70V05L15JGI [IDT]

Dual-Port SRAM, 8KX8, 15ns, CMOS, PQCC68, 0.950 X 0.950 INCH, 0.170 INCH HEIGHT, GREEN, PLASTIC, LCC-68;
70V05L15JGI
型号: 70V05L15JGI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Dual-Port SRAM, 8KX8, 15ns, CMOS, PQCC68, 0.950 X 0.950 INCH, 0.170 INCH HEIGHT, GREEN, PLASTIC, LCC-68

静态存储器 内存集成电路
文件: 总22页 (文件大小:156K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IDT70V05S/L  
HIGH-SPEED 3.3V  
8K x 8 DUAL-PORT  
STATIC RAM  
Features  
True Dual-Ported memory cells which allow simultaneous  
reads of the same memory location  
High-speed access  
one device  
M/S = VIH for BUSY output flag on Master  
M/S = VIL for BUSY input on Slave  
Interrupt Flag  
On-chip port arbitration logic  
Commercial: 15/20/25/35/55ns (max.)  
Industrial:20ns (max.)  
Low-power operation  
Full on-chip hardware support of semaphore signaling  
between ports  
IDT70V05S  
Active:400mW(typ.)  
Standby: 3.3mW (typ.)  
IDT70V05L  
Fully asynchronous operation from either port  
TTL-compatible, single 3.3V (±0.3V) power supply  
Available in 68-pin PGA and PLCC, and a 64-pin TQFP  
Industrial temperature range (-40°C to +85°C) is available  
for selected speeds  
Active:380mW(typ.)  
Standby: 660µW (typ.)  
IDT70V05 easily expands data bus width to 16 bits or more  
using the Master/Slave select when cascading more than  
Green parts available, see ordering information  
Functional Block Diagram  
OEL  
OER  
CE  
L
CE  
R/W  
R
R/W  
L
R
,
I/O0L- I/O7L  
I/O0R-I/O7R  
I/O  
Control  
I/O  
Control  
(1,2)  
L
(1,2)  
R
BUSY  
BUSY  
A
12L  
A
12R  
0R  
Address  
Decoder  
MEMORY  
ARRAY  
Address  
Decoder  
A
0L  
A
13  
13  
ARBITRATION  
INTERRUPT  
SEMAPHORE  
LOGIC  
CE  
OE  
L
L
CE  
OE  
R/W  
R
R
R
R/W  
L
SEM  
L
SEM  
R
M/S  
(2)  
(2)  
INTL  
INTR  
2942 drw 01  
NOTES:  
1. (MASTER): BUSY is output; (SLAVE): BUSY is input.  
2. BUSY outputs and INT outputs are non-tri-stated push-pull.  
OCTOBER 2008  
1
DSC 2941/9  
©2008IntegratedDeviceTechnology,Inc.  
IDT70V05S/L  
High-Speed 3.3V 8K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Description  
reads or writes to any location in memory. An automatic power down  
featurecontrolledbyCEpermitstheon-chipcircuitryofeachporttoenter  
a very low standby power mode.  
FabricatedusingIDT’sCMOShigh-performancetechnology,these  
devices typicallyoperate ononly400mWofpower.  
The IDT70V05 is a high-speed 8K x 8 Dual-Port Static RAM. The  
IDT70V05 is designed to be used as a stand-alone 64K-bit Dual-Port  
SRAMorasacombinationMASTER/SLAVEDual-PortSRAMfor16-bit-  
or-morewordsystems. UsingtheIDTMASTER/SLAVEDual-PortSRAM  
approach in 16-bit or wider memory system applications results in full-  
speed,error-freeoperationwithouttheneedforadditionaldiscretelogic.  
This device provides two independent ports with separate control,  
address,andI/Opinsthatpermitindependent,asynchronousaccessfor  
The IDT70V05 is packaged in a ceramic 68-pin PGA and PLCC  
and a 64-pin thin quad flatpack (TQFP).  
Pin Configurations(1,2,3)  
12/03/01  
INDEX  
9
8
7
6
5
4
3
2
1
68 67 66 65 64 63 62 61  
60  
I/O2L  
I/O3L  
I/O4L  
I/O5L  
A
A
A
A
A
A
INT  
BUSY  
V
M/S  
BUSY  
INT  
A
A
A
A
A
5L  
4L  
3L  
2L  
1L  
0L  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
59  
58  
57  
56  
55  
VSS  
I/O6L  
I/O7L  
IDT70V05J  
J68-1(4)  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
L
VDD  
L
68-Pin PLCC  
Top View(5)  
VSS  
SS  
I/O0R  
I/O1R 20  
I/O2R  
,
R
R
21  
22  
23  
24  
25  
26  
VDD  
0R  
I/O3R  
I/O4R  
I/O5R  
I/O6R  
1R  
2R  
3R  
4R  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
2941 drw 02  
12/03/01  
INDEX  
A
A
A
A
A
4L  
3L  
2L  
1L  
0L  
1
2
3
4
5
6
48  
47  
46  
I/O2L  
I/O3L  
I/O4L  
I/O5L  
45  
44  
43  
42  
41  
V
SS  
INT  
L
,
70V05PF  
PN-64(4)  
I/O6L  
I/O7L  
BUSY  
L
7
8
9
VDD  
V
SS  
64-Pin TQFP  
Top View(5)  
VSS  
M/S  
40  
39  
38  
37  
10  
11  
12  
BUSY  
R
I/O0R  
I/O1R  
I/O2R  
INT  
R
A
A
A
A
A
0R  
VDD  
13  
14  
15  
16  
1R  
2R  
3R  
4R  
36  
35  
34  
33  
I/O3R  
I/O4R  
I/O5R  
NOTES:  
1. All VCC pins must be connected to power supply.  
2. All GND pins must be connected to ground supply.  
3. J68-1 package body is approximately .95 in x .95 in x .17 in.  
PN64 package body is approximately 14mm x 14mm x 1.4mm.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate oriention of the actual part-marking  
2941 drw 03  
6.42  
2
IDT70V05S/L  
High-Speed 3.3V 8K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Pin Configurations(1,2,3) (con't.)  
12/03/01  
51  
50  
48  
A
46  
A
44  
BUSY  
42  
M/S  
40  
INT  
38  
36  
11  
10  
09  
08  
07  
06  
05  
04  
03  
02  
01  
A4L  
2L  
1L  
0L  
A1R  
A3R  
L
R
A
5L  
53  
A
52  
49  
47  
A
45  
INT  
43  
41  
BUSYR  
39  
37  
35  
34  
L
V
SS  
A4R  
7L  
A3L  
A0R  
A2R  
A
5R  
6R  
A
6L  
55  
A
54  
32  
33  
A
A7R  
9L  
A
8L  
57  
A
56  
A
30  
31  
A9R  
A
8R  
11L  
10L  
12L  
59  
58  
A
28  
29  
A
A
11R  
10R  
12R  
V
DD  
IDT70V05G  
G68-1(4)  
61  
60  
26  
27  
A
V
SS  
N/C  
63  
SEM  
N/C  
62  
68-Pin PGA  
Top View(5)  
24  
N/C  
25  
N/C  
L
CE  
L
65  
OE  
64  
22  
SEM  
23  
R
CER  
L
R/W  
66  
L
67  
I/O0L  
20  
OE  
21  
R
R/W  
R
N/C  
1
3
5
7
I/O7L  
9
68  
I/O1L  
11  
13  
V
15  
18  
I/O7R  
19  
N/C  
VSS  
V
SS  
DD  
I/O4L  
I/O2L  
I/O1R  
I/O4R  
2
4
6
8
10  
12  
14  
16  
17  
I/O5L  
I/O0R I/O2R I/O3R I/O5R I/O6R  
V
DD  
I/O6L  
I/O3L  
A
B
C
D
E
F
G
H
J
K
L
INDEX  
NOTES:  
2941 drw 04  
1. All VCC pins must be connected to power supply.  
2. All GND pins must be connected to ground supply.  
3. Package body is approximately 1.18 in x 1.18 in x .16 in.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate oriention of the actual part-marking.  
PinNames  
Left Port  
Right Port  
Names  
Chip Enable  
CE  
R/W  
OE  
L
CE  
R/W  
OE  
R
L
R
Read/Write Enable  
Output Enable  
Address  
L
R
A
0L  
- A12  
L
A
0R  
- A12  
R
I/O  
SEM  
INT  
BUSY  
0
L
- I/O  
7L  
I/O  
SEM  
INT  
BUSY  
M/S  
0
R
- I/O  
7R  
Data Input/Output  
Semaphore Enable  
Interrupt Flag  
L
R
L
R
Busy Flag  
L
R
Master or Slave Select  
Power (3.3v)  
V
V
DD  
SS  
Ground (0v)  
2941 tbl 00  
6.42  
3
IDT70V05S/L  
High-Speed 3.3V 8K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table I: Non-Contention Read/Write Control  
Inputs(1)  
R/W  
Outputs  
I/O0-7  
Mode  
CE  
H
L
OE  
X
SEM  
H
X
L
High-Z  
DATAIN  
DATAOUT  
High-Z  
Deselected: Power-Down  
Write to Memory  
X
H
L
H
X
L
H
Read Memory  
X
H
X
Outputs Disabled  
2941 tbl 02  
NOTE:  
1. A0L A12LA0R A12R  
Truth Table II: Semaphore Read/Write Control(1)  
