  
SKEW time between RCLK and WCLK for FF and OV  
SKEW time between RCLK and WCLK for PAF and PAE  
SKEW time between RCLK and WCLK for PAF[0:7] and PAE[0:7]  
SKEW time between RCLK and WCLK for PR and OV  
SKEW time between RCLK and WCLK for OV when in Packet Mode  
ExpansionInputSetup  
6
6
10  
1.0  
0.5  
1.3  
0.5  
tXIH  
ExpansionInputHold  
NOTES:  
1. Industrial temperature range product for the 7-5ns is available as a standard device. All other speed grades are available by special order.  
2. Values guaranteed by design, not currently tested.  
16  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
port on a rising edge of SCLK (serial clock), provided that SENI (serial in  
enable),isLOW.Onceserialprogrammingofthedevicehasbeensuccessfully  
completedthedevicewillindicatethisviatheSENO(serialoutputenable)going  
active,LOW.Upondetectionofcompletionofprogramming,theusershould  
ceaseallprogrammingandtakeSENIinactive,HIGH.Note,SENOfollowsSENI  
onceprogrammingofadeviceiscomplete.Therefore,SENOwillgoLOWafter  
programmingprovidedSENIisLOW,onceSENIistakenHIGHagain,SENO  
willalsogoHIGH.TheoperationoftheSOoutputissimilar,whenprogramming  
ofagivendeviceiscomplete,theSOoutputwillfollowtheSIinput.  
FUNCTIONALDESCRIPTION  
MASTERRESET  
AMasterResetisperformedbytogglingtheMRSinputfromHIGHtoLOW  
toHIGH.Duringamasterresetallinternalmulti-queuedevicesetupandcontrol  
registersareinitializedandrequireprogrammingeitherseriallybytheuservia  
theserialport,orusingthedefaultsettings.Duringamasterresetthestateof  
thefollowinginputsdeterminethefunctionalityofthepart,thesepinsshouldbe  
held HIGH or LOW.  
Ifdevicesarebeingusedinexpansionmodetheserialportsofdevicesshould  
becascaded.Theusercanloadalldevicesviatheserialinputportcontrolpins,  
SI & SENI, of the first device in the chain. Again, the user may utilize the C’  
programtogeneratetheserialbitstream,theprogrampromptingtheuserfor  
the numberofdevices tobe programmed. The SENO andSO(serialout)of  
thefirstdeviceshouldbeconnectedtotheSENI andSIinputs ofthesecond  
devicerespectivelyandsoon,withtheSENO&SOoutputsconnectingtothe  
SENI&SIinputsofalldevicesthroughthechain.Alldevicesinthechainshould  
beconnectedtoacommonSCLK.Theserialoutputportofthefinaldeviceshould  
be monitored by the user. When SENO of the final device goes LOW, this  
indicates thatserialprogrammingofalldevices has beensuccessfullycom-  
pleted.Upondetectionofcompletionofprogramming,theusershouldceaseall  
programmingandtakeSENIofthefirstdeviceinthechaininactive,HIGH.  
Asmentioned,thefirstdeviceinthechainhasitsserialinputportcontrolled  
bytheuser,thisisthefirstdevicetohaveitsinternalregistersseriallyloaded  
bytheserialbitstream.Whenprogrammingofthisdeviceiscompleteitwilltake  
its SENOoutputLOWandbypasstheserialdataloadedontheSIinputtoits  
SOoutput.Theserialinputoftheseconddeviceinthechainisnowloadedwith  
thedatafromtheSOofthefirstdevice,whiletheseconddevicehasitsSENI  
input LOW. This process continues through the chain until all devices are  
programmedandtheSENO ofthefinaldevicegoesLOW.  
PKT–PacketMode  
FM – Flag bus Mode  
IW,OW,BMBusMatchingoptions  
MAST – Master Device  
ID0, 1, 2 – Device ID  
DFMProgrammingmode,serialordefault  
DF – Offset value for PAE and PAF  
Onceamasterresethastakenplace,thedevicemustbeprogrammedeither  
seriallyorviathedefaultmethodbeforeanyread/writeoperationscanbegin.  
See Figure 4, Master Reset for relevant timing.  
PARTIALRESET  
APartialResetisameansbywhichtheusercanresetboththereadandwrite  
pointers of a single queue that has been setup within a multi-queue device.  
Beforeapartialresetcantakeplaceonaqueue,therespectivequeuemustbe  
selectedonboththereadportandwriteportaminimumof2RCLKand2WCLK  
cyclesbeforethePRSgoesLOW.Thepartialresetisthenperformedbytoggling  
thePRSinputfromHIGHtoLOWtoHIGH,maintainingtheLOWstateforatleast  
oneWCLKandoneRCLKcycle.Onceapartialresethastakenplaceaminimum  
of3WCLKand3RCLKcyclesmustoccurbeforeenabledwritesorreadscan  
occur.  
Once all serial programming has been successfully completed, normal  
operations,(queueselectionsonthereadandwriteports)maybegin.When  
connectedinexpansionmode,theIDT72V51236/72V51246/72V51256de-  
vicesrequireatotalnumberofseriallyloadedbitsperdevicetocompleteserial  
programming,(SCLKcycleswithSENIenabled),calculatedby:n[19+(Qx72)]  
whereQis thenumberofqueues theuserwishes tosetupwithinthedevice,  
where n is the number of devices in the chain.  
APartialResetonlyresets thereadandwritepointers ofagivenqueue,a  
partialresetwillnoteffecttheoverallconfigurationandsetupofthemulti-queue  
deviceandits queues.  
See Figure 5, PartialReset for relevant timing.  
SERIAL PROGRAMMING  
Themulti-queueflow-controldeviceisafullyprogrammabledevice,provid-  
ingtheuserwithflexibilityinhowqueuesareconfiguredintermsofthenumber  
of queues, depth of each queue and position of the PAF/PAE flags within  
respectivequeues.Alluserprogrammingisdoneviatheserialportafteramaster  
resethas takenplace. Internallythe multi-queue device has setupregisters  
whichmustbeseriallyloaded,theseregisterscontainvaluesforeveryqueue  
within the device, such as the depth and PAE/PAF offset values. The  
IDT72V51236/72V51246/72V51256devices are capable ofupto4queues  
andthereforecontain4setsofregistersforthesetupofeachqueue.  
DuringaMasterResetiftheDFM(DefaultMode)inputisLOW,thenthedevice  
willrequire serialprogrammingbythe user. Itis recommendedthatthe user  
utilizeaC’programprovidedbyIDT,thisprogramwillprompttheuserforall  
informationregardingthemulti-queuesetup.Theprogramwillthengenerate  
aserialbitstreamwhichshouldbeseriallyloadedintothedeviceviatheserial  
port.FortheIDT72V51236/72V51246/72V51256devicestheserialprogram-  
mingrequiresatotalnumberofseriallyloadedbitsperdevice,(SCLKcycles  
withSENIenabled),calculatedby:19+(Qx72)whereQisthenumberofqueues  
the user wishes to setup within the device. Please refer to the separate  
ApplicationNote,AN-303forrecommendedcontroloftheserialprogramming  
port.  
SeeFigure6,SerialPortConnectionandFigure7,SerialProgrammingfor  
connectionandtiminginformation.  
DEFAULTPROGRAMMING  
Duringa MasterResetifthe DFM(DefaultMode)inputis HIGHthe multi-  
queuedevicewillbeconfiguredfordefaultprogramming,(serialprogramming  
is not permitted). Default programming provides the user with a simpler,  
howeverlimitedmeansbywhichtosetupthemulti-queueflow-controldevice,  
rather than using the serial programming method. The default mode will  
configure a multi-queue device such that the maximum number of queues  
possiblearesetup,withallofthepartsavailablememoryblocksbeingallocated  
equallybetweenthequeues.ThevaluesofthePAE/PAFoffsetsisdetermined  
bythe state ofthe DF(default)pinduringa masterreset.  
FortheIDT72V51236/72V51246/72V51256devicesthedefaultmodewill  
setup 4 queues, each queue being 4,096 x 36, 8,192 x 36 and 16,384 x 36  
deep respectively. For both devices the value of the PAE/PAF offsets is  
determinedatmasterresetbythestateoftheDFinput.IfDFisLOWthenboth  
the PAE & PAF offset will be 8, if HIGH then the value is 128.  
WhenconfiguringtheIDT72V51236/72V51246/72V51256devicesinde-  
faultmodetheusersimplyhastoapplyWCLKcyclesafteramasterreset,until  
SENOgoesLOW,thissignalsthatdefaultprogrammingiscomplete.Theseclock  
Once the master reset is complete and MRS is HIGH, the device can be  
seriallyloaded.DatapresentontheSI(serialin),inputisloadedintotheserial  
17  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
cyclesarerequiredforthedevicetoloaditsinternalsetupregisters. Whena while write address enable (WADEN) is HIGH. The state of WEN does not  
singlemulti-queueisused,thecompletionofdeviceprogrammingissignaled impactthequeueselection.Thequeueselectionisrequires2WCLKcycles.  
bytheSENOoutputofadevicegoingfromHIGHtoLOW.Note,thatSENImust Allsubsequentdatawriteswillbetothisqueueuntilanotherqueueisselected.  
beheldLOWwhenadeviceis setupfordefaultprogrammingmode.  
Standardmodeoperationisdefinedasindividualwordswillbewrittentothe  
Whenmulti-queuedevicesareconnectedinexpansionmode,theSENIof deviceasopposedtoPacketModewherecompletepacketsmaybewritten.  
thefirstdeviceinachaincanbeheldLOW.TheSENOofadeviceshouldconnect Thewriteportisdesignedsuchthat100%busutilizationcanbeobtained.This  
totheSENIofthenextdeviceinthechain.TheSENOofthefinaldeviceisused means that data can be written into the device on every WCLK rising edge  
toindicatethatdefaultprogrammingofalldevicesiscomplete.Whenthefinal including the cycle that a new queue is being addressed.  
SENO goes LOW normal operations may begin. Again, all devices will be  
Changingqueuesrequiresaminimumof2WCLKcyclesonthewriteport  
programmedwiththeirmaximumnumberofqueuesandthememorydivided (seeFigure9,WriteQueueSelect,WriteOperationandFullflagOperation).  
equally between them. Please refer to Figure 8, DefaultProgramming.  
WADENgoeshighsignalingachangeofqueue(clockcycleA”).Theaddress  
onWRADDatthattimedeterminesthenextqueue.Datapresentedduringthat  
cycle (A”) and the next cycle (B”), will be written to the active (old) queue,  
providedWEN is active LOW.IfWENis HIGH(inactive)forthese twoclock  
READING AND WRITING TO THE IDT MULTI-QUEUE  
FLOW-CONTROL DEVICE  
The IDT72V51236/72V51346/72V51256 multi-queue flow-control de- cycles,datawillnotbewrittenintothepreviousqueue.Thewriteportdiscrete  
vices canbe configuredintwodistinctmodes, namelyStandardMode and fullflagwillupdatetoshowthefullstatusofthenewlyselectedqueue(QX)at  
PacketMode.  
thislastcyclesrisingedge(B”).Datapresentonthedatainputbus(Din),can  
bewrittenintothenewlyselectedqueue(QX)ontherisingedgeofWCLKon  
the secondcycle (C)followinga change ofqueue, provided WEN is LOW  
andthenewqueueisnotfull.Ifthenewlyselectedqueueisfullatthepointof  
itsselection,anywritestothatqueuewillbeprevented.Datacannotbewritten  
intoafullqueue.  
STANDARD MODE OPERATION (PKT = LOW on Master Reset)  
WRITE QUEUE SELECTION AND WRITE OPERATION  
(STANDARDMODE)  
The IDT72V51236/72V51346/72V51256 multi-queue flow-control de-  
Refer to Figure 9, Write Queue Select, Write Operation and Full flag  
vicescanbeconfigureduptoamaximumof4queuesintowhichdatacanbe Operation,Figure10,WriteOperations&FirstWordFallThroughfortiming  
writtenviaacommonwriteportusingthedatainputs(Din),writeclock(WCLK) diagrams and Figure 11, Full Flag Timing in Expansion Mode for timing  
andwriteenable(WEN).Thequeuetobewrittenisselectedbytheaddress diagrams.  
present on the write address bus (WRADD) during a rising edge on WCLK  
TABLE 1 — WRITE ADDRESS BUS, WRADD[4:0]  
Operation WCLK WADEN FSTR  
WRADD[4:0]  
4 3 2  
Device Select  
(Compared to  
ID0,1,2)  
1 0  
Write Queue Address  
(2 bits = 4 Queues)  
Write Queue  
1
0
Select  
4 3 2  
1 0  
PAFn Flag Bus  
Device Select  
0
1
Device Select  
(Compared to  
ID0,1,2)  
X
X
5937 drw05  
18  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
READQUEUESELECTIONANDREADOPERATION(STANDARDMODE) queue(QF).Theinternalpipelineisalsoloadedatthistime(D”)withthelast  
The IDT72V51236/72V51346/72V51256 multi-queue flow-control de- wordfromtheprevious(old)queue(QP)aswellasthenextwordfromthenew  
vicescanbeconfigureduptoamaximumof4queueswhichdatacanberead queue(QF).Bothofthesewordswillfallthroughtotheoutputregister(provided  
viaacommonreadportusingthedataoutputs(Qout),readclock(RCLK)and theOEisasserted)consecutively(cyclesE”andF”respectively)following  
readenable(REN).Anoutputenable,OEcontrolpinisalsoprovidedtoallow theselectionofthenewqueueregardlessofthestateofREN,unlessthenew  
High-ImpedanceselectionoftheQoutdataoutputs.Themulti-queuedevice queue(QF)isempty.Ifthenewlyselectedqueueisempty,anyreadsfromthat  
read port operates in a mode similar to First Word Fall Through” on a queuewillbeprevented.Datacannotbereadfromanemptyqueue.Thelast  
SuperSyncIDTFIFO,butwiththeaddedfeatureofdataoutputpipelining(see wordinthedataoutputregister(fromthepreviousqueue),willremainonthe  
Figure 10, Write Operations & First Word Fall Through). The queue to be data bus,butthe outputvalidflag, OV willgoHIGH,toindicate thatthe data  
readisselectedbytheaddresspresentedonthereadaddressbus(RDADD) presentisnolongervalid.Thispipeliningeffectprovidestheuserwith100%  
duringarisingedgeonRCLKwhilereadaddressenable(RADEN)isHIGH. bus utilization,andbrings aboutthepossibilitythataNULLqueuemaybe  
ThestateofRENdoesnotimpactthequeueselection.Thequeueselection requiredwithinamulti-queuedevice.Nullqueueoperationisdiscussedinthe  
isrequires2RCLKcycles.Allsubsequentdatareadswillbefromthisqueue nextsection.RememberthatOEallowstheusertoplacethedataoutputbus  
untilanotherqueueisselected.  
