703517S233RM [IDT]

QDR SRAM, 256KX36, 0.45ns, PBGA576, 25 X 25 MM, 2.55 MM HEIGHT, 1 MM PITCH, ROHS COMPLIANT, FBGA-576;
703517S233RM
型号: 703517S233RM
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

QDR SRAM, 256KX36, 0.45ns, PBGA576, 25 X 25 MM, 2.55 MM HEIGHT, 1 MM PITCH, ROHS COMPLIANT, FBGA-576

静态存储器 内存集成电路
文件: 总20页 (文件大小:615K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY DATASHET  
IDT70P3537  
512K/256K x36  
SYNCHRONOUS  
DUAL QDR-II  
TM  
IDT70P3517  
®
Features  
each port  
– Four word transfers each of Read & Write per clock cycle per  
port (four word bursts on 2 ports)  
Octal Data Rate  
Port Enable pins (E0,E1) for depth expansion  
Dual Echo Clock Output with DLL-based phase alignment  
High Speed Transceiver Logic inputs  
– scaled to receive signals from 1.4V to 1.9V  
Scalable output drivers  
18Mb Density (512K x 36)  
Also available 9Mb Density (256K x 36)  
QDR-II x 36 Burst-of-2 Interface  
– Commercial: 233MHz, 250MHz  
Two independent ports  
True Dual-Port Access to common memory  
Separate, Independent Read and Write Data Buses on each  
Port  
Drives HSTL, 1.8V TTL or any voltage level from 1.4V to 1.9V  
– Output impedance adjustable from 35 ohms to 70 ohms  
1.8V Core Voltage (VDD)  
576-ball Flip Chip BGA (25mm x 25mm, 1.0mm ball pitch)  
JTAG Interface - IEEE 1149.1 Compliant  
– Supports concurrent transactions  
Two-Word Burst on all DPRAM accesses  
DDR (Double Data Rate) Multiplexed Address Bus  
– One Read and One Write request per clock cycle  
DDR (Double Data Rate) Data Buses  
– Four word burst data (Two Read and Two Write) per clock on  
Functional Block Diagram  
VREFL  
VREFR  
EP[1:0]  
ER[1:0]  
EL[1:0]  
LEFT PORT  
DATA  
RIGHT PORT  
DATA  
REGISTER  
AND LOGIC  
REGISTER  
AND LOGIC  
D
0L- D35L  
D
0R-  
D35R  
WRITE DRIVER  
KR  
KL  
K
L
KL  
KR  
K
R
(1)  
(1)  
ZQ  
L
ZQ  
R
Q
0L-  
Q
35L  
Q
0R- Q35R  
512/256K x 36  
MEMORY  
ARRAY  
CQL, CQL  
CQR, CQR  
K
C
L
KR  
CR  
L
(2)  
A
17R  
(2)  
A
R
W
0R-  
A0L-  
A
17L  
C
R
, C  
R
R
C
L
, C  
L
L
R
OR K  
R
, K  
OR K  
L
, K  
R
L
L
LEFT PORT  
ADDRESS  
REGISTER  
AND LOGIC  
RIGHT PORT  
ADDRESS  
REGISTER  
AND LOGIC  
R
W
ADDRESS DECODE  
BW0R- BW3R  
BW0L- BW3L  
KR  
KL  
K
R
K
L
TCK  
TMS  
TRST  
TDI  
5677 drw01  
JTAG  
VREFR  
VREFL  
TDO  
NOTES:  
1. Input pin to adjust the device outputs to the system data bus impedance.  
2. Address A17 is a INC for IDT70P3517. Disabled input pin (Diode tied to VDD and VSS).  
January 29, 2009  
©2008 Integrated Device Technology, Inc. All rights reserved. Advanced Datasheet for informational purposes only. Product specifications subject to change without notice. NOT AN OFFER FOR SALE The information  
presented herein is subject to a Non-Disclosure Agreement (NDA) and is for planning purposes only. Nothing contained in this presentation, whether verbal or written, is intended as, or shall have the effect of, a sale  
or an o
f
f
e
r
f
or sale that creates a contractual po
w
e
r of acceptance.
"
QDR
S
R
A
Ms
a
nd Quad
D
a
ta Rate R
A
Ms
c
ompri
s
e a new
f
a
m
ily of products developed by Cypress Semicondor, I
D
T,
a
nd
M
i
cron
T
e
cnolog
y
, I
n
c."  
DSC-5677/1  
Preliminary Datasheet  
Commercial Temperatue Range  
18/9Mb x36 IDT70P3537/70P3517  
SYNCHRONOUS Dual QDR-II  
TM  
Pin Configuration  
70P3537  
70P3517  
RM-576 Ball Flip Chip BGA  
Top View  
A1 BALL PAD CORNER  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
A
B
C
D
E
F
A
B
C
D
E
F
BW0R  
BW3R  
DOFFR  
VSS  
VSS  
VSS  
ZQR  
VSS  
VSS VDDQR A2R  
EP0  
A3R  
RR  
E0R  
VDD  
VREFR  
A8R  
A9R  
A14R A15R  
VDDQR  
VSS  
VSS  
VSS  
MRST  
VSS  
VSS  
VSS  
D17R  
BW1R  
A7R  
VSS  
BW2R  
WR  
VSS VDDQR DEPTH VSS  
A4R  
A1R  
A5R  
A6R  
E1R  
KR  
VSS  
KR  
VDD  
A12R A13R  
INC  
VSS  
VDDQR D35R  
CR  
D16R D15R VDDQR Q17R  
VSS VDDQR A0R  
CR  
A10R A11R A16R A17R VDDQR VDDQR Q35R  
VSS D33R D34R  
D14R D13R VSS  
Q15R Q16R VSS VDDQR VSS  
VDDQR  
VSS  
VDDQR  
VSS  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VDDQR VSS VDDQR  
VSS  
VDDQR  
VSS  
VSS  
Q34R Q33R VDDQR D31R D32R  
D12R D11R VDDQR Q13R Q14R VDDQR VSS VDDQR  
VDD  
VSS  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS VDDQR  
VDDQR Q32R Q31R  
VSS D29R D30R  
VSS  
D10R VSS  
Q11R Q12R VSS VDDQR VSS  
VDD  
VDD  
VDD  
VSS  
VDDQR  
VSS  
VSS  
Q30R Q29R VDDQR D27R D28R  
G
H
J
G
H
J
VREFR VSS VDDQR Q9R Q10R VDDQR VSS VDDQR  
VSS  
VDD  
VSS  
VSS VDDQR  
VDDQR Q28R Q27R  
D26R  
VSS  
VSS  
VSS  
VDD  
VSS  
VDD  
CQR  
D9R  
D7R  
D5R  
D3R  
D8R  
VSS  
Q8R  
CQR VSS VDDQR VSS  
Q7R VDDQR VSS VDDQR  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VDD  
VSS  
VDD  
VSS  
VSS  
VDDQR  
VSS  
VDDQR  
VSS  
VSS  
Q26R VDDQR VSS  
VREFR  
D6R VDDQR Q6R  
VDDQR Q25R Q24R  
VSS D24R D25R  
K
L
K
L
Q23R  
Q22R  
Q20R  
D22R D23R  
D20R D21R  
D4R  
VSS  
Q4R  
Q5R  
Q3R  
Q1R  
VSS VDDQR VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDDQR  
VSS  
VDDQR  
VSS  
D2R VDDQR Q2R  
VSS VDDQR  
VDDQR Q21R  
VDDQR  
VSS  
VDDQR  
VSS  
VSS  
M
N
P
R
T
M
N
P
R
T
D1R  
D0R  
Q0R  
VDD  
VSS  
VDD  
VSS  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VDD  
VDDQR  
VSS  
VSS  
VDDQL  
VSS  
Q19R  
Q34L  
Q32L  
Q18R VDDQR D18R D19R  
VDDQR  
VSS  
VSS  
VSS  
VDD  
VSS  
Q35L  
D35L D34L  
D16L D17L VDDQL Q17L Q16L VDDQL VSS VDDQL  
VSS VDDQL  
VSS  
D14L D15L  
Q15L Q14L VSS VDDQL VSS  
VDD  
VSS  
VSS  
VDDQL  
Q33L VDDQL D33L D32L  
VSS  
D12L D13L VDDQL Q13L Q12L VDDQL  
VDDQL  
VDD  
VSS  
VDDQL  
VSS  
VDDQL Q30L  
Q31L  
VSS D31L D30L  
VSS  
D10L D11L VSS  
Q11L Q10L VSS VDDQL VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VSS  
KL  
VSS  
VDD  
VSS  
VDD  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDDQL  
VSS  
VDDQL  
VSS  
VSS  
VDDQL  
VSS  
Q28L  
Q29L VDDQL D29L D28L  
U
V
U
V
VREFL  
VSS  
VSS VDDQL  
Q9L  
Q8L  
CQL VDDQL VSS VDDQL  
Q27L  
VSS D27L D26L  
CQL  
Q25L  
Q23L  
D9L  
VSS  
Q7L  
Q5L  
Q3L  
VSS VDDQL VSS  
VDDQL  
Q26L VDDQL VSS  
VREFL  
VSS  
W
W
D7L  
D5L  
D3L  
D1L  
D8L VDDQL Q6L  
VDDQL  
VSS  
Q24L  
D25L  
VDDQL  
VSS  
VDD  
VSS  
A6L  
VSS  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VDDQL  
VSS  
VSS  
VDDQL  
VSS  
VSS  
Y
Y
D6L  
VSS  
Q4L  
VSS VDDQL  
VSS  
VSS  
CL  
VDDQL  
Q21L  
Q22L VDDQL D24L D23L  
AA  
AB  
AC  
AD  
AA  
AB  
AC  
AD  
D4L VDDQL Q2L  
Q1L VDDQL VSS VDDQL  
VDDQL VDDQL  
VDDQL VDDQL VSS  
VDDQL  
VSS  
VDDQL Q19L  
Q20L  
VSS  
D22L D21L  
CL  
D2L  
Q0L  
VSS  
VDDQL VSS  
A0L  
A1L  
A4L  
A7L  
A10L A11L  
A16L A17L  
VSS  
VDDQL Q18L VDDQL D20L D19L  
VSS  
KL  
BW1L  
BW2L  
WL  
DOFFL  
VSS  
D0L VDDQL  
TDI VDDQL EP1  
A5L  
E1L  
VDD  
VSS  
A12L  
A13L  
INC  
VDDQL  
VSS  
VDDQL  
D18L  
VSS  
VSS  
RL  
BW0L  
BW3L  
TRST  
VSS  
VSS  
ZQL  
VSS  
TMS  
VSS  
A2L  
A3L  
E0L  
VREFL  
VDD  
A8L  
A9L  
A14L A15L  
17 18  
VSS  
TCK  
TDO  
VSS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
19  
20  
21  