Inputs(1)  
R/W  
Outputs  
I/O0-7  
Mode  
CE  
H
OE  
L
SEM  
H
X
L
L
L
DATAOUT  
Read Data in Semaphore Flag  
Writ I/O into Semaphore Flag  
Not Allowed  
H
X
DATAIN  
e
0
____  
L
X
2941 tbl 03  
NOTE:  
1. There are eight semaphore flags written to via I/O0 and read from I/O0 -I/O7. These eight semaphores are addressed by A0-A2.  
6.42  
4
IDT70V05S/L  
High-Speed 3.3V 8K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AbsoluteMaximumRatings(1)  
MaximumOperatingTemperature  
andSupplyVoltage(1)  
Symbol  
Rating  
Commercial  
& Industrial  
Unit  
Grade  
Commercial  
Industrial  
Ambient Temperature  
GND  
VDD  
(2)  
V
TERM  
Terminal Voltage  
with Respect  
to GND  
-0.5 to +4.6  
V
0OC to +70OC  
0V  
3.3V  
3.3V  
+
0.3V  
-40OC to +85OC  
0V  
+
0.3V  
Temperature  
Under Bias  
-55 to +125  
-65 to +150  
50  
oC  
oC  
T
BIAS  
2941 tbl 05  
NOTE:  
1. This is the parameter TA. This is the "instant on" case temperature.  
Storage  
Temperature  
TSTG  
DC Output  
Current  
mA  
IOUT  
2941 tbl 04  
NOTES:  
RecommendedDCOperating  
Conditions  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may  
cause permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in  
the operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect reliability.  
2. VTERM must not exceed VDD + 0.3V.  
Symbol  
Parameter  
Supply Voltage  
Ground  
Min.  
Typ.  
Max.  
Unit  
V
V
V
DD  
SS  
3.0  
3.3  
3.6  
0
0
0
V
DD+0.3(2)  
0.8  
V
____  
V
IH  
IL  
Input High Voltage  
Input Low Voltage  
2.0  
V
-0.5(1)  
V
____  
V
Capacitance(TA = +25°C, f = 1.0MHz)  
2941 tbl 06  
NOTES:  
Symbol  
Parameter(1)  
Input Capacitance  
Output Capacitance  
Conditions  
IN = 3dV  
OUT = 3dV  
Max. Unit  
1. VIL> -1.5V for pulse width less than 10ns.  
2. VTERM must not exceed VDD +0.3V.  
C
IN  
V
9
pF  
COUT  
V
10  
pF  
2941 tbl 07  
NOTES:  
1. This parameter is determined by device characterization but is not production  
tested.  
2. 3dV references the interpolated capacitznce when the input and output signals  
switch from 0V to 3V or from 3V to 0V.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VDD = 3.3V ± 0.3V)  
70V05S  
70V05L  
Symbol  
|ILI  
|ILO  
Parameter  
Input Leakage Current(1)  
Output Leakage Current  
Output Low Voltage  
Test Conditions  
DD = 3.6V, VIN = 0V to VDD  
OUT = 0V to VDD  
Min.  
Max.  
10  
Min.  
Max.  
Unit  
µA  
µA  
V
___  
___  
|
V
V
5
5
___  
___  
___  
___  
|
10  
V
OL  
OH  
I
OL = +4mA  
0.4  
0.4  
___  
___  
V
Output High Voltage  
I
OH = -4mA  
2.4  
2.4  
V
2941 tbl 08  
NOTE:  
1. At VDD < 2.0V input leakages are undefined.  
6.42  
5
IDT70V05S/L  
High-Speed 3.3V 8K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1) (VDD = 3.3V ± 0.3V)  
70V05X15  
70V05X20  
70V05X25  
Com'l Only  
Com'l Only  
Com'l  
& Ind  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
IDD  
Dynamic Operating  
Current  
(Both Ports Active)  
S
L
150  
140  
215  
185  
140  
130  
200  
175  
130  
125  
190  
165  
mA  
CE = VIL, Outputs Disabled  
SEM = VIH  
(3)  
f = fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
IND  
S
L
140  
130  
225  
195  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
ISB1  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
IND  
S
L
25  
20  
35  
30  
20  
15  
30  
25  
16  
13  
30  
25  
CE  
SEM  
f = fMAX  
R
= CE  
L
= VIH  
= VIH  
R
= SEM  
L
(3)  
____  
____  
____  
____  
____  
____  
____  
____  
S
L
20  
15  
45  
40  
ISB2  
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
IND  
S
L
85  
80  
120  
110  
80  
75  
110  
100  
75  
72  
110  
95  
CEL  
or CE  
R
= VIH  
Active Port Outputs Disabled,  
(3)  
f=fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
S
L
80  
75  
130  
115  
ISB3  
Full Standby Current  
(Both Ports -  
CMOS Level Inputs)  
Both Ports CE  
CE > VDD - 0.2V,  
IN > VDD - 0.2V or  
IN < 0.2V, f = 0(4)  
= SEM > VDD - 0.2V  
L
and  
COM'L  
IND  
S
L
1.0  
0.2  
5
2.5  
1.0  
0.2  
5
2.5  
1.0  
0.2  
5
2.5  
R
V
V
SEM  
____  
____  
____  
____  
____  
____  
____  
____  
S
L
1.0  
0.2  
15  
5
R
L
ISB4  
Full Standby Current  
(One Port -  
CMOS Level Inputs)  
One Port CEL or  
R
COM'L  
IND  
S
L
85  
80  
125  
105  
80  
75  
115  
100  
75  
70  
105  
90  
CE > VDD - 0.2V  
SEM = SEM > VDD - 0.2V  
R
L
____  
____  
____  
____  
S
L
80  
75  
130  
115  
V
IN > VDD - 0.2V or VIN < 0.2V  
____  
____  
____  
____  
Active Port Outputs Disabled,  
(3)  
f = fMAX  
2941 tbl 09a  
70V05X35  
Com'l Only  
70V05X55  
Com'l Only  
Symbol  
Parameter  
Test Condition  
Version  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
I
DD  
Dynamic Operating  
Current  
COM'L  
S
120  
115  
180  
155  
120  
115  
180  
155  
mA  
CE = VIL, Outputs Disabled  
SEM = VIH  
L
(3)  
(Both Ports Active)  
f = fMAX  
IND  
S
L
120  
115  
200  
170  
120  
115  
200  
170  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
ISB1  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
IND  
S
L
13  
11  
25  
20  
13  
11  
25  
20  
CE  
SEM  
f = fMAX  
R
= CE  
L
= VIH  
R
= SEM  
L
= VIH  
(3)  
S
L
13  
11  
40  
35  
13  
11  
40  
35  
ISB2  
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
IND  
S
L
70  
65  
100  
90  
70  
65  
100  
90  
CEL  
or CE  
R
= VIH  
Active Port Outputs Disabled,  
(3)  
f=fMAX  
S
L
70  
65  
120  
105  
70  
65  
120  
105  
ISB3  
Full Standby Current  
(Both Ports -  
CMOS Level Inputs)  
Both Ports CE  
CE > VDD - 0.2V,  
IN > VDD - 0.2V or  
IN < 0.2V, f = 0(4)  
= SEM > VDD - 0.2V  
L
and  
COM'L  
IND  
S
L
1.0  
0.2  
5
2.5  
1.0  
0.2  
5
2.5  
R
V
V
SEM  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
R
L
ISB4  
Full Standby Current  
(One Port -  
CMOS Level Inputs)  
One Port CEL or  
COM'L  
IND  
S
L
65  
60  
100  
85  
65  
60  
100  
85  
CE > VDD - 0.2V  
R
SEM = SEM > VDD - 0.2V  
R
L
S
L
65  
60  
115  
100  
65  
60  
115  
100  
V
IN > VDD - 0.2V or VIN < 0.2V  
Active Port Outputs Disabled,  
(3)  
f = fMAX  
2941 tbl 09b  
NOTES:  
1. X” in part number indicates power rating (S or L)  
2. VDD = 3.3V, TA = +25°C, and are not production tested. IDD DC = 115mA (Typ.)  
3. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tRC, and using AC Test Conditions” of input levels of  
GND to 3V.  
4. f = 0 means no address or control lines change.  
6.42  
6
IDT70V05S/L  
High-Speed 3.3V 8K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
3.3V  
3.3V  
AC Test Conditions  
Input Pulse Levels  
GND to 3.0V  
590  
590Ω  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
3ns Max.  
1.5V  
DATAOUT  
BUSY  
INT  
DATAOUT  
5pF*  
435Ω  
1.5V  
