HMA82GU7MFR8N-PB [HYNIX]

Memory IC, 2GX72, CMOS,;
HMA82GU7MFR8N-PB
型号: HMA82GU7MFR8N-PB
厂家: HYNIX SEMICONDUCTOR    HYNIX SEMICONDUCTOR
描述:

Memory IC, 2GX72, CMOS,

时钟
文件: 总61页 (文件大小:928K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
288pin DDR4 SDRAM Unbuffered DIMM  
DDR4 SDRAM Unbuffered DIMM  
Based on 8Gb M-die  
HMA82GU6MFR8N  
HMA82GU7MFR8N  
*SK hynix reserves the right to change products or specifications without notice.  
Rev. 0.1 / Mar. 2015  
1
Revision History  
Revision No.  
History  
Draft Date  
Remark  
0.1  
Initial Release  
Mar.2015  
Rev. 0.1 / Mar. 2015  
2
Description  
SK hynix Unbuffered DDR4 SDRAM DIMMs (Unbuffered Double Data Rate Synchronous DRAM Dual In-Line  
Memory Modules) are low power, high-speed operation memory modules that use DDR4 SDRAM devices.  
These Unbuffered SDRAM DIMMs are intended for use as main memory when installed in systems such as  
PCs and workstations.  
Features  
• Power Supply: VDD=1.2V (1.14V to 1.26V)  
• VDDQ = 1.2V (1.14V to 1.26V)  
• VPP - 2.5V (2.375V to 2.75V)  
• VDDSPD=2.25V to 2.75V  
• Functionality and operations comply with the DDR4 SDRAM datasheet  
• 16 internal banks  
• Bank Grouping is applied, and CAS to CAS latency (tCCD_L, tCCD_S) for the banks in the same or dif-  
ferent bank group accesses are available  
• Data transfer rates: PC4-2133, PC4-1866, PC4-1600  
• Bi-Directional Differential Data Strobe  
• 8 bit pre-fetch  
• Burst Length (BL) switch on-the-fly BL8 or BC4(Burst Chop)  
• Supports ECC error correction and detection  
• On-Die Termination (ODT)  
Temperature sensor with integrated SPD  
• This product is in compliance with the RoHS directive.  
• Per DRAM Addressability is supported  
• Internal Vref DQ level generation is available  
Ordering Information  
# of  
ranks  
Part Number  
Density  
Organization  
Component Composition  
HMA82GU6MFR8N-TF  
16GB  
16GB  
2Gx64  
2Gx72  
1Gx8(H5AN8G8NMFR)*16  
1Gx8(H5AN8G8NMFR)*18  
2
2
HMA82GU7MFR8N-TF  
Rev. 0.1 / Mar. 2015  
3
Key Parameters  
CAS  
Latency  
(tCK)  
tCK  
(ns)  
tRCD  
(ns)  
tRP  
(ns)  
tRAS  
(ns)  
tRC  
(ns)  
MT/s  
Grade  
CL-tRCD-tRP  
13.75  
13.75  
48.75  
(48.50)*  
DDR4-1600  
DDR4-1866  
DDR4-2133  
-PB  
-RD  
-TF  
1.25  
1.07  
0.93  
11  
13  
15  
35  
34  
33  
11-11-11  
13-13-13  
15-15-15  
(13.50)* (13.50)*  
13.92 13.92  
(13.50)* (13.50)*  
14.06 14.06  
(13.50)* (13.50)*  
47.92  
(47.50)*  
47.05  
(46.50)*  
*SK hynix DRAM devices support optional downbinning to CL13 and CL11. SPD setting is programmed to match.  
Speed Grade  
Frequency [Mbps]  
Grade  
Remark  
CL9  
CL10  
CL11  
CL12  
CL13  
CL14  
CL15  
CL16  
-PB  
-RD  
-TF  
1333  
1333  
1333  
1600  
1600  
1600  
1600  
1600  
1600  
1866  
1866  
1866  
1866  
2133  
2133  
Address Table  
16GB(2Rx8)  
# of Bank Groups  
Bank Address BG Address  
Bank Address in a BG  
4
BG0~BG1  
BA0~BA1  
A0~A15  
A0~ A9  
1 KB  
Row Address  
Column Address  
Page size  
Rev. 0.1 / Mar. 2015  
4
Pin Descriptions  
Pin Name  
Description  
Pin Name  
Description  
I2C serial bus clock for SPD/TS and reg-  
ister  
A0-A171  
BA0, BA1  
BG0, BG1  
Register address input  
SCL  
I2C serial data line for SPD/TS and reg-  
ister  
Regsiter bank select input  
SDA  
I2C slave address select for SPD/TS and  
register  
Regsiter bank group select input  
SA0-SA2  
RAS_n2  
CAS_n3  
WE_n4  
Register row address strobe input  
Register column address strobe input  
Register write enable input  
PAR  
VDD  
Register parity input  
SDRAM core power  
CS0_n, CS1_n,  
CS2_n, CS3_n  
Optional Power Supply on socket but  
not used on RDIMM  
DIMM Rank Select Lines input  
Register clock enable lines input  
12V  
VREFCA  
VSS  
SDRAM command/address reference  
supply  
CKE0, CEK1  
ODT0, ODT1  
Register on-die termination control  
lines input  
Power supply return (ground)  
ACT_n  
DQ0-DQ63  
CB0-CB7  
Register input for activate input  
DIMM memory data bus  
DIMM ECC check bits  
VDDSPD  
ALERT_n  
VPP  
Serial SPD/TS positive power supply  
Register ALERT_n output  
SDRAM Supply  
TDQS9_t-TDQS17_t Dummy loads for mixed populations of  
TDQS_c-TDQS17_c x4 based and x8 based RDIMMs.  
Data Buffer data strobes  
DQS0_t-DQS17_t  
Set Register and SDRAMs to a Known  
State  
RESET_n  
EVENT_n  
VTT  
(positive line of differential pair)  
SPD signals a thermal event has  
occurred  
DBI0_n-DBI8_n Data Bus Inversion  
Register clock input (positive line of dif-  
CK0_t, CK1_t  
ferential pair)  
SDRAM I/O termination supply  
Reserved for future use  
Register clock input (negative line of  
differential pair)  
CK0_c, CK1_c  
RFU  
1. Address A17 is only valid for 16Gbx4 based SDRAMs.  
2. RAS_n is a multiplexed function with A16.  
3. CAS_n is a multiplexed function with A15.  
4. WE_n is a multiplexed function with A14.  
Rev. 0.1 / Mar. 2015  
5
Input/Output Functional Descriptions  
Symbol  
Type  
Function  
CK0_t, CK0_c,  
CK1_t, CK1_c  
Clock: CK_t and CK_c are differential clock inputs. All address and control input signals  
are sampled on the crossing of the positive edge of CK_t and negative edge of CK_c.  
Input  
Clock Enable: CKE HIGH activates and CKE Low deactivates internal clock signals and  
device input buffers and output drivers. Taking CKE Low provides Precharge Power-  
Down and Self-Refresh operation (all banks idle), or Active Power-Down (row Active in  
any bank). CKE is asynchronous for Self-Refresh exit. After VREFCA and Internal DQ Vref  
CKE0, CKE1  
Input have become stable during the power on and initialization sequence, they must be  
maintained during all operations (including Self-Refresh). CKE must be maintained high  
throughout read and write accesses. Input buffers, excluding CK_t, CK_c, ODT and CKE,  
are disabled during power-down. Input buffers, excluding CKE, are disabled during Self-  
Refresh.  
Chip Select: All commands are masked when CS_n is registered HIGH. CS_n provides for  
CS0_n, CS1_n,  
CS2_n, CS3_n  
external Rank selection on systems with multiple Ranks. CS_n is considered part of the  
command code.  
Input  
CS2_n and CS_3 are not used on UDIMMs.  
Chip ID: Chip ID is only used for 3DS for 2,4,8 high stack via TSV to select each slice of  
Input stacked compnent. Chip ID is considered part of the command code.  
Not used on UDIMMs.  
C0, C1, C2  
ODT0, ODT1  
ACT_n  
On Die Termination: ODT (registered HIGH) enables RTT_NOM termination resistance  
internal to the DDR4 SDRAM. When enabled, ODT is only applied to each DQ, DQS_t,  
DQS_c and DM_n/DBI_n/TDQS_t,NU/TDQS_c (When TDQS is enabled via Mode  
Register A11=1 in MR1) signal for x8 configurations. For x16 configuration ODT is  
Input  
applied to each DQ, DQSU_t, DQSU_c, DQSL_t, DQSL_c, DMU_n, and DML_n signal.  
The ODT pin will be ignored if MR1 is programmed to disable RTT_NOM.  
Activation Command Input: ACT_n defines the Activation command being entered along  
Input with CS_n. The input into RAS_n/A16, CAS_n/A15 and WE_n/A14 will be considered as  
Row Address A16, A15 and A14.  
Command Inputs: RAS_n/A16, CAS_n/A15 and WE_n/A14 (along with CS_n) define the  
command being entered. Those pins have multi function. For example, for activation  
Input with ACT_n Low, these are Addresses like A16, A15 and A14 but for non-activation  
command with ACT_n High, these are Command pins for Read, Write and other  
command defined in command truth table.  
RAS_n/A16,  
CAS_n/A15,  
WE_n/A14  
Input Data Mask and Data Bus Inversion: DM_n is an input mask signal for write data.  
Input data is masked when DM_n is sampled LOW coincident with that input data during  
a Write access. DM_n is sampled on both edges of DQS. DM is muxed with DBI function  
by Mode Register A10, A11, A12 setting in MR5. For x8 device, the function of DM or  
TDQS is enabled by Mode Register A11 setting in MR1. DBI_n is an input/output  
identifing wherther to store/output the true or inverted data. If DBI_n is LOW, the data  
will be stored/output after inversion inside the DDR4 SDRAM and not inverted if DBI_n is  
HIGH. TDQS is only supported in x8.  
DM_n/DBI_n/  
TDQS_t,  
(DMU_n/DBIU_n), Output  
(DML_n/DBIL_n)  
Input/  
TDQS is not valid for UDIMMs.  
Rev. 0.1 / Mar. 2015  
6
Symbol  
Type  
Function  
Bank Group Inputs: BG0 - BG1 define which bank group an Active, Read, Write or  
Precharge command is being applied. BG0 also detemines which mode register is to be  
accessed during a MRS cycle. x4/8 SDRAM configurations have BG0 and BG1. x16 based  
SDRAMs only have BG0.  
BG0, BG1  
Input  
Bank Address Inputs: BA0 - BA1 define to which bank an Active, Read, Write or  
BA0, BA1  
A0 - A17  
Input Precharge command is being applied. Bank address also determines which mode  
register is to be accessed during a MRS cycle.  
Address Inputs: Provied the row address for ACTIVATE Commands and the column  
address for Read/Write commands th select one location out of the memory array in the  
respective bank. A10/AP, A12/BC_n, RAS_n/A16, CAS_n/A15 and WE_n/A14 have  
additional functions. See other rows. The address inputs also provide the op-code during  
Input  
Mode Register Set commands.  
A17 is only defined for the x4 SDRAM configration.  
Auto-precharge: A10 is sampled during Read/Write commands to determine whether  
Autoprecharge should be performed to the accessed bank after the Read/Write  
operation. (HIGH: Autoprecharge; LOW: no Autoprecharge). A10 is sampled during a  
Precharge command to determine whether the Precharge applies to one bank (A10  
A10 / AP  
Input  
LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected  
by bank addresses.  
Burst Chop: A12/BC_n is sampled during Read and Write commands to determine if  
Input burst chop (on-the-fly) will be performed. (HIGH, no burst chop; LOW: burst chopped).  
See command truth table for details.  
A12 / BC_n  
RESET_n  
Active Low Asynchronous Reset: Reset is active when RESET_n is LOW, and inactive  
Input  
when RESET_n is HIGH. RESET_n must be HIGH during normal operation.  
Data Input/ Output: Bi-directional data bus. If CRC is enabled via Mode register then  
Input/ CRC code is added at the end of Data Burst. Any DQ from DQ0-DQ3 may indicate the  
Output internal Vref level during test via Mode Register Setting MR4 A4=High. Refer to vendor  
specific data sheets to determine which DQ is used.  
DQ  
Data Strobe: output with read data, input with write data. Edge-aligned with read data,  
centered in write data. For the x16, DQSL corresponds to the data on DQL0-DQL7;  
Input/ DQSU corresponds to the data on DQU0-DQU7. The data strobe DQS_t, DQSL_t and  
Output DQSU_t are paired with differential signals DQS_c, DQSL_c, and DQSU_c, respectively,  
to provide differential pair signaling to the system during reads and writes. DDR4  
SDRAM supports differential data strobe only and does not support single-ended.  
DQS_t, DQS_c,  
DQSU_t, DQSU_c,  
DQSL_t, DQSL_c  
TDQS_t, TDQS_c Output Termination Data Strobe: TDQS_t/TDQS_c are not valid for UDIMMs.  
Command and Address Parity Input : DDR4 Supports Even Parity check in DRAMs with  
MR setting. Once it’s enabled via Register in MR5, then DRAM calculates Parity with  
PARITY  
Input ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, BG0-BG1, BA0-BA1, A16-A0. Input parity  
should be maintained at the rising edge of the clock and at the same time with  
command & address with CS_n LOW.  
Rev. 0.1 / Mar. 2015  
7
Symbol  
Type  
Function  
Alert: It has multi functions such as CRC error flag, Command and Address Parity error  
flag as Output signal. If there is error in CRC, then ALERT_n goes LOW for the period  
time interval and goes back HIGH. If there is error in Command Address Parity Check,  