22  
23  
24  
5677 drw  
NOTE:  
1. The package is 25mm x 25mm x 2.55mm with 1.0mm ball pitch; the customer will have to provide external airflow of 100LFM (0.5m/s) or higher at 250MHz.  
2
January 29, 2009  
Preliminary Datasheet  
Commercial Temperatue Range  
18/9Mb x36 IDT70P3537/70P3517  
SYNCHRONOUS Dual QDR-II  
TM  
and tuned with matching impedance and signal quality. The user  
can use the echo clock for downstream clocking of the data. For  
theuser,echoclockseliminatetheneedtoproducealternateclocks  
with precise timing, positioning, and signal qualities to guarantee  
data capture. Since the echo clocks are generated by the same  
source that drives the data output, the relationship to the data is  
NOT significantly affected by external parameters such as voltage,  
temperature, and process as would be the case if the clock were  
generated by an outside source.Thus the echo clocks are guaran-  
teed to be synchronized with the data.  
All interfaces of Dual QDR-II Static RAMs are HSTL, allow-  
ing speeds beyond SRAM devices that use any form of TTL  
interface. The interface can be scaled to higher voltages (up to  
1.9V) to interface with 1.8V systems, if necessary. The device has  
VDDQ pins and a separate Vref, allowing the user to designate the  
interface operational voltage independent of the device core volt-  
age of 1.8V VDD. Output impedance control pins allow the user to  
adjust the drive strength to adapt to a wide range of loads and  
transmission lines.  
Functional Description  
As a memory standard, the (Quad Data Rate) QDR-II SRAM  
interface has become increasingly common in high performance  
networkingsystems. WiththeQDR-IIinterface/configuration,memory  
throughput is increased without increasing the clock rate via the use  
of two unidirectional buses on each of providing 2 ports of QDR-II  
makes this a Dual-QDRII Static Ramtwoports to transferdata without  
the need for bus turnaround.  
Dual QDR-II Static RAMs are high speed synchronous mem-  
ories supporting two independent double-data-rate (DDR) read and  
write data ports. This scheme allows simultaneous read and write  
access for the maximum device throughput - two data items are  
passed with each read or write. Four data word transfers occur per  
clock cycle, providing quad-data-rate (QDR) performance on each  
port. Comparing this with standard SRAM common I/O single data  
rate (SDR) devices, a four to one increase in data access is achieved  
atequivalentclockspeeds. IDT70P3537/70P3517DualQDR-IIStatic  
RAM devices, are capable of sustaining full bandwidth on both the  
input and output buses simultaneously. Using independent buses for  
read and write data access simplifies design by eliminating the need  
for bidirectional buses. And all data are in two word bursts, (with  
addressing capability to the burst level).  
Clocking  
The IDT70P3537/3517 has two sets of input clocks for both  
theinputandoutput,theK,KclocksandtheC,Cclocks.Inaddition,  
theIDT70P3537/3517has anoutputecho”clockpair,CQandCQ.  
The K and K clocks are the primary device input clocks.  
The K clock is used to clock in the control signals (R, W, E[1:0],  
BW0-3), the read address, and the first word of the data burst  
(D[35:0]) during a write operation. The K clock is used to clock in  
the control signals (BW0-3, E[1:0]), write address and the second  
word of the data burst during a write operation (D[35:0]). In the  
event that the user disables the C and C clocks, the K and K clocks  
will also be used to clock the data out of the output register and  
generate the echo clocks. The K and K, C and C,CQ and CQ, pairs  
are offset by half a clock cycle from each other.  
The C and C clocks may be used to clock the data out of  
the outputregisterduringreadoperations andtogenerate the echo  
clocks. C and C must be presented to the memory within the timing  
tolerances as shown in the AC Electrical Characteristics Table  
(Page 12). The output data from the IDT70P3537/70P3517 will be  
closely aligned to the C and C input, through the use of an internal  
DLL. When C is presented to the IDT70P3537/70P3517 the DLL  
will have already internally clocked the data to arrive at the device  
output simultaneously with the arrival of the C clock. The C and  
second data item of the burst will also correspond.  
Devices withQDR-IIinterfaces includenetworkprocessorunits  
(NPUs) and field programmable gate arrays (FPGAs).  
IDT70P3537/70P3517 Dual QDR-II Static RAMs support uni-  
directional 36-bit read and write interfaces. These data inputs and  
outputs operate simultaneously, thus eliminating the need for high-  
speed bus turnarounds (i.e. no dead cycles are present). Access to  
each port is accomplished using a common 18-bit address bus (17  
bits for IDT70P3517). Addresses for reads and writes are latched on  
rising edges of the K and K input clocks, respectively.The K and K  
clocks are offset by 90 degrees or half a clock cycle. Each address  
locationisassociatedwithtwo36-bitdatawordsthatburstsequentially  
into or out of the device. Since data can be transferred into and out  
of the device on every rising edge of the K and K clocks, memory  
bandwidth is maximized while simplifying overall design through the  
elimination of bus turnaround(s). IDT70P3537/70P3517 Dual QDR-II  
Static RAMs can support devices in a multi-drop configuration (i.e.  
multiple devices connected to the same interface). Through this  
capability, system designers can support compatible devices such as  
NPUs and FPGAs on the same bus at the same time.  
Using independent ports for read and write access simplifies  
design by eliminating the need for bidirectional buses. All buses  
associated with Dual QDR-II Static RAMs are unidirectional and can  
be optimized for signal integrity at very high bus speeds. The Dual  
QDR-II Static RAM has scalable output impedance on its data output  
bus and echo clocks allowing the user to tune the bus for low noise  
and high performance.  
Single Clock Mode  
The IDT70P3537/70P3517 may be operated with a single  
clock pair. C and C may be disabled by tying both signals high,  
forcing the outputs and echo clocks to be controlled instead by the  
K and K clocks.  
IDT70P3537/70P3517 Dual QDR-II Static RAMs have a single  
DDR address bus per port with multiplexed read and write addresses.  
All read addresses are received on the first half of the clock cycle and  
all write addresses are received on the second half of the clock cycle.  
The byte write signals are received on both halves of the clock cycle  
simultaneouslywiththedatatheyarecontrollingonthedatainputbus.  
The Dual QDR-II Static RAM device has echo clocks, which  
provide the user with a clock that is precisely timed to the data output  
DLL Operation  
TheDLLintheoutputstructureoftheIDT70P3537/70P3517  
can be used to closely align the incoming clocks C and C with the  