30pF  
435Ω  
Figures 1 and 2  
2941 drw 05  
2941 tbl 10  
Figure 2. Output Test Load  
*Including scope and jig.  
(For tLZ, tHZ, tWZ, tOW)  
Figure 1. AC Output Test Load  
Timing of Power-Up Power-Down  
CE  
tPU  
tPD  
I
CC  
50%  
50%  
I
SB  
2941 drw 06  
6.42  
7
IDT70V05S/L  
High-Speed 3.3V 8K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(4)  
70V05X15  
70V05X20  
70V05X25  
Com'l Only  
Com'l  
& Ind  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
t
RC  
AA  
ACE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
SAA  
Read Cycle Time  
15  
20  
25  
ns  
ns  
ns  
____  
____  
____  
t
Address Access Time  
15  
15  
20  
20  
25  
25  
____  
____  
____  
____  
____  
____  
Chip Enable Access Time(3)  
t
Output Enable Access Time(3)  
t
10  
12  
13  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
t
Output Hold from Address Change  
3
3
3
____  
____  
____  
Output Low-Z Time(1,2)  
t
3
3
3
____  
____  
____  
Output High-Z Time(1,2)  
t
10  
12  
15  
____  
____  
____  
Chip Enable to Power Up Time(1,2)  
t
0
0
0
____  
____  
____  
Chip Disable to Power Down Time(1,2)  
t
15  
20  
25  
____  
____  
____  
t
Semaphore Flag Update Pulse (OE or SEM)  
10  
10  
10  
____  
____  
____  
Semaphore Address Access(3)  
t
15  
20  
25  
ns  
2941 tbl 11a  
70V05X35  
Com'l Only  
70V05X55  
Com'l Only  
Symbol  
READ CYCLE  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
t
RC  
AA  
ACE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
SAA  
Read Cycle Time  
35  
55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
t
Address Access Time  
35  
35  
55  
55  
Chip Enable Access Time(3)  
Output Enable Access Time(3)  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
____  
____  
____  
____  
t
t
20  
30  
____  
____  
t
3
3
____  
____  
t
3
3
Output High-Z Time(1,2)  
15  
25  
____  
____  
t
t
Chip Enable to Power Up Time(1,2)  
Chip Disable to Power Down Time(1,2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access(3)  
0
0
____  
____  
____  
____  
t
35  
50  
____  
____  
t
15  
15  
____  
____  
t
35  
55  
ns  
2941 tbl 11b  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is determined by device characterization but is not production tested.  
3. To access SRAM, CE = VIL, SEM = VIH.  
4. 'X' in part number indicates power rating (S or L).  
6.42  
8
IDT70V05S/L  
High-Speed 3.3V 8K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Read Cycles(5)  
NOTES:  
1. Timing depends on which signal is asserted last, OE or CE.  
2. Timing depends on which signal is de-asserted first CE or OE.  
3. tBDD delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY has no  
relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
6.42  
9
IDT70V05S/L  
High-Speed 3.3V 8K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage(5)  
70V05X20  
Com'l  
& Ind  
70V05X15  
Com'l Only  
70V05X25  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
15  
12  
12  
0
20  
15  
15  
0
25  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
t
t
t
12  
0
15  
0
20  
0
t
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
t
10  
15  
15  
____  
____  
____  
t
10  
12  
15  
____  
____  
____  
t
0
0
0
(1,2)  
____  
____  
____  
t
Write Enable to Output in High-Z  
Output Active from End-of-Write(1,2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
10  
12  
15  
____  
____  
____  
t
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
t
t
ns  
2941 tbl 12a  
70V05X35  
Com'l Only  
70V05X55  
Com'l Only  
Symbol  
WRITE CYCLE  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
35  
30  
30  
0
55  
45  
45  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
t
t
t
25  
0
40  
0
t
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
t
15  
30  
____  
____  
t
15  
25  
____  
____  
t
0
0
(1,2)  
____  
____  
t
Write Enable to Output in High-Z  
15  
25  
t
Output Active from End-of-Write(1,2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
t
t
ns  
2941 tbl 12b  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is determined by device characterization but is not production tested.  
3. To access SRAM, CE = VIL, SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time.  
4. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH and tOW values will vary over voltage and  
temperature, the actual tDH will always be smaller than the actual tOW.  
5. X” in part number indicates power rating (S or L).  
6.42  
10  
IDT70V05S/L  
High-Speed 3.3V 8K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,3,5,8)  
tWC  
ADDRESS  
(7)  
tHZ  
OE  
tAW  
(9)  
or  
CE  
SEM  
(3)  
WR  
(2)  
(6)  
t
tAS  
tWP  
R/W  
(7)  
tWZ  
tOW  
(4)  
(4)  
DATAOUT  
DATAIN  
tDW  
tDH  
2941 drw 08  
Timing Waveform of Write Cycle No. 2, CE Controlled Timing(1,3,5,8)  
tWC  
ADDRESS  
tAW  
CE or SEM(9)  
R/W  
(6)  
AS  
(2)  
(3)  
tWR  
t
tEW  
tDW  
tDH  
DATAIN  
2941 drw 09  
NOTES:  
1. R/W or CE must be HIGH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a LOW CE and a LOW R/W for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH to the end of write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the High-impedance state.  
6. Timing depends on which enable signal is asserted last, CE, or R/W.  
7. Timing depends on which enable signal is de-asserted first, CE, or R/W.  
8. If OE is LOW during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be placed on the  
bus for the required tDW. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified tWP.  
9. To access RAM, CE = VIL and SEM = VIN. To access Semaphore, CE = VIH and SEM = VIL. tEW must be met for either condition.  
6.42  
11  
IDT70V05S/L  
High-Speed 3.3V 8K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
tSAA  
tOH  
A0-A2  
VALID ADDRESS  
VALID ADDRESS  
tAW  
tWR  
tACE  
tEW  
SEM  
tDW  
tSOP  
OUT  
DATA  
DATA  
0
DATAIN VALID  
VALID(2)  
tAS  
tWP  
tDH  
R/W  
tSWRD  
tAOE  
OE  
tSOP  
Write Cycle  
Read Cycle  
2941 drw 10  
NOTE:  
1. CE = VIH for the duration of the above timing (both write and read cycle).  
2. DATAOUT VALID” represents all I/O's (I/O0-I/O7) equal to the semaphore value.  
Timing Waveform of Semaphore Write Contention(1,3,4)  
A0"A"-A2"A"  
MATCH  
SIDE(2) "A"  
R/W"A"  
SEM"A"  
tSPS  
A0"B"-A2"B"  
MATCH  
SIDE(2)  
"B"  
R/W"B"  
SEM"B"  
2941 drw 11  
NOTES:  
1. DOR = DOL = VIL, CER = CEL = VIH, Semaphore Flag is released from both sides (reads as ones from both sides) at cycle start.  
2. A” may be either left or right port. B” is the opposite port from A”.  
3. This parameter is measured from R/WA” or SEMA” going HIGH to R/WB” or SEMB” going HIGH.  