(Qout)intoHigh-Impedanceandthedatacanbereadintotheoutputregister  
Standardmodeoperationisdefinedasindividualwordswillbereadfrom regardlessofOE.  
thedeviceasopposedtoPacketModewherecompletepacketsmayberead.  
RefertoTable2,forReadAddressBusarrangement.Also,refertoFigures  
Thereadportisdesignedsuchthat100%busutilizationcanbeobtained.This 12, 14, and 15 for read queue selection and read port operation timing  
means that data can be read out of the device on every RCLK rising edge diagrams.  
including the cycle that a new queue is being addressed.  
ChangingqueuesrequiresaminimumoftwoRCLKcyclesonthereadport PACKET MODE OPERATION (PKT = HIGH on Master Reset)  
(see Figure 12, Read Queue Select, Read Operation). RADEN goes high  
The Packet mode operation provides the capability where, user defined  
signalingachangeofqueue(clockcycleD”).TheaddressonRDADDatthat packetsorframescanbewrittentothedeviceasopposedtoStandardmode  
timedeterminesthenextqueue.Datapresentedduringthatcycle(D”)willbe whereindividualwordsarewritten.Forclarification,inPacketMode,apacket  
readatD(+tA),canbereadfromtheactive(old)queue(QP),providedREN canbewrittentothedevicewiththestartinglocationdesignatedasTransmit  
isactiveLOW.IfRENisHIGH(inactive)forthisclockcycle,datawillnotberead StartofPacket(TSOP)andtheendinglocationdesignatedasTransmitEnd  
from the previous queue. The next cycles rising edge (E), the read port of Packet (TEOP). In conjunction, a packet read from the device will be  
discreteemptyflagwillupdatetoshowtheemptystatusofthenewlyselected designatedasReceiveStartofPacket(RSOP)andaReceiveEndofPacket  
TABLE 2 — READ ADDRESS BUS, RDADD[5:0]  
Operation RCLK RADEN ESTR  
RDADD[5:0]  
5 4 3  
2
1 0  
Read Queue  
1
0
Device Select  
(Compared to  
ID0,1,2)  
Null-Q  
Read Queue Address  
Select  
Select Pin (2 bits = 4 Queues)  
5 4 3  
2
1 0  
Flag Bus Device  
Selection  
0
1
Device Select  
(Compared to  
ID0,1,2)  
X
X
X
5937 drw06  
19  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
(REOP).Theminimumsizeforapacketisfourwords(SOP,twowordsofdata aqueuechangerequestismade(B”).IfRENisHIGH(inactive)forthisclock  
andEOP).ThealmostemptyflagbusbecomesthePacketReady”PRflag cycle(I”),datawillnotbereadfromthepreviousqueue(QB).Inapplications  
buswhenthedeviceisconfiguredforpacketmode.Validpacketsareindicated wherethemulti-queueflow-controldeviceis connectedtoasharedbus,an  
when both PR and OV are asserted.  
output enable, OE control pin is also provided to allow High-Impedance  
selectionofthedataoutputs(Qout).WithreferencetoFigure17whenchanging  
WRITEQUEUESELECTIONANDWRITEOPERATION(PACKETMODE) queues, a packetmarker(SOPorEOP)shouldnotbe readoncycle (C”or  
Itisrequiredthatafullpacketbewrittentoaqueuebeforemovingtoadifferent I”). Readinga SOPorEOPshouldnotoccurduringthe cycles requiredfor  
queue.Thedevicerequirestwocyclestochangequeues.Packetmode,has aqueuechange.Itisalsorecommendedthataqueuechangeshouldnotoccur  
2restrictions:<1>Anextraword(orfillerword)isrequiredtobewrittenafter oncethereadingofthepackethascommenced.TheEOPmarkerofthepacket  
eachpacketonthecyclefollowingthequeuechangetoensuretheRSOPin priortoaqueuechangeshouldbereadonorbeforethequeuechange.Ifthe  
theoldqueueisnotreadoutonaqueuechangebecauseofthefirstwordfall EOPwordisreadbeforeaqueuechange,RENcanbepulledhightodisable  
through.<2>NoSOP/EOPis allowedtoread/writtenatcycle(C”orI”)the furtherreads.Whenthequeuechangeisinitiated,thefillerwordwritteninto  
nextcycleafteraqueuechange.Forclockfrequency(fs)of133MHzandbelow thecurrentqueueaftertheEOPwordwillfallthroughfollowedbyandthefirst  
seeApplicationNoteAN-398.Inthismode,thewriteportmaynotobtain100% word from the new queue.  
busutilization  
Refer to Figure 17, Reading in Packet Mode during a Queue Change as  
ChangingqueuesrequiresaminimumoftwoWCLKcyclesonthewriteport well as Figures 12, 14, and 15 for timing diagrams and Table 2, for Read  
(see Figure 16, Writing in Packet Mode during a Queue Change). WADEN Addressbusarrangement.  
goes highsignalingachangeofqueue(clockcycleBorH”).Theaddress  
Note,thealmostemptyflagbusbecomesthePacketReady”flagbuswhen  
on WRADD at the rising edge of WCLK determines the next queue. Data thedeviceisconfiguredforpacketmode.  
presented on Din during that cycle (B” or H”) can continue to be written to  
theactive(old)queue(QA orQB respectively),providedWENisLOW(active). PACKETREADYFLAG  
IfWENisHIGH(inactive)forthisclockcycle(H),datawillnotbewritteninto  
Themulti-queueflow-controldeviceprovidestheuserwithaPacketReady  
thepreviousqueue(QB).Thecyclefollowingarequestforqueuechange(C” feature. Duringa MasterResetthe logic1”(HIGH)onthe PKTinputsignal  
or I”) will require a filler word to be written to the device. This can be done (packetmodeselect),configuresthedeviceinpacketmode.ThePRdiscrete  
byclockingtheTEOPtwiceorbywritingafillerword.Inpacketmode,themulti- flag,providesapacketreadystatusoftheactivequeueselectedontheread  
queue is designed under the 2 restrictions listed previously. Note, an port.Apacketreadystatusisindividuallymaintainedonallqueues;however  
erroneousPacketReadyflagmayoccuriftheEOPorSOPmarkershowsup onlythequeueselectedonthereadporthasitspacketreadystatusindicated  
atthenextcycleafteraqueuechange.TopreventanerroneousPacketReady onthePRoutputflag.Apacketisavailableontheoutputforreadingwhenboth  
flagfromoccurringafillerwordshouldbewrittenintotheoldqueueatthelast PRandOVareassertedLOW.Iflessthanafullpacketisavailable,thePRflag  
clockcycleofwriting.ItisimportanttoknowthatnoSOPorEOPmaybewritten willbeHIGH(packetnotready).Inpacketmode,nowordscanbereadfrom  
intothedeviceduringthiscycle(C”orI”).Thewriteportdiscretefullflagwill aqueueuntilacompletepackethasbeenwrittenintothatqueue,regardless  
updatetoshowthefullstatusofthenewlyselectedqueue(QB)atthislastcycles ofREN.  
rising edge (C or I”). Data values presented on the data input bus (Din),  
WhenpacketmodeisselectedtheProgrammableAlmostEmptybus,PAEn,  
canbewrittenintothenewlyselectedqueue(QX)ontherisingedgeofWCLK becomesthePacketReadybus,PRn.WhenconfiguredinDirectBus(FM=  
on the second cycle (D” or J) following a request for change of queue, LOWduringa masterreset),the PRnbus provides packetreadystatus in8  
providedWENisLOW(active)andthenewqueueisnotfull.Ifaselectedqueue queue increments. The PRn bus supports either Polled or Direct modes of  
isfull(FFisLOW),thenwritestothatqueuewillbeprevented.Note,datacannot operation.ThePRnmodeofoperationisconfiguredthroughtheFlagMode  
be writtenintoa fullqueue.  
(FM) bit during a Master Reset.  
Refer to Figure 16, Writing in Packet Mode during a Queue Change and  
Whenthemulti-queueisconfiguredforpacketmodeoperation,thedevice  
Figure18,DataInput(Transit)packetmodeofOperationfortimingdiagrams. mustalsobeconfiguredfor36bitwritedatabusand36bitreaddatabus.The  
twomostsignificantbitsofthe36-bitdatabusareusedaspacketmarkers.  
READQUEUESELECTIONANDREADOPERATION(PACKETMODE) OnthewriteportthesearebitsD34(TransmitStartofPacket,)D35(Transmit  
InPacketModeitisrequiredthatafullpacketisreadfromaqueuebefore EndofPacket)andonthereadportQ34,Q35.Allfourbitsaremonitoredby  
movingtoadifferentqueue.Thedevicerequirestwocyclestochangequeues. thepacketcontrollogicas datais writtenintoandreadoutfromthequeues.  
In Packet Mode, there are 2 restrictions <1> An extra word (or filler word) Thepacketreadystatusforindividualqueuesisthendeterminedbythepacket  
shouldhavebeeninsertedintothedatastreamaftereachpackettoinsurethe ready logic.  
RSOPintheoldqueueisnotreadoutonaqueuechangebecauseofthefirst  
OnthewriteportD34isusedtomark”thefirstwordbeingwrittenintothe  
word fall through and this word should be discarded. <2> No EOP/SOP is selectedqueueastheTransmitStartofPacket,TSOP.Tofurtherclarify,when  
allowed to be read/written at cycle (C” or I”) the next cycle after a queue the userrequires a wordbeingwrittentobe markedas the startofa packet,  
change).Forclockfrequencyof133MhzandbelowseeApplicationNoteAN- the TSOPinput(D34)mustbe HIGHforthe same WCLKrisingedge as the  
398. Inthis mode, the readportmaynotobtain100%bus utilization  
ChangingqueuesrequiresaminimumoftwoRCLKcyclesonthereadport dataitwas writteninuntilthewordis readoutofthequeueviathereadport.  
(seeFigure17,ReadinginPacketModeduringaQueueChange).RADEN OnthewriteportD35isusedtomark”thelastwordofthepacketcurrently  
wordthatis written. The TSOPmarkeris storedinthe queue alongwiththe  
goes high signaling a change of queue (clock cycle B” or I”). The address beingwrittenintotheselectedqueueastheTransmitEndofPacket”TEOP.  
onRDADDatthe risingedge ofRCLKdetermines the queue.As illustrated When the user requires a word being written to be marked as the end of a  
inFigure 17duringcycle (B”),data canbe readfromthe active (old)queue packet,theTEOPinputmustbeHIGHforthesameWCLKrisingedgeasthe  
(QA)), provided both REN and OE are LOW (active) simultaneously with wordthatiswrittenin.TheTEOPmarkerisstoredinthequeuealongwiththe  
changingqueues.REOPforpacketlocatedinqueue(QA)mustbereadbefore dataitwas writteninuntilthewordis readoutofthequeueviathereadport.  
20  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
TABLE 5 — PACKET MODE VALID BYTE  
BYTE D  
BYTE C  
BYTE B  
BYTE A  
TMOD1 (D33)  
RMOD1 (Q33)  
TMOD2 (D32)  
RMOD2 (Q32)  
VALID BYTES  
0
0
1
1
0
1
0
1
A, B, C, D  
A
A, B  
A, B, C  
5937 drw07  
NOTE:  
Packet Mode is only available when the Input Port and Output Port are 36 bits wide.  
Thepacketreadylogicmonitorsallstartandendofpacketmarkersbothas thattheendofpacketisafixed(known)numberofreadsawayfromtheend  
they enter respective queues via the write port and as they exit queues via of packet. This is a useful feature when due to latencies within the system,  
the readport. The multi-queue internallogicincrements anddecrements a monitoringtheREOPmarkeralonedoesnotpreventoverreading”ofthedata  
packet counter, which is provided for each queue. The functionality of the fromthequeueselected.Forexample,anAEOPmarkerset4writesbefore  
packetreadylogicprovidesstatusastowhetheratleastonefullpacketofdata the TEOP marker provides the device connected to the read port with and  
isavailablewithintheselectedqueue.Apartialpacketinaqueueisregarded almostendofpacket”indication4cyclesbeforetheendofpacket.  
asapacketnotreadyandPR(activeLOW)willbeHIGH.InPacketmode,no TheAEOPcanbesetanynumberofwordsbeforetheendofpacketdetermined  
wordscanbereadfromaqueueuntilatleastonecompletepackethasbeen byuserrequirements orlatencies involvedinthe system.  
writtenintothequeue,regardlessofREN.Forexample,ifaTSOPhasbeen  
SeeFigure17, ReadinginPacketModeduringaQueueChange,Figure  
writtenandsomenumberofwordslateraTEOPiswrittenafullpacketofdata 18, Data Input (Transmit) Packet Mode of Operation and Figure 19, Data  
is deemed to be available, and the PR flag and OV will go active LOW. Output (Receive) Packet Mode of Operation.  
Consequentlyifreadsbeginfromaqueuethathasonlyonecompletepacket  
andtheRSOPisdetectedontheoutputportasdataisbeingreadout,PRwill PACKETMODEMODULOOPERATION  
goinactiveHIGH.OVwillremainLOWindicatingthereisstillvaliddatabeing  
The internal packet ready control logic performs no operation on these  
readoutofthatqueueuntiltheREOPisread.Theusermayproceedwiththe modulobits,theyareonlyinformationalbitsthatarepassedthroughwiththe  
readingoperationuntilthe currentpackethas beenreadoutandnofurther respectivedatabyte(s).  
completepacketsareavailable.Ifduringthattimeanothercompletepackethas  
Whenutilizingthemulti-queueflow-controldeviceinpacketmode,theuser  
beenwrittenintothequeueandthePRflagwillagaingoneactive,thenreads mayalsowanttoconsidertheimplementationofModulo”operationorvalid  
fromthenewpacketmayfollowafterthecurrentpackethasbeencompletely byte marking. Modulo operation may be useful when the packets being  
readout.  
transferredthroughaqueueareinaspecificbytearrangementeventhough  
Thepacketcountersthereforelookforstartofpacketmarkersfollowedby thedatabuswidthis36bits.InModulooperationtheusercanconcatenatebytes  
endofpacketmarkers andregarddata inbetweenthe TSOPandTEOPas toformaspecificdatastringthroughthemulti-queuedevice.Apossiblescenario  
afullpacketofdata.Thepacketmonitoringhasnolimitationastohowmany is where a limited number of bytes are extracted from the packet for either  
packetsarewrittenintoaqueue,theonlyconstraintisthedepthofthequeue. analysisorfilteredforsecurityprotection.Thiswillonlyoccurwhenthefirst36  
Note,thereisaminimumallowablepacketsizeoffourwords,inclusiveofthe bitwordofapacketiswritteninandthelast36bitwordofpacketiswrittenin.  
TSOP marker and TEOP marker.  