output of the data, generating very tight tolerances between the  
3
January 29, 2009  
Preliminary Datasheet  
Commercial Temperatue Range  
18/9Mb x36 IDT70P3537/70P3517  
SYNCHRONOUS Dual QDR-II  
TM  
two. The user may disable the DLL by holding DOFF low. With the DLL  
off, the C and C (or K and K, if C and C are not used) will directly clock  
the output register of the IDT70P3537/70P3517. With the DLL off,  
there will be a propagation delay from the time the clock enters the  
device until the data appears at the output. QDR-II becomes QDRITM  
with DLL off. First data out is referenced to C instead of C.  
Normal QDR write cycles are initiated by holding the write port select  
(W) low at K rising edge. Also, the Byte Write inputs (BW0-3), desig-  
nating which bytes are to be written, need to be held low for both the  
K and K clocks. On the rising edge of K the first word of the data must  
alsobepresentonthedatainputbus D[35:0]observingthedesignated  
set up times. Upon the rising edge of K the first word of the burst will  
be latchedintothe inputregister. AfterKhas risen, andthe designated  
hold times observed, the second half of the clock cycle is initiated by  
presenting the write address to the address bus A[X:0], the BW0-3  
inputs for the second data word of the burst, and the second data item  
of the burst to the data bus D[35:0]. Upon the rising edge of K, the  
second word of the burst will be latched, along with the designated  
address. Both the first and second words of the burst will be written  
into memory as designated by the address and byte write enables.  
The addresses for the write cycles is provided at the K rising edge,  
and data is expected at the rising edge of K and K, beginning at the  
same K that initiated the cycle.  
Echo Clock  
The echo clocks, CQ and CQ, are generated by the C and C  
clocks (or K, K if C, C are disabled). The rising edge of C generates  
the rising edge of CQ, and the falling edge of CQ. The rising edge of  
C generates the rising edge of CQ and the falling edge of CQ. This  
scheme improves the correlation of the rising and falling edges of the  
echo clock and will improve the duty cycle of the individual signals.  
Theechoclockis verycloselyalignedwiththe data,guaranteeing  
that the echo clock will remain closely correlated with the data, within  
the tolerances designated.  
Programmable Impedance  
Normal QDR-II Read and Write Operations  
An external resistor, RQ, must be connected between the  
ZQ pin on the IDT70P3537/70P3517 and tied to VSS to allow the  
IDT70P3537/70P3517toadjustits outputdrive impedance.The value  
of RQ must be 5X the value of the intended drive impedance of the  
IDT70P3537/70P3517. The allowable range of RQ to guarantee  
impedance matching with a tolerance of +/- 15% is 175 ohms to 350  
ohms. The output impedance is adjusted every 1024 clock cycles to  
correct for drifts in supply voltage and temperature. If the user wishes  
to drive the output impedance of the IDT70P3537/70P3517 to its  
lowest value, the ZQ pin may be tied to VDDQ.  
TheIDT70P3537/70P3517DualQDR-IIStaticRAMsupports  
QDR-II burst-of-two read/write operations. Read operations are initi-  
ated by holding the read port select (R) low, and presenting the read  
address to the address port during the rising edge of K which will latch  
the address. Data is delivered after the next rising edge of the next K  
(t + 1), using C and C as the output timing references; or K and K, if  
C and C are tied high.  
The write operation is a standard QDR-II burst-of-two write  
operation, except the data is not available to be read until the next  
clock cycle (this is one cycle later than standard QDR-II SRAM).  
4
January 29, 2009  
Preliminary Datasheet  
Commercial Temperatue Range  
18/9Mb x36 IDT70P3537/70P3517  
SYNCHRONOUS Dual QDR-II  
TM  
Pin Definitions  
Symbol(1)  
Pin Function  
Description  
D[35:0]  
X
Input  
Synchronous  
Data input signals, sampled on the rising edge of K and K clocks during valid write operations  
Byte Write Selects active LOW. Sampled on the rising edge of the K and again on the rising edge of K clocks during write operations. Used to select which byte is  
BW  
0
X
, BW  
1X,  
Input  
written into the device during the current portion of the write operations. Bytes not written remain unaltered. All byte writes are sampled on the same edge as the  
BW  
2X  
, BW  
3X  
Synchronous data. Deselecting a Byte Write Select will cause the corresponding byte of data to be ignored and not written in to the device.  
BW controls D[8:0], BW controls D[17:9], BW controls D[26:18], and BW controls D[35:27].  
0
1
2
3
Input  
Address Inputs. Read addresses are sampled on the rising edge of K clock during active read operations. Write addresses are sampled on the rising edge of K  
A[17:0] (2)  
X
Synchronous clock during active write operations. These address inputs are multiplxed, so that both a read and write operation can occur on the same clock cycle. These inputs  
are ignored when the appropriate port is deselected.  
Q[35:0]  
X
Output  
Data Output signals. These pins drive out the requested data during a Read operation. Valid data is driven out on the rising edge of both the C and C clocks during  
Synchronous Read operations or K and K when operating in single clock mode. When the Read port is deselected, Q[35:0] are automatically tri-stated.  
Input  
Write Control Logic, active LOW. Sampled on the rising edge of the positive input clock (K). When asserted active, a write operation in initiated. Deasserting will  
WX  
Synchronous deselect the Write port. Deselecting the Write port will cause D[35:0] to be ignored.  
Input Read Control Logic, active LOW. Sampled on the rising edge of Positive Input Clock (K). When active, a Read operation is initiated. Deasserting will cause the  
Synchronous Read port to be deselected. When deselected, the pending access is allowed to complete and the output drivers are automatically tri-stated following the next  
R
X
rising edge of the C clock. (DOFFX = 1). Each read access consists of a burst of two sequential transfers.  
CX  
Input Clock Positive Output Clock Input. C is used in conjunction with C to clock out the Read data from the device. C and C can be used together to deskew the flight times of  
various devices on the board back to the controller. See application example for further details.  
Input Clock Negative Output Clock Input. C is used in conjunction with C to clock out the Read data from the device. C and C can be used together to deskew the flight times  
C
X
of various devices on the board back to the controller. See application example for further details.  
KX  
Input Clock Positive Input Clock Input. The rising edge of K is used to capture synchronous inputs to the device. Drives out data through Q[35:0] when in single clock mode.  
All accesses are initiated on the rising edge of K.  
KX  
Input Clock  