4. If tSPS is not satisfied, the semaphore will fall positively to one side or the other, but there is no guarantee which side will obtain the flag.  
6.42  
12  
IDT70V05S/L  
High-Speed 3.3V 8K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(6)  
70V05X15  
Com'l Ony  
70V05X20  
Com'l  
& Ind  
70V05X25  
Com'l Only  
Symbol  
BUSY TIMING (M/S = VIH  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
)
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
15  
15  
15  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable LOW  
BUSY Disable Time from Chip Enable HIGH  
Arbitration Priority Set-up Time(2)  
t
t
t
15  
17  
17  
____  
____  
____  
t
5
5
5
____  
____  
____  
BUSY Disable to Valid Data(3)  
t
18  
30  
30  
t
Write Hold After BUSY(5)  
12  
15  
17  
____  
____  
____  
BUSY TIMING (M/S = VIL  
)
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
Write Hold After BUSY(5)  
t
WB  
0
0
0
ns  
ns  
tWH  
12  
15  
17  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
____  
____  
t
WDD  
Write Pulse to Data Delay(1)  
30  
25  
45  
35  
50  
35  
ns  
tDDD  
Write Data Valid to Read Data Delay(1)  
ns  
2941 tbl 13a  
70V05X35  
Com'l Only  
70V05X55  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
BUSY TIMING (M/S = VIH  
)
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
20  
20  
20  
45  
40  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
t
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable LOW  
BUSY Disable Time from Chip Enable HIGH  
Arbitration Priority Set-up Time(2)  
t
t
20  
35  
____  
____  
t
5
5
____  
____  
BUSY Disable to Valid Data(3)  
t
35  
40  
t
Write Hold After BUSY(5)  
25  
25  
____  
____  
BUSY TIMING (M/S = VIL  
)
____  
____  
____  
____  
BUSY Input to Write(4)  
Write Hold After BUSY(5)  
t
WB  
0
0
ns  
ns  
tWH  
25  
25  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
t
WDD  
Write Pulse to Data Delay(1)  
60  
45  
80  
65  
ns  
tDDD  
Write Data Valid to Read Data Delay(1)  
ns  
2941 tbl 13b  
NOTES:  
1. Port-to-port delay through SRAM cells from writing port to reading port, refer to Timing Waveform of Read With BUSY (M/S = VIH)” or Timing Waveform of Write With Port-  
To-Port Delay (M/S = VIL).  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0, tWDD – tWP (actual) or tDDD – tDW (actual).  
4. To ensure that the write cycle is inhibited during contention.  
5. To ensure that a write cycle is completed after contention.  
6. 'X' is part number indicates power rating (S or L).  
6.42  
13  
IDT70V05S/L  
High-Speed 3.3V 8K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
TimingWaveformof WritewithPort-to-PortReadwithBUSY(2,4,5)(M/S=VIH)  
tWC  
MATCH  
ADDR"A"  
R/W"A"  
tWP  
tDW  
tDH  
VALID  
DATAIN "A"  
(1)  
tAPS  
MATCH  
ADDR"B"  
tBDA  
tBDD  
tBAA  
BUSY"B"  
tWDD  
DATAOUT "B"  
VALID  
(3)  
tDDD  
2941 drw 12  
NOTES:  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S = VIL (SLAVE).  
2. CEL = CER = VIL.  
3. OE = VIL for the reading port.  
4. If M/S = VIL (SLAVE) then BUSY is input. For this example, BUSYA” = VIH and BUSYB” input is shown above.  
5. All timing is the same for left and right ports. Port A” may be either left or right port. Port B” is the port opposite from Port A”.  
6.42  
14  
IDT70V05S/L  
High-Speed 3.3V 8K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write with BUSY  
tWP  
R/W"A"  
(3)  
tWB  
BUSY"B"  
(1)  
tWH  
(2)  
R/W"B"  
2941 drw 13  
NOTES:  
1. tWH must be met for both BUSY input (slave) and output (master).  
2. BUSY is asserted on port B” Blocking R/WB”, until BUSYB” goes HIGH.  
3. tWB is only for the slave version.  
Waveform of BUSY Arbitration Controlled by CE Timing(1) (M/S = VIH)  
ADDR"A"  
ADDRESSES MATCH  
and "B"  
CE"A"  
(2)  
tAPS  
CE"B"  
tBAC  
tBDC  
BUSY"B"  
2941 drw 14  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(1) (M/S = VIH)  
ADDR"A"  
ADDR"B"  
BUSY"B"  
ADDRESS "N"  
(2)  
tAPS  
MATCHING ADDRESS "N"  
t
BAA  
tBDA  
2941 drw 15  
NOTES:  
1. All timing is the same for left and right ports. Port A” may be either the left or right port. Port B” is the port opposite from A”.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
6.42  
15  
IDT70V05S/L  
High-Speed 3.3V 8K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(1)  
70V05X15  
70V05X20  
70V05X25  
Com'l Only  
Com'l Only  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
0
ns  
ns  
ns  
t
0
0
0
____  
____  
____  
t
15  
15  
20  
20  
20  
20  
____  
____  
____  
t
Interrupt Reset Time  
ns  
2941 tbl 14a  
70V05X35  
Com'l Only  
70V05X55  
Com'l Only  
Symbol  
INTERRUPT TIMING  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
ns  
ns  
ns  
t
0
0
____  
____  
t
25  
25  
40  
40  
____  
____  
t
Interrupt Reset Time  
ns  
2941 tbl 14b  
NOTES:  
1. 'X' in part number indicates power rating (S or L).  
6.42  
16  
IDT70V05S/L  
High-Speed 3.3V 8K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing(1)  
tWC  
INTERRUPT SET ADDRESS(2)  
ADDR"A"  
CE"A"  
(3)  
(4)  
tWR  
tAS  
R/W"A"  
INT"B"  
(3)  
INS  
t
2941 drw 16  
tRC  
INTERRUPT CLEAR ADDRESS(2)  
ADDR"B"  
CE"B"  
(3)  
tAS  
OE"B"  
(3)  
INR  
t
INT"B"  
2941 drw 17  
NOTES:  
1. All timing is the same for left and right ports. Port A” may be either the left or right port. Port B” is the port opposite from A”.  
2. See Interrupt Truth Table III.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
6.42  
17  
IDT70V05S/L  
High-Speed 3.3V 8K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table III — Interrupt Flag(1)  
Left Port  
Right Port  
R/W  
L
L
A
12L-A0L  
1FFF  
X
R/W  
X
R
A
12R-A0R  
Function  
Set Right INT Flag  
H(3) Reset Right INT  
Flag  
CE  
L
L
OE  
X
L
INT  
X
L
CE  
R
OE  
R
INT  
R
X
X
X
L(2)  
R
X
X
X
X
X
L
L
1FFF  
1FFE  
X
R
X
X
X
X
L(3)  
L
L
X
X
X
Set Left INT  
L
Flag  
Flag  
X
L
L
1FFE  
H(2)  
X
X
X
Reset Left INT  
L
2941tbl 15  
NOTES:  
1. Assumes BUSYL = BUSYR = VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
Truth Table IV — Address BUSY  
Arbitration  
Inputs  
Outputs  
A
12L-A0L  
(1)  
(1)  
A
12R-A0R  
Function  
Normal  
Normal  
Normal  
CE  
L
CE  
X
R
BUSY  
L
BUSYR  
X
NO MATCH  
MATCH  
H
H
H
H
X
H
X
H
MATCH  
H
H
L
L
MATCH  
(2)  
(2)  
Write Inhibit(3)  
2941 tbl 16  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSYX outputs on the IDT70V05 are push  
pull, not open drain outputs. On slaves the BUSYX input internally inhibits writes.  
2. VIL if the inputs to the opposite port were stable prior to the address and enable inputs of this port. VIH if the inputs to the opposite port became stable after the address and  
enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs cannot be low simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving low regardless of actual logic level on the pin. Writes to the right port are internally ignored when  
BUSYR outputs are driving low regardless of actual logic level on the pin.  
Truth Table V — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0  
- D7  
Left  
D0  
- D7  
Right  
Status  
No Action  
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
0
0
1
1
0
1
1
1
0
1
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
2941 tbl 17  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT70V05.  
2. There are eight semaphore flags written to via I/O0 and read from all I/O's (I/O0-I/O7). These eight semaphores are addressed by A0-A2.  
3. CE = VIH, SEM = VIL to access the semaphores. Refer to the Semaphore Read/Write Control Truth Table.  
6.42  
18  
IDT70V05S/L  
High-Speed 3.3V 8K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
CE  
CE  
MASTER  
SLAVE  
Dual Port  
SRAM  
Dual Port  
SRAM  
BUSY (L) BUSY (R)  
BUSY (L) BUSY (R)  
MASTER  
Dual Port  
SRAM  
CE  
SLAVE  
CE  
Dual Port  
SRAM  
BUSY (R)  
BUSY (L)  
BUSY (L)  
BUSY (R)  
BUSY (R)  
BUSY (L)  
2941 drw 18  
Figure 3. Busy and chip enable routing for both width and depth expansion with IDT70V05 SRAMs.  
Functional Description  
The IDT70V05 provides two ports with separate control, address  
and I/O pins that permit independent access for reads or writes to any  
location in memory. The IDT70V05 has an automatic power down  
featurecontrolledbyCE.TheCEcontrolson-chippowerdowncircuitry  
that permits the respective port to go into a standby mode when not  
selected (CE HIGH). When a port is enabled, access to the entire  
memory array is permitted.  
The BUSY outputs on the IDT 70V05 SRAM in master mode, are  
push-pull type outputs and do not require pull up resistors to  
operate. If these SRAMs are being expanded in depth, then the  
BUSY indication for the resulting array requires the use of an external  
AND gate.  
Width Expansion with Busy Logic  
Master/Slave Arrays  
Interrupts  
When expanding an IDT70V05 SRAM array in width while using  
BUSY logic, one master part is used to decide which side of the RAM  
array will receive a BUSY indication, and to output that indication. Any  
number of slaves to be addressed in the same address range as the  
master, use the BUSY signal as a write inhibit signal. Thus on the  
IDT70V05 SRAM the BUSY pin is an output if the part is used as a  
master (M/S pin = VIH), and the BUSY pin is an input if the part used  
as a slave (M/S pin = VIL) as shown in Figure 3.  
If the user chooses the interrupt function, a memory location (mail  
boxormessagecenter)is assignedtoeachport. Theleftportinterrupt  
flag (INTL) is set when the right port writes to memory location 1FFE  
(HEX). The left port clears the interrupt by reading address location  
1FFE. Likewise, the right port interrupt flag (INTR) is set when the left  
port writes to memory location 1FFF (HEX) and to clear the interrupt  
flag (INTR), the right port must read the memory location 1FFF. The  
message (8 bits) at 1FFE or 1FFF is user-defined. If the interrupt  
function is not used, address locations 1FFE and 1FFF are not used  
as mail boxes, but as part of the random access memory. Refer to  
Truth Table III for the interrupt operation.  
If two or more master parts were used when expanding in width, a  
splitdecisioncouldresultwithonemasterindicatingBUSYononeside  
of the array and another master indicating BUSY on one other side of  
the array. This would inhibit the write operations from one port for part  
of a word and inhibit the write operations from the other port for the  
other part of the word.  
TheBUSYarbitration,onamaster,isbasedonthechipenableand  
address signals only. It ignores whether an access is a read or write.  
In a master/slave array, both address and chip enable must be valid  
long enough for a BUSY flag to be output from the master before the  
actual write pulse can be initiated with the R/W signal. Failure to  
observe this timing can result in a glitched internal write inhibit signal  
and corrupted data in the slave.  
Busy Logic  
Busy Logic provides a hardware indication that both ports of the  
SRAM have accessed the same location at the same time. It also  
allows one of the two accesses to proceed and signals the other side  
that the SRAM is “busy. The BUSY pin can then be used to stall the  
access until the operation on the other side is completed. If a write  
operation has been attempted from the side that receives a BUSY  
indication, the write signal is gated internally to prevent the write from  
proceeding.  
Semaphores  
The use of BUSY logic is not required or desirable for all applica-  
tions. Insome cases itmaybe usefultologicallyORthe BUSYoutputs  
The IDT70V05 is a fast Dual-Port 8K x 8 CMOS Static RAM with  
togetheranduseanyBUSYindicationasaninterruptsourcetoflagthe anadditional8addresslocationsdedicatedtobinarysemaphoreflags.  
event of an illegal or illogical operation. If the write inhibit function of These flags allow either processor on the left or right side of the Dual-  
BUSYlogicis notdesirable,the BUSYlogiccanbedisabledbyplacing Port SRAM to claim a privilege over the other processor for functions  
the part in slave mode with the M/S pin. Once in slave mode the BUSY defined by the system designers software. As an example, the  
pinoperates solelyas awriteinhibitinputpin.Normaloperationcanbe semaphore can be used by one processor to inhibit the other from  
programmed by tying the BUSY pins HIGH. If desired, unintended accessing a portion of the Dual-Port SRAM or any other shared  
write operations can be prevented to a port by tying the BUSY pin for resource.  
thatportLOW.  
TheDual-PortSRAMfeaturesafastaccesstime,andbothportsare  
6.42  
19  
IDT70V05S/L  
High-Speed 3.3V 8K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
completelyindependentofeachother.Thismeansthattheactivityonthe beaccessedbyeithersidethroughaddresspinsA0A2.Whenaccessing  
leftportinnowayslows theaccess timeoftherightport.Bothports are thesemaphores,noneoftheotheraddresspinshasanyeffect.  
identicalinfunctiontostandardCMOSStaticRAMandcanbereadfrom,  
Whenwritingtoasemaphore,onlydatapinD0isused.IfaLOWlevel  
oraccessed,atthesametimewiththeonlypossibleconflictarisingfrom iswrittenintoanunusedsemaphorelocation,thatflagwillbesettoazero  
thesimultaneouswritingof,orasimultaneousREAD/WRITEof,anon- on that side and a one on the other side (see Truth Table V). That  
