ICS8521 [ICSI]

LOW SKEW, 1-TO-9 DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER; 低偏移, 1到9差分至LVHSTL扇出缓冲器
ICS8521
型号: ICS8521
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

LOW SKEW, 1-TO-9 DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER
低偏移, 1到9差分至LVHSTL扇出缓冲器

文件: 总13页 (文件大小:140K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS8521  
LOW SKEW, 1-TO-9  
Integrated  
Circuit  
Systems, Incꢀ  
DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
GENERAL DESCRIPTION  
FEATURES  
The ICS8521 is a low skew, 1-to-9 3.3V Differ- 9 LVHSTL outputs  
ential-to-LVHSTL Fanout Buffer and a member of  
the HiPerClockS™ family of High Performance  
Clock Solutions from ICS. The ICS8521 has two  
selectable clock inputs. The CLK, nCLK pair can  
Selectable CLK, nCLK or LVPECL clock inputs  
HiPerClockS™  
CLK, nCLK pair can accept the following differential input  
levels: LVDS, LVPECL, LVHSTL, SSTL, HCSL  
accept most standard differential input levels. The PCLK,  
nPCLK pair can accept LVPECL, CML, or SSTL input levels.  
The clock enable is internally synchronized to eliminate runt  
pulseson the outputs during asynchronous assertion/  
deassertion of the clock enable pin.  
PCLK, nPCLK supports the following input types:  
LVPECL, CML, SSTL  
Maximum output frequency up to 500MHz  
Output skew: 50ps (maximum)  
Guaranteed output skew, part-to-part skew and crossover  
voltage characteristics make the ICS8521 ideal for today’s  
most advanced applications, such as IA64 and static RAMs.  
Part-to-part skew: 250ps (maximum)  
Propagation delay: 1.8ns (maximum)  
VOH = 1.2V (maximum)  
3.3V core, 1.8V output operating supply voltages  
0°C to 70°C ambient operating temperature  
Industrial temperature information available upon request  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
D
CLK_EN  
Q
LE  
CLK  
nCLK  
PCLK  
nPCLK  
0
1
32 31 30 29 28 27 26 25  
Q0  
1
2
3
4
5
6
7
8
VDD  
CLK  
nQ0  
24  
VDDO  
23 Q3  
22 nQ3  
21 Q4  
20 nQ4  
19 Q5  
18 nQ5  
Q1  
nQ1  
nCLK  
CLK_SEL  
CLK_SEL  
PCLK  
Q2  
nQ2  
ICS8521  
9 10 11 12 13 14 15 16  
32-Lead LQFP  
nPCLK  
GND  
Q3  
nQ3  
CLK_EN  
17  
VDDO  
Q4  
nQ4  
Q5  
nQ5  
Q6  
nQ6  
7mm x 7mm x 1.4mm Package Body  
Q7  
nQ7  
Y Package  
Top View  
Q8  
nQ8  
8521BY  
www.icst.com/products/hiperclocks.html  
REV. B JULY 31, 2001  
1
ICS8521  
LOW SKEW, 1-TO-9  
Integrated  
Circuit  
Systems, Incꢀ  
DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
VDD  
Type  
Description  
1
2
3
Power  
Input  
Input  
Positive supply pin. Connect to 3.3V.  
Non-inverting differential clock input.  
Inverting differential clock input.  
CLK  
Pulldown  
Pullup  
nCLK  
Clock select input. When HIGH, selects PCLK, nPCLK inputs.  
When LOW, selects CLK, nCLK.  
4
CLK_SEL  
Input  
Pulldown  
LVTTL / LVCMOS interface levels.  
5
6
7
PCLK  
nPCLK  
GND  
Input  
Input  
Pulldown  
Pullup  
Non-inverting differential LVPECL clock input.  
Inverting differential LVPECL clock input.  
Power supply ground. Connect to ground.  
Power  
Synchronizing clock enable. When HIGH, clock outputs follow  
clock input. When LOW, Q outputs are forced low, nQ outputs  
are forced high. LVCMOS /LVTTL interface levels.  
8
CLK_EN  
Input  
Pullup  
9, 16, 17,  
24, 25, 32  
VDDO  
Power  
Output supply pins. Connect to 1.8V.  
10, 11  
12, 13  
14, 15  
18, 19  
20, 21  
22, 23  
26, 27  
28, 29  
30, 31  
nQ8, Q8  
nQ7, Q7  
nQ6, Q6  
nQ5, Q5  
nQ4, Q4  
nQ3 Q3  
nQ2, Q2  
nQ1, Q1  
nQ0, Q0  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Differential output pair. LVHSTL interface level.  
Differential output pair. LVHSTL interface level.  
Differential output pair. LVHSTL interface level.  
Differential output pair. LVHSTL interface level.  
Differential output pair. LVHSTL interface level.  
Differential output pair. LVHSTL interface level.  
Differential output pair. LVHSTL interface level.  
Differential output pair. LVHSTL interface level.  
Differential output pair. LVHSTL interface level.  