The packet logic does expect a TSOP marker to be followed by a TEOP specificdatawithintheQueue.  
marker. Onthewriteportdatainputbits,D32(transmitmodulobit2,TMOD2)and  
The modulo operation is a means by which the user can mark and identify  
If a second TSOP marker is written after a first, it is ignored and the logic D33(transmitmodulobit1,TMOD1)canbeusedasdatamarkers.Anexample  
regardsdatabetweenthefirstTSOPandthefirstsubsequentTEOPasthefull of this could be to use D32 and D33 to code which bytes of a word are part  
packet. The same is true for TEOP; a second consecutive TEOP mark is of the packet that is also being marked as the Start of Marker” or End of  
ignored.Onthereadsidetheusershouldregardapacketasbeingbetween Marker.Converselyonthereadportwhenreadingoutthesemarkedwords,  
the first RSOP and the first subsequent REOP and disregard consecutive dataoutputsQ32(receivemodulobit2,RMOD2)andQ33(receivemodulo  
RSOP markers and/or REOP markers. This is why a TEOP may be written bit1,RMOD1)willpassonthebytevalidityinformationforthatword.Referto  
twice,usingthe secondTEOPas the fillerword.  
Table5foroneexampleofhowthemodulobitsmaybesetupandused.See  
Asanexample,theusermayalsowishtoimplementtheuseofanAlmost Figure 18, Data Input (Transmit) Packet Mode of OperationandFigure 19,  
EndofPacket(AEOP)marker.Forexample,theAEOPcanbeassignedto Data Output (Receive) Packet Mode of Operation.  
datainputbitD33.ThepurposeofthisAEOPmarkeristoprovideanindicator  
21  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
NULL QUEUE OPERATION (OF THE READ PORT)  
address.Whenlogicallyexpandedwithmultipleparts,eachdeviceisstatically  
Pipeliningofdatatotheoutputportenablesthedevicetoprovide100%bus setupwitha unique chipIDcode onthe IDpins, ID0, ID1, andID2. Adevice  
utilizationinstandardmode.Datacanbereadoutofthemulti-queueflow-control isselectedwhenthe3MostSignificantbitsoftheWRADDaddressbusmatches  
device on every RCLK cycle regardless of queue switches or other opera- a 3-bit ID code. The maximum logical expansion is 32 queues (4 queues x  
tions.Thedevicearchitectureissuchthatthepipelineisconstantlyfilledwith 8devices)oraminimumof8queues(1queueperdevicex8devices),each  
thenextwordsinaselectedqueuetobereadout,againproviding100%bus ofthemaximumsizeoftheindividualmemorydevice.  
utilization.Thistypeofarchitecturedoesassumethattheuserisconstantly  
Note:TheWRADDbusisalsousedinconjunctionwithFSTR(almostfull  
switchingqueuessuchthatduringaqueueswitch,thelastdatawordrequired flag bus strobe), to address the almost full flag bus during direct mode of  
fromthepreviousqueuewillfallthroughthepipelinetotheoutput.  
Note,thatifreadsceaseattheemptyboundaryofaqueue,thenthelastword  
willautomaticallyflowthroughthepipelinetotheoutput.  
operation.  
RefertoTable1,forWriteAddressbusarrangement.Also,refertoFigure  
11, Full Flag Timing Expansion Mode, Figure 13, Output Valid Flag Timing  
The Null-Q is selected via read port address space RDADD[2]. The (In Expansion Mode), and Figure 30, Multi-Queue Expansion Diagram, for  
RDADD[5:0]busshouldbeaddressedwithxxx1xx,thisaddressistheNull-Q. timingdiagrams.  
A null queue can be selected when no further reads are required from a  
previouslyselectedqueue.Changingtoanullqueuewillcontinuetopropagate BUS MATCHING OPERATION  
data in the pipeline to the previous queues output. The Null Q can remain  
selecteduntiladatabecomesavailableinanotherqueueforreading.TheNull- Duringamasterresetofthemulti-queuethestateofthethreesetuppins,BM  
Qcanbe utilizedineitherstandardorpacketmode. (BusMatching),IW(InputWidth)andOW(OutputWidth)determinetheinputand  
BusMatchingoperationbetweentheinputportandoutputportisavailable.  
Note:Iftheuserswitchesthereadporttothenullqueue,thisqueueisseen outputportbuswidthsaspertheselectionsshowninTable3,BusMatching  
asandtreatedasanemptyqueue,thereforeafterswitchingtothenullqueue Set-up.9bitbytes,18bitwordsand36bitlongwordscanbewrittenintoand  
thelastwordfromthepreviousqueuewillremainintheoutputregisterandthe read from the queues provided that at least one of the ports is setup for x36  
OV flagwillgoHIGH,indicatingdata is notvalid.  
operation.Whenwritingtoorreadingfromthemulti-queueinabusmatching  
TheNullqueueoperationonlyhassignificancetothereadportofthemulti- mode, the device orders data in a Little Endian” format. See Figure 3, Bus  
queue, it is a means to force data through the pipeline to the output. Null Q MatchingByteArrangementfordetails.  
selectionandoperationhasnomeaningonthewriteportofthedevice.Also,  
refer to Figure 20, Read Operation and Null Queue Select for diagram.  
TheFullflagandAlmostFullflagoperationis always basedonwrites and  
readsofdatawidthsdeterminedbythewriteportwidth.Forexample,iftheinput  
portisx36andtheoutputportisx9,thenfourdatareadsfromafullqueuewill  
berequiredtocausethefullflagtogoHIGH(queuenotfull).Conversely,the  
PAFn FLAG BUS OPERATION  
TheIDT72V51236/72V51246/72V51256multi-queueflow-controldevices OutputValidflagandAlmostEmptyflagoperationsarealwaysbasedonwrites  
can be configured for up to 4 queues, each queue having its own almost full andreadsofdatawidthsdeterminedbythereadport.Forexample,iftheinput  
status.Anactivequeuehasitsflagstatusoutputtothediscreteflags,FFandPAF, portis x18andthe outputportis x36, twowrite operations willbe requiredto  
onthewriteport.Queuesthatarenotselectedforawriteoperationcanhave causetheoutputvalidflagofanemptyqueuetogoLOW,outputvalid(queue  
theirPAFstatusmonitoredviathePAFnbus.ThePAFnflagbusis4bitswide, isnotempty).  
so that all 4 queues can have their status output to the bus. When a single  
Note,thattheinputportservesallqueueswithinadevice,asdoestheoutput  
multi-queuedeviceisusedanywherefrom1to4queuesmaybeset-upwithin port,thereforetheinputbuswidthtoallqueuesisequal(determinedbytheinput  
thepart,eachqueuehavingitsowndedicatedPAFflagoutputonthePAFnbus. portsize)andtheoutputbuswidthfromallqueuesisequal(determinedbythe  
Queues 1 through 4 have their PAF status to PAF[0] through PAF[3] outputportsize).  
respectively. If less than 4 queues are used then only the associated PAFn  
outputswillberequired,unusedPAFnoutputswillbedontcareoutputs.When  
TABLE 3 BUS-MATCHING SET-UP  
devices are connected in expansion mode the PAFn flag bus can also be  
BM  
IW  
OW  
Write Port Read Port  
expandedbeyond4bits toproduce a widerPAFnbus thatencompasses all  
queues.  
0
1
1
1
1
X
0
0
1
1
X
0
1
0
1
x36  
x36  
x36  
x18  
x9  
x36  
x18  
x9  
Alternatively,the4bitPAFnflagbusofeachdevicecanbeconnectedtogether  
toformasingle4bitbus,i.e.PAF[0]ofdevice1willconnecttoPAF[0]ofdevice  
2etc. Whenconnectingdevices inthis mannerthe PAFncanonlybe driven  
byasingledeviceatanytime,(thePAFnoutputsofallotherdevicesmustbe  
inhighimpedancestate).Therearetwomethodsbywhichtheusercanselect  
whichdevicehas controlofthebus,theseareDirect”(Addressed)modeor  
x36  
x36  
Polled”(Looped)mode,determinedbythestateoftheFM(flagMode)input FULL FLAG OPERATION  
duringaMasterReset.  
Themulti-queueflow-controldeviceprovidesasingleFullFlagoutput,FF.  
TheFFflagoutputprovidesafullstatusofthequeuecurrentlyselectedonthe  
writeportforwriteoperations.Internallythemulti-queueflow-controldevice  
EXPANDING UP TO 32 QUEUES OR PROVIDING DEEPER QUEUES  
Expansion can take place using either the standard mode or the packet monitorsandmaintainsastatusofthefullconditionofallqueueswithinit,however  
mode.Inthe4queuemulti-queuedevice,theWRADDaddressbusis5bits onlythequeuethatisselectedforwriteoperationshasitsfullstatusoutputtothe  
wide. The 2 Least Significant bits (LSbs) are used to address one of the 4 FF flag.This dedicatedflagis oftenreferredtoas theactivequeuefullflag.  
availablequeueswithinasinglemulti-queuedevice.The3MostSignificantbits  
Whenqueueswitchesarebeingmadeonthewriteport,theFFflagoutput  
(MSbs)are usedwhena device is connectedinexpansionmode withupto willswitchtothenewqueueandprovidetheuserwiththenewqueuestatus,  
8 devices connected in width expansion, each device having its own 3-bit onthecycleafteranewqueueselectionismade.Theuserthenhasafullstatus  
22  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
forthenewqueueonecycleaheadoftheWCLKrisingedgethatdatacanbe  
Thenatureofthefirstwordfallthroughoperationmeansthatwhenthelast  
writtenintothenewqueue.Thatis,anewqueuecanbeselectedonthewrite datawordisreadfromaselectedqueue,theOVflagwillgoHIGHonthenext  
portviatheWRADDbus,WADENenableandarisingedgeofWCLK.Onthe enabled read, that is, on the next rising edge of RCLK while REN is LOW.  
nextrisingedgeofWCLK,theFFflagoutputwillshowthefullstatusofthenewly  
Whenqueueswitchesarebeingmadeonthereadport,theOVflagwillswitch  
selected queue. On the second rising edge of WCLK following the queue toshowstatusofthenewqueueinlinewiththedataoutputfromthenewqueue.  
selection,datacanbewrittenintothenewlyselectedqueueprovidedthatdata Whenaqueueselectionismadethefirstdatafromthatqueuewillappearon  
andenablesetup&holdtimesaremet.  
theQoutdataoutputs2RCLKcycleslater,theOVwillchangestatetoindicate  
Note,theFF flagwillprovidestatus ofanewlyselectedqueueoneWCLK validityofthedatafromthenewlyselectedqueueonthis2nd RCLKcyclealso.  
cycleafterqueueselection,whichisonecyclebeforedatacanbewrittentothat Thepreviouscycleswillcontinuetooutputdatafromthepreviousqueueand  
queue.Thispreventstheuserfromwritingdatatoaqueuethatisfull,(assuming theOVflagwillindicatethestatusofthoseoutputs.Again,theOVflagalways  
thataqueueswitchhas beenmadetoaqueuethatis actuallyfull).  
indicatesstatusforthedatacurrentlypresentontheoutputregister.  
TheFFflagissynchronoustotheWCLKandalltransitionsoftheFFflagoccur  
TheOVflagissynchronoustotheRCLKandalltransitionsoftheOVflagoccur  
basedonarisingedgeofWCLK.Internallythemulti-queuedevicemonitorsand basedonarisingedgeofRCLK.Internallythemulti-queuedevicemonitorsand  
keepsarecordofthefullstatusforallqueues.Itispossiblethatthestatusofa keepsarecordoftheoutputvalid(empty)statusforallqueues.Itispossiblethat  
FFflagmaybechanginginternallyeventhoughthatflagisnottheactivequeue thestatusofanOVflagmaybechanginginternallyeventhoughthatrespective  
flag (selected on the write port). A queue selected on the read port may flagisnottheactivequeueflag(selectedonthereadport).Aqueueselected  
experienceachangeofitsinternalfullflagstatusbasedonreadoperations. onthewriteportmayexperienceachangeofitsinternalOVflagstatusbased  
SeeFigure9,WriteQueueSelect,WriteOperationandFullFlagOperation on write operations, that is, data may be written into that queue causing it to  
andFigure11, FullFlagTiminginExpansionModefortiminginformation.  
becomenotempty.  
SeeFigure12,ReadQueueSelect,ReadOperationandFigure13,Output  
ValidFlagTimingfordetailsofthetiming.  
EXPANSION MODE - FULL FLAG OPERATION  
Whenmulti-queuedevicesareconnectedinExpansionmodetheFFflags  
of all devices should be connected together, such that a system controller EXPANSION MODE – OUTPUT VALID FLAG OPERATION  
monitoring and managing the multi-queue devices write port only looks at a  
Whenmulti-queuedevicesareconnectedinExpansionmode,theOVflags  
singleFFflag(asopposedtoadiscreteFFflagforeachdevice).ThisFFflag of all devices should be connected together, such that a system controller  
isonlypertinenttothequeuebeingselectedforwriteoperationsatthattime. monitoring and managing the multi-queue devices read port only looks at a  
Remember,thatwheninexpansionmodeonlyonemulti-queuedevicecanbe singleOVflag(asopposedtoadiscreteOVflagforeachdevice).ThisOVflag  
writtentoatanymomentintime,thustheFFflagprovidesstatusoftheactive is onlypertinenttothequeuebeingselectedforreadoperations atthattime.  
queue on the write port.  
Remember,thatwheninexpansionmodeonlyonemulti-queuedevicecanbe  
ThisconnectionofflagoutputstocreateasingleflagrequiresthattheFFflag readfromatanymomentintime,thustheOVflagprovidesstatusoftheactive  
outputhaveaHigh-Impedancecapability,suchthatwhenaqueueselectionis queue on the read port.  
madeonlyasingledevicedrivestheFFflagbusandallotherFFflagoutputs  
ThisconnectionofflagoutputstocreateasingleflagrequiresthattheOVflag  
connectedtotheFFflagbusareplacedintoHigh-Impedance.Theuserdoes outputhaveaHigh-Impedancecapability,suchthatwhenaqueueselectionis  
nothavetoselectthisHigh-Impedancestate,agivenmulti-queueflow-control madeonlyasingledevicedrivestheOVflagbusandallotherOVflagoutputs  
devicewillautomaticallyplaceitsFFflagoutputintoHigh-Impedancewhen connectedtotheOVflagbusareplacedintoHigh-Impedance.Theuserdoes  
noneofitsqueuesareselectedforwriteoperations.  
nothavetoselectthisHigh-Impedancestate,agivenmulti-queueflow-control  
Whenqueueswithinasingledeviceareselectedforwriteoperations,theFF devicewillautomaticallyplaceitsOVflagoutputintoHigh-Impedancewhen  
flagoutputofthatdevicewillmaintaincontroloftheFFflagbus.ItsFFflagwill noneofits queues areselectedforreadoperations.  
simplyupdatebetweenqueueswitchestoshowtherespectivequeuefullstatus.  