semaphorelocation. Semaphoresareprotectedagainstsuchambiguous semaphorecannowonlybemodifiedbythesideshowingthezero.When  
situationsandmaybeusedbythesystemprogramtoavoidanyconflicts aoneiswrittenintothesamelocationfromthesameside,theflagwillbe  
in the non-semaphore portion of the Dual-Port SRAM. These devices settoaoneforbothsides(unlessasemaphorerequestfromtheotherside  
haveanautomaticpower-downfeaturecontrolledbyCE,theDual-Port ispending)andthencanbewrittentobybothsides. Thefactthattheside  
SRAMenable,andSEM,thesemaphoreenable.TheCEandSEMpins whichisabletowriteazerointoasemaphoresubsequentlylocksoutwrites  
controlon-chippowerdowncircuitrythatpermitstherespectiveporttogo fromtheothersideiswhatmakessemaphoreflagsusefulininterprocessor  
intostandbymodewhennotselected. Thisistheconditionwhichisshown communications.(Athoroughdiscussionontheuseofthisfeaturefollows  
in Truth Table II where CE and SEM are both HIGH.  
shortly.)Azerowrittenintothesamelocationfromtheothersidewillbe  
SystemswhichcanbestusetheIDT70V05containmultipleprocessors storedinthesemaphorerequestlatchforthatsideuntilthesemaphoreis  
or controllers and are typically very high-speed systems which are freedbythefirstside.  
softwarecontrolledorsoftwareintensive.Thesesystemscanbenefitfrom  
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso  
a performance increase offered by the IDT70V05's hardware sema- thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining  
phores,whichprovidealockoutmechanismwithoutrequiringcomplex azeroreadsasallzeros.Thereadvalueislatchedintoonesidesoutput  
programming.  
registerwhenthatside'ssemaphoreselect(SEM)andoutputenable(OE)  
Softwarehandshakingbetweenprocessors offers themaximumin signalsgoactive.Thisservestodisallowthesemaphorefromchanging  
system flexibility by permitting shared resources to be allocated in stateinthemiddleofareadcycleduetoawritecyclefromtheotherside.  
varying configurations. The IDT70V05 does not use its semaphore Becauseofthislatch,arepeatedreadofasemaphoreinatestloopmust  
flags to control any resources through hardware, thus allowing the cause either signal (SEM or OE) to go inactive or the output will never  
system designer total flexibility in system architecture.  
change.  
A sequence WRITE/READ must be used by the semaphore in  
An advantage of using semaphores rather than the more common  
methods of hardware arbitration is that wait states are never incurred order to guarantee that no system level contention will occur. A  
in either processor. This can prove to be a major advantage in very processor requests access to shared resources by attempting to write  
high-speed systems.  
a zero into a semaphore location. If the semaphore is already in use,  
the semaphore request latch will contain a zero, yet the semaphore  
flag will appear as one, a fact which the processor will verify by the  
subsequent read (see Truth Table V). As an example, assume a  
processorwritesazerototheleftportatafreesemaphorelocation.On  
asubsequentread,theprocessorwillverifythatithas writtensuccess-  
fully to that location and will assume control over the resource in  
question. Meanwhile, if a processor on the right side attempts to write  
a zero to the same semaphore flag it will fail, as will be verified by the  
factthataonewillbereadfromthatsemaphoreontherightsideduring  
subsequent read. Had a sequence of READ/WRITE been used  
instead, system contention problems could have occurred during the  
gap between the read and write cycles.  
It is important to note that a failed semaphore request must be  
followed by either repeated reads or by writing a one into the same  
location. The reason for this is easily understood by looking at the  
simple logic diagram of the semaphore flag in Figure 4. Two sema-  
phore request latches feed into a semaphore flag. Whichever latch is  
first to present a zero to the semaphore flag will force its side of the  
semaphore flag LOW and the other side HIGH. This condition will  
continue until a one is written to the same semaphore request latch.  
Should the other sides semaphore request latch have been written to  
a zero in the meantime, the semaphore flag will flip over to the other  
side as soon as a one is written into the first sides request latch. The  
secondsides flagwillnowstayLOWuntilits semaphore requestlatch  
is written to a one. From this it is easy to understand that, if a  
semaphoreisrequestedandtheprocessorwhichrequesteditnolonger  
needstheresource,theentiresystemcanhangupuntilaoneiswritten  
intothatsemaphorerequestlatch.  
How the Semaphore Flags Work  
The semaphore logic is a set of eight latches which are indepen-  
dentofthe Dual-PortSRAM. These latches canbe usedtopass a flag,  
or token, from one port to the other to indicate that a shared resource  
is in use. The semaphores provide a hardware assist for a use  
assignmentmethodcalledTokenPassingAllocation.”Inthis method,  
thestateofasemaphorelatchisusedasatokenindicatingthatshared  
resource is in use. If the left processor wants to use this resource, it  
requests the token by setting the latch. This processor then verifies its  
success in setting the latch by reading it. If it was successful, it  
proceeds to assume control over the shared resource. If it was not  
successful in setting the latch, it determines that the right side  
processor has set the latch first, has the token and is using the shared  
resource. The left processor can then either repeatedly request that  
semaphores status or remove its request for that semaphore to  
perform another task and occasionally attempt again to gain control of  
the token via the set and test sequence. Once the right side has  
relinquished the token, the left side should succeed in gaining control.  
Thesemaphoreflagsareactivelow.Atokenisrequestedbywriting  
a zero into a semaphore latch and is released when the same side  
writes a one to that latch.  
The eight semaphore flags reside within the IDT70V05 in a  
separate memory space from the Dual-Port SRAM. This address  
space is accessed by placing a LOWinput on the SEM pin (which acts  
as a chip select for the semaphore flags) and using the other control  
pins (Address, OE, and R/W) as they would be used in accessing a  
standardStaticRAM.Eachoftheflagshasauniqueaddresswhichcan  
6.42  
20  
IDT70V05S/L  
High-Speed 3.3V 8K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
The criticalcase ofsemaphore timingis whenbothsides requesta theleftside.  
single token by attempting to write a zero into it at the same time. The  
Once the left side was finished with its task, it would write a one to  