ALERT_n  
Output then ALERT_n goes LOW for relatively long period until on going DRAM internal recovery  
transaction to complete. During Connectivity Test mode this pin functions as and Input.  
Using this signal or not is dependent on the system. In case of not connected as Signal,  
ALERT_n Pin must be connected to VDD on DIMM.  
RFU  
NC  
Reserved for Future Use. No on DIMM electrical connection is present.  
No Connect: No no DIMM electrical connection is present.  
VDD1  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Power Supply: 1.2 V +/- 0.06 V  
Ground  
VSS  
DRAM Activation Power Supply: 2.5V (2.375V min , 2.75 max)  
Power Supply for termination of Address, Command and Control, VDD/2.  
12 Volt supply not used on UDIMMs.  
VPP  
VTT2  
12V  
Power supply used to power the 12C bus on the SPD.  
Reference voltage for CA  
VDDSDP  
VREFCA  
Note:  
1. For PC4 VDD 1.2V. For PC4L VDD is TBD.  
2. For PC4 VTT is 0.06V. For PC4L VTT is TBD.  
Rev. 0.1 / Mar. 2015  
8
Pin Assignments  
Front Side  
Pin  
Back Side  
Pin Label  
Front Side  
Pin Label  
Back Side  
Pin Label  
Pin  
Pin  
Pin  
Pin Label  
1
2
3
4
5
6
12V, NC  
VSS  
145  
146  
147  
148  
149  
150  
12V, NC  
VREFCA  
VSS  
74  
75  
76  
77  
CK0_t  
CK0_c  
VDD  
218  
219  
220  
221  
CK1_t  
CK1_c  
VDD  
DQ4  
VSS  
DQ5  
VTT  
VTT  
DQ0  
VSS  
KEY  
VSS  
DQ1  
TDQS9_t, DQS9_t,  
DM0_n, DBI0_n, NC  
7
8
151  
152  
VSS  
78  
79  
EVENT_n  
A0  
222  
223  
PARITY  
VDD  
TDQS9_  
C
NC  
, DQS9_  
C,  
DQS0_c  
9
VSS  
DQ6  
VSS  
153  
154  
155  
156  
157  
158  
159  
160  
161  
DQS0_t  
VSS  
80  
81  
82  
83  
84  
85  
86  
87  
88  
VDD  
BA0  
224  
225  
226  
227  
228  
229  
230  
231  
232  
BA1  
A10/AP  
VDD  
10  
11  
12  
13  
14  
15  
16  
17  
DQ7  
VSS  
RAS_n/A16  
VDD  
DQ2  
VSS  
DQ12  
VSS  
DQ8  
VSS  
RFU  
DQ3  
CS0_n  
VDD  
WE_n/A14  
VDD  
VSS  
DQ13  
VSS  
CAS_n/A15  
ODT0  
NC, SAVE_n  
VDD  
DQ9  
VDD  
A13  
TDQS10_t, DQS10_t,  
DM1_n, DBI1_n, NC  
18  
19  
162  
163  
VSS  
89  
90  
CS1_n  
VDD  
233  
234  
VDD  
TDQS10_c, DQS10_c,  
NC  
DQS1_c  
NC, A17  
20  
21  
22  
23  
24  
25  
26  
27  
VSS  
DQ14  
VSS  
164  
165  
166  
167  
168  
169  
170  
171  
DQS1_t  
VSS  
91  
92  
93  
94  
95  
96  
97  
98  
ODT1  
VDD  
235  
236  
237  
238  
239  
240  
241  
242  
NC, C2  
VDD  
DQ15  
VSS  
C0, CS2_n, NC  
VSS  
NC, CS3_n, C1  
SA2  
DQ10  
VSS  
DQ11  
VSS  
DQ36  
VSS  
DQ20  
VSS  
VSS  
DQ37  
DQ21  
VSS  
DQ32  
VSS  
DQ16  
VSS  
DQ33  
TDQS13_t, DQS13_t,  
DM4_n, DBI4_n, NC  
28  
29  
30  
VSS  
172  
173  
174  
DQ17  
VSS  
99  
243  
244  
245  
VSS  
TDQS11_t, DQS11_t,  
DM2_n, DBI2_n  
TDQS13_  
C
NC  
, DQS13_  
C,  
100  
101  
DQS4_c  
DQS4_t  
TDQS11_c, DQS11_c,  
NC  
DQS2_c  
VSS  
31  
32  
VSS  
175  
176  
DQS2_t  
VSS  
102  
103  
DQ38  
VSS  
246  
247  
VSS  
DQ22  
DQ39  
Note: Light colored text indicates functions that are not applicable for UDIMM wiring. An example is the NC fo pin  
234 because UDIMMs defined by this specification will never have DIMM wiring for this pin.  
Rev. 0.1 / Mar. 2015  
9
Front Side  
Pin Label  
Back Side  
Pin Label  
Front Side  
Pin Label  
Back Side  
Pin Label  
Pin  
Pin  
Pin  
Pin  
33  
34  
35  
36  
37  
38  
VSS  
DQ18  
VSS  
177  
178  
179  
180  
181  
182  
DQ23  
VSS  
104  
105  
106  
107  
108  
109  
DQ34  
VSS  
248  
249  
250  
251  
252  
253  
VSS  
DQ35  
VSS  
DQ19  
VSS  
DQ44  
VSS  
DQ28  
VSS  
DQ45  
VSS  
DQ29  
VSS  
DQ40  
VSS  
DQ24  
DQ41  
TDQS14_t, DQS14_t,  
DM5_n, DBI5_n, NC  
39  
40  
41  
VSS  
183  
184  
185  
DQ25  
VSS  
110  
111  
112  
254  
255  
256  
VSS  
TDQS12_t, DQS12_t,  
DM3_n, DBI3_n  
TDQS14_c, DQS14_c,  
NC  
DQS5_  
C
TDQS12_  
C
NC  
, DQS12_  
C,  
DQS3_c  
VSS  
DQS3_t  
42  
43  
44  
45  
46  
47  
48  
49  
VSS  
DQ30  
VSS  
186  
187  
188  
189  
190  
191  
192  
193  
DQS3_t  
VSS  
113  
114  
115  
116  
117  
118  
119  
120  
DQ46  
VSS  
257  
258  
259  
260  
261  
262  
263  
264  
VSS  
DQ47  
VSS  
DQ31  
VSS  
DQ42  
VSS  
DQ26  
VSS  
DQ43  
VSS  
DQ27  
VSS  
DQ52  
VSS  
CB4, NC  
VSS  
DQ53  
VSS  
CB5, NC  
VSS  
DQ48  
VSS  
CB0, NC  
DQ49  
TDQS15_t, DQS15_t,  
DM6_n, DBI6_n, NC  
50  
51  
52  
VSS  
194  
195  
196  
CB1, NC  
VSS  
121  
122  
123  
265  
266  
267  
VSS  
TDQS17_t, DQS17_t,  
DM8_n, DBI8_n  
TDQS15_c, DQS15_c,  
NC  
DQS6_c  
DQS6_t  
TDQS17_c, DQS17_c,  
NC  
DQS8_c  
VSS  
53  
54  
55  
56  
57  
58  
59  
60  
VSS  
CB6, NC  
VSS  
197  
198  
199  
200  
201  
202  
203  
204  
DQS8_t  
VSS  
124  
125  
126  
127  
128  
129  
130  
131  
DQ54  
VSS  
268  
269  
270  
271  
272  
273  
274  
275  
VSS  
DQ55  
VSS  
CB7, NC  
VSS  
DQ50  
VSS  
CB2, NC  
VSS  
DQ51  
VSS  
CB3, NC  
VSS  
DQ60  
VSS  
RESET_n  
VDD  
DQ61  
VSS  
CKE1  
VDD  
DQ56  
VSS  
CKE0  
DQ57  
TDQS16_t, DQS16_t,  
DM7_n, DBI7_n, NC  
61  
62  
VDD  
205  
206  
RFU  
VDD  
132  
133  
276  
277  
VSS  
TDQS16_t, DQS16_c,  
NC  
ACT_n  
DQS7_c  
63  
64  
65  
BG0  
VDD  
207  
208  
209  
BG1  
ALERT_n  
VDD  
134  
135  
136  
VSS  
DQ62  
VSS  
278  
279  
280  
DQS7_t  
VSS  
A12/BC_n  
DQ63  
Note: Light colored text indicates functions that are not applicable for UDIMM wiring. An example is the NC fo pin  
234 because UDIMMs defined by this specification will never have DIMM wiring for this pin.  
Rev. 0.1 / Mar. 2015  
10  
Front Side  
Pin Label  
Back Side  
Pin Label  
Front Side  
Pin Label  
Back Side  
Pin Label  
Pin  
Pin  
Pin  
Pin  
66  
67  
68  
69  
70  
71  
72  
73  
A9  
VDD  
A8  
210  
211  
213  
214  
215  
215  
216  
217  
A11  
A7  
137  
138  
139  
140  
141  
142  
143  
144  
DQ58  
VSS  
SA0  
SA1  
SCL  
VPP  
VPP  
RFU  
281  
282  
283  
284  
285  
286  
287  
288  
VSS  
DQ59  
VSS  
VDD  
A5  
A6  
VDDSPD  
SDA  
VDD  
A3  
A4  
VDD  
A2  
VPP  
A1  
VPP  
VDD  
VDD  
VPP  
Note: Light colored text indicates functions that are not applicable for UDIMM wiring. An example is the NC fo pin  
234 because UDIMMs defined by this specification will never have DIMM wiring for this pin.  
Rev. 0.1 / Mar. 2015  
11  
Functional Block Diagram  
16GB, 2Gx64 Module(2Rank of x8) - page1  
CK0_t, CK0_c  
A[16:0], BA[1:0]  
ACT_n, PARITY,BG[1:0]  
CS0_n  
ODT0  
CKE0  
ZQ  
ZQ  
ZQ  
ZQ  
VSS  
VSS  
VSS  
VSS  
ZQ  
ZQ  
ZQ  
ZQ  
VSS  
VSS  
VSS  
VSS  
DQS0_t  
DQS0_c  
DQ [7:0]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS4_t  
DQS4_c  
DQ [39:32]  
DQS_t  
DQS_c  
DQ [7:0]  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
DM0_n/DBI0_n  
DM_n/DBI_n  
DM4_n/DBI4_n  
DM_n/DBI_n  
DQS1_t  
DQS1_c  
DQ [15:8]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS5_t  
DQS5_c  
DQ [47:40]  
DQS_t  
DQS_c  
DQ [7:0]  
DM1_n/DBI1_n  
DM_n/DBI_n  
DM5_n/DBI5_n  
DM_n/DBI_n  
DQS2_t  
DQS2_c  
DQ [23:16]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS6_t  
DQS6_c  
DQ [55:48]  
DQS_t  
DQS_c  
DQ [7:0]  
DM2_n/DBI2_n  
DM_n/DBI_n  
DM6_n/DBI6_n  
DM_n/DBI_n  
DQS3_t  
DQS3_c  
DQ [31:24]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS7_t  
DQS7_c  
DQ [63:56]  
DQS_t  
DQS_c  
DQ [7:0]  
DM3_n/DBI3_n  
DM_n/DBI_n  
DM7_n/DBI7_n  
DM_n/DBI_n  
Note:  
1. Unless otherwize noted, resistor values are 15±5%.  
2. ZQ resistors are 240 ±1%.For all other resistor values refer to the appropriate wiring diagram.  
Rev. 0.1 / Mar. 2015  
12  
16GB, 2Gx64 Module(2Rank of x8) - page2  
CK1_t, CK1_c  
A[16:0], BA[1:0]  
ACT_n, PARITY,BG[1:0]  
CS1_n  
ODT1  
CKE1  
ZQ  
ZQ  
ZQ  
ZQ  
VSS  
VSS  
VSS  
VSS  
ZQ  
ZQ  
ZQ  
ZQ  
VSS  
VSS  
VSS  
VSS  
DQS0_t  
DQS0_c  
DQ [7:0]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS4_t  
DQS4_c  
DQ [39:32]  
DQS_t  
DQS_c  
DQ [7:0]  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
DM0_n/DBI0_n  
DM_n/DBI_n  
DM4_n/DBI4_n  
DM_n/DBI_n  
DQS1_t  
DQS1_c  
DQ [15:8]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS5_t  
DQS5_c  
DQ [47:40]  
DQS_t  
DQS_c  
DQ [7:0]  
DM1_n/DBI1_n  
DM_n/DBI_n  
DM5_n/DBI5_n  
DM_n/DBI_n  
DQS2_t  
DQS2_c  
DQ [23:16]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS6_t  
DQS6_c  
DQ [55:48]  
DQS_t  
DQS_c  
DQ [7:0]  
DM2_n/DBI2_n  
DM_n/DBI_n  
DM6_n/DBI6_n  
DM_n/DBI_n  
DQS3_t  
DQS3_c  
DQ [31:24]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS7_t  
DQS7_c  
DQ [63:56]  
DQS_t  
DQS_c  
DQ [7:0]  
D8  
DM3_n/DBI3_n  
DM_n/DBI_n  
DM7_n/DBI7_n  
DM_n/DBI_n  
VDDSPD  
SPD  
SCL  
VPP  
D0–D15  
D0–D15  
SDA  
EVENT_n  
EVENT_n  
SA0 SA1 SA2  
VDD  
VTT  
SA0 SA1  
Serial PD with Thermal sensor  
SA2  
D0–D15  
D0–D15  
VREFCA  
VSS  
Note:  
1. Unless otherwize noted, resistor values are 15±5%.  
2. ZQ resistors are 240 ±1%.For all other resistor values refer to the appropriate wiring diagram.  
3. For part 2 of 2 the DQ resistors are shown for simplicity but are the same physical components as shown on part 1 or 2  
4. EVENT_n is wired on this design. A standalone SPD may be used as well. No wiring changes are required.  
Rev. 0.1 / Mar. 2015  
13  
16GB, 2Gx72 Module(2Rank of x8)  
A[16:0],BA[1:0],BG[1:0]  
ACT_n, PARITY  
CK0_t,CK0_c  
CS0_n  
ODT0  
CKE0  
CK1_t,CK1_c  
CS1_n  
ODT1  
CKE1  
ZQ  
ZQ  
ZQ  
ZQ  
VSS  
VSS  
VSS  
VSS  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
VSS  
VSS  
VSS  
VSS  
VSS  
ZQ  
ZQ  
ZQ  
ZQ  
VSS  
VSS  
VSS  
VSS  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
VSS  
DQS4_t  
DQS4_c  
DQ [39:32]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS0_t  
DQS0_c  
DQ [7:0]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS_t  
DQS_c  
DQ [7:0]  
D5  
D0  
D14  
D9  
DM4_n/DBI4_n  
DM_n/DBI_n  
DM0_n/DBI0_n  
DM_n/DBI_n  
DM_n/DBI_n  
DM_n/DBI_n  
VSS  
DQS5_t  
DQS5_c  
DQ [47:40]  
DQS_t  
DQS_c  
DQ [7:0]  
DM_n/DBI_n  
DQS1_t  
DQS1_c  
DQ [15:8]  
DQS_t  
DQS_c  
DQ [7:0]  
DM_n/DBI_n  
DQS_t  
DQS_c  
DQ [7:0]  
DM_n/DBI_n  
DQS_t  
DQS_c  
DQ [7:0]  
DM_n/DBI_n  
D6  
D1  
D15  
D10  
DM5_n/DBI5_n  
DM1_n/DBI1_n  
VSS  
DQS6_t  
DQS6_c  
DQ [55:48]  
DQS_t  
DQS_c  
DQ [7:0]  
DM_n/DBI_n  
DQS2_t  
DQS2_c  
DQ [23:16]  
DQS_t  
DQS_c  
DQ [7:0]  
DM_n/DBI_n  
DQS_t  
DQS_c  
DQ [7:0]  
DM_n/DBI_n  
DQS_t  
DQS_c  
DQ [7:0]  
DM_n/DBI_n  
D7  
D2  
D16  
D11  
DM5_n/DBI5_n  
DM2_n/DBI2_n  
VSS  
DQS7_t  
DQS7_c  
DQ [63:56]  
DQS_t  
DQS_c  
DQ [7:0]  
DM_n/DBI_n  
DQS3_t  
DQS3_c  
DQ [31:24]  
DQS_t  
DQS_c  
DQ [7:0]  
DM_n/DBI_n  
DQS_t  
DQS_c  
DQ [7:0]  
DM_n/DBI_n  
DQS_t  
DQS_c  
DQ [7:0]  
DM_n/DBI_n  
D8  
D3  
D17  
D12  
DM7_n/DBI7_n  
DM3_n/DBI3_n  
VSS  
DQS8_t  
DQS8_c  
CB [7:0]  
DQS_t  
DQS_c  
DQ [7:0]  
DQS_t  
DQS_c  
DQ [7:0]  
D4  
D13  
DM8_n/DBI8_n  
DM_n/DBI_n  
DM_n/DBI_n  
VDDSPD  
VPP  
SPD  
SCL  
EVENT_n  
D0–D17  
D0–D17  
SDA  
EVENT_n  
SA0 SA1 SA2  
VDD  
VTT  
SA0 SA1  
Serial PD with Thermal sensor  
SA2  
D0–D17  
D0–D17  
VREFCA  
VSS  
Note:  
1. Unless otherwize noted resistors are 15±5%.  
2. ZQ resistors are 240 ±1%.For all other resistor values refer to the appropriate wiring diagram.  
Rev. 0.1 / Mar. 2015  
14  
Absolute Maximum Ratings  
Absolute Maximum DC Ratings  
Absolute Maximum DC Ratings  
Symbol  
Parameter  
Rating  
Units  
NOTE  
VDD  
-0.3 ~ 1.5  
V
1,3  
Voltage on VDD pin relative to Vss  
Voltage on VDDQ pin relative to Vss  
Voltage on VPP pin relative to Vss  
Voltage on any pin relative to Vss  
Storage Temperature  
VDDQ  
VPP  
-0.3 ~ 1.5  
-0.3 ~ 3.0  
-0.3 ~ 1.5  
-55 to +100  
V
V
1,3  
4
V
IN, VOUT  
TSTG  
V
1
°C  
1,2  
NOTE :  
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at these or any other conditions above those indi-  
cated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions  