Whenqueueswithinasingledeviceareselectedforreadoperations,theOV  
Themulti-queuedeviceplacesitsFFflagoutputintoHigh-Impedancebased flagoutputofthatdevicewillmaintaincontroloftheOVflagbus.ItsOVflagwill  
onthe3bitIDcodefoundinthe3mostsignificantbitsofthewritequeueaddress simplyupdatebetweenqueueswitchestoshowtherespectivequeueoutput  
bus,WRADD.Ifthe3mostsignificantbitsofWRADDmatchthe3bitIDcodesetup validstatus.  
onthestaticinputs,ID0,ID1andID2thentheFFflagoutputoftherespective  
Themulti-queuedeviceplacesitsOVflagoutputintoHigh-Impedancebased  
devicewillbeinaLow-Impedancestate.Iftheydonotmatch,thentheFFflag onthe3bitIDcodefoundinthe3mostsignificantbitsofthereadqueueaddress  
outputoftherespectivedevicewillbeinaHigh-Impedancestate.SeeFigure bus,RDADD.Ifthe3mostsignificantbitsofRDADDmatchthe3bitIDcodesetup  
11,FullFlagTiminginExpansionModefordetailsofflagoperation,including onthestaticinputs,ID0,ID1andID2thentheOVflagoutputoftherespective  
when more than one device is connected in expansion.  
devicewillbeinaLow-Impedancestate.Iftheydonotmatch,thentheOVflag  
outputoftherespectivedevicewillbeinaHigh-Impedancestate.SeeFigure  
13,OutputValidFlagTimingfordetailsofflagoperation,includingwhenmore  
OUTPUTVALIDFLAGOPERATION  
The multi-queue flow-control device provides a single Output Valid flag thanone device is connectedinexpansion.  
output,OV.TheOVprovidesanemptystatusordataoutputvalidstatusforthe  
datawordcurrentlyavailableontheoutputregisterofthereadport.Therising ALMOST FULL FLAG  
edgeofanRCLKcyclethatplacesnewdataontotheoutputregisteroftheread  
As previously mentioned the multi-queue flow-control device provides a  
port, also updates the OV flag to show whether or not that new data word is singleProgrammableAlmostFullflagoutput,PAF.ThePAFflagoutputprovides  
actuallyvalid.Internallythemulti-queueflow-controlmonitorsandmaintainsa astatusofthealmostfullconditionfortheactivequeuecurrentlyselectedonthe  
statusoftheemptyconditionofallqueueswithinit,howeveronlythequeuethat writeportforwriteoperations.Internallythemulti-queueflow-controldevice  
isselectedforreadoperationshasitsoutputvalid(empty)statusoutputtothe monitorsandmaintainsastatusofthealmostfullconditionofallqueueswithin  
OV flag,givingavalidstatus forthewordbeingreadatthattime.  
it,howeveronlythequeuethatisselectedforwriteoperationshasitsfullstatus  
23  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
outputtothePAFflag.Thisdedicatedflagisoftenreferredtoastheactivequeue selectedonthereadportforreadoperations.Internallythemulti-queueflow-  
almostfullflag.ThepositionofthePAFflagboundarywithinaqueuecanbe controlmonitorsandmaintainsastatusofthealmostemptyconditionofallqueues  
atanypointwithinthatqueuesdepth.Thislocationcanbeuserprogrammed withinit,howeveronlythequeuethatisselectedforreadoperationshasitsempty  
viatheserialportoroneofthedefaultvalues(8or128)canbeselectedifthe statusoutputtothePAEflag.Thisdedicatedflagisoftenreferredtoastheactive  
userhasperformeddefaultprogramming.  
queuealmostemptyflag.ThepositionofthePAEflagboundarywithinaqueue  
Asmentioned,everyqueuewithinamulti-queuedevicehasitsownalmost can be at any point within that queues depth. This location can be user  
fullstatus,whenaqueueisselectedonthewriteport,thisstatusisoutputviathe programmedvia the serialportorone ofthe defaultvalues (8or128)canbe  
PAFflag.ThePAFflagvalueforeachqueueisprogrammedduringmulti-queue selectediftheuserhasperformeddefaultprogramming.  
device programming (along with the number of queues, queue depths and  
Asmentioned,everyqueuewithinamulti-queuedevicehasitsownalmost  
almostemptyvalues).ThePAFoffsetvalue,m,forarespectivequeuecanbe emptystatus,whenaqueueisselectedonthereadport,thisstatusisoutputvia  
programmedtobeanywherebetween0’andD’,whereDisthetotalmemory thePAEflag.ThePAEflagvalueforeachqueueisprogrammedduringmulti-  
depthforthatqueue.ThePAFvalueofdifferentqueueswithinthesamedevice queuedeviceprogramming(alongwiththenumberofqueues,queuedepths  
canbedifferentvalues.  
andalmostfullvalues).ThePAEoffsetvalue,n,forarespectivequeuecanbe  
Whenqueueswitchesarebeingmadeonthewriteport,thePAFflagoutput programmedtobeanywherebetween0’andD’,whereDisthetotalmemory  
willswitchtothenewqueueandprovidetheuserwiththenewqueuestatus, depthforthatqueue.ThePAEvalueofdifferentqueueswithinthesamedevice  
onthesecondcycleafteranewqueueselectionismade,onthesameWCLK canbedifferentvalues.  
cyclethatdatacanactuallybewrittentothenewqueue.Thatis,anewqueue  
Whenqueueswitchesarebeingmadeonthereadport,thePAEflagoutput  
canbeselectedonthewriteportviatheWRADDbus,WADENenableanda willswitchtothenewqueueandprovidetheuserwiththenewqueuestatus,  
risingedgeofWCLK.OnthesecondrisingedgeofWCLKfollowingaqueue onthesecondcycleafteranewqueueselectionismade,onthesameRCLK  
selection,thePAFflagoutputwillshowthefullstatusofthenewlyselectedqueue. cyclethatdataactuallyfallsthroughtotheoutputregisterfromthenewqueue.  
The PAF is flagoutputis doubleregisterbuffered,sowhenawriteoperation That is, a new queue can be selected on the read port via the RDADD bus,  
occursatthealmostfullboundarycausingtheselectedqueuestatustogoalmost RADENenableandarisingedgeofRCLK.OnthesecondrisingedgeofRCLK  
fullthePAFwillgoLOW2WCLKcyclesafterthewrite.Thesameistruewhen followingaqueueselection,thedatawordfromthenewqueuewillbeavailable  
a read occurs, there will be a 2 WCLK cycle delay after the read operation. attheoutputregisterandthePAEflagoutputwillshowtheemptystatusofthe  
So the PAF flag delays are:  
newlyselectedqueue.ThePAEis flagoutputis doubleregisterbuffered,so  
froma write operationtoPAF flagLOWis 2WCLK+tWAF  
when a read operation occurs at the almost empty boundary causing the  
ThedelayfromareadoperationtoPAFflagHIGHistSKEW2+WCLK+tWAF selectedqueuestatustogoalmostemptythePAEwillgoLOW2RCLKcycles  
Note, if tSKEW is violated there will be one added WCLK cycle delay.  
after the read. The same is true when a write occurs, there will be a 2 RCLK  
ThePAFflagissynchronoustotheWCLKandalltransitionsofthePAFflag cycledelayafterthewriteoperation.  
occur based on a rising edge of WCLK. Internally the multi-queue device  
monitorsandkeepsarecordofthealmostfullstatusforallqueues.Itispossible  
thatthestatusofaPAFflagmaybechanginginternallyeventhoughthatflagis  
nottheactivequeueflag(selectedonthewriteport).Aqueueselectedonthe  
readportmayexperienceachangeofitsinternalalmostfullflagstatusbased  
So the PAE flag delays are:  
from a read operation toPAE flag LOW is 2 RCLK + tRAE  
ThedelayfromawriteoperationtoPAEflagHIGHistSKEW2+RCLK+tRAE  
Note, if tSKEW is violated there will be one added RCLK cycle delay.  
ThePAEflagissynchronoustotheRCLKandalltransitionsofthePAEflag  
on read operations. The multi-queue flow-control device also provides a occur based on a rising edge of RCLK. Internally the multi-queue device  
duplicateofthePAFflagonthePAF[3:0]flagbus,thiswillbediscussedindetail monitorsandkeepsarecordofthealmostemptystatusforallqueues.Itispossible  
inalatersectionofthedatasheet.  
SeeFigures 22and23forAlmostFullflagtimingandqueueswitching.  
thatthestatusofaPAEflagmaybechanginginternallyeventhoughthatflagis  
nottheactivequeueflag(selectedonthereadport).Aqueueselectedonthe  
writeportmayexperienceachangeofitsinternalalmostemptyflagstatusbased  
on write operations. The multi-queue flow-control device also provides a  
ALMOSTEMPTYFLAG  
As previously mentioned the multi-queue flow-control device provides a duplicateofthePAEflagonthePAE[3:0]flagbus,thiswillbediscussedindetail  
single Programmable Almost Empty flag output, PAE. The PAE flag output inalatersectionofthedatasheet.  
providesastatusofthealmostemptyconditionfortheactivequeuecurrently  
SeeFigures24and25forAlmostEmptyflagtimingandqueueswitching.  
24  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
TABLE 4 — FLAG OPERATION BOUNDARIES & TIMING  
Full Flag, FF Boundary  
FF Boundary Condition  
Output Valid, OV Flag Boundary  
I/O Set-Up  
In36 to out36  
I/O Set-Up  
OV Boundary Condition  
In36 to out36 (Almost Empty Mode)  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
OV Goes LOW after 1st Write  
(seenote1belowfortiming)  
FF Goes LOW after D+1 Writes  
(Bothportsselectedforsamequeue  
(seenotebelowfortiming)  
when the 1st Word is written in)  
In36 to out36  
(Writeportonlyselectedforqueue  
when the 1st Word is written in)  
FF Goes LOW after D Writes  
(seenotebelowfortiming)  
In36toout36(PacketMode)  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
OV Goes LOW after 1st Write  
(seenote2belowfortiming)  
In36 to out18  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
FF Goes LOW after D Writes  
(seenotebelowfortiming)  
In36 to out18  
OV Goes LOW after 1st Write  
(seenote1belowfortiming)  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
In36 to out18  
FF Goes LOW after D Writes  
In36 to out9  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
OV Goes LOW after 1st Write  
(Writeportonlyselectedforqueue  
(seenotebelowfortiming)  
(seenote1belowfortiming)  
when the 1st Word is written in)  
In36 to out9  
FF Goes LOW after D Writes  
(seenotebelowfortiming)  
In18 to out36  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
OV Goes LOW after 1st Write  
(seenote1belowfortiming)  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
In36 to out9  
FF Goes LOW after D Writes  
(seenotebelowfortiming)  
In9 to out36  
OV Goes LOW after 1st Write  
(seenote1belowfortiming)  
(Writeportonlyselectedforqueue  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
when the 1st Word is written in)  
In18 to out36  
FF Goes LOW after ([D+1] x 2) Writes  
(seenotebelowfortiming)  
NOTE:  
1. OV Timing  
Assertion:  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
In18 to out36  
(Writeportonlyselectedforqueue  
when the 1st Word is written in)  
FF Goes LOW after (D x 2) Writes  
Write to OV LOW: tSKEW1 + RCLK + tROV  
If tSKEW1 is violated there may be 1 added clock: tSKEW1 + 2 RCLK + tROV  
De-assertion:  
(seenotebelowfortiming)  
Read Operation to OV HIGH: tROV  
In9 to out36  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
FF Goes LOW after ([D+1] x 4) Writes  
(seenotebelowfortiming)  
2. OV Timing when in Packet Mode (36 in to 36 out only)  
Assertion:  
Write to OV LOW: tSKEW4 + RCLK + tROV  
If tSKEW4 is violated there may be 1 added clock: tSKEW4 + 2 RCLK + tROV  
De-assertion:  
In9 to out36  
(Writeportonlyselectedforqueue  
when the 1st Word is written in)  
FF Goes LOW after (D x 4) Writes  
(seenotebelowfortiming)  
Read Operation to OV HIGH: tROV  
NOTE:  
D = Queue Depth  
FF Timing  
Assertion:  
Write Operation to FF LOW: tWFF  
De-assertion:  
Read to FF HIGH: tSKEW1 + tWFF  
If tSKEW1 is violated there may be 1 added clock: tSKEW1+WCLK +tWFF  
Programmable Almost Full Flag, PAF & PAFn Bus Boundary  
I/O Set-Up  
PAF & PAFn Boundary  
in36 to out36  
PAF/PAFn Goes LOW after  
(Bothportsselectedforsamequeuewhenthe1st D+1-mWrites  
Wordiswritteninuntiltheboundaryisreached) (seenotebelowfortiming)  
in36 to out36  
PAF/PAFn Goes LOW after  
NOTE:  
D = Queue Depth  
m = Almost Full Offset value.  
(Writeportonlyselectedforsamequeuewhenthe D-mWrites  
1st Wordis writteninuntiltheboundaryis reached) (seenotebelowfortiming)  
Default values: if DF is LOW at Master Reset then m = 8  
if DF is HIGH at Master Reset then m= 128  
PAF Timing  
in36 to out18  
in36 to out9  
in18 to out36  
PAF/PAFn Goes LOW after  
D-mWrites(seebelowfortiming)  
PAF/PAFn Goes LOW after  
D-mWrites(seebelowfortiming)  
Assertion:  
Write Operation to PAF LOW: 2 WCLK + tWAF  
De-assertion: Read to PAF HIGH: tSKEW2 + WCLK + tWAF  
If tSKEW2 is violated there may be 1 added clock: tSKEW2 + 2 WCLK + tWAF  
PAFn Timing  
PAF/PAFn Goes LOW after  
([D+1-m] x 2) Writes  
(seenotebelowfortiming)  
Assertion:  
Write Operation to PAFn LOW: 2 WCLK* + tPAF  
De-assertion: Read to PAFn HIGH: tSKEW3 + WCLK* + tPAF  
If tSKEW3 is violated there may be 1 added clock: tSKEW3 + 2 WCLK* + tPAF  
* If a queue switch is occurring on the write port at the point of flag assertion or de-assertion  
there may be one additional WCLK clock cycle delay.  
in9 to out36  
PAF/PAFn Goes LOW after  
([D+1-m] x 4) Writes  
(seenotebelowfortiming)  
25  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
TABLE 4 — FLAG OPERATION BOUNDARIES & TIMING (CONTINUED)  
Programmable Almost Empty Flag Bus, PAEn Boundary  
I/O Set-Up PAEn Boundary Condition  
PAEn Goes HIGH after  
(Bothportsselectedforsamequeuewhenthe1st n+2Writes  
Programmable Almost Empty Flag, PAE Boundary  
I/O Set-Up PAE Assertion  
PAE Goes HIGH after n+2  
(Bothportsselectedforsamequeuewhenthe1st Writes  
in36 to out36  
in36 to out36  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
in36 to out36  
PAEn Goes HIGH after  
in36 to out18  
PAE Goes HIGH after n+1  
(Writeportonlyselectedforsamequeuewhenthe n+1Writes  
(Bothportsselectedforsamequeuewhenthe1st Writes  
1st Wordis writteninuntiltheboundaryis reached) (seenotebelowfortiming)  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
in36 to out18  
in36 to out9  
in18 to out36  
PAEn Goes HIGH after n+1  
in36 to out9  
PAE Goes HIGH after n+1  
Writes (seebelowfortiming)  
(Bothportsselectedforsamequeuewhenthe1st Writes  
PAEn Goes HIGH after n+1  
Writes(seebelowfortiming)  
Wordiswritteninuntiltheboundaryisreached) (seenotebelowfortiming)  
in18 to out36  
PAE Goes HIGH after  
PAEn Goes HIGH after  
(Bothportsselectedforsamequeuewhenthe1st ([n+2] x 2) Writes  
(Bothportsselectedforsamequeuewhenthe1st ([n+2] x 2) Writes  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
PAE Goes HIGH after  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
in9 to out36  
in18 to out36  
PAEn Goes HIGH after  
(Bothportsselectedforsamequeuewhenthe1st ([n+2] x 4) Writes  
(Writeportonlyselectedforsamequeuewhenthe ([n+1] x 2) Writes  
1st Wordis writteninuntiltheboundaryis reached) (seenotebelowfortiming)  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
in9 to out36  
PAEn Goes HIGH after  
NOTE:  
(Bothportsselectedforsamequeuewhenthe1st ([n+2] x 4) Writes  
n = Almost Empty Offset value.  