NOTE: Pullup and Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
CLK, nCLK,  
PCLK, nPLCK  
4
4
pF  
CIN  
Input Capacitance  
CLK_EN, CLK_SEL  
pF  
K  
KΩ  
RPULLUP  
Input Pullup Resistor  
51  
51  
RPULLDOWN  
Input Pulldown Resistor  
8521BY  
www.icst.com/products/hiperclocks.html  
REV. B JULY 31, 2001  
2
ICS8521  
LOW SKEW, 1-TO-9  
Integrated  
Circuit  
Systems, Incꢀ  
DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
TABLE 3A. CONTROL INPUT FUNCTION TABLE  
Inputs  
Outputs  
CLK_EN  
CLK_SEL  
Selected Sourced  
CLK, nCLK  
Q0 thru Q8  
Disabled; LOW  
Disabled; LOW  
Enabled  
nQ0 thru nQ8  
Disabled; HIGH  
Disabled; HIGH  
Enabled  
0
0
1
1
0
1
0
1
PCLK, nPCLK  
CLK, nCLK  
PCLK, nPCLK  
Enabled  
Enabled  
After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge  
as shown in Figure 1.  
In the active mode, the state of the outputs are a function of the CLK, nCLK and PCLK, nPCLK inputs as described  
in Table 3B.  
Enabled  
Disabled  
nCLK, nPCLK  
CLK, PCLK  
CLK_EN  
nQ0 - nQ8  
Q0 - Q8  
FIGURE 1: CLK_EN TIMING DIAGRAM  
TABLE 3B. CLOCK INPUT FUNCTION TABLE  
Inputs  
Outputs  
Input to Output Mode  
Polarity  
CLK or PCLK  
nCLK or nPCLK  
Q0 thru Q8  
LOW  
nQ0 thru nQ8  
HIGH  
0
1
Differential to Differential  
Differential to Differential  
Single Ended to Differential  
Single Ended to Differential  
Single Ended to Differential  
Single Ended to Differential  
Non Inverting  
Non Inverting  
Non Inverting  
Non Inverting  
Inverting  
1
0
HIGH  
LOW  
0
Biased; NOTE 1  
LOW  
HIGH  
1
Biased; NOTE 1  
HIGH  
LOW  
Biased; NOTE 1  
Biased; NOTE 1  
0
1
HIGH  
LOW  
LOW  
HIGH  
Inverting  
NOTE 1: Please refer to the Application Information section on page 8, Figure 9, which discusses wiring the differential  
input to accept single ended levels.  
8521BY  
www.icst.com/products/hiperclocks.html  
REV. B JULY 31, 2001  
3
ICS8521  
LOW SKEW, 1-TO-9  
Integrated  
Circuit  
Systems, Incꢀ  
DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, VDDx  
Inputs, VI  
4.6V  
-0.5V to VDD + 0.5V  
-0.5V to VDDO + 0.5V  
Outputs, VO  
Package Thermal Impedance, θJA  
47.9°C/W  
Storage Temperature, TSTG  
-65°C to 150°C  
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings  
are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the  
DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended peri-  
ods may affect product reliability.  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VDD = 3.3V±5%, VDDO = 1.8V±0.2V, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum Units  
VDD  
VDDO  
IDD  
Positive Supply Voltage  
3.465  
2.0  
V
V
Output Supply Voltage  
Power Supply Current  
1.6  
1.8  
60  
80  
mA  
TABLE 4B. LVCMOS DC CHARACTERISTICS, VDD = 3.3V±5%, VDDO = 1.8V±0.2V, TA = 0°C TO 70°C  
Symbol  
VIH  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
CLK_EN, CLK_SEL  
CLK_EN, CLK_SEL  
2
3.765  
0.8  
V
VIL  
-0.3  
V
CLK_EN  
CLK_SEL  
CLK_EN  
CLK_SEL  
VIN = VDD = 3.465V  
VIN = VDD = 3.465V  
5
µA  
µA  
µA  
µA  
IIH  
Input High Current  
Input Low Current  
150  
VIN = 0V, VDD = 3.465V  
VIN = 0V, VDD = 3.465V  
-150  
-5  
IIL  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VDD = 3.3V±5%, VDDO = 1.8V±0.2V, TA = 0°C TO 70°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
VIN = VDD = 3.465V  
VIN = VDD = 3.465V  
VIN = 0V, VDD = 3.465V  
Minimum  
Typical  
Maximum Units  
CLK  
150  
5
µA  
µA  
µA  
µA  
V
nCLK  
CLK  
-5  
IIL  
Input Low Current  
nCLK  
V
IN = 0V, VDD = 3.465V  
-150  
0.15  
VPP  
Peak-to-Peak Input Voltage  
1.3  
Common Mode Input Voltage;  
NOTE 1, 2  
VCMR  
0.5  
VDD - 0.85  
V
NOTE 1: For single ended applications, the maximum input voltage for CLK and nCLK is VDD + 0.3V.  
NOTE 2: Common mode voltage is defined as VIH.  
8521BY  
www.icst.com/products/hiperclocks.html  
REV. B JULY 31, 2001  
4
ICS8521  
LOW SKEW, 1-TO-9  
Integrated  
Circuit  
Systems, Incꢀ  
DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