for extended periods may affect reliability  
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement  
conditions, please refer to JESD51-2 standard.  
3. VDD and VDDQ must be within 300 mV of each other at all times;and VREFCA must be not greater than 0.6 x  
VDDQ, When VDD and VDDQ are less than 500 mV; VREF may be equal to or less than 300 mV  
4. VPP must be equal or greater than VDD/VDDQ at all times  
DRAM Component Operating Temperature Range  
Temperature Range  
Symbol  
Parameter  
Rating  
0 to 85  
85 to 95  
Units  
oC  
NOTE  
1,2  
Normal Operating Temperature Range  
Extended Temperature Range  
TOPER  
oC  
1,3  
NOTE :  
1. Operating Temperature TOPER is the case surface temperature on the center / top side of the DRAM. For mea-  
surement conditions, please refer to the JEDEC document JESD51-2.  
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. Dur-  
ing operation, the DRAM case temperature must be maintained between 0 - 85oC under all operating conditions.  
3. Some applications require operation of the DRAM in the Extended Temperature Range between 85oC and 95oC  
case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply:  
a. Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 µs. It  
is also possible to specify a component with 1X refresh (tREFI to 7.8µs) in the Extended Temperature Range.  
Please refer to the DIMM SPD for option availability  
b. If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use  
the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b)  
or enable the optional Auto Self-Refresh mode (MR2 A6 = 1b and MR2 A7 = 0b). DDR4 SDRAMs support Auto  
Self-Refresh and in Extended Temperature Range and please refer to component datasheet and/or the DIMM  
SPD for tREFI requirements in the Extended Temperature Range  
Rev. 0.1 / Mar. 2015  
15  
AC & DC Operating Conditions  
Recommended DC Operating Conditions  
Recommended DC Operating Conditions  
Rating  
Typ.  
1.2  
Symbol  
Parameter  
Unit  
NOTE  
Min.  
1.14  
Max.  
1.26  
VDD  
VDDQ  
VPP  
Supply Voltage  
V
V
V
1,2,3  
1,2,3  
3
Supply Voltage for Output  
1.14  
1.2  
1.26  
2.75  
Supply Voltage for DRAM Activating  
2.375  
2.5  
NOTE:  
1. Under all conditions VDDQ must be less than or equal to VDD.  
2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.  
3. DC bandwidth is limited to 20MHz.  
Rev. 0.1 / Mar. 2015  
16  
AC and DC Input Measurement Levels: V  
Tolerances  
REF  
The DC-tolerance limits and ac-noise limits for the reference voltages V  
is illustrated in Figure below.  
REFCA  
It shows a valid reference voltage V (t) as a function of time. (V  
stands for V  
).  
REF  
REF  
REFCA  
V
(DC) is the linear average of V  
(t) over a very long period of time (e.g. 1 sec). This average has to  
REF  
REF  
meet the min/max requirement in Table X. Furthermore V  
(t) may temporarily deviate from V  
(DC) by  
REF  
REF  
no more than ± 1% V ..  
DD  
voltage  
VDD  
VSS  
time  
Illustration of V  
(DC) tolerance and V  
AC-noise limits  
REF  
REF  
The voltage levels for setup and hold time measurements V (AC), V (DC), V (AC) and V (DC) are  
IH  
IH  
IL  
IL  
dependent on V  
.
REF  
"V " shall be understood as V (DC), as defined in Figure above.  
REF  
REF  
This clarifies, that DC-variations of V  
affect the absolute voltage a signal has to reach to achieve a valid  
REF  
high or low level and therefore the time to which setup and hold is measured. System timing and voltage  
budgets need to account for V (DC) deviations from the optimum position within the data-eye of the  
REF  
input signals.  
This also clarifies that the DRAM setup/hold specification and derating values need to include time and  
voltage associated with V  
AC-noise. Timing and voltage effects due to AC-noise on V  
up to the spec-  
REF  
REF  
ified limit (+/-1% of V ) are included in DRAM timings and their associated deratings.  
DD  
Rev. 0.1 / Mar. 2015  
17  
AC and DC Logic Input Levels for Differential Signals  
Differential signal definition  
tDVAC  
VIH.DIFF.AC.MIN  
VIH.DIFF.MIN  
0.0  
half cycle  
VIL.DIFF.MAX  
VIL.DIFF.AC.MAX  
tDVAC  
time  
Definition of differential ac-swing and “time above ac-level” t  
DVAC  
Rev. 0.1 / Mar. 2015  
18  
Differential swing requirements for clock (CK_t - CK_c)  
Differential AC and DC Input Levels  
DDR4 -1600,1866,2133  
Symbol  
Parameter  
unit NOTE  
min  
TBD  
max  
NOTE 3  
VIHdiff  
VILdiff  
differential input high  
differential input low  
V
V
V
V
1
1
2
2
NOTE 3  
TBD  
VIHdiff(AC)  
2 x (VIH(AC) - VREF)  
differential input high ac  
differential input low ac  
NOTE 3  
V
ILdiff(AC)  
2 x (VIL(AC) - VREF)  
NOTE 3  
NOTE :  
1. Used to define a differential signal slew-rate.  
2. for CK_t - CK_c use VIH/VIL(AC) of ADD/CMD and VREFCA  
;
3. These values are not defined; however, the differential signals CK_t - CK_c, need to be within the respective limits  
(VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot.  
Allowed time before ringback (tDVAC) for CK_t - CK_c  
tDVAC [ps] @ |VIH/Ldiff(AC)| = TBDmV tDVAC [ps] @ |VIH/Ldiff(AC)| = TBDmV  
Slew Rate [V/ns]  
min  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
max  
min  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
max  
> 4.0  
4.0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3.0  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
< 1.0  
Rev. 0.1 / Mar. 2015  
19  
Single-ended requirements for differential signals  
Each individual component of a differential signal (CK_t, CK_c) has also to comply with certain require-  
ments for single-ended signals.  
CK_t and CK_c have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels  
(VIH(ac) / VIL(ac) ) for ADD/CMD signals) in every half-cycle.  
Note that the applicable ac-levels for ADD/CMD might be different per speed-bin etc. E.g., if Different  
value than VIH.CA(AC120)/VIL.CA(AC120) is used for ADD/CMD signals, then these ac-levels apply also for  
the single-ended signals CK_t and CK_c  
VDD or VDDQ  
VSEH min  
VSEH  
VDD/2 or VDDQ/2  
CK  
VSEL max  
VSEL  
VSS or VSSQ  
time  
Single-ended requirements for differential signals.  
Note that, while ADD/CMD signal requirements are with respect to VrefCA, the single-ended components  
of differential signals have a requirement with respect to VDD / 2; this is nominally the same. The transi-  
tion of single-ended signals through the ac-levels is used to measure setup time. For single-ended compo-  
nents of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but  
adds a restriction on the common mode characteristics of these signals.  
Rev. 0.1 / Mar. 2015  
20  
Single-ended levels for CK_t, CK_c  
DDR4-1600/1866/2133  
Symbol  
VSEH  
Parameter  
Unit NOTE  
Min  
Max  
Single-ended high-level for CK_t  
- CK_c  
Single-ended low-level for CK_t -  
CK_c  
TBD  
NOTE3  
TBD  
V
V
1, 2  
1, 2  
VSEL  
NOTE3  
NOTE :  
1. For CK_t - CK_c use VIH/VIL(AC) of ADD/CMD;  
2. VIH(AC)/VIL(AC) for ADD/CMD is based on VREFCA  
;
3. These values are not defined, however the single-ended signals CK_t - CK_c need to be within the respective limits  
(VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot.  
Rev. 0.1 / Mar. 2015  
21  
Address and Control Overshoot and Undershoot specifications  
AC overshoot/undershoot specification for Address, Command and Control pins  
Specification  
Parameter  
Unit  
DDR4-1600  
DDR4-1866  
DDR4-2133  
Maximum peak amplitude above VDD Absolute Max  
allowed for overshoot area  
0.06  
0.06  
0.06  
V
Delta valued between VDD Absolute Max and VDD  
Max allowed for overshoot area  
0.24  
0.3  
0.24  
0.3  
0.24  
0.3  
V
Maximum peak amplitude allowed for undershoot area  
V-ns  
V-ns  
Maximum overshoot area per 1tCK Above Absolute  
Max  
0.0083  
0.0071  
0.0062  
Maximum overshoot area per 1tCK Between Absolute  
Max  
0.2550  
0.2644  
0.2185  
0.2265  
0.1914  
0.1984  
V-ns  
V-ns  
Maximum undershoot area per 1tCK Below VSS  
(A0-A13,A17,BG1-BG0,BA0-BA1,ACT_n,RAS_n / A16,CAS_n / A15,WE_n / A14,CS_n,CKE,ODT,C2-C0)  
Overshoot Area above VDD Absolute Max  
VDD Absolute Max  
Overshoot Area Between  
VDD Absolute Max and VDD Max  
VDD  
VSS  
Volts  
(V)  
1 tCK  
Undershoot Area below VSS  
Address,Command and Control Overshoot and Undershoot Definition  
Rev. 0.1 / Mar. 2015  
22  
Clock Overshoot and Undershoot Specifications  
AC overshoot/undershoot specification for Clock  
Specification  
DDR4-1866  
Parameter  
Unit  
DDR4-1600  
DDR4-2133  
Maximum peak amplitude above VDD Absolute Max  
allowed for overshoot area  
0.06  
0.06  
0.06  
V
Delta value between VDD Absolute Max and VDD Max  
allowed for overshoot area  
0.24  
0.3  
0.24  
0.3  
0.24  
0.3  
V
V
Maximum peak amplitude allowed for undershoot area  
Maximum overshoot area per 1UI Above Absoluted  
Max  
0.0038  
0.0032  
0.0028  
V-ns  
Maximum overshoot area per 1UI Between Absoluted  
Max  
0.1125  
0.1144  
0.0964  
0.0980  
0.0844  
0.0858  
V-ns  
V-ns  
Maximum undershoot area per 1UI Below VSS  
(CK_t, Ck_c)  
Overshoot Area above VDD Absolute Max  
Overshoot Area Between  
VDD Absolute Max  
VDD Absolute Max and VDD Max  
VDD  
Volts  
(V)  
1 UI  
VSS  
Undershoot Area below VSS  
Clock Overshoot and Undershoot Definition  
Rev. 0.1 / Mar. 2015  
23  
Data, Strobe and Mask Overshoot and Undershoot Specifications  
AC overshoot/undershoot specification for Data, Strobe and Mask  
Specification  
Parameter  
Unit  
DDR4-1600  
DDR4-1866  
DDR4-2133  
Maximum peak amplitude above Max absolute level of  
Vin,Vout  
0.16  
0.16  
0.16  
V
V
Overshoot area Between Max Absolute level of Vin,  
Vout and VDDQ Max  
0.24  
0.30  
0.24  
0.30  
0.24  
0.30  
Undershoot area Between Min absolute level of  
Vin,Vout and VDDQ Max  
V
Maximum peak amplitude below Min absolute level of  
Vin,Vout  
0.10  
0.10  
0.10  
V
Maximum overshoot area per 1UI Above Max absolute  
level of Vin,Vout  
0.0150  
0.0129  
0.0113  
V-ns  
Maximum overshoot area per 1UI Between Max abso-  
lute level of Vin,Vout and VDDQ Max  
0.1050  
0.1050  
0.0150  
0.0900  
0.0900  
0.0129  
0.0788  
0.0788  
0.0113  
V-ns  
V-ns  
V-ns  
Maximum undershoot area per 1UI Between Min abso-  
lute level of Vin,Vout and VSSQ  
Maximum undershoot area per 1UI Below Min abso-  
lute level of Vin,Vout  
(DQ,DQS_t,DQS_c,DM_n, DBI_n, TDQS_t, TDQS_c)  
Overshoot Area above Max absolute level of Vin,Vout  
Max absolute level of Vin,Vout  
Overshoot Area Between  
Max absolute level of Vin,Vout and VDDQ  
VDDQ  
VSSQ  
Volts  
(V)  
1 UI  
Undershoot Area Between  
Min absolute level of Vin,Vout and VSSQ  
Min absolute level of Vin,Vout  
Undershoot Area below Min absolute level of Vin, Vout  
Data, Strobe and Mask Overshoot and Undershoot Definition  
Rev. 0.1 / Mar. 2015  
24  
Slew Rate Definitions  
Slew Rate Definitions for Differential Input Signals (CK)  
nput slew rate for differential signals (CK_t, CK_c) are defined and measured as shown in Tabel and Figure  
below.  
Differential Input Slew Rate Definition  
Description  
Defined by  
from  
to  
V
V
V
V
V
V
V
Differential input slew rate for rising edge(CK_t - CK_c)  
Differential input slew rate for falling edge(CK_t - CK_c)  
[
[
ILdiffmax ] / DeltaTRdiff  
ILdiffmax  
IHdiffmin  
IHdiffmin -  
V
ILdiffmax ] / DeltaTFdiff  
IHdiffmin  
ILdiffmax  
IHdiffmin -  
NOTE: The differential signal (i,e.,CK_t - CK_c) must be linear between these thresholds.  
Delta TRdiff  
V
IHdiffmin  
0
V
ILdiffmax  
Delta TFdiff  
Differential Input Slew Rate Definition for CK_t, CK_c  
Rev. 0.1 / Mar. 2015  
25  
Slew Rate Definitions for Differential Input Signals (CMD/ADD)  
Delta TRsingle  
V
IHCA(AC)Min  
V
IHCA(DC)Min  
VREFCA(DC  
V