Negative Input Clock Input. K is used to capture synchronous inputs being presented to the device. Drives out data through Q[35:0] when in single clock mode.  
CQX  
Output Clock Synchronous Echo clock output. The rising edge of CQ is tightly matched to the synchronous data outputs and can be used as a data valid indication. CQ is free  
running and does not stop when the output data is tri-stated.  
Synchronous Echo Clock output. The rising edge of CQ is tightly matched to the synchronous data outputs and can be used as a data valid indication. CQ is free  
running and does not stop wehen the output data is tri-stated.  
Output Clock  
CQ  
X
Output Impedance Matching Input. This input is used to tune the device outputs to the system data bus impedance. Q[35:0] output impedance is set to 0.2 x RQ,  
where RQ is a resistor connected between ZQ and ground. Alternately, this pin can be connected directly to VDDQ, which enables the minimum impedance mode.  
ZQX  
Input  
This pin cannot be connected directly to GND or left unconnected.  
EP[1:0] are used to program the Port Enable pins E[1:0]. EP[1:0] are programmed by tying the pins high or low on the board. If a customer does not want to use  
Pins EP[1:0], then these pins should be tied low. Refer to Truth Table III for Port Enable pins.  
EP[1:0]  
Input  
E
X
[1:0]  
Input  
Two Port Enable pins E[1:0] are provided to connect to the two MSB bits on the memory controller in order to cascade up to four IDT70P3537 devices. If a customer  
Syncronous does not want to use Pins E[1:0], then these pins should be tied low. Refer to Truth Table III for Port Enable pins. Also refer to Figure 1 showing cascade/multi-drop  
using port-enable (E[1:0]) pins. E[1:0] are sampled on the rising edge of K for read operations and again on rising edge of K for write operations.  
DLL Turn Off. When low this input will turn off the DLL inside the device. The AC timings with the DLL turned off will be different from those listed in this data sheet.  
There will be an increased propagation delay from the incidence of C and C to Q, or K and K to Q as configured.  
Input  
DOFFX  
Input  
Asynchronous  
Master Reset pin. When held low will reset the device.  
MRST  
DEPTH  
TDO  
Input  
Output  
Input  
Connect to VDDQ for 9Mb. Connect to VSS for 18Mb.  
TDO pin for JTAG.  
TCK  
TCK pin for JTAG.  
TDI  
Input  
TDI pin for JTAG.  
TMS  
Input  
TMS pin for JTAG.  
Input  
Asynchronous  
Reset pin for JTAG.  
TRST  
INC  
Should be tied to VCC or VSS only, or can be left as a floating pin.  
V
REF  
X
Input  
Reference  
Reference Voltage input. Static input used to set the reference level for HSTL inputs as well as AC measurement points.  
V
DD  
SS  
DDQ  
Power Supply Power supply inputs to the core of the device. Should be connected to a 1.8V power supply.  
Ground Ground for the device. Should be connected to ground of the system.  
Power Supply Power supply for the outputs of the device. Should be connected to a 1.5V power supply for HSTL or scaled to the desired output voltage.  
V
V
X
5677 tbl 01  
NOTE:  
1. "X" = "L" for the Left Port pins and "X" = "R" for the Right Port pins.  
2. A[16:0]x for IDT70P3517.  
5
January 29, 2009  
Preliminary Datasheet  
Commercial Temperatue Range  
18/9Mb x36 IDT70P3537/70P3517  
SYNCHRONOUS Dual QDR-II  
TM  
(1)  
Truth Table I - Synchronous Port Control  
(3,4)  
(3,4)  
D
Q
OPERATION  
(2)  
(2)  
K
K
R
W
D(A+0)  
D(A+1)  
C
C
Q(A+0)  
Q(A+1)  
E
O
E1  
Stopped  
X
X
X
X
X
X
F
X
X
X
X
X
X
F
X
Stopped  
Previous state  
High - Z  
Clock stopped  
Stopped  
X
X
X
X
X
Stopped  
Previous state Clock stopped  
No operation  
Ç
Ç
Ç
Ç
Ç
Ç
Ç
Ç
Ç
Ç
H
X
X
L
H
X
X
X
L
X
X
X
X
Ç
Ç
Ç
Ç
Ç
Ç
Ç
Ç
Ç
Ç
High - Z  
High - Z  
High - Z  
No operation  
No operation  
No operation  
No operation  
No operation  
Read  
High - Z  
F
X
X
T
High - Z  
F
T
DOUT at C (t+1)  
X
X
T
X
X
T
DOUT at C (t+2) Read  
X
D
IN at K(t)  
X
Write  
Write  
D
IN at K(t)  
X
5677 tbl 03  
NOTES:  
1. x = "Don’t Care", H = Logic High, L = Logic Low, Ç represents rising edge.  
2. T (True) = E and EP have some polarity (device selected) on the rising edge of the appropriate clock. F (False) =E and EP have  
opposite polarity (device de-selected) on the rising edge of the appropriate clock. See Truth Table III.  
3. "A"represents address locationlatched bythe device when operation was initiated.A+0, A+1 represents the internal address sequence  
in the burst.  
4. "t" represents the cycle at which a read/write operation is started. t+1 and t+2 are the first and second clock cycles respectively  
following clock cycle t.  
(2,3)  
Truth Table II - Write Port Enable Control  
(1)  
K
BW  
0
BW1(1) BW2(1) BW3(1)  
K
Mode  
Input Input Input Input Input Input  
Ç
Ç
Ç
Ç
Ç
Ç
H
H
L
H
H
H
H
L
H
H
H
H
H
H
L
H
H
H
H
H
H
H
H
L
Write function disabled all bytes  
Write function disabled all bytes  
Write data inputs to Byte 0 Only  
Write data inputs to Byte 0 Only  
Write data inputs to Byte 1 Only  
Write data inputs to Byte 1 Only  
Write data inputs to Byte 2 Only  
Write data inputs to Byte 2 Only  
Write data inputs to Byte 3 Only  
Write data inputs to Byte 3 Only  
Write data inputs to all Bytes  
Ç
Ç
Ç
Ç
Ç
Ç
L
H
H
H
H
H
H
L
L
H
H
H
H
L
L
H
H
L
L
L
L
L
L
L
Write data inputs to all Bytes  
5677 tbl 03a  
NOTES:  
1. BW0 controls D[8:0], BW1 controls D[17:9], BW2 controls D[26:18], BW3 controls D[35:27].  
2. For this table: W is Low on the rising edge of K; E0 and E1 are true on the rising edge of K. See Truth Tables I and III.  
Addresses for Writes are qualified on rising edge of K.  
3. This table represents a subset of the potential write scenarios based upon BW0 - BW3 inputs and is meant to illustrate  
basic device functionality.  
6
January 29, 2009  
Preliminary Datasheet  
Commercial Temperatue Range  
18/9Mb x36 IDT70P3537/70P3517  
SYNCHRONOUS Dual QDR-II  
TM  
Truth Table III - Port Enable Pins(1)  
Normal Read and Writes  
Device Selected  
Bank 0  
EP[0]  
EP[1]  
E[0]  
L
E[1]  
L
V
SS  
DD  
SS  
DD  
V
SS  
SS  
DD  
DD  
Bank 1  
V
V
H
L
Bank 2  
V
V
L
H
Bank 3  
V
V
H
H
5677 tbl05  
NOTES:  
1. EP [1:0] - Port Enable Programming Polarity (see pin description for the entire device).  
2. Ex[1:0] - Port Enable (see pin description assigned for each port).  
Cascade/Multi-Drop using Port Enable (E0 & E1) Pins  
As shown below in Figure 1 upto four devices can be cascaded using the Port Enable (E0,E1) pins scheme. The port enable pins  
are subject to the same DC characteristics as the QDR interface. Refer to Pin Definitions table for pin descriptions. This diagram illustrates  
one port of a QDR-II dual port  
Figure 1. Multi-drop Cascading using the Chip Enable E[1:0] Pins  
7
January 29, 2009  
Preliminary Datasheet  
Commercial Temperatue Range  
18/9Mb x36 IDT70P3537/70P3517  
SYNCHRONOUS Dual QDR-II  
TM  
(1)  
Absolute Maximum Ratings(1,2,3)  
Capacitance (TA = +25°C, f = 1.0MHz)  
Conditions(2)  
IN = 0V  
OUT = 0V  