Default values: if DF is LOW at Master Reset then n = 8  
if DF is HIGH at Master Reset then n = 128  
PAE Timing  
Assertion:  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
PAEn Goes HIGH after  
in9 to out36  
(Writeportonlyselectedforsamequeuewhenthe ([n+1] x 4) Writes  
Read Operation to PAE LOW: 2 RCLK + tRAE  
1st Wordis writteninuntiltheboundaryis reached) (seenotebelowfortiming)  
De-assertion: Write to PAE HIGH: tSKEW2 + RCLK + tRAE  
If tSKEW2 is violated there may be 1 added clock: tSKEW2 + 2 RCLK + tRAE  
NOTE:  
n = Almost Empty Offset value.  
Default values: if DF is LOW at Master Reset then n = 8  
if DF is HIGH at Master Reset then n = 128  
PAEn Timing  
Assertion:  
Read Operation to PAEn LOW: 2 RCLK* + tPAE  
De-assertion: Write to PAEn HIGH: tSKEW3 + RCLK* + tPAE  
If tSKEW3 is violated there may be 1 added clock: tSKEW3 + 2 RCLK* + tPAE  
* If a queue switch is occurring on the read port at the point of flag assertion or de-assertion  
there may be one additional RCLK clock cycle delay.  
PACKET READY FLAG BUS, PRn BOUNDARY  
Assertion:  
PACKETREADYFLAG,PRBOUNDARY  
Assertion:  
Both the rising and falling edges of PRn are synchronous to RCLK.  
PRn Falling Edge occurs upon writing the first TEOP marker, on input D35,  
(assumingaTSOPmarker,oninputD34has previouslybeenwritten).i.e.a  
completepacketisavailablewithinaqueue.  
Both the rising and falling edges of PR are synchronous to RCLK.  
PR Falling Edge occurs upon writing the first TEOP marker, on input D35,  
(assumingaTSOPmarker,oninputD34has previouslybeenwritten).i.e.a  
completepacketisavailablewithinaqueue.  
Timing:  
Timing:  
FromWCLKrisingedgewritingtheTEOPwordPRgoes LOWafter:tSKEW4  
+ 2 RCLK* + tPAE  
FromWCLKrisingedgewritingtheTEOPwordPRgoes LOWafter:tSKEW4  
+ 2 RCLK + tPR  
If tSKEW4 is violated PRn goes LOW after tSKEW4 + 3 RCLK* + tPAE  
*Ifaqueueswitchisoccurringonthereadportatthepointofflagassertionthere  
may be one additional RCLK clock cycle delay.  
De-assertion:  
IftSKEW4isviolated:  
PR goes LOW after tSKEW4 + 3 RCLK + tPR  
(Please refertoFigure 18, Data Input(Transmit)PacketMode ofOperation  
fortimingdiagram).  
PRRisingEdgeoccursuponreadingthelastRSOPmarker,fromoutputQ34.  
i.e.therearenomorecompletepacketsavailablewithinthequeue.  
Timing:  
FromRCLKrisingedgeReadingtheRSOPwordthe PR goes HIGHafter:2  
RCLK* + tPAE  
De-assertion:  
PRRisingEdgeoccursuponreadingthelastRSOPmarker,fromoutputQ34.  
i.e.therearenomorecompletepacketsavailablewithinthequeue.  
Timing:  
From RCLK rising edge Reading the RSOP word the PR goes HIGH after:  
2 RCLK + tPR  
*Ifaqueueswitchisoccurringonthereadportatthepointofflagassertionor  
de-assertionthere maybe one additionalRCLKclockcycle delay.  
(PleaserefertoFigure19,DataOutput(Receive)PacketModeofOperation  
fortimingdiagram).  
26  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PAFn BUS EXPANSION - DIRECT MODE  
outputonthePAEn/PRnbus.Queues1through4havetheirPAE/PRstatus  
If FM is LOW at Master Reset then the PAFn bus operates in Direct toPAE[0]throughPAE[3]respectively.Iflessthan4queuesareusedthenonly  
(addressed)mode.Indirectmodetheusercanaddressthedevicetheyrequire theassociatedPAEn/PRnoutputswillberequired,unusedPAEn/PRn outputs  
tocontrolthePAFnbus.Theaddresspresentonthe3mostsignificantbitsof willbedontcareoutputs.Whendevicesareconnectedinexpansionmodethe  
the WRADD[4:0] address bus with FSTR (PAF flag strobe), HIGH will be PAEn/PRn flagbus canalsobe expandedbeyond4bits toproduce a wider  
selectedasthedeviceonarisingedgeofWCLK.Sotoaddressthefirstdevice PAEn/PRnbusthatencompassesallqueues.  
inabankofdevicestheWRADD[4:0]addressshouldbe000xx”thesecond  
Alternatively,the4bitPAEn/PRn flagbusofeachdevicecanbeconnected  
device001xx”andsoon.The3mostsignificantbitsoftheWRADD[4:0]address togethertoformasingle4bitbus,i.e.PAE[0]ofdevice1willconnecttoPAE[0]  
buscorrespondtothedeviceIDinputsID[2:0].ThePAFnbuswillchangestatus ofdevice2etc.WhenconnectingdevicesinthismannerthePAEn/PRnbuscan  
toshowthenewdeviceselected1WCLKcycleafterdeviceselection.Note,that onlybedrivenbyasingledeviceatanytime,(thePAEn/PRn outputsofallother  
if a read or write operation is occurring to a specific queue, say queue x’ on devicesmustbeinhighimpedancestate).Therearetwomethodsbywhichthe  
thesamecycleasaPAFnbusswitchtothedevicecontainingqueuex’,then user can select which device has control of the bus, these are Direct”  
theremaybeanextraWCLKcycledelaybeforethatqueuesstatusiscorrectly (Addressed)modeorPolled”(Looped)mode,determinedbythestateofthe  
shownontherespectiveoutputofthe PAFnbus.However,theactive”PAF FM (flag Mode) input during a Master Reset.  
flagwillshowcorrectstatusatalltimes.  
Devices can be selected on consecutive WCLK cycles, that is the device PAEn/PRn BUS EXPANSION- DIRECT MODE  
controllingthe PAFnbus canchangeeveryWCLKcycle. Also, datapresent  
If FM is LOW at Master Reset then the PAEn/PRn bus operates in Direct  
ontheinputbus,Din,canbewrittenintoaqueueonthesameWLCKrisingedge (addressed)mode.Indirectmodetheusercanaddressthedevicetheyrequire  
thatadeviceisbeingselectedonthePAFnbus,theonlyrestrictionbeingthat tocontrolthePAEn/PRnbus.Theaddresspresentonthe3mostsignificantbits  
awritequeueselectionandPAFnbusselectioncannotbemadeonthesamecycle. ofthe RDADD[5:0]address bus withESTR(PAE/PRflagstrobe), HIGHwill  
beselectedasthedeviceonarisingedgeofRCLK.Sotoaddressthefirstdevice  
PAFn BUS EXPANSION– POLLED MODE  
inabankofdevices theRDADD[5:0]address shouldbe000xx”thesecond  
IfFMisHIGHatMasterResetthenthePAFnbusoperatesinPolled(Looped) device001xx”andsoon.The3mostsignificantbitsoftheRDADD[5:0]address  
mode.InpolledmodethePAFnbusautomaticallycyclesthroughthedevices buscorrespondtothedeviceIDinputsID[2:0].ThePAEn/PRnbuswillchange  
connected in expansion. In expansion mode one device will be set as the status toshowthenewdeviceselected1RCLKcycleafterdeviceselection.  
Master,MASTinputtiedHIGH,allotherdeviceswillhaveMASTtiedLOW.The Note,thatifareadorwriteoperationisoccurringtoaspecificqueue,sayqueue  
masterdeviceisthefirstdevicetotakecontrolofthePAFnbusandplacethe x’onthesamecycleasaPAEn/PRnbusswitchtothedevicecontainingqueue  
PAFstatusofitsqueuesontothebusonthefirstrisingedgeofWCLKafterthe x’,thentheremaybeanextraRCLKcycledelaybeforethatqueuesstatusis  
MRSinputgoesHIGHonceaMasterResetiscomplete.TheFSYNC(PAFsync correctlyshownontherespectiveoutputofthePAEn/PRnbus.However,the  
pulse)outputofthefirstdevice(masterdevice),willbeHIGHforonecycleof active”PAEand/orPRflagwillshowcorrectstatusatalltimes.  
WCLKindicatingthatitishascontrolofthePAFnbusforthatcycle.  
Devices can be selected on consecutive RCLK cycles, that is the device  
Thedevicealsopassesatoken”ontothenextdeviceinthechain,thenext controllingthePAEn/PRnbuscanchangeeveryRCLKcycle.Also,datacan  
deviceassumingcontrolofthePAFnbusonthenextWCLKcycle.Thistoken be read out of a queue on the same RCLK rising edge that a device is being  
passing is done via the FXO outputs and FXI inputs of the devices (PAFn selected on the PAEn/PRn bus, the only restriction being that a read queue  
ExpansionOut”andPAFnExpansionIn).TheFXOoutputofthefirstdevice selectionandPAEn/PRnbusselectioncannotbemadeonthesamecycle.  
connectingtothe FXIinputofthe seconddevice inthe chain, the FXOofthe  
seconddeviceconnects totheFXIofthethirddeviceandsoon.TheFXOof PAEn/PRn BUS EXPANSION- POLLED MODE  
thefinaldeviceinachainconnectstotheFXIofthefirstdevice,sothatoncethe  
PAFn bus has cycled through all devices control is again passed to the first (Looped)mode.InpolledmodethePAEn/PRnbusautomaticallycyclesthrough  
device.TheFXOoutputofadevicewillbeHIGHfortheWCLKcycleithascontrol thedevicesconnectedinexpansion.Inexpansionmodeonedevicewillbeset  
IfFMis HIGHatMasterResetthenthe PAEn/PRnbus operates inPolled  
ofthebus.  
astheMaster,MASTinputtiedHIGH,allotherdeviceswillhaveMASTtiedLOW.  
PleaserefertoFigure28,PAFnBusPolledModefortiminginformation. ThemasterdeviceisthefirstdevicetotakecontrolofthePAEn/PRnbusand  
placethePAE/PRstatusofitsqueuesontothebusonthefirstrisingedgeofRCLK  
PAEn/PRn FLAG BUS OPERATION  
aftertheMRSinputgoesHIGHonceaMasterResetiscomplete.TheESYNC  
TheIDT72V51236/72V51246/72V51256multi-queueflow-controldevices (PAE/PRsyncpulse)outputofthefirstdevice(masterdevice),willbeHIGHfor  
canbeconfiguredforupto4queues,eachqueuehavingitsownalmostempty/ onecycleofRCLKindicatingthatitishascontrolofthePAEn/PRnbusforthat  
packetreadystatus.Anactivequeuehasitsflagstatusoutputtothediscreteflags, cycle.  
OV, PAE and PR, on the read port. Queues that are not selected for a read  
Thedevicealsopassesatoken”ontothenextdeviceinthechain,thenext  
operationcanhavetheirPAE/PRstatusmonitoredviathePAEn/PRnbus.The deviceassumingcontrolofthePAEn/PRnbus onthenextRCLKcycle.This  
PAEn/PRnflagbusis4bitswide,sothatall4queuescanhavetheirstatusoutput tokenpassingisdoneviatheEXOoutputsandEXIinputsofthedevices(PAEn/  
tothebus.Themulti-queuedevicecanprovideeitherAlmostEmpty”statusor PRnExpansionOut”andPAEn/PRnExpansionIn).TheEXOoutputofthe  
PacketReady”statusviathePAEn/PRnbusofitsqueues,dependingonwhich firstdeviceconnectingtotheEXIinputoftheseconddeviceinthechain,theEXO  
hasbeenselectedviathePKT(Packet)inputduringamasterreset.IfPKTis oftheseconddeviceconnectstotheEXIofthethirddeviceandsoon.TheEXO  
HIGHthenpacketmodeisselectedandthePAEn/PRnbuswillprovidePacket ofthefinaldeviceinachainconnectstotheEXIofthefirstdevice,sothatonce  
Ready”status.IfitisLOWthenthePAEn/PRnbuswillprovideAlmostEmpty” thePAEn/PRnbus has cycledthroughalldevices controlis againpassedto  
status.Ineithercasetheoperationofthebusisthesamethedifferencebeing the firstdevice. The EXOoutputofa device willbe HIGHforthe RCLKcycle  
thatthebusisprovidingPacketReady”statusversusAlmostEmpty”status. ithascontrolofthebus.  
Whenasinglemulti-queuedeviceisusedanywherefrom1to4queuesmay  
beset-upwithinthepart,eachqueuehavingitsowndedicatedPAEn/PRnflag information.  