ILCA(DC)Max  
V
ILCA(AC)Max  
Delta TFsingle  
Single-ended Input Slew Rate definition for CMD and ADD  
NOTE :  
1. Single-ended input slew rate for rising edge = { VIHCA(AC)Min - VILCA(DC)Max } / Delta TR single  
2. Single-ended input slew rate for falling edge = { VIHCA(DC)Min - VILCA(AC)Max } / Delta TF single  
3. Single-ended signal rising edge from VILCA(DC)Max to VIHCA(DC)Min must be monotonic slope.  
4. Single-ended signal falling edge from VIHCA(DC)Min to VILCA(DC)Max must be monotonic slope.  
Rev. 0.1 / Mar. 2015  
26  
Differential Input Cross Point Voltage  
To guarantee tight setup and hold times as well as output skew parameters with respect to clock, each  
cross point voltage of differential input signals (CK_t, CK_c) must meet the requirements in Table. The dif-  
ferential input cross point voltage VIX is measured from the actual cross point of true and complement sig-  
nals to the midlevel between of VDD and VSS.  
VDD  
CK_t  
Vix  
VDD/2  
Vix  
CK_c  
VSEL  
VSEH  
VSS  
Vix Definition (CK)  
Cross point voltage for differential input signals (CK)  
DDR4-1600/1866/2133  
Symbol  
Parameter  
min  
max  
VDD/2 - 145mV VDD/2 + 100mV  
VSEL =<  
VDD/2 - 145mV  
VDD/2 + 145mV  
=< VSEH  
-
Area of VSEH, VSEL  
=< VSEL =<  
=< VSEH =<  
VDD/2 - 100mV VDD/2 + 145mV  
Differential Input Cross Point  
VlX(CK) Voltage relative to VDD/2 for  
CK_t, CK_c  
- (VDD/2 - VSEL) (VSEH - VDD/2)  
-120mV  
120mV  
+ 25mV  
- 25mV  
Rev. 0.1 / Mar. 2015  
27  
CMOS rail to rail Input Levels  
CMOS rail to rail Input Levels for RESET_n  
CMOS rail to rail Input Levels for RESET_n  
Parameter  
Symbol  
Min  
0.8*VDD  
0.7*VDD  
VSS  
Max  
VDD  
Unit  
V
NOTE  
AC Input High Voltage  
DC Input High Voltage  
DC Input Low Voltage  
AC Input Low Voltage  
Rising time  
VIH(AC)_RESET  
VIH(DC)_RESET  
VIL(DC)_RESET  
VIL(AC)_RESET  
TR_RESET  
6
2
VDD  
V
0.3*VDD  
0.2*VDD  
1.0  
V
1
VSS  
V
7
-
us  
us  
4
RESET pulse width  
tPW_RESET  
1.0  
-
3,5  
NOTE :  
1.After RESET_n is registered LOW, RESET_n level shall be maintained below VIL(DC)_RESET during tPW_RESET,  
otherwise, SDRAM may not be reset.  
2. Once RESET_n is registered HIGH, RESET_n level must be maintained above VIH(DC)_RESET, otherwise, SDRAM  
operation will not be guaranteed until it is reset asserting RESET_n signal LOW.  
3. RESET is destructive to data contents.  
4. No slope reversal(ringback) requirement during its level transition from Low to High.  
5. This definition is applied only “Reset Procedure at Power Stable”.  
6. Overshoot might occur. It should be limited by the Absolute Maximum DC Ratings.  
7. Undershoot might occur. It should be limited by Absolute Maximum DC Ratings  
tPW_RESET  
0.8*VDD  
0.7*VDD  
0.3*VDD  
0.2*VDD  
TR_RESET  
RESET_n Input Slew Rate Definition  
Rev. 0.1 / Mar. 2015  
28  
AC and DC Logic Input Levels for DQS Signals  
Differential signal definition  
Definition of differential DQS Signal AC-swing Level  
Differential swing requirements for DQS (DQS_t - DQS_c)  
Differential AC and DC Input Levels for DQS  
DDR4-1600,1866,2133  
Symbol  
Parameter  
Unit Note  
Min  
186  
Max  
Note2  
-186  
VIHDiffPeak VIH.DIFF.Peak Voltage  
VILDiffPeak VIL.DIFF.Peak Voltage  
mV  
mV  
1
1
Note2  
NOTE :  
1. Used to define a differential signal slew-rate.  
2. These values are not defined; however, the differential signals DQS_t - DQS_c, need to be within the respective  
limits Overshoot, Undershoot Specification for single-ended signals.  
Rev. 0.1 / Mar. 2015  
29  
Peak voltage calculation method  
The peak voltage of Differential DQS signals are calculated in a following equation.  
VIH.DIFF.Peak Voltate = Max(f(t))  
VIL.DIFF.Peak Voltate = Min(f(t))  
f(t) = VDQS_t - VDQS_c  
Definition of differential DQS Peak Voltage  
Rev. 0.1 / Mar. 2015  
30  
Peak voltage calculation method  
To guarantee tight setup and hold times as well as output skew parameters with respect to strobe, the  
cross point voltage of differential input signals (DQS_t, DQS_c) must meet the requirements in Table  
below. The differential input cross point voltage VIX is measured from the actual cross point of true and  
complement signals to the mid level that is VrefDQ.  
Vix Definition (DQS)  
Cross point voltage for differential input signals (DQS)  
DDR4-1600,1866,2133  
Symbol  
Parameter  
Unit Note  
Min  
Max  
DQS Differential input  
cross point voltage  
ratio  
Vix_DOS_  
ratio  
-
25  
%
1,2,3  
NOTE :  
1. The base level of Vix_DQS_FR/RF is VrefDQ that is DDR4 SDRAM internal setting value by Vref Training.  
2. Vix_DQS_FR is defined by this equation : Vix_DQS_FR = |Min(f(t)) x Vix_DQS_Ratio|  
3. Vix_DQS_RF is defined by this equation : Vix_DQS_RF = Max(f(t)) x Vix_DQS_Ratio  
Rev. 0.1 / Mar. 2015  
31  
Differential Input Slew Rate Definition  
Input Slew rate for differential signals (DQS_t, DQS_c) are defined and measured as shown in Figure  
below.  
NOTE :  
1. Differential signal rising edge from VILDiff_DQS to VIHDiff_DQS muse be monotonic slope.  
2. Differential signal falling edge from VIHDiff_DQS to VILDiff_DQS muse be monotonic slope.  
Differential Input Slew Rate Definition for DQS_t, DQS_c  
Differential Input Slew Rate Definition for DQS_t, DQS_c  
Description  
Defined by  
From  
To  
Differential input slew rate for  
rising dege(DQS_t - DQS_c)  
VILDiff_DQS  
VIHDiff_DQS  
|VILDiff_DQS - VIHDiff_DQS|/DeltaTRdiff  
|VILDiff_DQS - VIHDiff_DQS|/DeltaTFdiff  
Differential input slew rate for  
halling dege(DQS_t - DQS_c)  
VIHDiff_DQS  
VILDiff_DQS  
Differential Input Level for DQS_t, DQS_c  
DDR4-1600,1866,2133  
Symbol  
Parameter  
Unit Note  
Min  
136  
-
Max  
-
VIHDiff_DQS Differential Input High  
VILDiff_DQS Differential Input Low  
mV  
mV  
-136  
Rev. 0.1 / Mar. 2015  
32  
Differential Input Slew Rate for DQS_t, DQS_c  
DDR4-1600,1866,2133  
Symbol  
SRIdiff  
Parameter  
Unit Note  
Min  
Max  
Differential Input  
Slew Rate  
TBE  
18  
V/ns  
Rev. 0.1 / Mar. 2015  
33  
AC and DC output Measurement levels  
Single-ended AC & DC Output Levels  
Single-ended AC & DC output levels  
Symbol Parameter  
DDR4-1600/1866/2133/  
Units NOTE  
VOH(DC) DC output high measurement level (for IV curve linearity)  
1.1 x VDDQ  
V
VOM(DC) DC output mid measurement level (for IV curve linearity)  
VOL(DC) DC output low measurement level (for IV curve linearity)  
VOH(AC) AC output high measurement level (for output SR)  
VOL(AC) AC output low measurement level (for output SR)  
0.8 x VDDQ  
0.5 x VDDQ  
V
V
(0.7 + 0.15) x VDDQ  
(0.7 - 0.15) x VDDQ  
V
V
1
1
NOTE :  
1. The swing of ± 0.15 × VDDQ is based on approximately 50% of the static single-ended output peak-to-peak swing  
with a driver impedance of RZQ/7and an effective test load of 50to VTT = VDDQ  
.
Differential AC & DC Output Levels  
Differential AC & DC output levels  
Symbol Parameter  
DDR4-1600/1866/2133 Units NOTE  
VOHdiff(AC) AC differential output high measurement level (for output SR)  
+0.3 x VDDQ  
-0.3 x VDDQ  
V
V
1
1
VOLdiff(AC) AC differential output low measurement level (for output SR)  
NOTE :  
1. The swing of ± 0.3 × VDDQ is based on approximately 50% of the static differential output peak-to-peak swing with  
a driver impedance of RZQ/7and an effective test load of 50to VTT = VDDQ at each of the differential outputs.  
Rev. 0.1 / Mar. 2015  
34  
Single-ended Output Slew Rate  
With the reference load for timing measurements, output slew rate for falling and rising edges is defined  
and measured between V  
and V  
for single ended signals as shown in Table and Figure below.  
OL(AC)  
OH(AC)  
Single-ended output slew rate definition  
Measured  
Description  
Defined by  
From  
To  
[VOH(AC)-VOL(AC)] /  
Delta TRse  
VOL(AC)  
VOH(AC)  
Single ended output slew rate for rising edge  
[VOH(AC)-VOL(AC)] /  
Delta TFse  
VOH(AC)  
VOL(AC)  
Single ended output slew rate for falling edge  
NOTE :  
1. Output slew rate is verified by design and characterization, and may not be subject to production test.  
V
OH(AC)  
V
V
TT  
OL(AC)  
delta TFse  
delta TRse  
Single-ended Output Slew Rate Definition  
Single-ended output slew rate  
DDR4-1600  
Min Max  
DDR4-1866  
Min Max  
DDR4-2133  
Min Max  
Parameter  
Symbol  
Units  
Single ended output slew rate SRQse  
Description: SR: Slew Rate  
4
9
4
9
4
9
V/ns  
Q: Query Output (like in DQ, which stands for Data-in, Query-Output)  
se: Single-ended Signals  
For Ron = RZQ/7 setting  
NOTE:  
1. In two cases, a maximum slew rate of 12 V/ns applies for a single DQ signal within a byte lane.  
-Case 1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high  
to low or low to high) while all remaining DQ signals in the same byte lane are static (i.e. they stay at either high or  
low).  
-Case 2 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high  
to low or low to high) while all remaining DQ signals in the same byte lane are switching into the opposite direction  
(i.e. from low to high or high to low respectively). For the remaining DQ signal switching into the opposite direction,  
the regular maximum limit of 9 V/ns applies  
Rev. 0.1 / Mar. 2015  
35  
Differential Output Slew Rate  
With the reference load for timing measurements, output slew rate for falling and rising edges is defined  
and measured between VOLdiff(AC) and VOHdiff(AC) for differential signals as shown in Table and Figure  
below.  
Differential output slew rate definition  
Measured  
Description  
Defined by  
From  
To  
[VOHdiff(AC)-VOLdiff(AC)] /  
Delta TRdiff  
VOLdiff(AC)  
VOHdiff(AC)  
Differential output slew rate for rising edge  
[VOHdiff(AC)-VOLdiff(AC)] /  
Delta TFdiff  
VOHdiff(AC)  
VOLdiff(AC)  
Differential output slew rate for falling edge  
NOTE :  
1. Output slew rate is verified by design and characterization, and may not be subject to production test.  
V
(AC)  
OHdiff  
V
V
TT  
(AC)  
OLdiff  
delta TFdiff  
delta TRdiff  
Differential Output Slew Rate Definition  
Differential output slew rate  
DDR4-1600  
Min Max  
18  
DDR4-1866  
Min Max  
18  
DDR4-2133  
Min Max  
18  
Parameter  
Symbol  
Units  
Differential output slew rate SRQdiff  
8
8
8
V/ns  
Description:  
SR: Slew Rate  
Q: Query Output (like in DQ, which stands for Data-in, Query-Output)  
diff: Differential Signals  
For Ron = RZQ/7 setting  
Rev. 0.1 / Mar. 2015  
36  
Single-ended AC & DC Output Levels of Connectivity Test Mode  
Following output parameters will be applied for DDR4 SDRAM Output Signalduring Connectivity Test Mode.  
Single-ended AC & DC Output Levels of Connectivity Test Mode  
Symbol Parameter  
DDR4-1600/1866/2133/ Units NOTE  
VOH(DC) DC output high measurement level (for IV curve linearity)  
1.1 x VDDQ  
0.8 x VDDQ  
V
V
V
V
V
V
V
OM(DC) DC output mid measurement level (for IV curve linearity)  
VOL(DC) DC output low measurement level (for IV curve linearity)  
OB(DC) DC output below measurement level (for IV curve linearity)  
0.5 x VDDQ  
V
0.2 x VDDQ  
VOH(AC) AC output high measurement level (for output SR)  
VOL(AC) AC output below measurement level (for output SR)  
VTT + (0.1 x VDDQ  
)
1
1
VTT - (0.1 x VDDQ  
)
NOTE :  
1. The effective test load is 50terminated by VTT = 0.5* VDDQ.  
VOH(AC)  
V
0.5*VDDQ  
TT  
VOL(AC)  
TF_output_CT  
TR_output_CT  
Differential Output Slew Rate Definition  
Single-ended output slew rate of Connectivity Test Mode  
DDR4-1600/1866/2133  
Symbol  
Parameter  
Units NOTE  
Min  
Max  
10  
Ouput signal Falling time TF_output_CT  
Ouput signal Rising time TR_output_CT  
-
-
ns/V  
ns/V  
10  
Rev. 0.1 / Mar. 2015  
37  
Standard Speed Bins  
DDR4-1600 Speed Bins and Operations  
Speed Bin  
DDR4-1600K  
11-11-11  
CL-nRCD-nRP  