Symbol  
Rating  
Value  
Unit  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Max.  
Unit  
VDD  
Supply Voltage on VDD with  
Respect to GND  
–0.5 to +2.2  
V
C
IN  
V
5
pF  
CO  
V
7
pF  
V
DDQ  
Supply Voltage on VDDQ with  
Respect to GND  
–0.5 to VDD  
V
V
5677 tbl 08  
NOTE:  
VTERM  
Voltage on Input, Output and I/O  
terminals with respect to GND  
–0.3 to VDD+0.3  
1. Tested at characterization and retested after any design or process change that  
may affect these parameters.  
2. VDD = 1.8V, VDDQ = 1.5V  
T
BIAS  
Temperature Under Bias  
Storage Temperature  
–55 to +125  
–65 to +150  
+ 20  
°C  
°C  
TSTG  
IOUT  
Continuous Current into Outputs  
mA  
5677 tbl 07  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may  
cause permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in  
the operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect reliability.  
2. VDDQ must not exceed VDD during normal operation.  
Recommended DC Operating  
and Temperature Conditions  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
3. VTerm(MAX) = minimum of VDD +0.3V and 2.2V.  
Power Supply  
Voltage  
VDD  
1.7  
1.8  
1.9  
V
V
DDQ  
I/O Supply Voltage  
Ground  
1.4  
0
1.5  
0
1.9  
0
V
V
V
SS  
Input Reference  
Voltage  
VREF  
0.68  
VDDQ/2  
0.95  
V
Thermal Resistance  
V
IH  
Input High Voltage  
Input Low Voltage  
V
REF+0.1  
V
DDQ+0.3  
V
V
Parameter  
Symbol  
Typ.  
12.5  
0.1  
Unit  
VIL  
–0.3  
VREF–0.1  
θJA  
Ambient  
Junction to Ambient  
Junction to Case  
°C/W  
o
c
TA  
0
25  
+70  
Te mp e rature (1)  
θJC  
°C/W  
5677 tbl 09  
5677 tbl 10  
NOTE:  
1. Duringproductiontesting,thecase temperatureequals theambienttemperature.  
NOTE:  
1. Junction temperature is a function of on-chip power dissipation, package  
thermal impedance, mounting site temperature and mounting site thermal  
impedance. TJ = TA + PD x θJA.  
Recommended Operating  
Temperature and Supply Voltage  
Ambient  
Grade  
Commercial  
Industrial  
Temperature  
0OC to +70OC  
-40OC to +85OC  
GND  
0V  
VDD  
1.8V  
1.8V  
+
+
100mV  
100mV  
0V  
5677 tbl06  
8
January 29, 2009  
Preliminary Datasheet  
Commercial Temperatue Range  
18/9Mb x36 IDT70P3537/70P3517  
SYNCHRONOUS Dual QDR-II  
TM  
DC Electrical Characteristics Over the Operating Temperature  
and Supply Voltage (VDD = 1.8V ±100mV, VDDQ = 1.4V to 1.9V, TA = 0 to 70°C)  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Unit  
Note  
µA  
Input Leakage Current  
Output Leakage Current  
I
IL  
V
DD = Max VIN = VSS to VDDQ  
-10  
-10  
+10  
+10  
8
Output Disabled  
µA  
IOL  
8
V
I
DD = Max,  
OUT = 0mA (outputs open),  
Cycle Time > tKHKH Min  
250MH  
Z
-
-
-
-
-
-
-
1636  
1542  
1432  
1351  
1212  
1147  
1007  
Active Operating Current  
2 Port Read  
I
DD  
mA  
1
1
1
233MH  
Z
V
DD = Max,  
OUT = 0mA (outputs open),  
Cycle Time > tKHKH Min  
250MH  
233MH  
250MH  
233MH  
250MH  
Z
IDD1  
I
mA  
mA  
Z
VDD = Max,  
Z
2 Port Write  
IDD2  
IOUT = 0mA (outputs open),  
Z
Cycle Time > tKHKH Min  
Device Deselected  
Z
IOUT = 0mA (outputs open),  
Standby Current  
ISB  
f=Max,  
All Inputs < 0.2V or > VDDQ - 0.2V  
mA  
2
233MH  
Z
-
956  
WEN=REN=High  
Output High Voltage  
Output Low Voltage  
Output High Voltage  
Output Low Voltage  
Z
Q
= 250Ω, IOH = -(VDDQ/2)/(R  
Q
/5)  
V
DDQ/2 -0.12  
DDQ/2 -0.12  
DDQ -0.2  
SS  
V
DDQ/2 +0.12  
V
V
V
V
3,7  
4,7  
5
V
OH1  
OL1  
OH2  
OL2  
Z
Q
= 250, IOL = (VDDQ/2)/(R  
OH = -0.1mA  
OL = 0.1mA  
Q/5)  
V
VDDQ/2 +0.12  
V
I
V
VDDQ  
V
I
V
0.2  
6
V
| IOH  
| IOL  
|
|
V
OUT = VDDQ/2  
-(IOHo-15%)  
(IOLo-15%)  
-(IOHo+15%)  
(IOLo+15%)  
3
4
Output Impedance Control  
V
VOUT = VDDQ/2  
5677 tbl12  
NOTES:  
1. Operating Current is measured at 100% bus utilization on the active port.  
2. Standby Current is only after all pending read and write burst operations are completed.  
3. Outputs are impedance-controlled. IOHO = (VDDQ/2)/(RQ/5) = @Vout = VDDQ/2 and is guaranteed by device characterization for 175< ZQ < 350. This parameter is tes  
at ZQ = 250, which gives a nominal 50output impedance.  
4. Outputs are impedance-controlled. IOLO = (VDDQ/2)/(RQ/5) = @Vout = VDDQ/2 and is guaranteed by device characterization for 175< ZQ < 350. This parameter is tes  
at ZQ = 250, which gives a nominal 50output impedance.  
5. This measurement is taken to ensure that the output has the capability of pullling to the VDDQ rail, and is not intended to be used as an impedance  
measurement point.  
6. This measurement is taken to ensure that the output has the capability of pulling to VSS, and is not intended to be used as an impedance measure point.  
7. Programmable Impedance Mode.  
8. 30µA for JTAG input pins.  
Input Electrical Characteristics Over the Operating Temperature  
and Supply Voltage (VDD = 1.8V ±100mV, VDDQ = 1.4V to 1.9V, TA = 0 to 70°C)  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
Input High Voltage, DC  
VIH (DC)  
VREF +0.1  
VDDQ +0.3  
V
1,2  
Input Low Voltage, DC  
Input High Voltage, AC  
Input Low Voltage, AC  
V
IL (DC  
)
-0.3  
V
REF -0.1  
V
V
V
1,3  
4,5  
4,5  
VIH (AC)  
V
REF +0.2  
-
VIL (AC)  
-
VREF -0.2  
5677 tbl 13  
NOTES:  
1. These are DC test criteria. DC design criteria is VREF + 50mV. The AC VIH/VIL levels are defined separately for measuring timing parameters.  
2. VIH (Max) DC = VDDQ +0.3V, VIH (Max) AC = VDDQ +0.5V (pulse width < 20% tKHKH (min)).  
3. VIL (MIN) DC = -0.3V, VIL (MIN) AC = -0.5V (pulse width < 20% tKHKH (min)).  
4. This condition is for AC function test only, not for AC parameter test.  
5. To maintain a valid level, the transitioning edge of the input must:  
Sustain a constant slew rate from the current AC level through the target AC level, VIL (AC) or VIH (AC)  
Reach at least the target AC level  
After the AC target level is reached, continue to maintain at least the target DC level, VIL (DC) or VIH (DC)  
9
January 29, 2009  
Preliminary Datasheet  
Commercial Temperatue Range  
18/9Mb x36 IDT70P3537/70P3517  
SYNCHRONOUS Dual QDR-II  
TM  
Overshoot Timing  
Undershoot Timing  
VIL  
VSS  
VSS -0.25V  
VSS -0.5V  
20% tKHKH (MIN)  
5677 drw 06  
AC Test Loads  
AC Test Conditions  
V
REF  
DDQ/2  
V
Parameter  
Core Power Supply Voltage  
Output Power Supply Voltage  
Input High Level  
Symbol  
VDD  
Value  
1.7-1.9  
Unit  
OUTPUT  
V
V
V
V
V
ns  
V
VDDQ  
VIH  
1.4-1.9  
= 50  
0
Z
Device  
Under  
Test  
R = 50Ω  
L
(VDDQ/2) +0.5  
(VDDQ/2) -0.5  
VDDQ/2  
RQ = 250  
Input Low Level  
VIL  
DDQ/2  
V
ZQ  
Input Reference Level  
Input Rise/Fall Time  
VREF  
TR/TF  
0.3/0.3  
5677 drw 07  
Output Timing Reference Level  
VDDQ/2  
5677 tbl 14  
NOTE:  
1. Parameters are tested with RQ=250Ω.  
(VDDQ/2) +0.5V  
(VDDQ/2) -0.5V  
VDDQ/2  
5677 drw08  
10  
January 29, 2009  
Preliminary Datasheet  
Commercial Temperatue Range  
18/9Mb x36 IDT70P3537/70P3517  
SYNCHRONOUS Dual QDR-II  
TM  
AC Electrical Characteristics  