semaphore logic is specially designed to resolve this problem. If Semaphore 0 and may then try to gain access to Semaphore 1. If  
simultaneous requests are made, the logic guarantees that only one Semaphore1wasstilloccupiedbytherightside,theleftsidecouldundo  
side receives the token. If one side is earlier than the other in making itssemaphorerequestandperformothertasksuntilitwasabletowrite,then  
the request, the first side to make the request will receive the token. If readazerointoSemaphore1.Iftherightprocessorperformsasimilartask  
bothrequests arriveatthesametime,theassignmentwillbearbitrarily withSemaphore0,thisprotocolwouldallowthetwoprocessorstoswap  
made to one port or the other.  
4Kblocks ofDual-PortSRAMwitheachother.  
One caution that should be noted when using semaphores is that  
The blocks do not have to be any particular size and can even be  
semaphores alone do not guarantee that access to a resource is variable, depending upon the complexity of the software using the  
secure. As with any powerful programming technique, if semaphores semaphore flags. All eight semaphores could be used to divide the  
are misused or misinterpreted, a software error can easily happen.  
Dual-PortSRAMorothersharedresourcesintoeightparts.Semaphores  
Initialization of the semaphores is not automatic and must be canevenbeassigneddifferentmeaningsondifferentsidesratherthan  
handled via the initialization program at power-up. Since any sema- being given a common meaning as was shown in the example above.  
phore request flag which contains a zero must be reset to a one, all  
Semaphores are a useful form of arbitration in systems like disk  
semaphores on both sides should have a one written into them at interfaces where the CPU must be locked out of a section of memory  
initialization from both sides to assure that they will be free when during a transfer and the I/O device cannot tolerate any wait states.  
needed.  
With the use of semaphores, once the two devices has determined  
which memory area was off-limits” to the CPU, both the CPU and the  
I/O devices could access their assigned portions of memory continu-  
ously without any wait states.  
Semaphores are also useful in applications where no memory  
“WAIT” state is available on one or both sides. Once a semaphore  
handshake has been performed, both processors can access their  
assignedSRAMsegmentsatfullspeed.  
Anotherapplicationisintheareaofcomplexdatastructures.Inthis  
case, block arbitration is very important. For this application one  
processor may be responsible for building and updating a data  
structure. The other processor then reads and interprets that data  
structure. If the interpreting processor reads an incomplete data  
structure, a major error condition may exist. Therefore, some sort of  
arbitration must be used between the two different processors. The  
building processor arbitrates for the block, locks it and then is able to  
goinandupdatethedatastructure.Whentheupdateiscompleted,the  
data structure blockis released. This allows the interpretingprocessor  
to come back and read the complete data structure, thereby guaran-  
teeing a consistent data structure.  
UsingSemaphores—SomeExamples  
Perhaps the simplest application of semaphores is their applica-  
tionasresourcemarkersfortheIDT70V05’sDual-PortSRAM.Saythe  
8Kx8SRAMwas tobe dividedintotwo4Kx8blocks whichwere tobe  
dedicated at any one time to servicing either the left or right port.  
Semaphore 0 could be used to indicate the side which would control  
thelowersectionofmemory,andSemaphore1couldbedefinedasthe  
indicator for the upper section of memory.  
To take a resource, in this example the lower 4K of Dual-Port  
SRAM, the processor on the left port could write and then read a  
zero in to Semaphore 0. If this task were successfully completed  
(a zero was read back rather than a one), the left processor would  
assume control of the lower 4K. Meanwhile the right processor was  
attempting to gain control of the resource after the left processor, it  
would read back a one in response to the zero it had attempted to  
write into Semaphore 0. At this point, the software could choose to try  
andgaincontrolofthesecond4Ksectionbywriting,thenreadingazero  
into Semaphore 1. If it succeeded in gaining control, it would lock out  
L PORT  
R PORT  
SEMAPHORE  
REQUEST FLIP FLOP  
SEMAPHORE  
REQUEST FLIP FLOP  
D0  
D
D
D0  
Q
Q
WRITE  
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
READ  
2941 drw 19  
Figure 4. IDT70V05 Semaphore Logic  
6.42  
21  
IDT70V05S/L  
High-Speed 3.3V 8K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Ordering Information  
XXXXX  
A
999  
A
A
A
Device  
Type  
Power Speed  
Package  
Process/  
Temperature  
Range  
Blank  
I(1)  
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
G(2)  
Green  
PF  
G
J
64-pin TQFP (PN64-1)  
68-pin PGA (G68-1)  
68-pin PLCC (J68-1)  
15  
20  
25  
35  
55  
Commercial Only  
Commercial & Industrial  
Speed in nanoseconds  
Commercial Only  
Commercial Only  
Commercial Only  
S
L
Standard Power  
Low Power  
64K (8K x 8) 3.3V Dual-Port RAM  
70V05  
2941 drw 20  
NOTE:  
1. Contact your local sales office for Industrial temp range in other speeds, packages and powers.  
2. Green parts available. For specific speeds, packages and powers contact your local sales office.  
DatasheetDocumentHistory  
3/11/99:  
Initiateddatasheetdocumenthistory  
Converted to new format  
Cosmetic and typographical corrections  
Page 2 and 3 Added additional notes to pin configurations  
Changeddrawingformat  
6/9/99:  
11/10/99:  
3/10/00:  
Replaced IDT logo  
Added 15 & 20ns speed grades  
UpgradedDCparameters  
AddedIndustrialTemperatureinformation  
Changed±200mVto0mVinnotes  
Page 5 Increasedstoragetemperatureparameter  
ClarifiedTAparameter  
5/26/00:  
Page 6 DCElectricalparameters2–changedwordingfromopentodisabled  
Page 2 & 3 Added date revision to pin configurations  
12/04/01:  
Page 2, 3, 5 & 6 Changed naming conventions from VCC to VDD and from GND to VSS  
Page 6, 8, 10, 13 & 16 Removed industrial temp for 25ns, 35ns and 55ns from DC & AC Electrical Characteristics  
Page 22 Removedindustrialtempfrom25ns,35nsand55nsfromorderinginformation  
Page 1 & 22 Replaced TM logo with ® logo  
07/27/06:  
10/23/08:  
Page 1 Addedgreenavailabilitytofeatures  
Page 22 Addedgreenindicatortoorderinginformation  
Page 22 Removed "IDT" from orderable part number  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
408-284-2794  
DualPortHelp@idt.com  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
6.42  
22  