Unit NOTE  
Parameter  
Symbol  
min  
max  
Internal read command to first  
data  
13.7511  
tAA  
18.00  
ns  
ns  
ns  
9
9
9
(13.50)5,9  
Internal read command to first  
data with read DBI enabled  
tAA_DBI  
tRCD  
tAA(min) + 2nCK  
tAA(max) +2nCK  
-
13.75  
(13.50)5,9  
ACT to internal read or write  
delay time  
13.75  
PRE command period  
tRP  
tRAS  
tRC  
-
ns  
ns  
ns  
9
9
9
(13.50)5,9  
ACT to PRE command period  
35  
9 x tREFI  
-
48.75  
(48.50)5,9  
ACT to ACT or REF command  
period  
Normal Read DBI  
1.5  
1,2,3,4,8,  
11  
CL = 11  
CL = 9  
tCK(AVG)  
1.6  
ns  
(Optional)5  
CWL = 9  
(Optional)5,9  
CL = 10 CL = 12 tCK(AVG)  
CL = 10 CL = 12 tCK(AVG)  
CWL = 9,11 CL = 11 CL = 13 tCK(AVG)  
CL = 12 CL = 14 tCK(AVG)  
Supported CL Settings  
Reserved  
ns 1,2,3,4,8  
Reserved  
ns  
ns  
1,2,3,4  
1,2,3,4  
1,2,3  
10,11  
10  
1.25  
1.25  
<1.5  
<1.5  
ns  
(9),11,12  
(11),13,14  
9,11  
nCK  
nCK  
nCK  
Supported CL Settings with read DBI  
Supported CWL Settings  
Rev. 0.1 / Mar. 2015  
38  
DDR4-1866 Speed Bins and Operations  
Speed Bin  
DDR4-1866M  
13-13-13  
CL-nRCD-nRP  
Unit NOTE  
Parameter  
Symbol  
min  
max  
Internal read command to first  
data  
13.9211  
tAA  
18.00  
ns  
ns  
ns  
9
9
9
(13.50)5,9  
Internal read command to first  
data with read DBI enabled  
tAA_DBI  
tRCD  
tAA(min) + 2nCK  
tAA(max) +2nCK  
-
13.92  
(13.50)5,9  
ACT to internal read or write delay  
time  
13.92  
PRE command period  
tRP  
tRAS  
tRC  
-
ns  
ns  
ns  
9
9
9
(13.50)5,9  
ACT to PRE command period  
34  
9 x tREFI  
-
47.92  
(47.50)5,9  
ACT to ACT or REF command  
period  
Normal Read DBI  
tCK(AVG)  
tCK(AVG)  
1.5  
1,2,3,4,8,  
11  
CL = 11  
CL = 9  
1.6  
ns  
(Optional)5  
CWL = 9  
(Optional)5,9  
CL = 10 CL = 12 tCK(AVG)  
CL = 10 CL = 12 tCK(AVG)  
Reserved  
ns 1,2,3,4,8  
Reserved  
ns  
4
1.25  
1.25  
<1.5  
<1.5  
1,2,3,4,6  
CWL = 9,11 CL = 11 CL = 13 tCK(AVG)  
ns  
(Optional)5,10  
Reserved  
CL = 12 CL = 14 tCK(AVG)  
CL = 12 CL = 14 tCK(AVG)  
CWL = 10,12 CL = 13 CL = 15 tCK(AVG)  
CL = 14 CL = 16 tCK(AVG)  
Supported CL Settings  
ns  
ns  
1,2,3,6  
1,2,3,4  
1,2,3,4  
1,2,3  
1.071  
1.071  
<1.25  
<1.25  
ns  
ns  
9,11,12,13,14  
11,13,14 ,15,16  
9,10,11,12  
nCK  
nCK  
nCK  
10,11  
10  
Supported CL Settings with read DBI  
Supported CWL Settings  
Rev. 0.1 / Mar. 2015  
39  
DDR4-2133 Speed Bins and Operations  
Speed Bin  
DDR4-2133P  
15-15-15  
CL-nRCD-nRP  
Unit  
NOTE  
Parameter  
Symbol  
min  
max  
14.0611  
Internal read command to first data  
tAA  
18.00  
ns  
ns  
ns  
9
9
9
(13.50)5,9  
Internal read command to first data  
with read DBI enabled  
tAA_DBI  
tRCD  
tAA(min)+3nCK  
tAA(max)+3nCK  
-
14.06  
(13.50)5,9  
ACT to internal read or write delay  
time  
14.06  
PRE command period  
ACT to PRE command period  
ACT to ACT or REF command period  
Normal Read DBI  
tRP  
tRAS  
tRC  
-
ns  
ns  
ns  
9
9
9
(13.50)5,9  
33  
9 x tREFI  
-
47.06  
(46.50)5,9  
tCK(AVG)  
tCK(AVG)  
1.5  
1,2,3,4,8,  
11  
CL = 11  
CL = 9  
1.6  
ns  
ns  
ns  
ns  
ns  
(Optional)5  
CWL = 9  
(Optional)5,9  
CL = 10 CL = 12 tCK(AVG)  
Reserved  
1,2,3,8  
tCK(AVG)  
CL = 11 CL = 13  
tCK(AVG)  
1.25  
<1.5  
1,2,3,4,7  
(Optional)5,9  
CWL = 9,11  
CL = 12 CL = 14 tCK(AVG)  
1.25  
<1.5  
1,2,3,7  
1.071  
<1.25  
1,2,3,4,7  
CL = 13 CL = 15 tCK(AVG)  
(Optional)5,9  
Reserved  
CWL = 10,12  
CL = 14 CL = 16 tCK(AVG)  
CL = 14 CL = TBD tCK(AVG)  
1.071  
<1.25  
ns  
ns  
1,2,3,7  
1,2,3,4  
1,2,3,4  
1,2,3  
CWL = 11,14 CL = 15 CL = TBD tCK(AVG)  
CL = 16 CL = TBD tCK(AVG)  
Supported CL Settings  
0.938  
0.938  
<1.071  
<1.071  
ns  
ns  
(9),(11),12,(13),14,15,16  
(11),(13),14,(15),16,18,19  
9,10,11,12,14  
nCK  
nCK  
nCK  
10,11  
Supported CL Settings with read DBI  
Supported CWL Settings  
Rev. 0.1 / Mar. 2015  
40  
Speed Bin Table Notes  
Absolute Specification  
- VDDQ = VDD = 1.20V +/- 0.06 V  
- VPP = 2.5V +0.25/-0.125 V  
- The values defined with above-mentioned table are DLL ON case.  
- DDR4-1600, 1866, 2133 and 2400 Speed Bin Tables are valid only when Geardown Mode is disabled.  
1. The CL setting and CWL setting result in tCK(avg).MIN and tCK(avg).MAX requirements. When making  
a selection of tCK(avg), both need to be fulfilled: Requirements from CL setting as well as require-  
ments from CWL setting.  
2. tCK(avg).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized  
by the DLL - all possible intermediate frequencies may not be guaranteed. An application should use  
the next smaller JEDEC standard tCK(avg) value (1.5, 1.25, 1.071, 0.938 or 0.833 ns) when calculating  
CL [nCK] = tAA [ns] / tCK(avg) [ns], rounding up to the next ‘Supported CL’, where tAA = 12.5ns and  
tCK(avg) = 1.3 ns should only be used for CL = 10 calculation.  
3. tCK(avg).MAX limits: Calculate tCK(avg) = tAA.MAX / CL SELECTED and round the resulting tCK(avg)  
down to the next valid speed bin (i.e. 1.5ns or 1.25ns or 1.071 ns or 0.938 ns or 0.833 ns). This result  
is tCK(avg).MAX corresponding to CL SELECTED.  
4. ‘Reserved’ settings are not allowed. User must program a different value.  
5. 'Optional' settings allow certain devices in the industry to support this setting, however, it is not a  
mandatory feature. Refer to supplier's data sheet and/or the DIMM SPD information if and how this  
setting is supported.  
6. Any DDR4-1866 speed bin also supports functional operation at lower frequencies as shown in the  
table which are not subject to Production Tests but verified by Design/Characterization.  
7. Any DDR4-2133 speed bin also supports functional operation at lower frequencies as shown in the  
table which are not subject to Production Tests but verified by Design/Characterization.  
8. DDR4-1600 AC timing apply if DRAM operates at lower than 1600 MT/s data rate.  
9. Parameters apply from tCK(avg)min to tCK(avg)max at all standard JEDEC clock period values as  
stated in the Speed Bin Tables.  
10. CL number in parentheses, it means that these numbers are optional.  
11. DDR4 SDRAM supports CL=9 as long as a system meets tAA(min).  
Rev. 0.1 / Mar. 2015  
41  
IDD and IDDQ Specification Parameters and Test Conditions  
IDD, IPP and IDDQ Measurement Conditions  
In this chapter, IDD, IPP and IDDQ measurement conditions such as test load and patterns are defined.  
Figure shows the setup and test load for IDD, IPP and IDDQ measurements.  
IDD currents (such as IDD0, IDD0A, IDD1, IDD1A, IDD2N, IDD2NA, IDD2NL, IDD2NT, IDD2P, IDD2Q,  
IDD3N, IDD3NA, IDD3P, IDD4R, IDD4RA, IDD4W, IDD4WA, IDD5B, IDD5F2, IDD5F4, IDD6N, IDD6E,  
IDD6R, IDD6A, IDD7 and IDD8) are measured as time-averaged currents with all VDD balls of the  
DDR4 SDRAM under test tied together. Any IPP or IDDQ current is not included in IDD currents.  
IPP currents have the same definition as IDD except that the current on the VPP supply is measured.  
IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all  
VDDQ balls of the DDR4 SDRAM under test tied together. Any IDD current is not included in IDDQ cur-  
rents.  
Attention: IDDQ values cannot be directly used to calculate IO power of the DDR4 SDRAM. They can  
be used to support correlation of simulated IO power to actual IO power as outlined in Figure 2. In  
DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ are using one  
merged-power layer in Module PCB.  
For IDD, IPP and IDDQ measurements, the following definitions apply:  
“0” and “LOW” is defined as VIN <= VILAC(max).  
“1” and “HIGH” is defined as VIN >= VIHAC(min).  
“MID-LEVEL” is defined as inputs are VREF = VDD / 2.  
Timings used for IDD, IPP and IDDQ Measurement-Loop Patterns are provided in Table 1.  
Basic IDD, IPP and IDDQ Measurement Conditions are described in Table 2.  
Detailed IDD, IPP and IDDQ Measurement-Loop Patterns are described in Table 3 through Table 11.  
IDD Measurements are done after properly initializing the DDR4 SDRAM. This includes but is not lim-  
ited to setting   
RON = RZQ/7 (34 Ohm in MR1);   
RTT_NOM = RZQ/6 (40 Ohm in MR1);  
RTT_WR = RZQ/2 (120 Ohm in MR2);  
RTT_PARK = Disable;  
Qoff = 0 (Output Buffer enabled) in MR1;  
B
TDQS_t disabled in MR1;  
CRC disabled in MR2;  
CA parity feature disabled in MR5;  
Gear down mode disabled in MR3  
Read/Write DBI disabled in MR5;  
DM disabled in MR5  
Attention: The IDD, IPP and IDDQ Measurement-Loop Patterns need to be executed at least one time  
before actual IDD or IDDQ measurement is started.  
Define D = {CS_n, ACT_n, RAS_n, CAS_n, WE_n } := {HIGH, LOW, LOW, LOW, LOW} ; apply BG/BA  
changes when directed.  
Define D# = {CS_n, ACT_n, RAS_n, CAS_n, WE_n } := {HIGH, HIGH, HIGH, HIGH, HIGH} ; apply  
invert of BG/BA changes when directed above.  
Rev. 0.1 / Mar. 2015  
42  
I
I
I
DDQ  
DD  
PP  
V
V
V
DDQ  
DD  
PP  
RESET  
CK_t/CK_c  
DDR4 SDRAM  
CKE  
CS  
C
DQS_t/DQS_c  
DQ  
DM  
ACT,RAS,CAS,WE  
A,BG,BA  
ODT  
V
V
SSQ  
SS  
ZQ  
NOTE:  
1. DIMM level Output test load condition may be different from above  
Figure 1 - Measurement Setup and Test Load for IDD, IPP and IDDQ Measurements  
Application specific  
IDDQ  
TestLad  
memory channel  
environment  
Channel  
IO Powe  
Simulatin  
IDDQ  
Simuaion  
IDDQ  
Measurement  
Correlation  
X
X
Channel IO Power  
Number  
Figure 2 - Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ  
Measurement  
Rev. 0.1 / Mar. 2015  
43  
Table 1 -Timings used for IDD, IPP and IDDQ Measurement-Loop Patterns  
DDR4-1600  
DDR4-1866  
DDR4-2133  
Symbol  
Unit  
11-11-11  
13-13-13  
15-15-15  
tCK  
CL  
1.25  
11  
11  
11  
39  
28  
11  
16  
20  
28  
4
1.071  
13  
12  
13  
45  
32  
13  
16  
22  
28  
4
0.938  
15  
14  
15  
51  
36  
15  
16  
23  
32  
4
ns  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
CWL  
nRCD  
nRC  
nRAS  
nRP  
x4  
nFAW x8  
x16  
x4  
nRRDS x8  
x16  
4
4
4
5
5
6
x4  
5
5
6
nRRDL x8  
x16  
5
5
6
6
6
7
tCCD_S  
tCCD_L  
tWTR_S  
tWTR_L  
nRFC 2Gb  
nRFC 4Gb  
nRFC 8Gb  
nRFC 16Gb  
4
4
4
5
5
6
2
3
3
6
7
8
128  
208  
280  
TBD  
150  
243  
327  
TBD  
171  
278  
374  
TBD  
Rev. 0.1 / Mar. 2015  
44  
Table 2 -Basic IDD, IPP and IDDQ Measurement Conditions  
Symbol  
Description  
Operating One Bank Active-Precharge Current (AL=0)  
CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 1 on page 4; BL: 81; AL: 0; CS_n:  
High between ACT and PRE; Command, Address, Bank Group Address, Bank Address Inputs:  
partially toggling according to Table 3 on page 9; Data IO: VDDQ; DM_n: stable at 1; Bank Activity:  
Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 3 on page 9); Output Buffer and RTT:  
IDD0  
Enabled in Mode Registers2; ODT Signal: stable at 0; Pattern Details: see Table 3 on page 9  
Operating One Bank Active-Precharge Current (AL=CL-1)  
AL = CL-1, Other conditions: see IDD0  
IDD0A  
IPP0  
Operating One Bank Active-Precharge IPP Current  
Same condition with IDD0  
Operating One Bank Active-Read-Precharge Current (AL=0)  
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 1 on page 4; BL: 81; AL: 0;  
CS_n: High between ACT, RD and PRE; Command, Address, Bank Group Address, Bank Address  
Inputs, Data IO: partially toggling according to Table 4 on page 10; DM_n: stable at 1; Bank Activ-  
ity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 4 on page 10); Output Buffer and  
IDD1  
RTT: Enabled in Mode Registers2; ODT Signal: stable at 0; Pattern Details: see Table 4 on page 10  
Operating One Bank Active-Read-Precharge Current (AL=CL-1)  
AL = CL-1, Other conditions: see IDD1  
IDD1A  
IPP1  
Operating One Bank Active-Read-Precharge IPP Current  
Same condition with IDD1  
Precharge Standby Current (AL=0)  