(VDD = 1.8V ±100mV, VDDQ = 1.4V to 1.9V, TA(8) = 0 to 70°C)  
Commercial  
250MHz  
233MHz  
Min.  
Max.  
Min.  
Max.  
Symbol  
Parameter  
Unit  
Notes  
Clock Parameters  
t
KHKH  
KC var  
KHKL  
KLKH  
KHKH  
KHKH  
KHCH  
KC lock  
KC reset  
Average clock cycle time (K,K,C,C)  
4.00  
6.30  
4.30  
7.20  
ns  
ns  
__  
__  
t
Clock Phase Jitter (K,K,C,C)  
Clock High Time (K,K,C,C)  
Clock LOW Time (K,K,C,C)  
Clock to clock (KK,CC)  
Clock to clock (KK,CC)  
Clock to data clock (KC,KC)  
DLL lock time (K, C)  
0.20  
0.20  
1,5  
9
__  
__  
t
1.60  
1.60  
1.80  
1.80  
0.00  
1024  
30  
1.80  
1.80  
2.00  
2.00  
0.00  
1024  
30  
ns  
__  
__  
__  
__  
__  
__  
t
ns  
9
t
ns  
10  
10  
t
ns  
t
1.80  
2.00  
ns  
__  
__  
t
cycles  
ns  
2
__  
__  
t
K static to DLL reset  
Output Parameters  
__  
__  
t
CHQV  
CHQX  
CHCQV  
CHCQX  
CQHQV  
CQHQX  
CHQZ  
CHQX1  
C,C HIGH to output valid  
C,C HIGH to output hold  
0.45  
0.45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3
3
3
3
__  
__  
t
-0.45  
-0.45  
__  
__  
t
C,C HIGH to echo clock valid  
C,C HIGH to echo clock hold  
CQ,CQ HIGH to output valid  
CQ,CQ HIGH to output hold  
C HIGH to output High-Z  
C HIGH to output Low-Z  
0.45  
0.45  
__  
__  
t
-0.45  
-0.45  
__  
__  
t
0.30  
0.32  
__  
__  
t
-0.30  
-0.32  
__  
__  
t
0.45  
0.45  
3,4,5  
3,4,5  
__  
__  
t
-0.45  
-0.45  
Set-Up Times  
__  
__  
__  
__  
__  
__  
t
AVKH  
IVKH  
DVKH  
Address valid to K,K rising edge  
Control inputs valid to K,K rising edge  
Date-in valid to K, K rising edge  
0.35  
0.35  
0.35  
0.37  
0.37  
0.37  
ns  
ns  
ns  
6
7
t
t
Hold Times  
__  
__  
__  
__  
__  
__  
t
KHAX  
KHIX  
KHDX  
K,K rising edge to address hold  
K,K rising edge to control inputs hold  
K,K rising edge to data-in hold  
0.35  
0.35  
0.35  
0.37  
0.37  
0.37  
ns  
ns  
ns  
6
7
t
t
Port-to-Port Delay  
Clock-to-Clock Offset  
5677 tbl 15  
tCO  
4.00  
4.30  
ns  
NOTES:  
1. Cycle to cycle period jitter is the variance from clock rising edge to the next expected clock rising edge, as defined per JEDEC Standard No. 65 (EIA/JESD65)  
page.  
2. VDD slew rate must be less than 0.1V DC per 50ns for DLL lock retention. DLL lock time begins once VDD, VDDQ and input clock are stable.  
3. If C, C are tied High, K, K become the references for C, C timing parameters.  
4. To avoid bus contention, at a given voltage and temperature tCHQX1 is bigger than tCHQZ.  
The specs as shown do not imply bus contention because tCHQX1 is a MIN parameter that is worst case at 0°C and 1.9V tCHQZ, is a MAX parameter that is  
worst case at 70°C and 1.7V.  
5. This parameter is guaranteed by device characterization, but not production tested.  
6. All address inputs must meet the specified setup and hold times for all latching clock edges.  
7. Control signals are R, W, BW0, BW1, BW2, BW3,E0, E1.  
8. During production testing, the case temperature equals TA.  
9. Clock High Time (tKHKL) and Clock Low Time (tKLKH) should be within 40% to 60%of the cycle time (tKHKH).  
10. Clock to Clock time (tKHKH) and Clock to Clock time (tKHKH) should be within 45% to 55% of the cycle time (tKHKH).  
11  
January 29, 2009  
Preliminary Datasheet  
Commercial Temperatue Range  
18/9Mb x36 IDT70P3537/70P3517  
SYNCHRONOUS Dual QDR-II  
TM  
Timing Waveform for Alternating Read and Write Operations(1,2)  
Read  
0
Write  
1
Read  
2
Write  
3
Read  
4
Write  
5
Write  
7
NOP  
8
NOP  
9
NOP  
6
K
K
R
tKHKL  
tKLKH  
tKHKH  
tKHKH  
tKHKH  
tIVKH  
tKHIX  
W
tAVKH  
tIVKH  
tKHAX  
tKHIX  
A4  
A7  
A5  
A
A0  
A2  
A3  
A1  
tKHAX  
tAVKH  
tAVKH tKHAX  
tIVKH  
tKHIX  
B11  
B51  
B10  
D10  
B30  
B31  
D31  
B50  
D50  
B70  
B71  
D71  
(3)  
BWx  
D30  
D11  
D51  
Q01  
D70  
Q20  
D
Q
tDVKH tKHDX  
tDVKH tKHDX  
(4)  
Q00  
Q40  
Q21  
Q41  
tCHQX1  
tCQHQV  
tCHQX  
tCHQX  
tCHQZ  
tCHQV  
tCHQV  
tKHKH  
tKLKH  
C
tKHKH  
tKHKL  
tKHKH  
C
tCHCQV  
tCQHQX  
tCQHQV  
tCHCQX  
CQ  
tCHCQV  
tCQHQV  
tCQHQX  
tCHCQX  
CQ  
5677 drw 09  
NOTES:  
1. Device is selected per E[0] and E[1] as defined in Truth Table II, and MRST = VIH.  
2. This waveform represents operation when DLL is ON.  
3. To perform a valid write operation, both W and the appropriate BW0-3 must be low.  
4. Q00 refers to the output from A0, and Q01 refers to the output from the next internal address following A0.  
12  
January 29, 2009  
Preliminary Datasheet  
Commercial Temperatue Range  
18/9Mb x36 IDT70P3537/70P3517  
SYNCHRONOUS Dual QDR-II  
TM  
Timing Waveform of Back-to-Back Read-Write-Read to Same  
Address(1,2)  
NOTES:  
1. Device is selected per E[0] and E[1] as defined in Truth Table II, and MRST = VIH.  
2. This waveform represents operation when DLL is ON.  
3. To perform a valid write operation, both W and the appropriate BW0-3 must be low.  
4. ORIG Q00 represents the existing data in the memory. New Q00 represents the data written into the memory in the first cycle of the waveform.  
13  
January 29, 2009  
Preliminary Datasheet  
Commercial Temperatue Range  
18/9Mb x36 IDT70P3537/70P3517  
SYNCHRONOUS Dual QDR-II  
TM  
Timing Waveform for Left Port Write to Right Port Read(1)  
0
2
5
1
3
4
6
7
8
11  
13  
14  
9
10  
12  
(2)  
tCO  
KL  
tKHKH  
K
L
L
L
W
A1  
A0  
Address_  
DINL  
D11  
D00  
D01  
D10  
KR  
KR  
R
R
Address_  
R
A2  
A0  
QR  
Q00  
Q01  
Q20  
Q21  
tCHQX1  
CR  
tCHQV  
C
R
CQR  
CQR  
5677 drw 11  
NOTES:  
1. Device is selected per E[0] and E[1] as defined inTruth Table III. MRST = VIH. BW0L, BW1L, BW2L, and BW3L = VIL  
2. If tco < specified minimum, data read from right port is not valid until the next KR cycle. If tco > specified minimum, data read from right port is available on the first KR cycle  
as shown.  
14  
January 29, 2009  
Preliminary Datasheet  
Commercial Temperatue Range  
18/9Mb x36 IDT70P3537/70P3517  
SYNCHRONOUS Dual QDR-II  
TM  
Timing Waveforms for DLL Operation (On/Off)(1,2)  
Read  
0
Write  
1
Read  
2
Write  
3
Read  
4
Write  
5
Write  
7
NOP  
8
NOP  
9
NOP  
6
K
tKHKL  
tKLKH  
tKHKH  
tKHKH  
tKHKH  
K
R
tIVKH  
tKHIX  
W
tAVKH  
tIVKH  
tKHAX  
tKHIX  
A0  
A4  
A5  
B51  
D51  
A
A2  
A3  
A7  
A1  
tKHAX  
tAVKH  
tAVKH tKHAX  
tIVKH  
tKHIX  
(3)  
B31  
B10  
D10  
B30  
D30  
B11  
B50  
D50  
B70  
D70  
B71  
BW  
X
D11  
D31  
D
D71  
tDVKH tKHDX  
tDVKH tKHDX  
tCHQZ  
tCHQV  
Case 1: Q  
DLL OFF (QDRI)  
(4  
)
Q40  
Q00  
Q01  
Q20  
Q21  
Q41  
(5)  
tCHQX1  
tCHQX  
tCHQV  
tCHQX  
Case 2: Q  
DLL ON (QDRII)  
(4  
)
Q40  
Q00  
Q01  
Q20  
Q21  
Q41  
tCHQX1  
tCHQX  
tCHQX  
tCHQV  
tCHQZ  
tKLKH  
tCHQV  
tKHKH  
C
tKHKH  
tKHKL  
tKHKH  
C
5677 drw 12  
NOTES:  
1. Device is selected per E[0] and E[1] as defined in Truth Table II, and MRST = VIH.  
2. With DLL OFF (DOFFX < VIL) device behaves as a QDRI device. With DLL ON (DOFFX > VIH) device behaves as a QDR-II device.  
3. To perform a valid write operation, both W and the appropriate BW0-3 must be low on the rising edge of K.  