TABLE 4D. LVPECL DC CHARACTERISTICS, VDD = 3.3V±5%, VDDO = 1.8V±0.2V, TA = 0°C TO 70°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
VDD = VIN = 3.465V  
VDD = VIN = 3.465V  
VDD = 3.465V, VIN = 0V  
VDD = 3.465V, VIN = 0V  
Minimum  
Typical  
Maximum Units  
PCLK  
150  
5
µA  
µA  
µA  
µA  
V
nPCLK  
PCLK  
-5  
IIL  
Input Low Current  
nPCLK  
-150  
0.3  
VPP  
Peak-to-Peak Input Voltage  
1
Common Mode Input Voltage;  
NOTE 1, 2  
VCMR  
1.5  
VDD  
V
NOTE 1: Common mode voltage is defined as VIH.  
NOTE 2: For single ended applications, the maximum input voltage for PCLK and nPCLK is VDD + 0.3V.  
TABLE 4E. LVHSTL DC CHARACTERISTICS, VDD = 3.3V±5%, VDDO = 1.8V±0.2V, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
Output High Voltage;  
NOTE 1  
VOH  
1.0  
1.2  
V
Output Low Voltage;  
NOTE 1  
VOL  
0
40% x (VOH - VOL) + VOL  
0.6  
0.4  
60% x (VOH - VOL) + VOL  
1.1  
V
V
V
VOX  
Output Crossover Voltage  
Peak-to-Peak  
Output Voltage Swing  
VSWING  
NOTE 1: Outputs terminated with 50to ground.  
TABLE 5. AC CHARACTERISTICS, VDD = 3.3V±5%, VDDO = 1.8V±0.2V, TA = 0°C TO 70°C  
Symbol Parameter  
fMAX Maximum Output Frequency  
tPD  
Test Conditions  
Minimum  
Typical  
Maximum Units  
500  
1.8  
50  
MHz  
ns  
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 4  
Part-to-Part Skew; NOTE 3, 4  
Output Rise Time  
ƒ250MHz  
1
tsk(o)  
tsk(pp)  
tR  
ps  
250  
700  
700  
52  
ps  
20% to 80% @ 50MHz  
20% to 80% @ 50MHz  
300  
300  
48  
ps  
tF  
Output Fall Time  
ps  
odc  
Output Duty Cycle  
%
All parameters measured at 250MHz unless noted otherwise.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
Measured from VDD/2 to the output differential crossing point for single ended input levels.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differntial cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages  
and with equal load conditions. Using the same type of inputs on each device, the output are measurd  
at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
8521BY  
www.icst.com/products/hiperclocks.html  
REV. B JULY 31, 2001  
5
ICS8521  
LOW SKEW, 1-TO-9  
Integrated  
Circuit  
Systems, Incꢀ  
DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
PARAMETER MEASUREMENT INFORMATION  
VDDO  
VDD  
SCOPE  
Qx  
LVHSTL  
VDD = 3.3V ± 5%  
V
DDO = 1.8V ± 0.2V  
nQx  
GND = 0V  
FIGURE 2 - OUTPUT LOAD TEST CIRCUIT  
VDD  
CLK, PCLK  
VPP  
VCMR  
Cross Points  
nCLK, nPCLK  
GND  
FIGURE 3 - DIFFERENTIAL INPUT LEVEL  
Qx  
nQx  
Qy  
nQy  
tsk(o)  
FIGURE 4 - OUTPUT SKEW  
8521BY  
www.icst.com/products/hiperclocks.html  
REV. B JULY 31, 2001  
6
ICS8521  
LOW SKEW, 1-TO-9  
Integrated  
Circuit  
Systems, Incꢀ  
DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
Qx  
PART 1  
nQx  
Qy  
PART 2  
nQy  
tsk(pp)  
FIGURE 5 - PART-TO-PART SKEW  
80%  
80%  
VSWING  
20%  
20%  
Clock Inputs  
and Outputs  
tR  
tF  
FIGURE 6 - INPUT AND OUTPUT RISE AND FALL TIME  
CLK, PCLK  
nCLK, nPCLK  
Q0, Q8  
nQ0, nQ8  
tPD  
FIGURE 7 - PROPAGATION DELAY  
CLK, PCLK  
nCLK, nPCLK  
Pulse Width  
tPERIOD  
tPW  
odc =  
tPERIOD  
FIGURE 8 - odc & tPERIOD  
8521BY  
www.icst.com/products/hiperclocks.html  
REV. B JULY 31, 2001  
7
ICS8521  
LOW SKEW, 1-TO-9  
Integrated  
Circuit  
Systems, Incꢀ  
DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 9 shows how the differential input can be wired to accept single ended levels. The reference voltage V_REF ~ VDD/2 is  
generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of  
R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock  
swing is only 2.5V and VDD = 3.3V, V_REF should be 1.25V and R2/R1 = 0.609.  
VDD  
R1  
1K  
CLK_IN  
+
V_REF  
-
C1  
0.1uF  
R2  
1K  
FIGURE 9 - SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
8521BY  
www.icst.com/products/hiperclocks.html  
REV. B JULY 31, 2001  
8
ICS8521  
LOW SKEW, 1-TO-9  
Integrated  
Circuit  
Systems, Incꢀ  
DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS8521.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8521 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VDD = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VDD_MAX * IDD_MAX = 3.465V * 80mA = 277.2mW  
Power (outputs)MAX = 32mW/Loaded Output pair  
If all outputs are loaded, the total power is 9 * 32mW = 288mW  
Total Power_MAX (3ꢀ465V, with all outputs switching) = 277ꢀ2mW + 288mW = 565ꢀ2mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device. The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = junction-to-ambient thermal resistance  
Pd_total = Total device power dissipation (example calculation is in section 1 above)  
TA =Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.565W * 42.1°C/W = 93.8°C. This is well below the limit of 125°C  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
Table 6. Thermal Resistance qJA for 32-pin LQFP, Forced Convection  
qJA by Velocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards 67.8°C/W  
55.9°C/W  
50.1°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
47.9°C/W  
42.1°C/W  
39.4°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
8521BY  
www.icst.com/products/hiperclocks.html  
REV. B JULY 31, 2001  
9
ICS8521  
LOW SKEW, 1-TO-9  
Integrated  
Circuit  
Systems, Incꢀ  
DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVHSTL output driver circuit and termination are shown in Figure 10.  
VDD  
Q1  
VOUT  
RL  
50  
FIGURE 10 - LVHSTL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage of V - 2V.  
DD  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = (V  
Pd_L = (V  
/R ) * (V  
- V  
)
OH_MAX  
OH_MAX  
L
DD_MAX  
/R ) * (V  
- V  
)
OL_MAX  
L
DD_MAX  
OL_MAX  
For logic high, V = V  
= V  
– 1.2V  
OUT  
OH_MAX  
DD_MAX  
For logic low, V = V  
= V  
– 0.4V  
OUT  
OL_MAX  
DD_MAX  
Pd_H = (1.2V/50) * (2V - 1.2V) = 19.2mW  
Pd_L = (0.4V/50) * (2V - 0.4V) = 12.8mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 32mW  
8521BY  
www.icst.com/products/hiperclocks.html  
REV. B JULY 31, 2001  
10  
ICS8521  
LOW SKEW, 1-TO-9  
Integrated  
Circuit  
Systems, Incꢀ  
DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
RELIABILITY INFORMATION  
TABLE 6. θJAVS. AIR FLOW TABLE  
qJA by Velocity (Linear Feet per Minute)  
200  
0
500  
Single-Layer PCB, JEDEC Standard Test Boards 67.8°C/W  
55.9°C/W  
50.1°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards 47.9°C/W  
42.1°C/W  
39.4°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS8521 is: 944  
8521BY  
www.icst.com/products/hiperclocks.html  
REV. B JULY 31, 2001  
11  
ICS8521  
LOW SKEW, 1-TO-9  
Integrated  
Circuit  
Systems, Incꢀ  
DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
PACKAGE OUTLINE - Y SUFFIX  
TABLE 6. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBA  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
--  
--  
--  
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
A2  
b
0.05  
1.35  
0.30  
0.09  
1.40  
0.37  
c
--  
D
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
0.80 BASIC  
0.60  
D1  
D2  
E
E1  
E2  
e
L
0.45  
0.75  
q
--  
0
°
7°  
ccc  
--  
--  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
8521BY  
www.icst.com/products/hiperclocks.html  
REV. B JULY 31, 2001  
12  
ICS8521  
LOW SKEW, 1-TO-9  
Integrated  
Circuit  
Systems, Incꢀ  
DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
TABLE 7. ORDERING INFORMATION  
Part/Order Number  
ICS8521BY  
Marking  
Package  
32 Lead LQFP  
Count  
250 per tray  
1000  
Temperature  
0°C to 70°C  
0°C to 70°C  
ICS8521BY  
ICS8521BY  
ICS8521BYT  
32 Lead LQFP on Tape and Reel  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no  
responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or  
licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature  
range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to  
change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical  
instruments.  
8521BY  
www.icst.com/products/hiperclocks.html  
REV. B JULY 31, 2001  
13  