Please refer to Figure 29, PAEn/PRn Bus – Polled Mode for timing  
27  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
D35-D27  
D26-D18  
D17-D9  
D8-D0  
BYTE ORDER ON INPUT PORT:  
Write to Queue  
A
B
C
D
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BYTE ORDER ON OUTPUT PORT:  
BM  
L
IW OW  
A
B
C
D
Read from Queue  
L
L
(a) x36 INPUT to x36 OUTPUT  
Q35-Q27  
Q35-Q27  
Q26-Q18  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BM  
H
IW OW  
1st: Read from Queue  
2nd: Read from Queue  
C
D
L
L
Q17-Q9  
Q8-Q0  
A
B
(b) x36 INPUT to x18 OUTPUT  
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BM  
H
IW OW  
D
1st: Read from Queue  
2nd: Read from Queue  
L
H
Q35-Q27  
Q35-Q27  
Q26-Q18  
Q26-Q18  
Q17-Q9  
Q17-Q9  
Q8-Q0  
C
Q8-Q0  
B
3rd: Read from Queue  
4th: Read from Queue  
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
A
(c) x36 INPUT to x9 OUTPUT  
D35-D27  
D35-D27  
D26-D18  
D17-D9  
D8-D0  
BYTE ORDER ON INPUT PORT:  
A
1st: Write to Queue  
2nd: Write to Queue  
B
D26-D18  
D17-D9  
D8-D0  
C
D
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BYTE ORDER ON OUTPUT PORT:  
BM  
H
IW OW  
D
B
C
A
Read from Queue  
H
L
(d) x18 INPUT to x36 OUTPUT  
BYTE ORDER ON INPUT PORT:  
D35-D27  
D35-D27  
D35-D27  
D35-D27  
D26-D18  
D26-D18  
D26-D18  
D26-D18  
D17-D9  
D17-D9  
D17-D9  
D17-D9  
D8-D0  
A
1st: Write to Queue  
2nd: Write to Queue  
D8-D0  
B
D8-D0  
C
3rd: Write to Queue  
4th: Write to Queue  
D8-D0  
D
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BYTE ORDER ON OUTPUT PORT:  
BM  
H
IW OW  
D
C
B
A
Read from Queue  
5937 drw08  
H
H
(e) x9 INPUT to x36 OUTPUT  
Figure 3. Bus-Matching Byte Arrangement  
28  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
tRS  
MRS  
t
RSS  
RSS  
WEN  
REN  
t
tRSR  
SENI  
tRSS  
FSTR,  
ESTR  
tRSS  
WADEN,  
RADEN  
t
RSS  
RSS  
RSS  
ID0, ID1,  
ID2  
t
OW, IW,  
BM  
t
HIGH = Looped  
LOW = Strobed (Direct)  
FM  
MAST  
PKT  
t
RSS  
HIGH = Master Device  
LOW = Slave Device  
tRSS  
HIGH = Packet Ready Mode  
LOW = Almost Empty  
t
RSS  
RSS  
HIGH = Default Programming  
LOW = Serial Programming  
DFM  
t
HIGH = Offset Value is 128  
LOW = Offset value is 8  
DF  
t
t
t
t
RSF  
HIGH-Z if Slave Device  
FF  
LOGIC “0" if Master Device  
RSF  
RSF  
RSF  
LOGIC "1" if Master Device  
OV  
PAF  
PAE  
HIGH-Z if Slave Device  
LOGIC "1" if Master Device  
HIGH-Z if Slave Device  
HIGH-Z if Slave Device  
LOGIC "0" if Master Device  
tRSF  
tRSF  
tRSF  
tRSF  
tRSF  
LOGIC "1" if Master Device  
HIGH-Z if Slave Device  
PAFn  
PAEn  
PR  
HIGH-Z if Slave Device  
LOGIC "0" if Master Device  
LOGIC "1" if Master Device  
HIGH-Z if Slave Device  
LOGIC "1" if Master Device  
HIGH-Z if Slave Device  
PRn  
LOGIC "1" if OE is LOW and device is Master  
Qn  
HIGH-Z if OE is HIGH or Device is Slave  
5937 drw09  
NOTES:  
1. OE can toggle during this period.  
2. PRS should be HIGH during a MRS.  
Figure 4. Master Reset  
29  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
w-2  
w-1  
w
w+1  
w+2  
w+3  
WCLK  
tQH  
tQS  
WADEN  
WEN  
tENS  
tENS  
t
AS  
tAH  
WRADD  
Qx  
t
WFF  
FF  
tWAF  
PAF  
t
PAF  
Active Bus  
PAF-Qx(5)  
tPRSS  
tPRSH  
PRS  
tPRSH  
tPRSS  
RCLK  
tENS  
tENS  
REN  
tQH  
tQS  
RADEN  
t
AS  
tAH  
RDADD  
Qx  
tROV  
OV  
tRAE  
PAE  
t
PAE  
Active Bus  
PAE-Qx(6)  
r-2  
r-1  
r
r+1  
r+2  
r+3  
5937 drw10  
NOTES:  
1. For a Partial Reset to be performed on a Queue, that Queue must be selected on both the write and read ports.  
2. The queue must be selected a minimum of 2 clock cycles before the Partial Reset takes place, on both the write and read ports.  
3. The Partial Reset must be LOW for a minimum of 1 WCLK and 1 RCLK cycle.  
4. Writing or Reading to the queue (or a queue change) cannot occur until a minimum of 3 clock cycles after the Partial Reset has gone HIGH, on both the write and read ports.  
5. The PAF flag output for Qx on the PAFn flag bus may update one cycle later than the active PAF flag.  
6. The PAE flag output for Qx on the PAEn flag bus may update one cycle later than the active PAE flag.  
Figure 5. Partial Reset  
Master Reset  
Default Mode  
DFM = 0  
MRS  
MRS  
DFM  
DFM  
MRS  
DFM  
MQ2  
MQn  
MQ1  
Serial Loading  
Complete  
SENI  
SI  
SENO  
SO  
SENI  
SI  
SENI  
SI  
SENO  
SO  
SENO  
SO  
Serial Enable  
Serial Input  
SCLK  
SCLK  
SCLK  
5937 drw11  
Serial Clock  
Figure 6. Serial Port Connection for Serial Programming  
30  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
31  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
32  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
33  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
WCLK  
tENH  
tENS  
WEN  
tDS  
tDH  
tDS  
tDH  
tDS  
tDH  
W1  
W2  
W3  
Dn  
RCLK  
REN  
t
SKEW1  
1
2
tENS  
tA  
tA  
tA  
Last Word Read Out of Queue  
W1 Qy  
FWFT  
W2 Qy  
FWFT  
W3 Qy  
Qout  
OV  
tROV  
tROV  
5937 drw13a  
NOTES:  
1. Qy has previously been selected on both the write and read ports.  
2. OE is LOW.  
3. The First Word Latency = tSKEW1 + RCLK + tA. If tSKEW1 is violated an additional RCLK cycle must be added.  
Figure 10. Write Operations & First Word Fall Through  
34  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
35  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
36  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
*H*  
*I*  
RCLK  
REN  
tENS  
tAS  
tAH  
tAS  
tAH  
RDADD  
RADEN  
D1  
Q3  
D1 Q2  
Addr=001011  
QH  
Addr=001010  
tQS  
t
tQH  
tQS  
tA  
tA  
tA  
tA  
tOLZ  
Qout  
D
1
Q
3
WD  
Last Word  
D1 Q2  
PFT We-1  
D1  
Q2  
We  
Last Word  
W0 Q2  
D1  
(Device 1)  
t
ROV  
tROV  
tROV  
tROV  
tOVLZ  
HIGH-Z  
OV  
(Device 1)  
tOVHZ  
OV  
(Device 2)  
tSKEW1  
WCLK  
tENS  
tENH  
WEN  
tAS  
tAH  
WRADD  
D1 Q2  
tQS  
tQH  
WADEN  
Din  
tDS  
t
DH  
D1 Q2  
W0  
5937 drw16  
Cycle:  
*A* Queue 3 of Device 1 is selected for read operations. The OV is currently being driven by Device 2, a queue within device 2 is selected for reads. Device 2 also has control  
of Qout bus, its Qout outputs are in Low-Impedance. This diagram only shows the Qout outputs of device 1. (Reads are disabled).  
*B* Reads are now enabled. A word from the previously selected queue of Device 2 will be read out.  
*C* The Qout of Device 1 goes to Low-Impedance and word Wd is read from Q3 of D1. This happens to be the last word of Q3. Device 2 places its Qout outputs into  
High-Impedance, device 1 has control of the Qout bus. The OV flag of Device 2 goes to High-Impedance and Device 1 takes control of OV. The OV flag of Device 1 goes LOW  
to show that Wd of Q3 is valid.  
*D* Queue 2 of device 1 is selected for read operations. The last word of Q3 was read on the previous cycle, therefore OV goes HIGH to indicate that the data on the Qout is  
not valid (Q3 was read to empty). Word, Wd remains on the output bus.  
*E* The last word of Q3 remains on the Qout bus, OV is HIGH, indicating that this word has been previously read.  
*F* The next word (We-1), available from the newly selected queue, Q2 of device 1 is now read out. This will occur regardless of REN, 2 RCLK cycles after queue selection  
due to the FWFT operation. The OV flag now goes LOW to indicate that this word is valid.  
*G* The last word, We is read from Q2, this queue is now empty.  
*H* The OV flag goes HIGH to indicate that Q2 was read to empty on the previous cycle.  
*I* Due to a write operation the OV flag goes LOW and data word W0 is read from Q2. The latency is: tSKEW1 + 1*RCLK + tROV.  
Figure 13. Output Valid Flag Timing (In Expansion Mode)  
37  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
*H*  
*I*  
*J*  
RCLK  
tENS  
tENH  
tENS  
tENH  
REN  
tAS  
tAH  
tAH  
tAS  
RDADD  
Qn  
QP  
tQS  
tQH  
tQS  
tQH  
RADEN  
tA  
tA  
tA  
tA  
tA  
tA  
QOUT  
QP  
WD  
QP WD+1  
Q
P
WD+2  
Qn  
WX  
Qn  
WX+1  
Q
P
WD+3  
QP WD+4  
OV  
5937 drw17  
Cycle:  
*A* Word Wd+1 is read from the previously selected queue, Qp.  
*B* Reads are disabled, word Wd+1 remains on the output bus.  
*C* A new queue, Qn is selected for read port operations.  
*D* Due to FWFT operation Word, Wd+2 of Qp is read out regardless of REN.  
*E* The next available word Wx of Qn is read out regardless of REN, 2 RCLK cycles after queue selection. This is FWFT operation.  
*F* The queue, Qp is again selected.  
*G* Word Wx+1 is read from Qn regardless of REN, this is due to FWFT.  
*H* Word Wd+3 is read from Qp, this read occurs regardless of REN due to FWFT operation.  
*I* Word Wd+4 is read from Qp.  
*J* Reads are disabled on this cycle, therefore no further reads occur.  
Figure 14. Read Queue Selection with Reads Disabled  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
*H*  
*I*  
RCLK  
REN  
tENS  
tENH  
tENS  
tAS  
tAH  
tAS  
tAH  
RDADD  
RADEN  
QB  
QA  
tQS  
tQH  
tQS  
tQH  
OE  
tA  
tA  
tA  
tA  
tOHZ  
tA  
tOE  
tOLZ  
Qout  
Previous Data in O/P Register  
Q
A
PFT  
W
0
QA  
W1  
QA  
W2  
QA  
W3  
QA W4  
No Read  
QB is Empty  
ROV  
tROV  
t
OV  
5937 drw18  
NOTES:  
1. The Output Valid flag, OV is HIGH therefore the previously selected queue has been read to empty. The Output Enable input is Asynchronous, therefore the Qout output bus  
will go to Low-Impedance after time tOLZ.  
The data currently on the output register will be available on the output after time tOE. This data is the previous data on the output register, this is the last word read out of the  
previous queue.  
2. In expansion mode the OE inputs of all devices should be connected together. This allows the output busses of all devices to be High-Impedance controlled.  
Cycle:  
*A* Queue A is selected for reads. No data will fall through on this cycle, the previous queue was read to empty.  
*B* No data will fall through on this cycle, the previous queue was read to empty.  
*C* Word, W0 from Qa is read out regardless of REN due to FWFT operation. The OV flag goes LOW indicating that Word W0 is valid.  
*D* Reads are disabled therefore word, W0 of Qa remains on the output bus.  
*E* Reads are again enabled so word W1 is read from Qa.  
*F* Word W2 is read from Qa.  
*G* Queue, Qb is selected on the read port. This queue is actually empty. Word, W3 is read from Qa.  
*H* Word, W4 falls through from Qa.  
*I* Output Valid flag, OV goes HIGH to indicate that Qb is empty. Data on the output port is no longer valid.  
Output Enable is taken HIGH, this is Asynchronous so the output bus goes to High-Impedance after time, tOHZ.  
Figure 15. Read Queue Select, Read Operation and OE Timing  
38  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
39  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
40  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
41  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
42  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
SELECT  
NEW QUEUE  
*D*  
NULL QUEUE  
SELECT  
*A*  
*B*  
*C*  
*E*  
*F*  
RCLK  
tAS  
tAH  
tAS  
tAH  
0001xx  
000011  
D0 Q3  
RDADD  
RADEN  
tQS  
tQH  
tQS  
tQH  
tENS  
tENH  
REN  
Qout  
OV  
tA  
tA  
tA  
tA  
Q3 W0  
FWFT  
Q1 Wn-3  
Q1 Wn-2  
Q1 Wn-1  
Q1 Wn  
tROV  
tROV  
5937 drw23  
NOTES:  
1. The purpose of the Null queue operation is so that the user can stop reading a block (packet) of data from a queue without filling the 2 stage output pipeline with the next words  
from that queue.  
2. Please see Figure 21, Null Queue Flow Diagram.  
Cycle:  
*A* Null Q of device 0 is selected, when word Wn-1 from previously selected Q1 is read.  
*B* REN is HIGH and Wn (Last Word of the Packet) of Q1 is pipelined onto the O/P register.  
Note: *B* and *C* are a minimum 2 RCLK cycles between Q selects.  
*C* The Null Q is seen as an empty Queue on the read side, therefore Wn of Q1 remains in the O/P register and OV goes HIGH.  
*D* A new Q, Q3 is selected and the 1st word of Q3 will fall through present on the O/P register on cycle *F*.  
Figure 20. Read Operation and Null Queue Select  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
Null  
Queue  
Queue 3  
Memory  
Queue 3  
Memory  
Queue 1  
Memory  
Null  
Queue  
Null  
Queue  
Q1  
Q1  
Q1  
Q1  
Q3  
Q3  
Wn  
Wn  
Wn  
Wn  
W0  
W1  
O/P Reg.  
O/P Reg.  
O/P Reg.  
O/P Reg.  
O/P Reg.  
O/P Reg.  
Qn  
Q1  
Q1  
Q1  
Q1  
Q3  
Wn-1  
Wn  
Wn  
Wn  
Wn  
W0  
5937 drw24  
Figure 21. Null Queue Flow Diagram  
43  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
WCLK  
WEN  
2
1
tENH  
tENS  
tAH  
tAS  
tAS  
tAH  
WRADD  
D1  
Q2  
D1 Q0  
tQS  
tQH  
tQH  
tQS  
WADEN  
Din  
tDS  
tDH  
WD-m  
D1 Q2  
tWAF  
tWAF  
tAFLZ  
HIGH-Z  
PAF  
(Device 1)  
tFFHZ  
PAF  
(Device 2)  
5937 drw25  
Cycle:  
*A* Queue 2 of Device 1 is selected on the write port. A queue within Device 2 had previously been selected. The PAF output of device 1 is High-Impedance.  