4. Q00 refers to the output from A0, and Q01 refers to the output from the next internal address following A0.  
5. With DLL off (DOFF = VIL) the propagation delays will be increased and the AC timing parameters will be different values from those specified in this data sheet.  
15  
January 29, 2009  
Preliminary Datasheet  
Commercial Temperatue Range  
18/9Mb x36 IDT70P3537/70P3517  
SYNCHRONOUS Dual QDR-II  
TM  
Master Reset Timing Waveform  
K
(5ns)  
MRST(1)  
5677 drw13  
NOTE:  
1. MRST must be held LOW for a minimum of (5ns) after power supply is stable.  
16  
January 29, 2009  
Preliminary Datasheet  
Commercial Temperatue Range  
18/9Mb x36 IDT70P3537/70P3517  
SYNCHRONOUS Dual QDR-II  
TM  
IEEE 1149.1 Test Access Port and Boundary SCAN-JTAG  
This part contains an IEEE standard 1149.1 Compatible Test Access Port (TAP). The package pads are monitored by the Serial  
Scan circuitry when in test mode. This is to support connectivity testing during manufacturing and system diagnostics. In conformance with  
IEEE 1149.1, the QDR-II Dual-Port Static RAM contains a TAP controller, Instruction Register, Bypass Register and ID Register. The TAP  
controller has a standard 16-state machine that resets internally upon power-up. It is possible to use this device without utilizing the TAP. To  
disable the TAP controller without interfacing with normal operation of the QDR-II Dual-Port Static RAM TCK must be tied to VSS to preclude  
a mid level input. TMS and TDI are designed so an undriven input will produce a response identical to the application of a logic 1, and may  
be left unconnected, but they may also be tied to Vdd through a resistor. TDO should be left unconnected.  
JTAG Block Diagram  
TAP Controller State Diagram  
Test Logic Reset  
1
0
Run Test Idle  
1
1
1
Select DR  
0
Select IR  
0
0
1
1
1
Capture DR  
0
Capture IR  
0
Shift DR  
1
Shift IR  
1
0
0
0
1
Exit 1 DR  
0
Exit 1 IR  
0
Pause DR  
1
Pause IR  
1
0
0
0
Exit 2 DR  
1
Exit 2 IR  
1
1
0
Update DR  
0
Update IR  
1
5677 drw 15  
17  
January 29, 2009  
Preliminary Datasheet  
Commercial Temperatue Range  
18/9Mb x36 IDT70P3537/70P3517  
SYNCHRONOUS Dual QDR-II  
TM  
Identification Register Definitions  
Instruction Field  
Value  
Description  
Revision Number (31:28)  
0x0  
Reserved for version number  
0x355(1)  
0x33  
1
IDT Device ID (27:12)  
Defines IDT part number (IDT70P3537)  
IDT JEDEC ID (11:1)  
Allows unique identification of device vendor as IDT  
Indicates the presence of an ID register  
ID Register Indicator Bit (Bit 0)  
5677 tbl 16  
NOTE:  
1. Device ID for IDT70P3517 is 0x356.  
Scan Register Sizes  
Register Name  
Bit Size  
Instruction (IR)  
4
1
Bypass (BYR)  
Identification (IDR)  
32  
Boundary Scan (BSR)  
Note 1  
5677 tbl 17  
NOTE:  
1. The Boundary Scan Descriptive Language (BSDL) file for this device is available  
on the IDT website (www.idt.com), or by contacting your local IDT sales represen-  
tative.  
System Interface Parameters  
Instruction  
Code  
Description  
EXTEST  
0000  
Forces contents of the boundary scan cells onto the device outputs(1).  
Places the boundary scan register (BSR) between TDI and TDO.  
BYPASS  
IDCODE  
1111  
Places the bypass register (BYR) between TDI and TDO.  
0010  
Loads the ID register (IDR) with the vendor ID code and places the  
register between TDI and TDO.  
0100  
Places the bypass register (BYR) between TDI and TDO. Forces all  
device output drivers to a High-Z state except COLx & INTx outputs.  
HIGHZ  
Uses BYR. Forces contents of the boundary scan cells onto the device  
outputs. Places the bypass register (BYR) between TDI and TDO.  
CLAMP  
0011  
0001  
SAMPLE/PRELOAD  
Places the boundary scan register (BSR) between TDI and TDO.  
SAMPLE allows data from device inputs(2) to be captured in the  
boundary scan cells and shifted serially through TDO. PRELOAD allows  
data to be input serially into the boundary scan cells via the TDI.  
RESERVED  
PRIVATE  
0101, 0111, 1000, 1001,  
1010, 1011, 1100  
Several combinations are reserved. Do not use codes other than those  
identified above.  
0110,1110,1101  
For internal use only.  
5677 tbl 18  
NOTES:  
1. Device outputs = All device outputs except TDO.  
2. Device inputs = All device inputs except TDI, TMS, and TRST.  
18  
January 29, 2009  
Preliminary Datasheet  
Commercial Temperatue Range  
18/9Mb x36 IDT70P3537/70P3517  
SYNCHRONOUS Dual QDR-II  
TM  
JTAG DC Operating Conditions  
Parameter  
Power Supply Voltage (I/P + O/P)  
Input High Level  
Symbol  
Min  
1.7  
1.3  
-0.3  
Typ  
Max  
1.9  
Unit  
V
Note  
V
DD  
IH  
IL  
OH  
OL  
1.8  
V
-
-
-
-
V
DD+0.3  
V
Input Low Level  
V
0.5  
V
Output High Voltage (IOH = -1mA)  
Output Low Voltage (IOL = 1mA)  
V
V
DD - 0.2  
VDD  
V
V
VSS  
0.2  
V
5677 tbl 19  
JTAG AC Test Conditions  
Parameter  
Symbol  
IH/VIL  
TR/TF  
Value  
1.8/0  
Unit  
V
Note  
Input High/Low Level  
V
Input Rise/Fall Time  
1.0/1.0  
DD/2  
ns  
Input and Output Timing Reference Level  
V
V
1
5677 tbl 20  
NOTE:  
1. For outputs see AC test loads on page 10.  
JTAG AC Characteristics  
Parameter  
Symbol  
Min  
100  
40  
40  
10  
10  
10  
10  
10  
10  
0
Max  
Unit  
Note  
TCK Cycle Time  
t
CHCH  
CHCL  
CLCH  
MVCH  
CHMX  
DVCH  
CHDX  
SVCH  
CHSX  
CLQV  
JRST  
JRSR  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCK High Pulse Width  
TCK Low Pulse Width  
TMS Input Setup Time  
TMS Input Hold Time  
TDI Input Setup Time  
TDI Input Hold Time  
t
t
-
t
-
t
-
t
-
t
-
Input Setup Time  
t
-
Input Hold Time  
t
-
Clock Low to Output Valid  
TRST Low to Reset JTAG  
TRST High to TCK HIGH  
t
20  
-
t
50  
50  
t
-
5677 tbl 21  
JTAG Timing Diagram  
TCK  
tCHCL  
tCLCH  
tCHCH  
tCHMX  
tMVCH  
TMS  
TDI  
tDVCH  
tCHDX  
tCHSX  
tSVCH  
Outputs  
tCLQV  
TDO  
tJRSR  
tJRST  
TRST  
5677 drw 16  
19  
January 29, 2009  
Preliminary Datasheet  
Commercial Temperatue Range  
18/9Mb x36 IDT70P3537/70P3517  
SYNCHRONOUS Dual QDR-II  
TM  
Ordering Information  
XXXXX  
A
999  
A
A
Device  
Type  
Power Speed  
Package  
Process/  
Temperature  
Range  
Blank  
RM  
Commercial (0°C to +70°C)  
576–ball RoHS Compliant Flip Chip BGA  
250  
233  
Commercial Only  
Speed in Megahertz  
Com’l & Ind’l  
S
Standard Power  
18Mbit (512K x 36) Dual QDR-IITM Static RAM  
9Mbit (256K x 36) Dual QDR-IITM Static RAM  
70P3537  
70P3517  
5677 drw17  
Preliminary Datasheet: Description  
"PRELIMINARY" datasheets contain descriptions for products that are in early release.  
Datasheet Document History  
7/11/2007: Initial release of Preliminary Datasheet  
8/05/2008: Page 9 Corrected a typo in DC Chars table  
01/19/09: Page 20 Removed "IDT" from orderable part number  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
408-284-2794  
DualPortHelp@idt.com  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
®
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
20  
January 29, 2009  