相关型号:

ICS85210-21

LOW SKEW, DUAL, 1-TO-5 DIFFERENTIAL-TO-HSTL FANOUT BUFFER
ICSI

ICS85210-31

LOW SKEW, DUAL, 1-TO-5 DIFFERENTIAL-TO-HSTL FANOUT BUFFER
ICSI

ICS85210AY-21

LOW SKEW, DUAL, 1-TO-5 DIFFERENTIAL-TO-HSTL FANOUT BUFFER
ICSI

ICS85210AY-21LF

Low Skew Clock Driver, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32
IDT

ICS85210AY-21LFT

Low Skew Clock Driver, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32
IDT

ICS85210AY-21T

LOW SKEW, DUAL, 1-TO-5 DIFFERENTIAL-TO-HSTL FANOUT BUFFER
ICSI

ICS85210AY-21T

Low Skew Clock Driver, 85210 Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026BBA, LQFP-32
IDT

ICS85210AY-31

LOW SKEW, DUAL, 1-TO-5 DIFFERENTIAL-TO-HSTL FANOUT BUFFER
ICSI

ICS85210AY-31T

LOW SKEW, DUAL, 1-TO-5 DIFFERENTIAL-TO-HSTL FANOUT BUFFER
ICSI

ICS85211AM-01

Low Skew Clock Driver, 2 True Output(s), 0 Inverted Output(s), PDSO8, 3.90 X 4.90 MM, 1.37 MM HEIGHT, SOIC-8
IDT

ICS85211AM-01LF

Low Skew Clock Driver, 2 True Output(s), 0 Inverted Output(s), PDSO8, 3.90 X 4.90 MM, 1.37 MM HEIGHT, SOIC-8
IDT

ICS85211AM-01LFT

Low Skew Clock Driver, 2 True Output(s), 0 Inverted Output(s), PDSO8, 3.90 X 4.90 MM, 1.37 MM HEIGHT, SOIC-8
IDT