相关型号:

70V05L15JGI8

HIGH-SPEED 3.3V 8K x 8 DUAL-PORT STATIC RAM
IDT

70V05L15PF

TQFP-64, Tray
IDT

70V05L15PFG

HIGH-SPEED 3.3V 8K x 8 DUAL-PORT STATIC RAM
IDT

70V05L15PFG8

HIGH-SPEED 3.3V 8K x 8 DUAL-PORT STATIC RAM
IDT

70V05L15PFGI

HIGH-SPEED 3.3V 8K x 8 DUAL-PORT STATIC RAM
IDT

70V05L15PFGI8

HIGH-SPEED 3.3V 8K x 8 DUAL-PORT STATIC RAM
IDT

70V05L20GG

Dual-Port SRAM, 8KX8, 20ns, CMOS, CPGA68, 1.180 X 1.180 INCH, 0.160 INCH HEIGHT, GREEN, CERAMIC, PGA-68
IDT

70V05L20GG8

HIGH-SPEED 3.3V 8K x 8 DUAL-PORT STATIC RAM
IDT

70V05L20GGI

Dual-Port SRAM, 8KX8, 20ns, CMOS, CPGA68, 1.180 X 1.180 INCH, 0.160 INCH HEIGHT, GREEN, CERAMIC, PGA-68
IDT

70V05L20GGI8

HIGH-SPEED 3.3V 8K x 8 DUAL-PORT STATIC RAM
IDT

70V05L20J8

PLCC-68, Reel
IDT

70V05L20JG

Dual-Port SRAM, 8KX8, 20ns, CMOS, PQCC68, 0.950 X 0.950 INCH, 0.170 INCH HEIGHT, GREEN, PLASTIC, LCC-68
IDT