*B* No write occurs.  
*C* Word, Wd-m is written into Q2 causing the PAF flag to go from HIGH to LOW. The flag latency is 2 WCLK cycles + tWAF.  
*D* Queue 0 if device 1 is now selected for write operations. This queue is not almost full, therefore the PAF flag will update after a 2 WCLK + tWAF latency.  
*E* The PAF flag goes LOW based on the write 2 cycles earlier.  
*F* The PAF flag goes HIGH due to the queue switch to Q0.  
Figure 22. Almost Full Flag Timing and Queue Switch  
tCLKL  
tCLKL  
WCLK  
WEN  
PAF  
1
2
1
tENS  
tENH  
tWAF  
tWAF  
D-(m+1) words  
in Queue  
D - (m+1) words in Queue  
D - m words in Queue  
tSKEW2  
RCLK  
tENS  
tENH  
5937 drw26  
REN  
NOTE:  
1. The waveform here shows the PAF flag operation when no queue switches are occurring and a queue selected on both the write and read ports is being written to then read  
from at the almost full boundary.  
Flag Latencies:  
Assertion: 2*WCLK + tWAF  
De-assertion: tSKEW2 + WCLK + tWAF  
If tSKEW2 is violated there will be one extra WCLK cycle.  
Figure 23. Almost Full Flag Timing  
44  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
RCLK  
REN  
HIGH  
AS  
t
tAH  
tAS  
tAH  
RDADD  
D1  
Q3  
D1  
Q1  
tQS  
tQH  
tQH  
tQS  
RADEN  
Qout  
t
A
t
A
t
A
tA  
tOLZ  
HIGH-Z  
HIGH-Z  
D1  
Q3  
Wn  
D
1
Q3  
Wn+1  
D
1
Q1  
W0  
D1 Q1 W1  
t
RAE  
t
RAE  
tAELZ  
PAE  
(Device 1)  
tAEHZ  
PAE  
(Device 2)  
HIGH-Z  
5937 drw27  
Cycle:  
*A* Queue 3 of Device 1 is selected on the read port. A queue within Device 2 had previously been selected. The PAE flag output and the data outputs of device 1 are High-Impedance.  
*B* No read occurs.  
*C* The PAE flag output now switches to device 1. Word, Wn is read from Q3 due to the FWFT operation. This read operation from Q3 is at the almost empty boundary, therefore  
PAE will go LOW 2 RCLK cycles later.  
*D* Q1 of device 1 is selected.  
*E* The PAE flag goes LOW due to the read from Q3 2 RCLK cycles earlier. Word Wn+1 is read out due to the FWFT operation.  
*F* Word, W0 is read from Q1 due to the FWFT operation. The PAE flag goes HIGH to show that Q1 is not almost empty.  
Figure 24. Almost Empty Flag Timing and Queue Switch  
tCLKH  
tCLKL  
WCLK  
tENS  
tENH  
WEN  
PAE  
n+1 words in Queue  
SKEW2  
n+2 words in Queue  
n+1 words in Queue  
tRAE  
t
tRAE  
RCLK  
1
2
tENS  
tENH  
5937 drw28  
REN  
NOTE:  
1. The waveform here shows the PAE flag operation when no queue switches are occurring and a queue selected on both the write and read ports is being written to then read  
from at the almost empty boundary.  
Flag Latencies:  
Assertion: 2*RCLK + tRAE  
De-assertion: tSKEW2 + RCLK + tRAE  
If tSKEW2 is violated there will be one extra RCLK cycle.  
Figure 25. Almost Empty Flag Timing  
45  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
1
*C*  
2
*D*  
*E*  
*F*  
WCLK  
WADEN  
FSTR  
tQH  
tQS  
tQS  
tQH  
tSTS  
tSTH  
tENS  
tENS  
tENH  
tENH  
WEN  
tAS  
tAH  
tAH  
tAS  
tAS  
tAH  
Device 4  
D3Q2  
01110  
WRADD  
Dn  
D5Q3  
100 11  
tDS  
tDH  
100 xx  
tDS  
tDH  
Wp  
Wp+1  
Wn+1  
D5Q3  
Wn  
D5 Q3  
Wx  
D3 Q2  
Writes to Previous Q  
tSKEW3  
RCLK  
RADEN  
ESTR  
1
2
tQS  
tQH  
tSTH  
tSTS  
tENS  
tENH  
REN  
tAH  
tAS  
tAS  
tAH  
RDADD  
Device 5  
D5Q3  
100 011  
101 xxx  
t
A
t
A
tA  
t
A
tA  
Wy  
D5 Q3  
Wy+3  
D5 Q3  
Wy+1  
D5 Q3  
Device 5 -Qn  
Wa  
D5 Qx  
Wa+1  
D5 Qn  
Wy+2  
D5 Q3  
Previous value loaded on to PAE bus  
Prev PAEn  
tPAEHZ  
tPAE  
tPAEZL  
1xxx  
1xxx  
Device 5 PAEn  
Device 5  
Device 5  
1xxx  
Device 5  
1xxx  
Device 5  
Previous value loaded on to PAE bus  
D5 Qx Status  
Bus PAEn  
t
RAE  
tRAE  
tRAE  
D5 Q3  
status  
Device 5 PAE  
5937 drw29  
*EE*  
*AA*  
*BB*  
*CC*  
*FF*  
*DD*  
Cycle:  
*A* Queue 3 of Device 5 is selected for write operations.  
Word, Wp is written into the previously selected queue.  
*AA* Queue 3 of Device 5 is selected for read operations.  
Another device has control of the PAEn bus.  
The discrete PAE output of device 5 is currently in High-Impedance and the PAE active flag is controlled by the previously selected device.  
*B* Word Wp+1 is written into the previously selected queue.  
*BB* Word, Wa+1 is read from Qx of D5, due to FWFT operation.  
*C* Word, Wn is written into the newly selected queue, Q3 of D5. This write will cause the PAE flag on the read port to go from LOW to HIGH (not almost empty) after time,  
tSKEW3 + RCLK + tRAE (if tSKEW3 is violated one extra RCLK cycle will be added.  
*CC* Word, Wy from the newly selected queue, Q3 will be read out due to FWFT operation.  
Device 5 is selected on the PAEn bus. Q3 of device 5 will therefore have is PAE status output on PAE[3]. There is a single RCLK cycle latency before the PAEn bus changes  
to the new selection.  
*D* Queue 2 of Device 3 is selected for write operations.  
Word Wn+1 is written into Q3 of D5.  
*DD* The PAEn bus changes control to D5, the PAEn outputs of D5 go to Low-Impedance and are placed onto the outputs. The previously selected device now places its  
PAEn outputs into High-Impedance to prevent bus contention. Word, Wy+1 is read from Q3 of D5.  
The discrete PAE flag will go HIGH to show that Q3 of D5 is not almost empty. Q3 of device 5 will have its PAE status output on PAE[3].  
*E* No writes occur.  
*EE* Word, Wy+2 is read from Q3 of D5.  
*F* Device 4 is selected on the write port for the PAFn bus.  
Word, Wx is written into Q2 of D3.  
*FF* The PAEn bus updates to show that Q3 of D5 is almost empty based on the reading out of word, Wy+1.  
The discrete PAE flag goes LOW to show that Q3 of D5 is almost empty based on the reading of Wy+1.  
Figure 26. PAEn - Direct Mode, Flag Operation – Devices in Expansion  
46  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
RCLK  
tQH  
tQS  
tQS  
tQH  
RADEN  
tSTH  
tSTS  
ESTR  
REN  
tAS  
tAH  
tAH  
tAS  
RDADD  
D6Q2  
110 010  
Device 7  
111 xxx  
D0Q1  
000 001  
OE  
tA  
tA  
tA  
t
A
tOLZ  
Qout  
W
X
W
X +1  
Prev. Q  
W
D0 Q1  
D - M + 2  
W0  
D6 Q2  
W
D0 Q1  
D-M+1  
Prev. Q  
tSKEW3  
WCLK  
FSTR  
1
2
tSTS  
tSTH  
tAS  
tAH  
tAS  
tAH  
WRADD  
D0 Q1  
Device 0  
000 xxx  
tENS  
tENH  
WEN  
tQH  
tQS  
WADEN  
Din  
t
DS  
t
DH  
tDS  
tDH  
tDS  
tDH  
Wy+1  
Wy+2  
Word W  
y
D0 Q1  
D0 Q1  
D0 Q1  
tPAFLZ  
tPAF  
tPAF  
Device 0 PAFn  
xx0x  
xx0x  
xx1x  
xx1x  
xx0x  
xx0x  
Device 0  
Device 0  
Device 0  
Device 0  
Device 0  
HIGH-Z  
Previous Device  
Previous Device  
Device 0  
Bus PAFn  
tPAFHZ  
HIGH-Z  
Prev. PAFn  
tPAFLZ  
tWAF  
Device 0  
HIGH - Z  
5937 drw30  
PAF  
*AA*  
*BB*  
*CC*  
*DD*  
*EE*  
*FF*  
Cycle:  
*A* Queue 1 of device 0 is selected for read operations.  
The last word in the output register is available on Qout. OE was previously taken LOW so the output bus is in Low-Impedance.  
*AA* Device 0 is selected for the PAFn bus. The bus is currently providing status of a previously selected device X.  
*B* Word, Wx+1 is read out from the previous queue due to the FWFT effect.  
*BB* Queue 1 of device 0 is selected on the write port.  
The PAFn bus is updated with the device selected on the previous cycle, device 0 PAF[1] is LOW showing the status of queue 1.  
The PAFn outputs of the device previously selected on the PAFn bus go to High-Impedance.  
*C* Device 7 is selected for the PAFn bus.  
Word, Wd-m+1 is read from Q1 D0 due to the FWFT operation. This read is at the PAFn boundary of queue D0 Q1. This read will cause the PAF[1] output to go from  
LOW to HIGH (almost full to not almost full), after a delay tSKEW3 + WCLK + tPAF. If tSKEW3 is violated add an extra WCLK cycle.  
*CC* PAFn continues to show status of D0.  
*D* No read operations occur, REN is HIGH.  
*DD* PAF[1] goes HIGH to show that D0 Q1 is not almost empty due to the read on cycle *C*.  
The active queue PAF flag of device 0 goes from High-Impedance to Low-Impedance.  
Word, Wy is written into D0 Q1.  
*E* Queue 2 of Device 6 is selected for write operations.  
*EE* Word, Wy+1 is written into D0 Q1.  
*F* Word, Wd-m+2 is read out due to FWFT operation.  
*FF* PAF[1] and the discrete PAF flag go LOW to show the write on cycle *DD* causes Q1 of D0 to again go almost full.  
Word, Wy+2 is written into D0 Q1.  
*G* Word, W0 is read from Q0 of D6, selected on cycle *E*, due to FWFT.  
Figure 27. PAFn - Direct Mode, Flag Operation – Devices in Expansion  
47  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
WCLK  
tFSYNC  
tFSYNC  
tFSYNC  
tFSYNC  
FSYNC  
0
(MASTER)  
tFXO  
tFXO  
tFXO  
tFXO  
FXO /  
0
FXI  
1
tFSYNC  
tFSYNC  
FSYNC  
1
(SLAVE)  
tFXO  
tFXO  
FXO /  
1
FXI  
2
tFSYNC  
tFSYNC  
FSYNC  
2
(SLAVE)  
tFXO  
tFXO  
FXO /  
2
FXI  
0
tPAF  
tPAF  
tPAF  
tPAF  
tPAF  
Device 0  
Device 1  
Device 2  
Device 0  
PAF[3:0]  
5937 drw31  
NOTE:  
1. This diagram is based on 3 devices connected to expansion mode.  
Figure 28. PAFn Bus - Polled Mode  
48  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
RCLK  
tESYNC  
tESYNC  
tESYNC  
tESYNC  
ESYNC  
0
tEXO  
tEXO  
tEXO  
tEXO  
EXO /  
0
EXI  
1
tESYNC  
tESYNC  
ESYNC  
1
tEXO  
tEXO  
EXO /  
1
FXI  
2
tESYNC  
tESYNC  
ESYNC  
2
tEXO  
tEXO  
EXO /  
2
EXI  
0
tPAE  
tPAE  
tPAE  
tPAE  
tPAE  
Device 0  
Device 1  
Device 2  
Device 0  
PAE  
n
5937 drw32  
Figure 29. PAEn/PRn Bus - Polled Mode  
49  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
Serial Programming Data Input  
Serial Enable  
SENI  
SI FXI EXI  
Output Data Bus  
Data Bus  
Q -Q  
D -D  
0
35  
0
35  
Read Clock  
Write Clock  
RCLK  
WCLK  
Write Enable  
Read Enable  
WEN  
REN  
RDADD  
RADEN  
Read Queue Select  
Read Address  
Write Queue Select  
Write Address  
WRADD  
WADEN  
DEVICE  
1
Empty Strobe  
Full Strobe  
ESTR  
FSTR  
PAFn  
Programmable Almost Full  
Programmable Almost Empty  
PAEn  
Empty Sync 1  
Output Valid Flag  
Almost Empty Flag  
Packet Reads  
Full Sync1  
ESYNC  
FSYNC  
Full Flag  
OV  
FF  
Almost Full Flag  
Serial Clock  
PAF  
PAE  
PR  
SCLK  
SENO SO FXO EXO  
SENI SI FXI EXI  
Q -Q  
D -D  
0
35  
0
35  
WCLK  
RCLK  
WEN  
REN  
WRADD  
WADEN  
RDADD  
RADEN  
DEVICE  
2
FSTR  
PAFn  
ESTR  
PAEn  
Empty Sync 2  
Full Sync2  
FSYNC  
ESYNC  
FF  
OV  
PAF  
PAE  
SCLK  
PR  
SENO SO FXO EXO  
SENI SI FXI EXI  
Q -Q  
D -D  
0
35  
0
35  
WCLK  
RCLK  
REN  
WEN  
WRADD  
WADEN  
RDADD  
RADEN  
DEVICE  
n
FSTR  
PAFn  
FSYNC  
ESTR  
PAEn  
Full Sync n  
Empty Sync n  
ESYNC  
FF  
OV  
PAF  
PAE  
PR  
SCLK  
SENO  
FXO EXO  
DONE  
5937 drw33  
NOTES:  
1. If devices are configured for Direct operation of the PAFn/PAEn flag busses the FXI/EXI of the MASTER device should be tied LOW. All other devices tied HIGH. The FXO/EXO  
outputs are DNC (Do Not Connect).  
2. Q outputs must not be mixed between devices, i.e. Q0 of device 1 must connect to Q0 of device 2, etc.  
Figure 30. Multi-Queue Expansion Diagram  
50  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
TheStandardJTAGinterfaceconsistsoffourbasicelements:  
JTAGINTERFACE  
Test Access Port (TAP)  
TAPcontroller  
Instruction Register (IR)  
Data Register Port (DR)  
Five additional pins (TDI, TDO, TMS, TCK and TRST) are provided to  
support the JTAG boundary scan interface. The IDT72V51236/72V51246/  
72V51256incorporates thenecessarytapcontrollerandmodifiedpadcellsto  
implementtheJTAG facility.  