CKE: High; External clock: On; tCK, CL: see Table 1 on page 4; BL: 81; AL: 0; CS_n: stable at 1;  
Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to  
Table 5 on page 11; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: all banks closed; Output  
IDD2N  
Buffer and RTT: Enabled in Mode Registers2; ODT Signal: stable at 0; Pattern Details: see Table 5  
on page 11  
Precharge Standby Current (AL=CL-1)  
AL = CL-1, Other conditions: see IDD2N  
IDD2NA  
IPP2N  
Precharge Standby IPP Current  
Same condition with IDD2N  
Precharge Standby ODT Current  
CKE: High; External clock: On; tCK, CL: see Table 1 on page 4; BL: 81; AL: 0; CS_n: stable at 1;  
Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to  
Table 6 on page 11; Data IO: VSSQ; DM_n: stable at 1; Bank Activity: all banks closed; Output  
IDD2NT  
Buffer and RTT: Enabled in Mode Registers2; ODT Signal: toggling according to Table 6 on page 11;  
Pattern Details: see Table 6 on page 11  
IDDQ2NT Precharge Standby ODT IDDQ Current  
(Optional) Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current  
Precharge Standby Current with CAL enabled  
IDD2NL  
Same definition like for IDD2N, CAL enabled3  
Precharge Standby Current with Gear Down mode enabled  
IDD2NG  
Same definition like for IDD2N, Gear Down mode enabled3  
Rev. 0.1 / Mar. 2015  
45  
Precharge Standby Current with DLL disabled  
Same definition like for IDD2N, DLL disabled3  
IDD2ND  
Precharge Standby Current with CA parity enabled  
Same definition like for IDD2N, CA parity enabled3  
IDD2N_par  
Precharge Power-Down Current CKE: Low; External clock: On; tCK, CL: see Table 1 on page 4;  
BL: 81; AL: 0; CS_n: stable at 1; Command, Address, Bank Group Address, Bank Address  
Inputs: stable at 0; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: all banks closed; Output  
IDD2P  
IPP2P  
Buffer and RTT: Enabled in Mode Registers2; ODT Signal: stable at 0  
Precharge Power-Down IPP Current  
Same condition with IDD2P  
Precharge Quiet Standby Current  
CKE: High; External clock: On; tCK, CL: see Table 1 on page 4; BL: 81; AL: 0; CS_n: stable at 1;  
Command, Address, Bank Group Address, Bank Address Inputs: stable at 0; Data IO: VDDQ;  
DM_n: stable at 1;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode  
Registers2; ODT Signal: stable at 0  
IDD2Q  
IDD3N  
Active Standby Current  
CKE: High; External clock: On; tCK, CL: see Table 1 on page 4; BL: 81; AL: 0; CS_n: stable at 1;  
Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to  
Table 5 on page 11; Data IO: VDDQ; DM_n: stable at 1;Bank Activity: all banks open; Output Buffer  
and RTT: Enabled in Mode Registers2; ODT Signal: stable at 0; Pattern Details: see Table 5 on  
page 11  
Active Standby Current (AL=CL-1)  
AL = CL-1, Other conditions: see IDD3N  
IDD3NA  
IPP3N  
Active Standby IPP Current  
Same condition with IDD3N  
Active Power-Down Current  
CKE: Low; External clock: On; tCK, CL: see Table 1 on page 4; BL: 81; AL: 0; CS_n: stable at 1;  
Command, Address, Bank Group Address, Bank Address Inputs: stable at 0; Data IO: VDDQ;  
DM_n: stable at 1; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode  
Registers2; ODT Signal: stable at 0  
IDD3P  
IPP3P  
Active Power-Down IPP Current  
Same condition with IDD3P  
Operating Burst Read Current  
CKE: High; External clock: On; tCK, CL: see Table 1 on page 4; BL: 82; AL: 0; CS_n: High between  
RD; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according  
to Table 7 on page 12; Data IO: seamless read data burst with different data between one burst and the  
next one according to Table 7 on page 12; DM_n: stable at 1; Bank Activity: all banks open, RD  
commands cycling through banks: 0,0,1,1,2,2,... (see Table 7 on page 12); Output Buffer and RTT:  
Enabled in Mode Registers2; ODT Signal: stable at 0; Pattern Details: see Table 7 on page 12  
IDD4R  
Operating Burst Read Current (AL=CL-1)  
AL = CL-1, Other conditions: see IDD4R  
IDD4RA  
IDD4RB  
IPP4R  
Operating Burst Read Current with Read DBI  
Read DBI enabled3, Other conditions: see IDD4R  
Operating Burst Read IPP Current  
Same condition with IDD4R  
IDDQ4R Operating Burst Read IDDQ Current  
(Optional) Same definition like for IDD4R, however measuring IDDQ current instead of IDD current  
Rev. 0.1 / Mar. 2015  
46  
IDDQ4RB Operating Burst Read IDDQ Current with Read DBI  
(Optional) Same definition like for IDD4RB, however measuring IDDQ current instead of IDD current  
Operating Burst Write Current  
CKE: High; External clock: On; tCK, CL: see Table 1 on page 4; BL: 81; AL: 0; CS_n: High between  
WR; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according  
IDD4W to Table 8 on page 12; Data IO: seamless write data burst with different data between one burst and the  
next one according to Table 8 on page 12; DM_n: stable at 1; Bank Activity: all banks open, WR  
commands cycling through banks: 0,0,1,1,2,2,... (see Table 8 on page 12); Output Buffer and RTT:  
Enabled in Mode Registers2; ODT Signal: stable at HIGH; Pattern Details: see Table 8 on page 12  
Operating Burst Write Current (AL=CL-1)  
IDD4WA  
AL = CL-1, Other conditions: see IDD4W  
Operating Burst Write Current with Write DBI  
IDD4WB  
Write DBI enabled3, Other conditions: see IDD4W  
Operating Burst Write Current with Write CRC  
IDD4WC  
Write CRC enabled3, Other conditions: see IDD4W  
Operating Burst Write Current with CA Parity  
IDD4W_par  
CA Parity enabled3, Other conditions: see IDD4W  
Operating Burst Write IPP Current  
IPP4W  
Same condition with IDD4W  
Burst Refresh Current (1X REF)  
CKE: High; External clock: On; tCK, CL, nRFC: see Table 1 on page 4; BL: 81; AL: 0; CS_n: High  
between REF; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling  
IDD5B  
according to Table 9 on page 13; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: REF command  
every nRFC (see Table 9 on page 13); Output Buffer and RTT: Enabled in Mode Registers2; ODT  
Signal: stable at 0; Pattern Details: see Table 9 on page 13  
Burst Refresh Write IPP Current (1X REF)  
Same condition with IDD5B  
IPP5B  
Burst Refresh Current (2X REF)  
IDD5F2  
tRFC=tRFC_x2, Other conditions: see IDD5B  
Burst Refresh Write IPP Current (2X REF)  
IPP5F2  
Same condition with IDD5F2  
Burst Refresh Current (4X REF)  
IDD5F4  
tRFC=tRFC_x4, Other conditions: see IDD5B  
Burst Refresh Write IPP Current (4X REF)  
IPP5F4  
Same condition with IDD5F4  
Self Refresh Current: Normal Temperature Range  
TCASE: 0 - 85°C; Low Power Array Self Refresh (LP ASR) : Normal4; CKE: Low; External clock:  
IDD6N  
IPP6N  
Off; CK_t and CK_c#: LOW; CL: see Table 1 on page 4; BL: 81; AL: 0; CS_n#, Command, Address,  
Bank Group Address, Bank Address, Data IO: High; DM_n: stable at 1; Bank Activity: Self-Refresh  
operation; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: MID-LEVEL  
Self Refresh IPP Current: Normal Temperature Range  
Same condition with IDD6N  
Self-Refresh Current: Extended Temperature Range)  
TCASE: 0 - 95°C; Low Power Array Self Refresh (LP ASR) : Extended4; CKE: Low; External clock:  
Off; CK_t and CK_c: LOW; CL: see Table 1 on page 4; BL: 81; AL: 0; CS_n, Command, Address, Bank  
Group Address, Bank Address, Data IO: High; DM_n:stable at 1; Bank Activity: Extended  
Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2; ODT  
Signal: MID-LEVEL  
IDD6E  
Rev. 0.1 / Mar. 2015  
47  
Self Refresh IPP Current: Extended Temperature Range  
Same condition with IDD6E  
IPP6E  
Self-Refresh Current: Reduced Temperature Range  
TCASE: 0 - TBD (~35-45)°C; Low Power Array Self Refresh (LP ASR) : Reduced4; CKE: Low;  
External clock: Off; CK_t and CK_c#: LOW; CL: see Table 1 on page 4; BL: 81; AL: 0; CS_n#,  
Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n:stable at 1; Bank  
Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode  
Registers2; ODT Signal: MID-LEVEL  
IDD6R  
Self Refresh IPP Current: Reduced Temperature Range  
Same condition with IDD6R  
IPP6R  
IDD6A  
IPP6A  
Auto Self-Refresh Current  
TCASE: 0 - 95°C; Low Power Array Self Refresh (LP ASR) : Auto4; CKE: Low; External clock: Off;  
CK_t and CK_c#: LOW; CL: see Table 1 on page 4; BL: 81; AL: 0; CS_n#, Command, Address, Bank  
Group Address, Bank Address, Data IO: High; DM_n:stable at 1; Bank Activity: Auto Self-Refresh  
operation; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: MID-LEVEL  
Auto Self-Refresh IPP Current  
Same condition with IDD6A  
Operating Bank Interleave Read Current  
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see Table 1 on page 4;  
BL: 81; AL: CL-1; CS_n: High between ACT and RDA; Command, Address, Bank Group Address,  
Bank Address Inputs: partially toggling according to Table 10 on page 14; Data IO: read data bursts  
with different data between one burst and the next one according to Table 10 on page 14; DM_n: stable  
at 1; Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing,  
see Table 10 on page 14; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: stable at  
0; Pattern Details: see Table 10 on page 14  
IDD7  
Operating Bank Interleave Read IPP Current  
Same condition with IDD7  
IPP7  
IDD8  
IPP8  
Maximum Power Down Current  
TBD  
Maximum Power Down IPP Current  
Same condition with IDD8  
Rev. 0.1 / Mar. 2015  
48  
NOTE :  
1. Burst Length: BL8 fixed by MRS: set MR0 [A1:0=00].  
2. Output Buffer Enable  
- set MR1 [A12 = 0] : Qoff = Output buffer enabled  
- set MR1 [A2:1 = 00] : Output Driver Impedance Control = RZQ/7  
RTT_Nom enable  
- set MR1 [A10:8 = 011] : RTT_NOM = RZQ/6  
RTT_WR enable  
- set MR2 [A10:9 = 01] : RTT_WR = RZQ/2  
RTT_PARK disable  
- set MR5 [A8:6 = 000]  
3. CAL enabled : set MR4 [A8:6 = 001] : 1600MT/s  
010] : 1866MT/s, 2133MT/s  
011] : 2400MT/s  
Gear Down mode enabled :set MR3 [A3 = 1] : 1/4 Rate  
DLL disabled : set MR1 [A0 = 0]  
CA parity enabled :set MR5 [A2:0 = 001] : 1600MT/s,1866MT/s, 2133MT/s  
010] : 2400MT/s  
Read DBI enabled : set MR5 [A12 = 1]  
Write DBI enabled : set :MR5 [A11 = 1]  
4. Low Power Array Self Refresh (LP ASR) : set MR2 [A7:6 = 00] : Normal  
01] : Reduced Temperature range  
10] : Extended Temperature range  
11] : Auto Self Refresh  
5. IDD2NG should be measured after sync pulse(NOP) input.  
Rev. 0.1 / Mar. 2015  
49  
Table 3 - IDD0, IDD0A and IPP0 Measurement-Loop Pattern1  
Data4  
0
0
ACT  
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
-
1,2  
D, D  
D_#,  
D_#  
32  
3,4  
1
1
1
1
1
0
0
3
0
0
0
7
F
0
-
...  
nRAS  
...  
repeat pattern 1...4 until nRAS - 1, truncate if necessary  
PRE  
repeat pattern 1...4 until nRC - 1, truncate if necessary  
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
-
repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 0 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 0 instead  
1
2
1*nRC  
2*nRC  
3*nRC  
4*nRC  
5*nRC  
6*nRC  
7*nRC  
8*nRC  
9*nRC  
10*nRC  
11*nRC  
12*nRC  
13*nRC  
14*nRC  
15*nRC  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
For x4  
and x8  
only  
NOTE:  
1 .DQS_t, DQS_c are VDDQ.  
2. BG1 is don’t care for x16 device  
3. C[2:0] are used only for 3DS device  
4. DQ signals are VDDQ.  
Rev. 0.1 / Mar. 2015  
50  
Table 4 - IDD1 Measurement-Loop Patterna)  
Data4  
0 0  
1, 2  
ACT  
D, D  
D#, D#  
0
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0
0
0
3b  
0
0
3
0
0
0
0
0
0
0
0
0
0
0
7
0
0
F
0
0
0
-
-
-
3, 4  
...  
repeat pattern 1...4 until nRCD - AL - 1, truncate if necessary  
nRCD -AL  
RD  
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
D0=00, D1=FF  
D2=FF, D3=00  
D4=FF, D5=00  
D6=00, D7=FF  
...  
repeat pattern 1...4 until nRAS - 1, truncate if necessary  
nRAS  
PRE  
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
-
...  
repeat pattern 1...4 until nRC - 1, truncate if necessary  
1
1*nRC + 0  
1*nRC + 1, 2 D, D  
1*nRC + 3, 4 D#, D#  
ACT  
0
1
1
0
0
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
1
0
3b  
1
0
3
0
0
0
0
0
0
0
0
0
0
0
7
0
0
F
0
0
0
-
-
-
...  
repeat pattern nRC + 1...4 until 1*nRC + nRAS - 1, truncate if necessary  
1*nRC + nRCD RD  
- AL  
0
1
1
0
1
0
0
1
1
0
0
0
0
0
0
D0=FF, D1=00  
D2=00, D3=FF  
D4=00, D5=FF  
D6=FF, D7=00  
...  
1*nRC + nRAS PRE  
... repeat nRC + 1...4 until 2*nRC - 1, truncate if necessary  
repeat pattern 1...4 until nRAS - 1, truncate if necessary  
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
-
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 2, BA[1:0] = 0 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 1 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 2, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 3 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 2, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 2 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 2, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 0 instead  
2 2*nRC  
3 3*nRC  
4 4*nRC  
5 5*nRC  
6 6*nRC  
8 7*nRC  
9 9*nRC  
10 10*nRC  
11 11*nRC  
12 12*nRC  
13 13*nRC  
14 14*nRC  
15 15*nRC  
16 16*nRC  
For x4 and x8 only  
NOTE:  
1. DQS_t, DQS_c are used according to RD Commands, otherwise VDDQ  
2. BG1 is don’t care for x16 device  
3. C[2:0] are used only for 3DS device  
4.Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are VDDQ.  
Rev. 0.1 / Mar. 2015  
51  
Table 5 - IDD2N, IDD2NA, IDD2NL, IDD2NG, IDD2ND, IDD2N_par, IPP2,IDD3N,  
IDD3NA and IDD3P  
Measurement-Loop Pattern1  
Data4  
0 0  
D, D  
D, D  
1
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0
0
0
32  
0
0
3
0
0
0
0
0
0
0
0
0
0
0
7
0
0
F
0
0
0
0
1
2
0
0
D#,  
D#  
32  
3
D#,  
D#  
1
1
1
1
1
0
0
3
0
0
0
7
F
0
0
repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 0 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 0 instead  
1 4-7  
2 8-11  
3 12-15  
4 16-19  
5 20-23  
6 24-27  
7 28-31  
8 32-35  
9 36-39  
10 40-43  
11 44-47  
12 48-51  
13 52-55  
14 56-59  
15 60-63  
NOTE :  
1. DQS_t, DQS_c are VDDQ.  
2. BG1 is don’t care for x16 device  
3. C[2:0] are used only for 3DS device  
4. DQ signals are VDDQ.  
Rev. 0.1 / Mar. 2015  
52  
Table 6 - IDD2NT and IDDQ2NT Measurement-Loop Pattern1  
Data4  
0 0  
D, D  
1
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0
0
0
32  
32  
0
0
3
0
0
0
0
0
0
0
0
0
0
0
7
0
0
F
0
0
0
-
-
-
1
2
D, D  
D#, D#  
3
D#, D#  
1
1
1
1
1
0
0
3
0
0
0
7
F
0
-
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 1, BA[1:0] = 1 instead  
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 0, BA[1:0] = 2 instead  
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 1, BA[1:0] = 3 instead  
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 0, BA[1:0] = 1 instead  
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 1, BA[1:0] = 2 instead  
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 0, BA[1:0] = 3 instead  
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 1, BA[1:0] = 0 instead  
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 2, BA[1:0] = 0 instead  
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 3, BA[1:0] = 1 instead  
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 2, BA[1:0] = 2 instead  
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 3, BA[1:0] = 3 instead  
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 2, BA[1:0] = 1 instead  
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 3, BA[1:0] = 2 instead  
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 2, BA[1:0] = 3 instead  
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 3, BA[1:0] = 0 instead  
1 4-7  
2 8-11  
3 12-15  
4 16-19  
5 20-23  
6 24-27  
7 28-31  
8 32-35  
9 36-39  
10 40-43  
11 44-47  
12 48-51  
13 52-55  
14 56-59  
15 60-63  
For x4  
andx8  
only  
NOTE :  
1. DQS_t, DQS_c are VDDQ.  
2. BG1 is don’t care for x16 device  
3. C[2:0] are used only for 3DS device  
4. DQ signals are VDDQ.  
Rev. 0.1 / Mar. 2015  
53  
Table 7 - IDD4R, IDDR4RA, IDD4RB and IDDQ4R Measurement-Loop Pattern1  
Data4  
0
1
0
RD  
0
1
1
0
1
0
0
0
0
32  
1
0
0
0
0
0
0
0
D0=00, D1=FF  
D2=FF, D3=00  
D4=FF, D5=00  
D6=00, D7=FF  
1
D
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
3
0
0
0
0
0
0
0
7
0
F
0
0
-
-
2,3  
D#, D#  
4
RD  
0
1
1
0
1
0
0
1
0
0
0
7
F
0
D0=FF, D1=00  
D2=00, D3=FF  
D4=00, D5=FF  
D6=FF, D7=00  
5
D
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
32  
0
3
0
0
0
0
0
0
0
7
0
F
0
0
-
-
6,7  
D#, D#  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 0 instead  
2
3
4
5
6
7
8
9
8-11  
12-15  
16-19  
20-23  
24-27  
28-31  
32-35  
36-39  
10 40-43  
11 44-47  
12 48-51  
13 52-55  
14 56-59  
15 60-63  
For x4 and x8 only  
NOTE :  
1. DQS_t, DQS_c are used according to RD Commands, otherwise VDDQ.  
2. BG1 is don’t care for x16 device  
3. C[2:0] are used only for 3DS device  
4. Burst Sequence driven on each DQ signal by Read Command.  
Rev. 0.1 / Mar. 2015  
54  
Table 8 - IDD4W, IDD4WA, IDD4WB and IDD4W_par Measurement-Loop Pattern1  
Data4  
0
1
0
WR  
0
1
1
0
1
1
0
0
0
32  
1
0
0
0
0
0
0
0
D0=00, D1=FF  
D2=FF, D3=00  
D4=FF, D5=00  
D6=00, D7=FF  
1
D
1
1
0
1
0
1
0
1
0
1
1
1
0
0
0
3
0
0
0
0
0
0
0
7
0
F
0
0
-
-
2,3  
D#, D#  
4
WR  
0
1
1
0
1
1
0
1
0
0
0
7
F
0
D0=FF, D1=00  
D2=00, D3=FF  
D4=00, D5=FF  
D6=FF, D7=00  
5
D
1
1
0
1
0
1
0
1
0
1
1
1
0
0
0
32  
0
3
0
0
0
0
0
0
0
7
0
F
0
0
-
-
6,7  
D#, D#  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 0 instead  
2
3
4
5
6
7
8
9
8-11  
12-15  
16-19  
20-23  
24-27  
28-31  
32-35  
36-39  
10 40-43  
11 44-47  
12 48-51  
13 52-55  
14 56-59  
15 60-63  
For x4 and x8 only  
NOTE :  
1. DQS_t, DQS_c are used according to WR Commands, otherwise VDDQ.  
2. BG1 is don’t care for x16 device  
3. C[2:0] are used only for 3DS device  
4. Burst Sequence driven on each DQ signal by Write Command.  
Rev. 0.1 / Mar. 2015  
55  
Table 9 - IDD4WC Measurement-Loop Pattern1  
Datad  
0 0  
WR  
0
1
1
0
1
1
0
0
0
32  
1
0
0
0
0
0
0
0
D0=00, D1=FF  
D2=FF, D3=00  
D4=FF, D5=00  
D6=00, D7=FF  
D8=CRC  
1,2  
D, D  
1
1
0
1
0
1
0
1
0
1
1
1
0
0
0
3
0
0
0
0
0
0
0
7
0
F
0
0
-
-
3,4  
5
D#, D#  
WR  
0
1
1
0
1
1
0
1
0
0
0
7
F
0
D0=FF, D1=00  
D2=00, D3=FF  
D4=00, D5=FF  
D6=FF, D7=00  
D8=CRC  
6,7  
8,9  
D, D  
1
1
0
1
0
1
0
1
0
1
1
1
0
0
0
32  
0
3
0
0
0
0
0
0
0
7
0
F
0
0
-
-
D#, D#  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 0 instead  
2 10-14  
3 15-19  
4 20-24  
5 25-29  
6 30-34  
7 35-39  
8 40-44  
9 45-49  
10 50-54  
11 55-59  
12 60-64  
13 65-69  
14 70-74  
15 75-79  
For x4 and x8 only  
NOTE :  
1. DQS_t, DQS_c are VDDQ.  
2. BG1 is don’t care for x16 device.  
3. C[2:0] are used only for 3DS device.  
4. Burst Sequence driven on each DQ signal by Write Command.  
Rev. 0.1 / Mar. 2015  
56  
Table 10 - IDD5B Measurement-Loop Pattern1  
Data4  
0 0  
1 1  
2
REF  
1
1
1
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
32  
32  
0
0
0
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
7
0
0
0
F
0
0
0
0
-
-
-
-
D
D
3
D#, D#  
4
D#, D#  
1
1
1
1
1
0
0
3
0
0
0
7
F
0
-
repeat pattern 1...4, use BG[1:0]2 = 1, BA[1:0] = 1 instead  
repeat pattern 1...4, use BG[1:0]2 = 0, BA[1:0] = 2 instead  
repeat pattern 1...4, use BG[1:0]2 = 1, BA[1:0] = 3 instead  
repeat pattern 1...4, use BG[1:0]2 = 0, BA[1:0] = 1 instead  
repeat pattern 1...4, use BG[1:0]2 = 1, BA[1:0] = 2 instead  
repeat pattern 1...4, use BG[1:0]2 = 0, BA[1:0] = 3 instead  
repeat pattern 1...4, use BG[1:0]2 = 1, BA[1:0] = 0 instead  
repeat pattern 1...4, use BG[1:0]2 = 2, BA[1:0] = 0 instead  
repeat pattern 1...4, use BG[1:0]2 = 3, BA[1:0] = 1 instead  
repeat pattern 1...4, use BG[1:0]2 = 2, BA[1:0] = 2 instead  
repeat pattern 1...4, use BG[1:0]2 = 3, BA[1:0] = 3 instead  
repeat pattern 1...4, use BG[1:0]2 = 2, BA[1:0] = 1 instead  
repeat pattern 1...4, use BG[1:0]2 = 3, BA[1:0] = 2 instead  
repeat pattern 1...4, use BG[1:0]2 = 2, BA[1:0] = 3 instead  
repeat pattern 1...4, use BG[1:0]2 = 3, BA[1:0] = 0 instead  
4-7  
8-11  
12-15  
16-19  
20-23  
24-27  
28-31  
32-35  
36-39  
40-43  
44-47  
48-51  
52-55  
56-59  
60-63  
For x4 and x8  
only  
2 64 ... nRFC - 1 repeat Sub-Loop 1, Truncate, if necessary  
NOTE :  
1. DQS_t, DQS_c are VDDQ.  
2. BG1 is don’t care for x16 device.  
3. C[2:0] are used only for 3DS device.  
4. DQ signals are VDDQ.  
Rev. 0.1 / Mar. 2015  
57  
Table 11 - IDD7 Measurement-Loop Pattern1  
Data4  
0 0  
1
ACT  
RDA  
0
0
0
1
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
-
D0=00, D1=FF  
D2=FF, D3=00  
D4=FF, D5=00  
D6=00, D7=FF  
-
2
3
D
D#  
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
32  
0
3
0
0
0
0
0
0
0
7
0
F
0
0
-
...  
1 nRRD  
nRRD + 1  
repeat pattern 2...3 until nRRD - 1, if nRRD > 4. Truncate if necessary  
ACT  
RDA  
0
0
0
1
0
1
0
0
0
1
0
0
0
1
1
1
1
0
0
0
0
0
1
0
0
0
0
0
0
-
D0=FF, D1=00  
D2=00, D3=FF  
D4=00, D5=FF  
D6=FF, D7=00  
...  
repeat pattern 2 ... 3 until 2*nRRD - 1, if nRRD > 4. Truncate if necessary  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead  
2 2*nRRD  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead  
repeat pattern 2 ... 3 until nFAW - 1, if nFAW > 4*nRRD. Truncate if necessary  
3 3*nRRD  
4 4*nRRD  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead  
5 nFAW  
6 nFAW + nRRD  
7 nFAW + 2*nRRD  
8 nFAW + 3*nRRD  
9 nFAW + 4*nRRD repeat Sub-Loop 4  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 3 instead  
10 2*nFAW  
11 2*nFAW + nRRD  
12 2*nFAW + 2*nRRD  
13 2*nFAW + 3*nRRD  
14 2*nFAW + 4*nRRD repeat Sub-Loop 4  
For x4 and x8  
only  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead  
15 3*nFAW  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 0 instead  
16 3*nFAW + nRRD  
17 3*nFAW + 2*nRRD  
18 3*nFAW + 3*nRRD  
19 3*nFAW + 4*nRRD repeat Sub-Loop 4  
20 4*nFAW repeat pattern 2 ... 3 until nRC - 1, if nRC > 4*nFAW. Truncate if necessary  
NOTE :  
1. DQS_t, DQS_c are VDDQ.  
2. BG1 is don’t care for x16 device.  
3. C[2:0] are used only for 3DS device.  
4. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are VDDQ  
Rev. 0.1 / Mar. 2015  
58  
IDD Specifications (Tcase: 0 to 95oC) - to be updated  
Rev. 0.1 / Mar. 2015  
59  
Module Dimensions  
2Gx64 - HMA82GU6MFR8N  
Front  
133.35  
129.55  
2.10±0.15  
3.00  
SPD/TS  
Detail A  
28.90  
Detail B  
Detail D  
Detail E  
Detail C  
Pin 35  
Pin 47  
Pin 105  
Pin 117  
Pin 1  
3.35  
64.60  
56.10  
22.95  
Back  
2x R0.75 Max  
Side  
Detail of Contacts A  
Detail of Contacts B  
Detail of Contacts C  
0.60±  
0.03  
3.98mm max  
Pin 35  
Pin 47  
Pin 105  
Pin 117  
9.35  
9.35  
10.20  
10.20  
0.5  
OUT LINE  
Detail of Contacts D  
Detail of Contacts E  
4.30  
0.85  
0.60± 0.03  
1.40±0.1mm  
max  
Min 0.45  
0.3~0.7  
0.85  
1.50  
±0.1  
5.95  
Note:  
1. 0.13 tolerance on all dimensions unless otherwise stated.  
Units: millimeters  
Rev. 0.1 / Mar. 2015  
60  
2Gx72 - HMA82GU7MFR8N  
Front  
133.35  
129.55  
2.10±0.15  
SPD/TS  
3.00  
Detail A  
28.90  
Detail B  
Detail D  
Detail E  
Detail C  
Pin 35  
Pin 47  
Pin 105  
Pin 117  
Pin 1  
3.35  
64.60  
56.10  
22.95  
Back  
2x R0.75 Max  
Side  
Detail of Contacts A  
Detail of Contacts B  
Detail of Contacts C  
3.98mm max  
0.60± 0.03  
Pin 35  
Pin 47  
Pin 105  
Pin 117  
9.35  
9.35  
10.20  
10.20  
0.5  
OUT LINE  
Detail of Contacts D  
Detail of Contacts E  
4.30  
0.85  
0.60± 0.03  
1.40±0.1mm  
max  
Min 0.45  
0.3~0.7  
0.85  
1.50  
±0.1  
5.95  
Note:  
1. 0.13 tolerance on all dimensions unless otherwise stated.  
Units: millimeters  
Rev. 0.1 / Mar. 2015  
61  

相关型号:

HMA82GU7MFR8N-TF

DDR4 SDRAM Unbuffered DIMM Based on 8Gb M-die
HYNIX

HMA82GU7MFR8N-UH

DDR4 SDRAM Unbuffered DIMM Based on 8Gb M-die
HYNIX

HMA851S6AFR6N

DDR4 SDRAM SO-DIMM Based on 8Gb A-die
HYNIX

HMA851S6AFR6N-TF

DDR4 SDRAM SO-DIMM Based on 8Gb A-die
HYNIX

HMA851S6AFR6N-UH

DDR4 SDRAM SO-DIMM Based on 8Gb A-die
HYNIX

HMA851S6CJR6N

DDR4 SDRAM SO-DIMM Based on 8Gb C-die
HYNIX

HMA851S6CJR6N-UH

DDR4 SDRAM SO-DIMM Based on 8Gb C-die
HYNIX

HMA851S6CJR6N-VK

DDR4 SDRAM SO-DIMM Based on 8Gb C-die
HYNIX

HMA851S6CJR6N-WM

DDR4 SDRAM SO-DIMM Based on 8Gb C-die
HYNIX

HMA851S6CJR6N-XN

DDR4 SDRAM SO-DIMM Based on 8Gb C-die
HYNIX

HMAA2705

FULL PITCH MINI-FLAT PACKAGE 4-PIN OPTOCOUPLERS
FAIRCHILD

HMAA2705A

AC Input-Transistor Output Optocoupler, 1-Element, 3750V Isolation, MINI-FLAT, 4 PIN
FAIRCHILD