相关型号:

703517S250RM

QDR SRAM, 256KX36, 0.45ns, PBGA576, 25 X 25 MM, 2.55 MM HEIGHT, 1 MM PITCH, ROHS COMPLIANT, FBGA-576
IDT

70353-101-36

Board Connector, 36 Contact(s), 2 Row(s), Male, Straight, Solder Terminal,
AMPHENOL

70353-301-12

Board Connector, 12 Contact(s), 2 Row(s), Male, Straight, Solder Terminal,
AMPHENOL

70353-301-36

Board Connector, 36 Contact(s), 2 Row(s), Male, Straight, Solder Terminal,
AMPHENOL

70353-801-12

Board Connector, 12 Contact(s), 2 Row(s), Male, Straight, Solder Terminal
AMPHENOL

70353-801-16

Board Connector, 16 Contact(s), 2 Row(s), Male, Straight, Solder Terminal
AMPHENOL

70353-801-26

Board Connector, 26 Contact(s), 2 Row(s), Male, Straight, Solder Terminal
AMPHENOL

70353-801-36

Board Connector, 36 Contact(s), 2 Row(s), Male, Straight, Solder Terminal,
AMPHENOL

70353-801-40

Board Connector, 40 Contact(s), 2 Row(s), Male, Straight, Solder Terminal,
AMPHENOL

703537S233RM

QDR SRAM, 512KX36, 0.45ns, PBGA576, 25 X 25 MM, 2.55 MM HEIGHT, 1 MM PITCH, ROHS COMPLIANT, FBGA-576
IDT

703537S250RM

暂无描述
IDT

70355-101-002

Board Connector, 2 Contact(s), 2 Row(s), Male, Right Angle, Solder Terminal
AMPHENOL