Thefollowingsectionsprovideabriefdescriptionofeachelement. Fora  
completedescriptionrefertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
NotethatIDTprovidesappropriateBoundaryScanDescriptionLanguage  
programfilesforthesedevices.  
The Figure belowshows the standardBoundary-ScanArchitecture  
Mux  
DeviceID Reg.  
Boundary Scan Reg.  
Bypass Reg.  
TDO  
TDI  
T
A
clkDR, ShiftDR  
UpdateDR  
P
TMS  
TAP  
TCLK  
Cont-  
roller  
TRST  
Instruction Decode  
clklR, ShiftlR  
UpdatelR  
Instruction Register  
Control Signals  
5937 drw34  
Figure 31. Boundary Scan Architecture  
THETAPCONTROLLER  
TEST ACCESS PORT (TAP)  
TheTapcontrollerisasynchronousfinitestatemachinethatrespondsto  
TMSandTCLKsignalstogenerateclockandcontrolsignalstotheInstruction  
andDataRegisters forcaptureandupdateofdata.  
The Tap interface is a general-purpose port that provides access to the  
internaloftheprocessor. Itconsistsoffourinputports(TCLK,TMS,TDI,TRST)  
and one output port (TDO).  
51  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
1
Test-Logic  
Reset  
0
1
0
1
1
Run-Test/  
Idle  
Select-  
DR-Scan  
Select-  
IR-Scan  
0
0
1
1
Capture-DR  
Capture-IR  
0
0
0
0
Shift-IR  
Shift-DR  
1
1
1
1
Input = TMS  
Exit1-IR  
Exit1-DR  
0
0
0
0
Pause-IR  
Pause-DR  
1
1
Exit2-IR  
Exit2-DR  
0
0
1
1
Update-IR  
Update-DR  
1
0
1
0
5937 drw35  
NOTES:  
1. Five consecutive TCK cycles with TMS = 1 will reset the TAP.  
2. TAP controller does not automatically reset upon power-up. The user must provide a reset to the TAP controller (either by TRST or TMS).  
3. TAP controller must be reset before normal Queue operations can begin.  
Figure 32. TAP Controller State Diagram  
Capture-IRInthiscontrollerstate,theshiftregisterbankintheInstruction  
RegisterparallelloadsapatternoffixedvaluesontherisingedgeofTCK.The  
lasttwosignificantbits arealways requiredtobe01.  
Shift-IR In this controller state, the instruction register gets connected  
betweenTDIandTDO,andthecapturedpatterngetsshiftedoneachrisingedge  
ofTCK.TheinstructionavailableontheTDIpinisalsoshiftedintotheinstruction  
register.  
Refer to the IEEE Standard Test Access Port Specification (IEEE Std.  
1149.1)forthefullstatediagram  
AllstatetransitionswithintheTAPcontrolleroccurattherisingedgeofthe  
TCLKpulse. TheTMSsignallevel(0or1)determines thestateprogression  
thatoccursoneachTCLKrisingedge.TheTAPcontrollertakesprecedence  
overthe Queue andmustbe resetafterpowerupofthe device. See TRST  
descriptionformoredetailsonTAPcontrollerreset.  
Exit1-IRThisisacontrollerstatewhereadecisiontoentereitherthePause-  
IRstateorUpdate-IRstateismade.  
Pause-IRThis state is providedinordertoallowthe shiftingofinstruction  
registertobetemporarilyhalted.  
Exit2-DRThisisacontrollerstatewhereadecisiontoentereithertheShift-  
IRstateorUpdate-IRstateismade.  
Update-IRInthiscontrollerstate,theinstructionintheinstructionregisteris  
latchedintothelatchbankoftheInstructionRegisteroneveryfallingedgeof  
TCK.Thisinstructionalsobecomesthecurrentinstructiononceitislatched.  
Capture-DRInthiscontrollerstate,thedataisparallelloadedintothedata  
registersselectedbythecurrentinstructionontherisingedgeofTCK.  
Shift-DR, Exit1-DR, Pause-DR, Exit2-DR and Update-DR These  
controllerstates are similartothe Shift-IR, Exit1-IR, Pause-IR, Exit2-IRand  
Update-IRstatesintheInstructionpath.  
Test-Logic-ResetAlltestlogicisdisabledinthiscontrollerstateenabling  
thenormaloperationoftheIC.TheTAPcontrollerstatemachineisdesigned  
insuchawaythat,nomatterwhattheinitialstateofthecontrolleris,theTest-  
Logic-ResetstatecanbeenteredbyholdingTMSathighandpulsingTCKfive  
times. This is the reasonwhythe TestReset(TRST)pinis optional.  
Run-Test-IdleInthiscontrollerstate,thetestlogicintheICisactiveonlyif  
certaininstructionsarepresent.Forexample,ifaninstructionactivatestheself  
test,thenitwillbeexecutedwhenthecontrollerentersthisstate.Thetestlogic  
intheICis idles otherwise.  
Select-DR-ScanThis is a controllerstate where the decisiontoenterthe  
DataPathortheSelect-IR-Scanstateismade.  
Select-IR-Scan This is a controller state where the decision to enter the  
InstructionPathismade.TheControllercanreturntotheTest-Logic-Resetstate  
otherwise.  
52  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
THE INSTRUCTION REGISTER  
JTAG INSTRUCTION REGISTER  
TheInstructionregisterallowsinstructiontobeseriallyinputintothedevice  
whentheTAPcontrollerisintheShift-IRstate. Theinstructionisdecodedto  
performthefollowing:  
TheInstructionregisterallowsaninstructiontobeshiftedinseriallyintothe  
processor at the rising edge of TCLK.  
TheInstructionis usedtoselectthetesttobeperformed,orthetestdata  
registertobeaccessed,orboth. Theinstructionshiftedintotheregisterislatched  
atthecompletionoftheshiftingprocesswhentheTAPcontrollerisatUpdate-  
IRstate.  
Theinstructionregistermustcontain4bitinstructionregister-basedcells  
whichcanholdinstructiondata. Thesemandatorycellsarelocatednearestthe  
serialoutputstheyaretheleastsignificantbits.  
Selecttestdataregistersthatmayoperatewhiletheinstructionis  
current. Theothertestdataregistersshouldnotinterferewithchip  
operationandtheselecteddataregister.  
Definetheserialtestdataregisterpaththatisusedtoshiftdatabetween  
TDI and TDO during data register scanning.  
The Instruction Register is a 4 bit field (i.e. IR3, IR2, IR1, IR0) to decode  
16differentpossibleinstructions. Instructionsaredecodedasfollows.  
TESTDATAREGISTER  
Hex  
Value  
00  
01  
02  
Instruction  
Function  
TheTestDataregistercontainsthreetestdataregisters:theBypass,the  
Boundary Scan register and Device ID register.  
Theseregistersareconnectedinparallelbetweenacommonserialinput  
andacommonserialdataoutput.  
Thefollowingsectionsprovideabriefdescriptionofeachelement. Fora  
completedescription,refertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
EXTEST  
SAMPLE/PRELOAD  
IDCODE  
HIGH-IMPEDANCE  
BYPASS  
SelectBoundaryScanRegister  
SelectBoundaryScanRegister  
SelectChipIdentificationdataregister  
JTAG  
04  
0F  
SelectBypassRegister  
JTAG INSTRUCTION REGISTER DECODING  
TEST BYPASS REGISTER  
Thefollowingsectionsprovideabriefdescriptionofeachinstruction. For  
acompletedescriptionrefertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
TheregisterisusedtoallowtestdatatoflowthroughthedevicefromTDI  
toTDO. Itcontainsasinglestageshiftregisterforaminimumlengthinserialpath.  
Whenthebypassregisterisselectedbyaninstruction,theshiftregisterstage  
is settoa logiczeroonthe risingedge ofTCLKwhenthe TAPcontrolleris in  
theCapture-DRstate.  
EXTEST  
TherequiredEXTESTinstructionplacestheICintoanexternalboundary-  
testmodeandselectstheboundary-scanregistertobeconnectedbetweenTDI  
andTDO.Duringthisinstruction,theboundary-scanregisterisaccessedto  
drivetestdataoff-chipviatheboundaryoutputsandreceivetestdataoff-chip  
viatheboundaryinputs.Assuch,theEXTESTinstructionistheworkhorseof  
IEEE.Std1149.1,providingforprobe-lesstestingofsolder-jointopens/shorts  
andoflogicclusterfunction.  
The operation of the bypass register should not have any effect on the  
operationofthedeviceinresponsetotheBYPASSinstruction.  
THE BOUNDARY-SCAN REGISTER  
TheBoundaryScanRegisterallowsserialdataTDIbeloadedintoorread  
outoftheprocessorinput/outputports. TheBoundaryScanRegisterisapart  
oftheIEEE1149.1-1990StandardJTAGImplementation.  
IDCODE  
THE DEVICE IDENTIFICATION REGISTER  
TheoptionalIDCODEinstructionallowstheICtoremaininitsfunctionalmode  
andselectstheoptionaldeviceidentificationregistertobeconnectedbetween  
TDI and TDO. The device identification register is a 32-bit shift register  
containinginformationregardingtheICmanufacturer,devicetype,andversion  
code.Accessingthedeviceidentificationregisterdoesnotinterferewiththe  
operationoftheIC.Also,accesstothedeviceidentificationregistershouldbe  
immediatelyavailable,viaaTAPdata-scanoperation,afterpower-upofthe  
ICoraftertheTAPhasbeenresetusingtheoptionalTRSTpinorbyotherwise  
movingtotheTest-Logic-Resetstate.  
The Device IdentificationRegisteris a ReadOnly32-bitregisterusedto  
specify the manufacturer, part number and version of the processor to be  
determinedthroughtheTAPinresponsetotheIDCODEinstruction.  
IDT JEDEC ID number is 0xB3. This translates to 0x33 when the parity  
is droppedinthe11-bitManufacturerIDfield.  
FortheIDT72V51236/72V51246/72V51256,thePartNumberfieldcon-  
tainsthefollowingvalues:  
Device  
Part# Field (HEX)  
0x41B  
IDT72V51236  
IDT72V51246  
IDT72V51256  
SAMPLE/PRELOAD  
0x41C  
0x41D  
TherequiredSAMPLE/PRELOADinstructionallowstheICtoremainina  
normalfunctionalmodeandselectstheboundary-scanregistertobeconnected  
betweenTDIandTDO.Duringthisinstruction,theboundary-scanregistercan  
beaccessedviaadatescanoperation,totakeasampleofthefunctionaldata  
enteringandleavingtheIC.This instructionis alsousedtopreloadtestdata  
intotheboundary-scanregisterbeforeloadinganEXTESTinstruction.  
31(MSB)  
28 27  
12 11  
1 0(LSB)  
Version (4 bits) Part Number (16-bit) Manufacturer ID (11-bit)  
0X0  
0X33  
1
JTAG DEVICE IDENTIFICATION REGISTER  
53  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
HIGH-IMPEDANCE  
TheoptionalHigh-Impedanceinstructionsetsalloutputs(includingtwo-state  
BYPASS  
The required BYPASS instruction allows the IC to remain in a normal  
aswellasthree-statetypes)ofanICtoadisabled(high-impedance)stateand functional mode and selects the one-bit bypass register to be connected  
selects the one-bit bypass register to be connected between TDI and TDO. between TDI and TDO. The BYPASS instruction allows serial data to be  
Duringthisinstruction,datacanbeshiftedthroughthebypassregisterfromTDI transferredthroughtheICfromTDItoTDOwithoutaffectingtheoperationof  
toTDOwithoutaffectingtheconditionoftheICoutputs.  
theIC.  
54  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
tTCK  
t4  
t1  
t2  
TCK  
t3  
TDI/  
TMS  
tDS  
tDH  
TDO  
TDO  
tDO  
t6  
TRST  
5937 drw36  
Notes to diagram:  
t1 = tTCKLOW  
t2 = tTCKHIGH  
t5  
t3 = tTCKFALL  
t4 = tTCKRISE  
t5 = tRST (reset pulse width)  
t6 = tRSR (reset recovery)  
Figure 33. Standard JTAG Timing  
JTAG  
ACELECTRICALCHARACTERISTICS  
(vcc = 3.3V ± 5%; Tcase = 0°C to +85°C)  
Parameter  
Symbol  
Test  
Conditions Min. Max. Units  
SYSTEMINTERFACEPARAMETERS  
JTAGClockInputPeriod tTCK  
-
-
-
-
-
-
-
100  
40  
40  
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IDT72V51236  
IDT72V51246  
IDT72V51256  
JTAGClockHIGH  
JTAGClockLow  
tTCKHIGH  
tTCKLOW  
tTCKRISE  
tTCKFALL  
tRST  
-
Parameter  
Symbol Test Conditions Min. Max. Units  
JTAGClockRiseTime  
JTAGClockFallTime  
JTAGReset  
5(1)  
5(1)  
-
(1)  
DataOutput  
tDO  
-
20  
-
ns  
ns  
ns  
-
(1)  
DataOutputHold tDOH  
0
50  
50  
DataInput  
tDS  
tDH  
trise=3ns  
tfall=3ns  
10  
10  
-
-
JTAG Reset Recovery  
tRSR  
-
NOTE:  
1. 50pf loading on external output signals.  
NOTE:  
1. Guaranteed by design.  
55  
ORDERINGINFORMATION  
IDT  
XXXXX  
X
XX  
X
X
Process /  
Temperature  
Range  
Device Type  
Power  
Speed  
Package  
BLANK  
I(1)  
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
Plastic Ball Grid Array (PBGA, BB256-1)  
BB  
Clock Cycle Time (tCLK  
Speed in Nanoseconds  
)
6
7-5  
Commercial Only  
Commercial & Industrial  
L
Low Power  
72V51236 589,824 bits 3.3V Multi-Queue Flow-Control Device  
72V51346 1,179,648 bits 3.3V Multi-Queue Flow-Control Device  
72V51256 2,359,296 bits 3.3V Multi-Queue Flow-Control Device  
5937 drw37  
NOTE:  
1. Industrial temperature range product for the 7-5ns is available as a standard device. All other speed grades are available by special order.  
DATASHEETDOCUMENTHISTORY  
10/10/2001  
11/16/2001  
12/19/2001  
01/15/2002  
04/05/2002  
07/01/2002  
06/04/2003  
pgs. 1, 8, 11, 14, 15 and 28.  
pgs. 4, 11, 17, 22-26, 28-31, 33, 45 and 46.  
pgs. 12 and 29.  
pg. 50.  
pgs. 7, 8, 10, 11, 14, 47 and 52.  
pgs. 2 and 29.  
pgs. 1 through 56.  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
408-360-1533  
email:Flow-Controlhelp@idt.com  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
56  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY