H27U4G8F2DKA-BM [HYNIX]

4 Gbit (512M x 8 bit) NAND Flash; 4千兆( 512M ×8位)NAND闪存
H27U4G8F2DKA-BM
型号: H27U4G8F2DKA-BM
厂家: HYNIX SEMICONDUCTOR    HYNIX SEMICONDUCTOR
描述:

4 Gbit (512M x 8 bit) NAND Flash
4千兆( 512M ×8位)NAND闪存

闪存
文件: 总62页 (文件大小:1015K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
4
Rev 1.4 / OCT. 2010  
1
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
Document Title  
4 Gbit (512M x 8 bit) NAND Flash Memory  
Revision History  
Revision  
History  
No.  
Draft  
Remark  
Date  
0.0  
Jan. 12. 2010  
Preliminary  
Initial Draft  
ICC2: Saparate Cache case and normal case  
tCBSYW value update (5us-Typ.)  
1.0  
Mar. 04. 2010  
tCEA -> tCR Typo correction  
1.1  
1.2  
Mar. 31. 2010  
April 14. 2010  
ICC2 Typcal delete (because of same as max. value)  
Adding Bad Block Marking Information  
1.3  
1.4  
ne 29. 2010  
CT. 8. 2010  
at
Ty
Rev 1.4 / OCT. 2010  
2
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
PCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
FEATURES SUMMARY  
DENSITY  
ADDTIONAL FEATURE  
- Multiplane Architecture  
- 4Gbit: 4096blocks  
: Array is split into two independent planes.  
Parallel operations on both planes are available, having  
program and erase time.  
Nand FLASH INTERFACE  
- NAND Interface  
- Single and multiplane copy back program with automatic  
EDC (error detection code)  
- ADDRESS / DATA Multiplexing  
- Single and multiplane page re-program  
- Single and multiplane cache program  
- Cache read  
SUPPLY VOLTAGE  
- Vcc = 3.0/1.8V Volt core supply voltage for Program,  
Erase and Read operations.  
- Multiplane block erase  
MEMORY CELL ARRAY  
Reliability  
- X8: (2K + 64) bytes x 64 pages x 4096 blocks  
- X16: (1k+32) words x 64 pages x 2048 blocks  
- 100,000 Program / Erase cycles (with 1bit /528Byte ECC)  
- 10 Year Data retention  
PAGE SIZE  
COMMAND SET  
- X8: (2048 + 64 spare) bytes  
- X16:(1024 + 32spare) Words  
ATURE  
Block SIZE  
- X8: (128K + 4K spare) bytes  
- X16:(64K + 2K spare) Words  
PAGE READ / PROGRAM  
- Random access: 25us (Max)  
- Sequentiall access: 25ns / 45ns
- Program time(3.0V/1.8V): 200u
- Multi-page program time (2 pag
200us / 250us (3.0V/1.8V, Typ.)  
BLOCK ERASE / MULTIPLE BL
- Block erase time: 3.5 ms (Typ)  
- Multi-block erase time (2 blocks):  
3.5ms/ 3.5ms (3.0V/1.8V, Typ.)  
SEQURITY  
- OTP area  
- Sreial number (unique ID)  
- Non-volatile protection option for OTP and Block0(Opt.)  
- Hardware program/erase disabled during  
power transition  
Rev 1.4 / OCT. 2010  
3
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
CONTENTS  
1 Summary Description...................................................................................................................5  
1.1 Product List....................................................................................................................................6  
1.2 Pin description................................................................................................................................8  
1.3 Functional block diagram...............................................................................................................9  
1.4 Address role.................................................................................................................................10  
1.5 Command Set...............................................................................................................................11  
2 Bus Operations............................................................................................................................13  
2.1 Command Input............................................................................................................................13  
2.2 Address Input...............................................................................................................................13  
2.3 Data Input....................................................................................................................................13  
2.4 Data Output.................................................................................................................................13  
2.5 Write Protect................................................................................................................................13  
2.6 Stand-by......................................................................................................................................13  
3 DEVICE OPERATION...................................................................................................................14  
3.1 Page Read....................................................................................................................................14  
3.2 Data Handiling Restriction .......................................14  
3.3 Page Program........................................................14  
3.4 Multiple plane program...........................................15  
3.5 Block Erase............................................................15  
3.6 Multiple plane Block Erase.......................................16  
3.7 Copy-Back Program................................................16  
3.8 Multiple plane copy back P.......................................17  
3.9 Special read for copy back.......................................17  
3.10 EDC Operation.................................................17  
3.11 Read Status Register............................................19  
3.12 Read Status Enhanced..........................................19  
3.13 Read Status Register fiel.......................................20  
3.14 Read EDC Status Registe.......................................20  
3.15 Reset...................................................................21  
3.16 Cache Read.........................................................21  
3.17 Cache Program.....................................................22  
3.18 Multi-plane Cache Progra.......................................22  
3.19 Read ID...............................................................24  
3.20 Read ONFI Signature...................................................................................................................26  
3.21 Read Parameter Page..................................................................................................................26  
3.22 Parameter Page Data Structure Definition......................................................................................26  
4 OTHER FEATURES.......................................................................................................................30  
4.1 Data Protection and Power on / off sequence...................................................................................30  
4.2 Ready/Busy..................................................................................................................................30  
4.3 Write protect (#WP) handling........................................................................................................30  
5 Device Parameters......................................................................................................................31  
6 Timing Diagrams.........................................................................................................................35  
7 Package Mechanical...............................................................................................................58  
7.1 Power consumptions and pin capacitance for allowed stacking configurations.....................................59  
8 Application notes and comments.............................................................................................60  
8.1 System Interface using CE# don't care..........................................................................................60  
8.2 System Bad Block Replacement....................................................................................................61  
8.3 Bad Block Management System....................................................................................................62  
Rev 1.4 / OCT. 2010  
4
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
1 Summary Description  
H27(U_S)4G8_6F2D series is a 512Mx8bit with spare 16Mx8 bit capacity.  
The device is offered in 3.0/1.8 Vcc Power Supply, and with x8 and x16 I/O interface  
Its NAND cell provides the most cost-effective solution for the solid state mass storage market.  
The memory is divided into blocks that can be erased independently so it is possible to preserve valid data while old  
data is erased.  
The device contains 4096 blocks, composed by 64 pages.  
Memory array is split into 2 planes, each of them consisting of 2048 blocks.  
Like all other 2KB - page NAND Flash devices, a program operation allows to write the 2112-byte page in typical  
200us(3.3V) and an erase operation can be performed in typical 3.5ms on a 128K-byte block.  
In addition to this, thanks to multi-plane architecture, it is possible to program 2 pages at a time (one per each plane)  
or to erase 2 blocks at a time (again, one per each plane). As a consequence, multi-plane architecture allows program  
time to be reduced by 40% and erase time to be reduction by 50%. In case of multi-plane operation, there is small deg-  
radation at 1.8V application in terms of program/erase time.  
The multiplane operations are supported both with traditional and ONFI 1.0 protocols.  
Data in the page can be read out time per byte. The I/O pins  
serve as the ports for address and erface allows a reduced pin  
count and easy migration towards tprint.  
Commands, Data and Addresses ad CLE input pin.  
The on-chip Program/Erase Contrincluding pulse repetition,  
where required, and internal verif
A WP# pin is available to provide tions.  
The output pin RB# (open drain beration. In a system with multi-  
ple memories the RB# pins can bnal.  
Each block can be programmed anon code) on. To extend the life-  
time of Nand Flash devices, the im
The chip supports CE# don't care the code from the NAND Flash  
memory device by a microcontrollration.  
In addition, device supports ONFI
The copy back function allows the optimization of defective blocks management: when a page program operation fails  
the data can be directly programmed in another page inside the same array section without the time consuming serial  
data insertion phase. Copy back operation automatically executes embedded error detection operation: 1 bit error out  
of every 528-byte (x8) or 1 bit error out of every 264-word (x16) can be detected. With this feature it is no longer nec-  
essary to use an external to detect copy back operation errors.  
Multiplane copy back is also supported, both with traditional and ONFI 1.0 protocols. Data read out after copy back read  
(both for single and multiplane cases) is allowed.  
In addition, Cache program and multi cache program operations improve the programing throughput by programing  
data using the cache register.  
The devices provide two innovative features: page re-program and multiplane page re-program. The page re-program  
allows to re-program one page. Normally, this operation is performed after a previously failed page program operation.  
Similarly, the multiplane page re-program allows to re-program two pages in parallel, one per each plane. The first page  
must be in the first plane while the second page must be in the second plane; the multiplane page re-program opera-  
tion is performed after a previously failed multiplane page program operation. The page re-program and multiplane  
Rev 1.4 / OCT. 2010  
5
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
page re-program guarantee imporve performance, since data insertion can be omitted during re-program operations,  
and save ram buffer at the host in the case of program failure.  
The devices, available in the TSOP48 (12X20mm) package, support the ONFI1.0 specfication and come with four sequ-  
rity features:  
- OTP (one time programmable) area, which is a restricted access area where sensitive data/code can be stored  
permantely.  
- Serial number (unique identifier), which allows the devices to be nuniquely indentified.  
- Read ID2 extention  
- Non-volatile protection to lock sensible data permanently.  
These security features are subject to an NDA (non-disclosure agreement) and are, therefore, no described in the  
datasheet. For more details about them, contact your nearest Hynix sales office.  
1.1.Product List  
PART NUMBER  
H27U4G8F2D  
H27U4G6F2D  
H27S4G8F2D  
H27S4G6F2D  
GE  
PACKAGE  
-
-
-
-
Ts  
)  
CE
16)  
WE
RE#  
ALE  
CLE  
WP#  
VSS  
Figure 1: Logic Diagram  
Rev 1.4 / OCT. 2010  
6
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
DQ7 - DQ0  
DQ15 - DQ8  
CLE  
Data Input / Outputs (x8/x16)  
Data Input / Outputs (x16)  
Command latch enable  
Address latch enable  
Chip Enable  
ALE  
CE#  
RE#  
Read Enable  
WE#  
Write Enable  
WP#  
Write Protect  
RB#  
Ready/ Busy  
VCC  
Power supply  
VSS  
NC  
Ground  
No Connected internally  
48  
Vss  
1
NC  
NC  
NC  
NC  
NC  
NC  
R/B  
RE  
I/O15  
I/O7  
I/O14  
I/O6  
I/O13  
I/O5  
I/O12  
I/O4  
NC  
CE  
ALE  
WE  
WP  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
Vcc  
Vss  
NC  
NC  
CLE  
ALE  
WE  
WP  
NC  
NC  
NC  
NC  
NC  
NC  
Vcc  
G
D Flash  
OP1  
NAND Fla
TSOP1  
37  
36  
12  
13  
NC  
NC  
NC  
16)  
(x8)  
I/O11  
I/O3  
I/O10  
I/O2  
I/O9  
I/O1  
I/O8  
I/O0  
Vss  
I/O2  
I/O1  
I/O0  
NC  
NC  
NC  
NC  
24  
25  
24  
25  
Figure 2. 48TSOP1 Contact, x8 and x16 Devic  
Rev 1.4 / OCT. 2010  
7
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
1.2 PIN DESCRIPTION  
Pin Name  
Description  
DATA INPUTS/OUTPUTS  
The DQ pins allow to input command, address and data and to output data during read / program  
operations. The inputs are latched on the rising edge of Write Enable (WE#). The I/O buffer float to  
High-Z when the device is deselected or the outputs are disabled.  
DQ0 - DQ15  
COMMAND LATCH ENABLE  
CLE  
ALE  
This input activates the latching of the DQ inputs inside the Command Register on the Rising edge of  
Write Enable (WE#).  
ADDRESS LATCH ENABLE  
This input activates the latching of the DQ inputs inside the Command Register on the Rising edge of  
Write Enable (WE#).  
CHIP ENABLE  
CE#  
WE#  
This input controls the selection of the device. When the device is busy CE# low does not deselect the  
memory.  
WRITE ENABLE  
This input acts ainputs are latched on the rise  
edge of WE#.  
READ ENABLE  
The RE# input is data onto the I/O bus. Data is  
valid tREA after tnal column address counter by  
one.  
RE#  
WRITE PROTEC
WP#  
RB#  
VCC  
The WP# pin, whesired modify (program / erase)  
operations.  
READY BUSY  
The Ready/Busy he memory.  
SUPPLY VOLTA
The VCC supplies An internal lock circuit prevent  
the insertion of C
VSS  
GROUND  
NC / DNU  
NO CONNECTE
Table 3: Pin Description  
NOTE:  
1. A 0.1uF capacitor should be connected between the VCC Supply Voltage pin and the VSS Ground pin to decouple  
the current surges from the power supply. The PCB track widths must be sufficient to carry the currents required  
during program and erase operations.  
2. an internal voltage detector disables all functions whenever VCC is below 1.8V (3V version) or 1.1V (1.8V) version  
to protect the device from any involuntary program/erase during power transitions.  
Rev 1.4 / OCT. 2010  
8
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
PCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
1.3 Functional block diagram  
ADDRESS  
REGISTER/  
COUNTER  
PROGRAM  
ERASE  
X
CONTROLLER  
HV GENERATION  
4096 Mbit + 128 Mbit  
D
E
C
NAND Flash  
O
D
E
MEMORY ARRAY  
WE#  
R
CE#  
COMM
INTERF
LOGI
WP#  
RE#  
COMM
REGIS
DAT
REGIS
Figure 3: block description  
Rev 1.4 / OCT. 2010  
9
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
1.4 Address role  
DQ0  
A0  
DQ1  
A1  
DQ2  
A2  
DQ3  
A3  
DQ4  
A4  
DQ5  
A5  
DQ6  
A6  
DQ7  
A7  
1st Cycle  
A8  
A9  
A10  
A14  
A22  
A30  
A11  
A15  
A23  
A31  
0
0
0
0
2
nd Cycle  
A12  
A20  
A28  
A13  
A21  
A29  
A16  
A24  
0
A17  
A25  
0
A18  
A26  
0
A19  
A27  
0
3
rd Cycle  
th Cycle  
4
5
th Cycle (*)  
Table 4: Address Cycle Map (x8)  
(*): A30 for 8Gbit DDP(1CE). A30:A31 for 16Gbit QDP(1CE).  
As far as the address bits are concerned, the following rules apply:  
A0 - A11 : column address in the
A12 - A17 : page address in the
A18 : plane address (for multi-plons)  
A19 - A31 : block address  
DQ0  
A0  
DQ5  
A5  
DQ6  
A6  
DQ7  
A7  
1st Cycle  
nd Cycle  
A8  
0
0
0
2
3
rd Cycle  
th Cycle  
A11  
A19  
A27  
A16  
A24  
0
A17  
A25  
0
A18  
A26  
0
4
5
th Cycle (*)  
Table 5: Address Cycle Map (x16)  
(*): A29 for 8Gbit DDP(1CE). A29:A30 for 16Gbit QDP(1CE)  
As far as the address bits are concerned, the following rules apply:  
A0 - A10 : column address in the page  
A11 - A16 : page address in the block  
A17 : plane address (for multi-plane operations) / block address (for normal operations)  
A18 - A30 : block address  
Rev 1.4 / OCT. 2010  
10  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
PCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
1.5 Command Set  
Acceptable  
command  
during busy  
Command(1)  
1st CYCLE  
2nd CYCLE 3rd CYCLE 4th CYCLE  
READ  
00h  
00h  
30h  
35h  
36h  
READ FOR COPY-BACK  
SPECIAL READ FOR COPY BACK  
READ ID  
00h  
90h  
READ ID2  
30h-65h-00h  
FFh  
30h  
Yes(2)  
RESET  
PAGE PGM (start) / CACHE PGM (end)  
CACHE PGM (Start) / (continue)  
PAGE REPROGRAM / Nth PAGE CACHE REPROGRAM (end)  
80h  
10h  
15h  
10h  
80h  
8Bh  
th PAGE CACHE REPROGRAM (continue)  
8Bh  
15h  
N
N-1th PAGE CACHE REPROGRAM (continu
COPY BACK PGM (start)  
(Traditional) MULTI PLANE PROGRAM(3)  
ONFI MULTIPLANE PROGRAM  
81h  
80h  
8Bh  
81h  
80h  
81h  
80h  
8Bh  
10h  
10h  
10h  
15h  
15h  
10h  
10h  
15h  
MULTIPLANE PAGE RE-PROGRAM  
(Traditional) MULTIPLANE CACHE PGM (s
ONFI MULTIPLANE CACHE PGM (star
(Traditional) MULTIPLANE CACHE PGM (e
ONFI MULTIPLANE CACHE PGM (end
Nth PAGES MULTIPLANE CACHE RE-PROG
th PAGES MULTIPLANE CACHE RE-PROG
8Bh  
8Ah  
81h  
85h  
10h  
15h  
10h  
10h  
N
N-1th PAGES MULTIPLANE CACHE RE-PR
(Traditional) MULTI PLANE COPY BACK P
ONFI MULTIPLANE COPYBACK PGM  
BLOCK ERASE  
(Traditional) MULTI PLANE BLOCK ERASE(3)  
ONFI MULTIPLANE BLOCK ERASE  
READ STATUS REGISTER  
D0h  
60h  
60h  
60h  
D0h  
60h  
D1h  
60h  
D0h  
70h  
Yes  
READ STATUS ENHANCED  
RANDOM DATA INPUT  
78h  
Yes  
85h  
RANDOM DATA OUTPUT  
05h  
E0h  
CACHE READ(SEQUENTIAL)  
CACHE READ ENHANCED (RANDOM)  
CACHE READ END  
31h  
00h  
31h  
3Fh  
Ech  
READ PARAMETER PAGE  
EDC STATUS READ  
7Bh  
EXTENDED READ STATUS  
F2h/F3h/F4h/F5h  
Yes  
Table 6: Public Command Set  
Rev 1.4 / OCT. 2010  
11  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
PCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
NOTE:  
1. Commands listed in BOLD are referring to ONFI 1.0 Specification.  
2. Only during cache ready busy.  
3.Command maintained for backward compatibility  
CLE  
H
L
ALE  
L
CE#  
WE#  
Rising  
Rising  
Rising  
Rising  
Rising  
H
RE#  
WP#  
MODE  
L
L
L
L
L
H
X
X
H
H
H
X
Command Input  
Address Input  
Command Input  
Address Input  
Read  
Mode  
H
H
H
H
L
L
Write  
Mode  
H
H
L
L
H
Data Input  
L(1)  
L
L
Falling  
Data Output (on going)  
L(1)  
L
Data Output (suspended)(2)  
Busy time in Read  
Busy time in Program  
Busy time in Erase  
Write Protect  
X
L
X
L
H
H
X
H
H
X
X
X
X
X
X
X
X
X
X
X
X
H
Stand By  
NOTES:  
1. As 4Gbit SLC F41 is CE# don't op the read operation.  
Rev 1.4 / OCT. 2010  
12  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
PCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
2. BUS OPERATION  
There are six standard bus operationTable 28s that control the device. These are Command Input, Address Input, Data  
Input, Data Output, Write PrTable 28otect, and Standby. (see Figure 1 and Table 6)  
Typically glitches less than 5 ns on Chip Enable, Write Enable and Read Enable are ignored by the memory and do not  
affect bus operations.  
2.1. Command Input  
Command Input bus operation is used to give a command to the memory device. Command are accepted with Chip  
Enable low, Command Latch Enable High, Address Latch Enable low and Read Enable High and latched on the rising  
edge of Write Enable. Moreover for commands that starts a modify operation (write/erase) the Write Protect pin must  
be high. See Figure 5 and Table 28 for details of the timings requirements. Command codes are always applied on  
IO7:0 regardless of the bus configuration. (X8 or X16)  
2.2. Address Input  
Address Input bus operation allows the insertion of the memory address. 5 clock cycles are needed to input the  
addresses. Addresses are accepted with Chip Enable low, Address Latch Enable High, Command Latch Enable low and  
Read Enable High and latched on the risinWtEnle. Mreer fmands that starts a modify opera-  
tion (write/erase) the Write Protedetails of the timings require-  
ments. Addresses are always appor X16). Refer to Table 4 and  
Table 5 for more detailed inform
2.3. Data Input  
Data Input bus operation allows data insertion is serial and  
timed by the Write Enable cycless Latch Enable low, Command  
Latch Enable low, Read Enable Hedge of Write Enable. See Fig-  
ure 7 and Table 28 for details
2.4. Data Output  
Data Output bus operation allowe status register content, the  
EDC register content and the ID ead Enable pin with Chip Enable  
low, Write Enable High, Address e Figure 8 to Figure 11 and  
Table 28 for details of the timin
2.5. Write Protect  
Hardware Write Protection is activated when the Write Protect pin is low. In this condition modify operation do not start  
and the content of the memory is not altered. Write Protect pin is not latched by Write Enable to ensure the protection  
even during the power up.  
2.6. Standby  
In Standby the device is deselected, outputs are disabled and Power Consumption is reduced.  
Rev 1.4 / OCT. 2010  
13  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
3. DEVICE OPERATION  
3.1. Page Read  
This operation is initiated by writing 00h and 30h to the command register along with five address cycles. Two types of  
operations are available: random read, serial page read. The random read mode is enabled when the page address is  
changed. The 2112 bytes (x8) or 1056 (x16) of data within the selected page are transferred to the data registers in  
less than 25us(tR). The system controller may detect the completion of this data transfer (tR) by analyzing the output  
of R/B pin. Once the data in a page is loaded into the data registers, they may be read out in 25ns (3V version) and  
45nsec (1.8V version) cycle time by sequentially pulsing RE#. The repetitive high to low transitions of the RE# clock  
make the device output the data starting from the selected column address up to the last column address.  
The device may output random data in a page instead of the sequential data by writing random data output command.  
The column address of next data, which is going to be out, may be changed to the address which follows random data  
output command.  
Random data output can be operated multiple times regardless of how many times it is done in a page.  
After power up device is in read mode, so 00h command cycle is not necessary to start a read operation. Any operation  
other than read or random data output causes dvice to exiad mode.  
Check Figure 12, Figure 13, Fig
3.2 Data handling restircti
Applications which use the error ictions related to data handling  
during program sequence.  
The error dection code check is usck program operations to detect  
single bit errors pccurred in the s
Note: The restrictions described back program or multiplane copy  
back program without EDC check
When data handling is performede-program, multiplane page re-  
program, cache ptrgram and multllowing restrictions:  
1. Program operations must be pet at a time.  
2. For each program operation, raEDC unit.  
Copy back program or multiplane ing restrictions:  
1. If rando, data input is applied in a given EDC unit, the data of the whole EDC unit must be inserted. In ohter words, the  
EDC check is possible only if the whole EDC unit is modified during a copy back program sequence.  
2. For each program operation, rando, data input can be executed only once for each EDC unit.  
3.3 Page Program  
A page program cycle consists of a serial data loading period in which up to 2112 bytes of data may be loaded into the  
data register, followed by a non-volatile programming period where the loaded data is programmed into the appropriate  
cell.  
The serial data loading period begins by inputting the Serial Data Input command (80h), followed by the five cycle  
address inputs and then serial data. The words other than those to be programmed do not need to be loaded. The  
device supports random data input within a page. The column address of next data, which will be entered, may be  
changed to the address which follows random data input command (85h). Random data input may be operated multi-  
ple times regardless of how many times it is done in a page.  
The Page Program confirm command (10h) initiates the programming process. The internal write state controller  
automat-  
Rev 1.4 / OCT. 2010  
14  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
ically executes the algorithms and controls timings necessary for program and verify, thereby freeing the system con-  
troller for other tasks. Once the program process starts, the Read Status Register commands (70h or 78h) may be  
issued to read the status register. The system controller can detect the completion of a program cycle by monitoring  
the RB# output, or the Status bit (I/O 6) of the Status Register. Only the Read Status commands (70h or 78h) or Reset  
command are valid during programming is in progress. When the Page Program is complete, the Write Status Bit (I/O  
0) may be checked. The internal write verify detects only errors for "1"s that are not successfully programmed to "0"s.  
The command register remains in Read Status command mode until another valid command is written to the com-  
mand register. Figure 14 and Figure 15 detail the sequence.  
The device is programmed basically by page, but it also allows multiple partial page programming of a word or consec-  
utive bytes up to 2112 (x8) or 1056 (x16) in a single page program cycle.  
The number of consecutive partial page programming operations (NOP) within the same page must not exceed the  
number indicated in Table 27. In addition, pages must be sequentially programmed within a block.  
Users which use "EDC check" in copy back must comply with some limitations related to data handling during one  
page program sequence. Please refer to Section 3.10 for details.  
3.4. Multiple plane program  
Device supports multiple plane pone per each plane.  
A multiple plane program cycle cup to 4224bytes of data may be  
loaded into the data register, follloaded data is programmed into  
the appropriate cell. The serial dInput command (80h), followed  
by the five cycle address inputpage must be in the 1st plane  
(A<18>=0). The device supporte program operation. The Dum-  
my Page Program Confirm commmes busy for a short time (tDBSY).  
Once it has become ready againmmand must be issued, followed  
by 2nd page address (5 cycles) be in the 2nd plane (A<18>=1).  
Program Confirm command (10Figure 20 and Figure 21 de-  
scribe the sequences.  
User can check operation status mands (70h or 78h), as if it were  
a normal page program: read sty Busy time (tDBSY).  
In case of fail in any of 1st and 2owever, in order to know which  
page failed, ONFI 1.0 "read station 3.11 for further info.  
The number of consecutive parthe same page must not exceed  
the number indicated in Table 2sequentially within a block.  
3.5. Block Erase  
The Block Erase operation is done on a block basis. Block address loading is accomplished in 3 cycles initiated by an  
Erase Setup command (60h). Only addresses A18 to A29 are valid while A12 to A17 are ignored. The Erase Confirm  
command (D0h) following the block address loading initiates the internal erasing process This two-step sequence of  
setup followed by execution command ensures that memory contents are not accidentally erased due to external noise  
conditions.  
At the rising edge of WE# after the erase confirm command input, the internal write controller handles erase and  
erase-verify.  
Once the erase process starts, the Read Status Register commands (70h or 78h) may be issued to read the status  
register. The system controller can detect the completion of an erase by monitoring the RB# output, or the Status bit  
(I/O 6) of the Status Register. Only the Read Status commands (70h or 78h) and Reset command are valid while eras-  
ing is in progress. When the erase operation is completed, the Write Status Bit (I/O 0) may be checked.  
Figure 19 details the sequence.  
Rev 1.4 / OCT. 2010  
15  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
3.6. Multiple plane Block Erase  
Multiple plane erase, allows parallel erase of two blocks in parallel, one per each memory plane.  
Two different command sequences are allowed in these case, traditional and ONFI 1.0.  
In traditional case, Block erase setup command (60h) must be repeated two times, followed by 1st and 2nd block address  
respectively (3 cycles each). As for block erase, D0h command makes embedded operation to start.  
In this case, multiplane erase does not need any Dummy Busy Time between 1st and 2nd block insertion.  
See Figure 25 for details.  
As an alternative, the ONFI 1.0 multiplane command protocol can be used, with 60h erase setup followed by 1st block  
address and D1h first confirm, 60h erase setup followed by 2nd block address and D0h (multiplane confirm). Between the  
two block-related sequences, a short busy time tIEBSY will occur. See Table 27 and Figure 26 for details.  
Address limitation required for multiple plane program applies also to multiple plane erase. Also operation progress can be  
checked like in the multiple plane program through Read Status Register, or ONFI 1.0 Read Status Enhanced.  
As for multiplane page program, the address of the first second page must be within the first plane (A18=0 for x8  
devices, A17=0 for x16 devices) and second plane (A18 = 1 for devices, A17=1 for x16 devices), respectively.  
3.7. Copy-Back Program.  
The copy-back program is configne page without utilizing an exter-  
nal memory. Since the time-consremoved, the system performance  
is greatly improved. The benefit o be updated and the rest of the  
block also need to be copied to tming a copy-back program is a  
sequential execution of page-reaogram with the address of destina-  
tion page. A read operation with oves the whole 2112byte data into  
the internal data buffer. As soon d-out is allowed by toggling RE#  
(see Figure 17), or Copy Back cage may be written. The Program  
Confirm command (10h) is requi
Source and Destination page in tame device plane (x8 : same A18,  
x16 : same A17)  
Data input cycle for modifying a ps allowed as shown in Figure 18.  
This device includes automatic Eto detect single bit errors in EDC  
units occurred in the source page
More details on EDC operation, acopy back program sequence are  
available in section 3.10  
Rev 1.4 / OCT. 2010  
16  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
3.8. Multiple plane copy back Program  
As for page program, device supports Multi-plane copy back program with exactly same sequence and limitations. Multi  
plane copy back program must be preceded by 2 single page read for copy back command sequences (1st page must be  
read from the 1st plane and 2nd page from the 2nd plane).  
Multi-plane copy back cannot cross plane boundaries : the contents of the source page of one device plane can be cop-  
ied only to a destination page of the same plane.  
EDC check is available also for multi-plane copy back program.  
Users which use "EDC check" in copy back must comply with some limitations related to data handling during one multi-  
plane copy back program sequence. Please refer to Section 3.10 for details.  
Also in this case, two different sequences are allowed : the traditional one (85h, first plane address 11h, 81h, second  
plane address, 10h) represented in Figure 22, and ONFI 1.0 sequence (85h, first plane address 11h, 85h, second  
plane address, 10h) represented in Figure 23 and Figure 24.  
3.9. Special read for copy back  
The device feature the "special read for copy back".  
If copy back read (described in sections 3.7 and 3.8) is triggered with confirm command "36h" instead "35h", copy  
back read from target page(s) will be executed with an increased internal (Vpass) voltage.  
This special feature is used in ordover-program or read disturb: it  
shall be used ONLY if ECC read ed read" or "standard read for  
copy back" sequences..  
Excluding the copy-back read cons 3.7 and 3.8 for standard copy  
back remain valid (including the f
3.10. EDC operation  
Error Detection Code check is a fation (both single and multi-  
plane) to detect single bit errors
- In the x8 version EDC check allos, where each 528 byte group is  
composed by 512 byte of main able 9). The described 528 byte  
area is called "EDC unit".  
- In the x16 version EDC allows dwhere each 264 word group is  
composed by 256 words of main able 11). The described 264  
word area is called "EDC unit".  
EDC result can be checked through specific Read EDC register command, available only during copy back program and  
only for the device version supporting ECC=1. EDC register can be queried during the copy back program busy time.  
(tPROG)  
For "EDC check" feature to operate correctly specific conditions on data input handling apply for page program and copy  
back program (single, cached, multi-plane):  
Rev 1.4 / OCT. 2010  
17  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
For the case of page program  
1) In section 3.2 it was explained that a number of consecutive partial program operations (NOP) is allowed within the  
same page. In case this feature is used, the number of partial program operations occurring in the same EDC unit must  
not exceed "one" (1). In other words, page program operations must be performed on the whole page, or on whole  
EDC unit at a time.  
2) "random data input" in a given EDC unit can be executed several times during one page program sequence, but data  
insertion in each column address of each EDC unit must not exceed "one" (1).  
For the case of copy back program  
1) If random data input is applied in a given EDC unit, the data of the whole EDC unit must be inserted. In other words,  
the EDC check is possible only if the whole EDC unit is modified during one copy back program sequence  
2) "random data input" in a given EDC unit can be executed several times during one copy back sequence , but data  
insertion in each column address of the EDC unit must not exceed "one" (1)  
For the user which use Copy Back without EDC check, all the limitations described above do not apply.  
Main Field (2
eld (64 Byte)  
“A”area  
“B”area  
tor) (3rd sector) (4th sector)  
te 16 Byte 16 Byte  
ea  
“G”area  
“H”area  
(1st sector)  
(2nd sector)  
512 Byte  
512 Byte  
T)  
eld (Column 2048~2111)  
Sector  
ame  
Column Address  
2048~2063  
1st 528-Byte Sector  
nd 528-Byte Sector  
rd 528-Byte Sector  
th 528-Byte Sector  
2064~2079  
2
2080~2095  
3
4
2096~2111  
Table 9: page organization in EDC units (x8)  
“A”area  
(1st sector)  
“B”area  
(2nd sector)  
“C”area  
(3rd sector)  
“D”area  
(4th sector)  
“E”area  
(1st sector)  
“F”area  
(2nd sector)  
“G”area  
“H”area  
(3rd sector) (4th sector)  
256 words  
256 words  
256 words  
256 words  
8 words  
8 words  
8 words  
8 words  
Table 10: page organization in EDC units (x16)  
Main Field (Column 0~1023) Spare Field (Column 1024~1055)  
Sector  
Area Name  
Column Address  
0~255  
Area Name  
Column Address  
1024~1031  
1st 264-word Sector  
nd 264-word Sector  
rd 264-word Sector  
th 264-word Sector  
“A”  
“B”  
“C”  
“D”  
“E”  
“F”  
“G”  
“H”  
256~511  
1032~1039  
2
512~767  
1040~1047  
3
4
768~1023  
1048~1055  
Table 11: page organization in EDC units (x16)  
Rev 1.4 / OCT. 2010  
18  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
PCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
3.11 Read Status Register.  
The device contains a Status Register to retrieve the status value for the last operation issued. After writing 70h command  
to the command register, a read cycle outputs the content of the Status Register to the I/O pins on the falling edge of  
CE# or RE#, whichever occurs last. This two line control allows the system to poll the progress of each device in multiple  
memory connections even when RB# pins are common-wired. Refer to Table 12 for specific Status Register definition,  
and to Figure 10 and Figure 38 for timings.  
If Read Status register command is issued during multi-plane operations Read Status Register polling shall return the  
combined status value related to the outcome of the operation in the two planes according to this table:  
Status Register bit  
Bit 0, Pass/Fail  
Composite status value  
OR  
OR  
Bit 1, Cache Pass/Fail  
Status register is dynamic in other words, user is not required to toggle RE# / CE# to update it.  
The command register remains in odl d. Therefore, if the status register  
is read during a random read cyclarting read cycles.  
Note:  
Read Status Register command shice stack configurations (single  
CE#). For this case, either "Read ad.  
3.12 Read Status Enhanced  
Read Status Enhanced is an additevious operation in the following  
cases:  
- on a specific die of a multi-dice t operations  
When 4Gbit dice are stacked(*) to ssible to run a first operation on  
the first 4Gbit, then activate a conevice. (examples: Erase while  
Read, Read while Program, etc.)  
- on a specific plane in case of multi-plane operations in the same die.  
Figure 39 defines the Read Status Enhanced behavior and timings. The plane and die address must be specified in the  
command sequence in order to retrieve the status of the die and the plane of interest.  
Refer to Table 12 for specific Status Register definition. The command register remains in Status Read mode until further  
commands are issued.  
Status register is dynamic in other words, user is not required to toggle RE# / CE# to update it.  
Rev 1.4 / OCT. 2010  
19  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
PCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
3.13 Read Status Register field definition  
Table 12 below lists the meaning of each bit of Read Status Register and Read Status Enhanced  
Page  
Program/  
Page  
Cache  
Program/  
Cache  
Block  
Erase  
Cache  
Read  
IO  
Read  
CODING  
Reprogram  
reprogram  
N Page  
Pass: ‘0’ Fail: ‘1’  
0
1
Pass / Fail  
NA  
Pass / Fail  
NA  
NA  
NA  
NA  
NA  
Pass / Fail  
Pass / Fail  
N - Page  
Pass: ‘0’ Fail: ‘1’  
2
3
4
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
-
-
-
Active: ‘0’  
Idle: ‘1’  
5
6
7
Ready / Busy Ready / Busy Ready / Busy Ready / Busy  
Ready / Busy Ready /
Ready / Busy  
Data cache Read/Busy  
Busy: ‘0’ Ready: ‘1’  
Write  
Write  
Protected: ‘0’  
Not Protected: ‘1’  
Protect  
Prote
3.14 Read EDC status regis
This operation is available only in rs occurred during read for copy  
back. In case of multiple plane coad operation caused the error.  
After writing Read EDC status regcycle outputs the content of the  
EDC Register to the I/O pins on t
Operation is same as read status Register definitions:  
Copy back  
program  
IO  
CODING  
0
1
2
3
4
5
6
7
Pass / Fail  
Pass: ‘0’ Fail: ‘1’  
EDC status  
EDC validity  
NA  
No error: ‘0’ Error: ‘1’  
Invalid: ‘0’ Valid: ‘1’  
-
NA  
-
Ready / Busy  
Ready / Busy  
Write Protect  
Busy: ‘0’ Ready: ‘1’  
Busy: ‘0’ Ready: ‘1’  
Protected: ‘0’ Not Protected: ‘1’  
Table 13: EDC register coding  
Rev 1.4 / OCT. 2010  
20  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
PCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
3.15 Reset  
The device offers a reset feature, executed by writing FFh to the command register. If the device is in Busy state during  
random read, program or erase mode, the reset operation will abort these operations. The contents of memory cells being  
altered are no longer valid, as the data will be partially programmed or erased. The command register is cleared to wait  
for the next command, and the Status Register is cleared to value E0h when WP# is high. Refer to table 16 for device  
status after reset operation. If the device is already in reset state a new reset command will not be accepted by the com-  
mand register. The RB# pin transitions to low for tRST after the Reset command is written. Refer to Figure 28 for further  
details.  
3.16 Cache Read  
Cache Read can be used to increase the read operation speed, as defined in Section 3.1, which is available only within  
a block. As soon as the user starts to read one page, the device automatically loads the next page into the cache register.  
Serial data output may be executed while data in the memory is read into cache register, Cache Read is initiated by the  
page read sequence (00-30h) on a page M.  
After random access to the first page is complete (R/B# returned to high, or read status register IO<6> switches to high),  
two command sequences can be used to continue read cache:  
- sequential read cache continue (nto the command register (see  
Figure 30), device does busy for ge is transferred from the data  
register to the cache register. At thby toggling RE# while the "next  
"page (page address M+1) is read
- random read cache continue (seqand is latched into the command  
register (see Figure 31), device dof the first page is transferred  
from the data register to the cache can be output by toggling RE#  
while page N is read from the me
Subsequent pages are read by issuntinue command sequences.  
If serial data output time of one pas time of the next page is hidden  
by data downloading of the previo
On the other hand, if 31h is issued the device will stay busy as long  
as needed to complete random acegister, and trigger the random  
access to the following page.  
To terminate cache read, 3Fh comnd transfer data from data reg-  
ister to the cache register without
During the Cache Read Operation, device doesn't allow any other command except for 31h, 3Fh, Read SR or reset (FFh).  
To carry out other operations Cache read must be ended either by 3Fh command or device must be reset by issuing FFh.  
Read Status command (70h) may be issued to check the status of the different registers, and the busy/ready status of the  
cached read operations. More in detail:  
a) the Cache-Busy status bit I/O<6> indicates when the cache register is ready to output new data.  
b) the status bit I/O<5> can be used to determine when the cell reading of the current data register contents is complete.  
Note:  
31h and 3Fh commands reset the column counter thus when RE# is toggled to output the data of a given page, the first  
output data is related to the first byte of the page (column address 00h). Random data output command can be used to  
switch column address.  
Rev 1.4 / OCT. 2010  
21  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
3.17 Cache Program  
Cache Program is used to improve the program throughput by programing data using the cache register. The cache pro-  
gram operation can only be used within one block. The cache register allows new data to be input while the previous data  
that was transffered to the page buffer is programmed into the memory array.  
Cache program is available only within a block  
After the serial data input command (80h) is loaded to the command register, followed by 5 cycles of address, a full or  
partial page of data is latched into the cache register.  
Once the cache write command (15h) is loaded to the command register, the data in the cache register is transferred into  
the data register for cell programming. At this time the device remains in Busy state For a short time (tCBSYW). After all  
data of the cache register are transferred into the data register, the device returns to the Ready state, and allows loading  
the next data into the cache register through another cache program command sequence (80h-15h).  
The Busy time following the first sequence 80h - 15h equals the time needed to transfer the data of cache register to the  
data register. Cell programming of the data of data register and loading of the next data into the cache register is conse  
quently processed through a pipeline model.  
In case of any subsequent sequence 80h - 15h, transfer from the cache register to the data register is held off until cell  
programming of current data register contents is complete: till this moment the device will stay in a busy state (tCBSYW).  
Read Status commands (70h or 78h) may be issued to check the status of the different registers, and the pass/fail status  
of the cached program operation
a) the Cache-Busy status bit I/O<ept new data.  
b) the status bit I/O<5> can be urrent data register contents is  
complete.  
c) the cache program error bit Iage N-1) has been successfully  
programmed or not in cache p6> status bit changing to "1" .  
d) the error bit I/O<0> is used to m / erase controller while program  
ming page N. The latter can b
I/O<1> may be read together w
If the system monitors the progrhe target program sequence must  
be programmed with Page Progrmmand (15h) is used instead, the  
status bit I/O<5> must be polled starting any other operation.  
See Table 12 and Figure 40 fo
3.18 Multi-plane Cache Pr
The device supports multi-plane cache program, which enables high program throughput by programming two pages in  
parallel while exploiting the data and cache registers of both planes to implement cache.  
The device supports both the traditional and ONFI 1.0 command sets.  
The command sequence can be summarized as follows:  
a) Serial Data Input command (80h), followed by the five cycle address inputs and then serial data for the 1st page. Ad  
dress for this page must be within 1st plane (A<20>=0). The data of 1st page other than those to be programmed do  
not need to be loaded. The device supports random data input exactly like page program operation.  
b) The Dummy Page Program Confirm command (11h) stops 1st page data input and the device becomes busy for a short  
time (tDBSY).  
c) Once device returns to ready again, 81h (or 80h) command must be issued, followed by 2nd page address (5 cycles)  
and its serial data input. Address for this page must be within 2nd plane (A<20>=1). The data of 2nd page other than  
those to be programmed do not need to be loaded.  
d) Cache Program confirm command (15h) Once the cache write command (15h) is loaded to the command register, the  
Rev 1.4 / OCT. 2010  
22  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
data in the cache registers is transferred into the data registers for cell programming. At this time the device remains in Busy  
state for a short time (tCBSYW). After all data of the cache registers are transferred into the data registers, the device returns  
to the Ready state, and allows loading the next data into the cache register through another cache program command se  
quence.  
The sequence 80h-...- 11h...-...81h...-...15h (or the corresponding ONFI 80h-...- 11h...-...80h...-...15h ) can be iterated, and  
any new time the device will be busy for a for the tCBSYW time needed to complete cell programming of current data registers  
contents, and transfer from cache registers can be allowed.  
The sequence to end multi-plane cache program is 80h-...- 11h...-...81h...-...10h (or 80h-...- 11h...-...80h...-...10h for the  
ONFI 1.0 case).  
Figure 50 and Figure 51 show the command sequence for the multi plane cache program operation for the two protocols.  
Multi-plane Cache program is available only within two paired blocks belonging to the two planes..  
User can check operation status by R/B# pin or read status register commands (70h or 78h)  
If user opts for 70h, Status register read will provide a "global" information about the operation in the two planes. More  
in detail:  
a) I/O<6> indicates when both cache registers are ready to accept new data.  
b) I/O<5> indicates when the cell programming of the current data registers is complete  
c) I/O<1> identifies if the previousfully programmed or not. The  
latter can be polled upon I/O<
d) I/O<0> identifies if any error hhile programming the two pages N.  
The latter can be polled upon I
See Table 12 for more details  
If the system monitor rs the progthe target program sequence must  
be programmed with Page Programmand (15h) is used instead, the sta  
tus bit I/O<5> must be polled to ting any other operation.  
Refer to section 3.11 for further
Rev 1.4 / OCT. 2010  
23  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
3.19 Read ID.  
The device contains a product identification mode, initiated by writing 90h to the command register, followed by an  
address input of 00h.  
The 5-byte Read ID configuration are supported: The device operating mode (5-byte) is selected through cam setting.  
3.19.1 Legacy Read ID  
Five read cycles sequentially output the manufacturer code (20h), and the device code and 3rd, 4th, and 5th cycle ID,  
respectively. The command register remains in Read ID mode until further commands are issued to it. Figure 27 shows  
the operation sequence, while Table 14 to Table 18 explain the byte meaning. Complete read id code table is as  
follows.  
1st  
2nd  
DCh  
CCh  
3rd  
90h  
90h  
4th (1)  
95h  
D5h  
15h  
55h  
95h  
D5h  
15h  
55h  
95h  
D5h  
15h  
55h  
5th  
54h  
54h  
54h  
54h  
58h  
58h  
58h  
58h  
5Ch  
5Ch  
5Ch  
5Ch  
DENSITY  
ORG  
X8  
VCC  
3.0V  
3.0V  
ADh  
ADh  
X16  
X8  
4 Gbit  
X16  
X8  
X16  
X8  
8 Gbit  
DDP  
X16  
X8  
X16  
X8  
16 Gbit  
QDP  
X16  
Table 14ations  
NOTE: for 1.8V version, IO<7,3>me is 45nsec  
DEVICE IDENTIFIER BYTE  
DESCRIPTION  
Manufacturer Code  
1st  
2nd  
3rd  
4th  
5th  
Device Identifier  
Internal chip number, cell type, etc.  
Page Size, Block Size, Spare Size, Organization  
Multiplane information  
Table 15: "Legacy" Read ID bytes meaning  
Rev 1.4 / OCT. 2010  
24  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
PCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
3rd ID Data  
Description  
I/O7  
I/O6  
I/O5 I/O4  
I/O3 I/O2  
I/O1 I/O0  
1
2
4
8
0
0
1
1
0
1
0
1
Internal Chip Number  
Cell Type  
2 Level Cell  
4 Level Cell  
8 Level Cell  
16 Level Cell  
0
0
1
1
0
1
0
1
1
2
4
8
0
0
1
1
0
1
0
1
Number of  
Simultaneously  
Programmed Pages  
Interleave Program  
Between multiple chips  
Not Support  
Support  
0
1
Not
Sup
Cache Program  
Tan  
4
th ID Data  
Desc
3  
I/O2  
I/O1 I/O0  
1KB  
2KB  
4KB  
8KB  
0
0
1
1
0
1
0
1
Page Size  
(w/o redundant area)  
64KB  
Block Size  
(w/o redundant area)  
128KB  
256KB  
512KB  
Redundant Area Size  
(byte/512byte)  
8
16  
0
1
X8  
X16  
0
1
Organization  
50ns/30ns  
25ns  
Reserved  
Reserved  
0
1
0
1
0
0
1
1
Serial Access Minimum  
Table 17: Legacy Read ID 4th byte description  
Rev 1.4 / OCT. 2010  
25  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
PCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
5th ID Data  
Description  
I/O7  
I/O6 I/O5 I/O4  
I/O3 I/O2  
I/O1  
I/O0  
1
2
4
8
0
0
1
1
0
1
0
1
Plane Number  
64Mb  
128Mb  
256Mb  
512Mb  
1Gb  
2Gb  
4Gb  
8Gb  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Plane Size  
(w/o redundant Area)  
Reserved  
0
0
0
Tan  
3.20 Read ONFI Signature  
To retrieve the ONFI signature, thbe entered (i.e. it is not valid to  
enter an address of 00h and read e is the ASCII encoding of 'ONFI'  
where 'O' = 4Fh, 'N' = 4Eh, 'F' = ndeterminate values. Figure 28  
shows the operation sequence  
3.21 Read Parameter Page  
The Read Parameter Page functioorganization, features, timings  
and other behavioral parameters. r.  
This data structure enables the hsh configuration of a device. The  
whole data structure is repeated
The Random Data Read commaner page to read specific portions  
of the parameter page.  
The Read Status command may be used to check the status of read parameter page during execution. After completion  
of the Read Status command, 00h is issued by the host on the command line to continue with the data output flow for  
the Read Parameter Page command.  
Read Status Enhanced shall not be used during execution of the Read Parameter Page command.  
3.22 Parameter Page Data Structure Definition  
Table21 defines the parameter page data structure. For parameters that span multiple bytes, the least significant byte  
of the parameter corresponds to the first byte.  
Values are reported in the parameter page in units of bytes when referring to items related to the size of data access (as  
in an 8-bit data access device). For example, the chip will return how many data bytes are in a page. For a device that  
supports 16-bit data access, the host is required to convert byte values to word values for its use. Unused fields should  
be cleared to 0h.  
For more detailed information about Parameter Page Data bits, refer to ONFI Specification 1.0 section 5.4.1  
Rev 1.4 / OCT. 2010  
26  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
PCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
Byte  
O/M  
Description  
Revision information and features block  
Values  
Parameter page signature  
Byte 0: 4Fh, "O"  
Byte 1: 4Eh, "N"  
Byte 2: 46h, "F"  
Byte 3: 49h, "I"  
0-3  
M
4Fh, 4Eh, 46h, 49h  
02h, 00h  
Revision number  
2-15  
Reserved (0)  
4-5  
6-7  
M
M
1
1 = supports ONFI version 1.0  
0
Reserved (0)  
Features supported  
H27U4G8F2DKA-BM:1Ch, 00h  
H27S4G8F2DKA-BM:1Ch, 00h  
H27S4G6F2DKA-BM:1Dh, 00h  
H27U4G8F2DTR-BC:1Ch, 00h  
H27U4G8F2DTR-BI:1Ch, 00h  
H27U8G8G5DTR-BC:1Ch, 00h  
H27U8G8G5DTR-BI:1Ch, 00h  
5-15  
Reserved (0)  
4
3
2
1 = supports odd to even page Copyback  
1 = supports interleaved operations  
1 = supports non-sequential page  
programming  
1
0
1 = supports multiple LUN operations  
1 = supports 16-bit data bus width  
Optional commands s
6-15  
Re
5
4
3
2
1
0
1
1
1
1
1
1 =
8-9  
M
M
10-31  
32-43  
Reserved (0)  
4Eh, 49h, 58h, 20h, 20h, 20h, 20h, 20h,  
Device manufacturer
8F2DKA-BM  
37h, 55h, 34h, 47h, 38h, 46h, 32h, 44h,  
2Dh, 42h, 4Dh, 20h, 20h, 20h, 20h, 20h  
8F2DKA-BM  
37h, 53h, 34h, 47h, 38h, 46h, 32h, 44h,  
4Bh, 41h, 2Dh, 42h, 4Dh, 20h, 20h, 20h, 20h, 20h  
H27S4G6F2DKA-BM  
48h, 32h, 37h, 53h, 34h, 47h, 36h, 46h, 32h, 44h,  
4Bh, 41h, 2Dh, 42h, 4Dh, 20h, 20h, 20h, 20h, 20h  
H27U4G8F2DTR-BC  
44-63  
M
Device model (20 ASCII characters)  
48h, 32h, 37h, 55h, 34h, 47h, 38h, 46h, 32h, 44h,  
54h, 52h, 2Dh, 42h, 43h, 20h, 20h, 20h, 20h, 20h  
H27U4G8F2DTR-BI  
48h, 32h, 37h, 55h, 34h, 47h, 38h, 46h, 32h, 44h,  
54h, 52h, 2Dh, 42h, 49h, 20h, 20h, 20h, 20h, 20h  
H27U8G8G5DTR-BC  
48h, 32h, 37h, 55h, 38h, 47h, 38h, 47h, 35h, 44h,  
54h, 52h, 2Dh, 42h, 43h, 20h, 20h, 20h, 20h, 20h  
H27U8G8G5DTR-BI  
48h, 32h, 37h, 55h, 38h, 47h, 38h, 47h, 35h, 44h,  
54h, 52h, 2Dh, 42h, 49h, 20h, 20h, 20h, 20h, 20h  
64  
M
O
JEDEC manufacturer ID  
Date code  
ADh  
00h  
00h  
65-66  
67-79  
Reserved (0)  
Rev 1.4 / OCT. 2010  
27  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
PCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
Memory organization block  
80-83  
84-85  
86-89  
90-91  
92-95  
96-99  
100  
M
M
M
M
M
M
M
Number of data bytes per page  
Number of spare bytes per page  
Number of data bytes per partial page  
Number of spare bytes per partial page  
Number of pages per block  
00h, 08h, 00h, 00h  
40h, 00h  
00h, 02h, 00h, 00h  
10h, 00h  
40h, 00h, 00h, 00h  
00h, 10h, 00h, 00h  
01h  
Number of blocks per logical unit (LUN)  
Number of logical units (LUNs)  
Number of address cycles  
101  
102  
M
4-7  
0-3  
Column address cycles  
Row address cycles  
23h  
M
M
M
M
M
M
Number of bits per cell  
01h  
103-104  
105-106  
107  
Bad blocks maximum per LUN  
Block endurance  
50h, 00h  
01h, 05h  
01h  
Guaranteed valid blocks at beginning of target  
Block endurance for g
Number of programs p
Partial programming a
108-109  
110  
5-7  
4
Res
1 =
foll
Res
111  
M
1-3  
0
1 =
112  
113  
M
M
Number of bits ECC co
Number of interleaved
4-7  
Res
0-3  
Nu
Interleaved operation
4-7  
Re
3
2
1
0
Ad
1 =
1 =
Overlapped / concurrent interleaving support  
114  
O
00h  
115-127  
128  
Reserved (0)  
Electrical parameters block  
0Ah  
M
M
I/O pin capacitance  
Timing mode support  
H27U4G8F2DKA-BM:1Fh, 00h  
H27S4G8F2DKA-BM:03h, 00h  
H27S4G6F2DKA-BM:03h, 00h  
H27U4G8F2DTR-BC:1Fh, 00h  
H27U4G8F2DTR-BI:1Fh, 00h  
H27U8G8G5DTR-BC:1Fh, 00h  
H27U8G8G5DTR-BI:1Fh, 00h  
6-1  
5
4
3
2
1
0
5Reserved (0)  
1 = supports timing mode 5  
1 = supports timing mode 4  
1 = supports timing mode 3  
1 = supports timing mode 2  
1 = supports timing mode 1  
1 = supports timing mode 0, shall be 1  
129-130  
Rev 1.4 / OCT. 2010  
28  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
PCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
Program cache timing mode support  
H27U4G8F2DKA-BM:1Fh, 00h  
H27S4G8F2DKA-BM:03h, 00h  
H27S4G6F2DKA-BM:03h, 00h  
H27U4G8F2DTR-BC:1Fh, 00h  
H27U4G8F2DTR-BI:1Fh, 00h  
H27U8G8G5DTR-BC:1Fh, 00h  
H27U8G8G5DTR-BI:1Fh, 00h  
6-1  
5Reserved (0)  
5
4
3
2
1
0
1 = supports timing mode 5  
1 = supports timing mode 4  
1 = supports timing mode 3  
1 = supports timing mode 2  
1 = supports timing mode 1  
1 = supports timing mode 0,  
131-132  
O
tPROG Maximum page program time ()  
tBERS Maximum block erase time ()  
tR Maximum page read time ()  
tccs Minimum Change Column setup time (ns)  
Reserved (0)  
133-134  
135-136  
137-138  
M
M
M
M
BCh, 02h  
0Ah, 00h  
19h, 00h  
139-140  
141-163  
64h, 00h  
00h  
Vendor block  
164-165  
166-253  
M
M
Vendor specific Revision number  
Vendor specific  
00h  
8F2DKA-BM:48h, F6h  
8F2DKA-BM:9Bh, CEh  
6F2DKA-BM:54h, 61h  
8F2DTR-BC:1Fh, EDh  
8F2DTR-BI:5Bh, 14h  
8G5DTR-BC:FCh, C1h  
8G5DTR-BI:B8h, 38h  
254-255  
Integrita CRC  
256-511  
512-767  
768+  
M
M
O
Value of bytes 0-255  
lue of bytes 0-255  
lue of bytes 0-255  
Value of bytes 0-255  
Additional redundant p
NOTE: “O” Stands for Optional, “M” for Mandatory  
Rev 1.4 / OCT. 2010  
29  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
PCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
4. OTHER FEATURES  
4.1 Data Protection and Power on / off sequence  
The device is designed to offer protection from any involuntary program/erase during power-transitions. An internal volt-  
age detector disables all functions whenever Vcc is below about 1.8V (3V version), or 1.1V (1.8V version).  
The power-up and power-down sequence is shown in Figure 32 in this case VCC and VCCQ on the one hand (and VSS  
and VSSQ on the other hand) are shorted together at all times  
The Ready/Busy signal shall be valid within 100us since the power supplies have reached the minimum values (as spec-  
ified on), and shall return to one within 5msec (max).  
During this busy time, the device executes the initialization process (cam reading), and dissipates a current ICC0 (30mA  
max) in addition, it disregards all command excluding Read Status Register (70h).  
At the end of this busy time, the device deaults into "read setup", thus if user decides to issue page read command, the  
00h command may be skipped.  
WP# pin provides hardware protection and is recommended to be kept at VIL during power-up and power-down. A re-  
covery time of minimum 100usec ommand sequences as shown in  
Figure 33. The two-step commaftware protection.  
4.2 Ready/Busy.  
The device has a Ready/Busy outof a page program, erase, copy-  
back, random read completion. The device is busy (after a reset,  
read, program, erase operation). hed the operation. The pin is an  
open-drain driver thereby allowinull-up resistor value is related to  
tr(RB#) and current drain during ith the following reference chart  
(refer to Figure 34). Its value c
4.3 Write protect (#WP) h
Erase and program operations arkept low for about 100nsec.  
Switching WP# low during this tim
The contents of memory cells beially programmed or erased.  
The R/B# pin will stay low for tRST (similarly to Figure 29). At the end of this time, the command register is ready to  
process the next command, and the Status Register bit IO<6> will be cleared to "1", while IO<7> value will be related  
to the WP# value.  
Refer to Table 12 for more information on device status.  
Erase and program operations are enabled or disabled by setting WP# to high or low respectively prior to issuing the set-  
up commands (80h or 60h).  
The level of WP# shall be set tWW nsec prior to raising the WE# pin for the set up command, as explained in Figure 35  
and Figure 36.  
Rev 1.4 / OCT. 2010  
30  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
WE  
IO[7:0]  
VALID  
WP  
SEQUENCE  
ABORTED  
> 100nsec  
Figure 5: WP# low timing requirements during program/erase command sequence  
5. Device Parameters  
Parameter  
Max  
4096  
8192  
16284  
Unit  
Blocks  
Blocks  
Blocks  
Valid Block Numbe, 4Gb  
Valid Block Numbe, 8Gb  
Valid Block Numbe, 16Gb  
(*) Each 4Gb has maximum 80 b
NOTE: The 1st block is qurantee
Value  
3.0  
Symbol  
Unit  
Ambient O
Ambient O
Temperature Under Bias  
0 to 70  
-40 to 85  
-50 to 125  
°C  
°C  
°C  
TA  
TBIAS  
TSTG  
Storage Temperature  
Input or Output Voltage  
Supply Voltage  
-60 to 150  
-0.6 to 4.6  
-0.6 to 4.6  
°C  
V
(2)  
VIO  
VCC  
V
Table 23: Absolute maximum ratings  
NOTES:  
1. Except for the rating "Operating Temperature Range", stresses above those listed in the Table "Absolute Maximum  
Ratings" may cause permanent damage to the device. These are stress ratings only and operation of the device at  
these or any other conditions above those indicated in the Operating sections of this specification is not implied. Expo  
sure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMi  
croelectronics SURE Program and other relevant quality documents.  
2. Minimum Voltage may undershoot to -2V during transition and for less than 20ns during transitions.  
Rev 1.4 / OCT. 2010  
31  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
PCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
1.8Volt  
Typ  
3.0Volt  
Typ  
Parameter  
Symbol  
ICC0  
Test Conditions  
Unit  
mA  
Min  
Max  
Min  
Max  
Power up Current  
Power on current  
-
15  
10  
30  
-
15  
15  
30  
(Refer to 4.41)  
tRC = see Table 28  
CE#=vIL, Iout=0MA  
Sequential  
Read  
ICC1  
-
20  
-
30  
mA  
Operatin  
g
Current  
Normal  
Cache  
-
-
-
-
-
-
20  
30  
20  
-
-
-
-
-
30  
40  
30  
mA  
mA  
mA  
ICC2  
ICC3  
ICC4  
Program  
Erase  
10  
15  
CE#=VIH,  
WP#=0V/Vcc  
Stand-by Current (TTL)  
-
-
-
1
-
-
-
1
mA  
uA  
CE#=Vcc-0.2,  
WP#=0/Vcc  
ICC5  
Stand-By Current (CMOS)  
10  
50  
10  
50  
ILI  
VIN=0 to 3.6V  
Input Leakage Current  
Output Leakage Current  
-
-
-
-
-
-
-
-
uA  
uA  
± 10  
± 10  
± 10  
± 10  
ILO  
VOUT=0 to 3.6V  
Vcc  
*0.8  
Vcc  
+0.3  
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
-
-
V
V
V
Vcc  
*0.2  
-0.3  
-
-
-
VOH  
Output High Voltage Level  
Output Low Voltage Level  
2.4  
--  
-
-
V
V
-
-
VOL  
-
-
-
0.4  
-
V
-
mA  
mA  
Output Low Current  
(RB#)  
IOL(RB
8
10  
tics  
NOTES:  
1) all VCCQ and VCC pins, and VSS a
2) Values listed in this table refer to the complete voltage range for VCC and VCCQ and to a single device in case of device stacking  
refer to Section 7.3  
3) All current measurement are performed with a 0.1uF capacitor connected between the Vcc Supply Voltage pin and the Vss Ground  
pin.  
4) Standby current measurement can be performed after the device has completed the initialization process at power up. Refer to  
Section 4.1for more details  
Value  
Parameter  
1.8Volt  
0V to Vcc  
5ns  
3.0Volt  
0V to Vcc  
5ns  
Input Pulse Levels  
Input Rise and Fall Times  
Input and Output Timing Levels  
Vcc / 2  
Vcc / 2  
1 TTL GATE and  
CL=30(1.8V), 50pF(3.3V)  
1 TTL GATE and  
CL=30(1.8V), 50pF(3.3V)  
Output Load (1.7V - 1.95Volt & 2.7V-3.6V)  
Table 25: AC Test Conditions  
Rev 1.4 / OCT. 2010  
32  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
PCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
Item  
Symbol  
Test Condition  
Min  
Max  
10  
Unit  
pF  
CI/O  
VIL= 0V  
Input / Output Capacitance (1)  
Input Capacitance (1)  
-
-
CIN  
VIN= 0V  
10  
pF  
Table 26: Pin Capacitance (TA = 25C, f=1.0MHz)  
NOTE: For the stacked devices version the Input Capacitance is 10pF x (number of stacked chips) and the I/O ca  
pacitance is 10pF x (number of stacked chips)  
Parameter  
Symbol  
Min  
Typ  
200  
250  
0.5  
Max  
700  
700  
1
Unit  
us  
Program Time / Multi-plane program Time (3.0V)  
Program Time/ Multi-plane program Time (1.8V)  
Dummy Busy Time for Two Plane Program  
-
-
-
tPROG  
us  
tDBSY  
us  
tPROG  
Cache program short busy time  
5
-
us  
Number of partial Program  
4
Cycle  
Cycles in the same page  
Block Erase Time / Multi-plane Er
Block Erase Time/ Multi-plane Blo
Read Cache busy time  
3.5  
3.5  
3
10  
10  
tR  
1
ms  
ms  
us  
Multi-plane erase short busy time
0.5  
us  
T
NOTE: Typical program time is dewhole pages are programmed  
(Vcc=3.3V and 1.8V, 25*C )  
Rev 1.4 / OCT. 2010  
33  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
PCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
1.8 Volt  
Max  
3.0 Volt  
Max  
Parameter  
Symbol  
Unit  
Min  
25  
10  
35  
10  
25  
25  
10  
20  
10  
45  
Min  
12  
5
tCLS  
tCLH  
tCS  
CLE Setup time  
CLE Hold time  
CE# Setup time  
CE# Hold time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
us  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
20  
5
tCH  
12  
12  
5
tWP  
tALS  
tALH  
tDS  
WE# Pulse width  
ALE Setup time  
ALE Hold time  
12  
5
Data Setup time  
tDH  
Data Hold time  
25  
10  
70  
tWC  
Write Cycle time  
WE# High Hold time  
Address to Data Loading time  
Data Transfer from Cell to Regis
ALE to RE# Delay  
25  
10  
10  
20  
12  
CLE to RE# Delay  
Ready to RE# Low  
RE# Pulse Width  
100  
20  
WE# High to Busy  
25  
10  
Read Cycle Time  
RE# Access Time  
CE# Low to RE# Low  
RE# High to Output Hi-Z  
CE# High to Output Hi-Z  
CE# High to ALE or CLE Don't c
RE# High to Output Hold  
RE# Low to Output Hold  
CE# High to Output Hold  
RE# High Hold Time  
Output Hi-Z to RE# Low  
RE# High to WE# Low  
WE# High to RE# Low  
Device Resetting Time(Read/Program/Erase)  
Write protection time  
100  
30  
tRHOH  
tRLOH  
tCOH  
tREH  
tIR  
15  
-
10  
15  
5
15  
15  
0
15  
10  
0
100  
60  
-
100  
60  
tRHW  
tWHR  
tRST  
tWW  
5/10/500(2)  
5/10/500(2)  
100  
100  
Table 28: AC Timing Characteristics  
NOTES: 1. The time to Ready depends on the value of the pull-up resistor tied to RB# pin  
2. If Reset Command (FFh) is written at Ready state, the device goes into Busy for maximum 5us  
Rev 1.4 / OCT. 2010  
34  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
PCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
6. Timing Diagrams  
Command Latch Cycle  
tCL  
S
tCLH  
tCH  
CLE  
tCS  
CE  
tWP  
WE  
tALS  
tALH  
ALE  
I/O x  
Address Latch Cycle  
W&/6  
&/(  
W&6  
W:&  
&(  
W:3  
W:3  
W:3  
W:3  
:(  
W:+  
W$/+  
W:+  
W$/+  
W:+  
W$/+  
W:+  
W$/+  
W$/6  
W$/6  
W$/6  
W$/6  
W$/6  
W$/+  
W'+  
$/(  
W'+  
W'+  
W'+  
W'+  
W'6  
W'6  
W'6  
W'6  
W'6  
&ROꢀ$GGꢁ  
&ROꢀ$GGꢂ  
5RZꢃ$GGꢁ  
5RZꢃ$GGꢂ  
5RZꢃ$GGꢄ  
,ꢀ2[  
Figure 6: Address Latch Cycle  
Rev 1.4 / OCT. 2010  
35  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
Input Data Latch Cycle  
tCLH  
CLE  
tCH  
CE  
tWC  
tALS  
ALE  
tWP  
tWP  
tWP  
WE  
tWH  
tDH  
tWH  
tDH  
tDH  
tDS  
tDS  
tDS  
I/Ox  
* Serial Access Cycle a
CE  
tCHZ  
tCOH  
RE  
tRHZ  
tRHOH  
I/Ox  
Dout  
Dout  
Dout  
tRR  
R/B  
NOTES: Transition is measured at ±±22mꢀ ꢁrom steadꢂ state ꢃoꢄtaꢅe ꢆitꢇ ꢄoadꢈ  
Tꢇis parameter is sampꢄed and not 122% testedꢈ  
tRLOH is ꢃaꢄid ꢆꢇen ꢁrequencꢂ is ꢇiꢅꢇer tꢇan 33MHzꢈ  
tRHOH starts to be ꢃaꢄid ꢆꢇen ꢁrequencꢂ is ꢄoꢆer tꢇan 33MHzꢈ  
Figure 8: Sequential Out Cycle after Read  
Rev 1.4 / OCT. 2010  
36  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
Serial Access Cycle after Read (EDO Tꢂpe, CLE=L, WE=H, ALE=L)  
tCR  
CE  
RE  
tRC  
tCHZ  
tCOH  
tRP  
tREH  
tRHZ  
tREA  
tREA  
tRLOH  
tRHOH  
IOx  
R/B  
Dout  
Dout  
tRR  
NOTES: Transition is measured at ±±22mꢀ ꢁrom steadꢂ state ꢃoꢄtaꢅe ꢆitꢇ ꢄoadꢈ  
Tꢇis parameter is sampꢄed and not 122% testedꢈ  
tRLOH is ꢃaꢄid ꢆꢇen ꢁrequencꢂ is ꢇiꢅꢇer tꢇan 33MHzꢈ  
an 33MHzꢈ  
Status Read Cycle &
CLE  
t
CE  
CH  
t
WP  
WE  
t
CEA  
t
CHZ  
t
COH  
t
WHR  
RE  
t
DH  
t
RHZ  
t
REA  
t
DS  
t
IR  
t
RHOH  
IOx  
70h or 7Bh  
Status Output  
Figure 10: Status / EDC Read Cycle  
Rev 1.4 / OCT. 2010  
37  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
CLE  
WE  
ALE  
RE  
IO0-7  
78h  
R1 R2  
R3  
SR  
Figure 11: Read Status Enhanced cycle  
Read Operation  
Figure 12: Read Operation (Read One Page)  
Rev 1.4 / OCT. 2010  
38  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
Read Operation (Intercepted by CE)  
Figu
Random Data Output In a Page  
Figure 14: Random Data Output  
Rev 1.4 / OCT. 2010  
39  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
Page Program Operation  
CLE  
CE  
tWC  
tWC  
tWC  
WE  
ALE  
RE  
tADL  
tWB  
tPROG  
tWHR  
Coꢄꢈ  
Add±  
Roꢆꢈ  
Add3  
Coꢄꢈ  
Add1  
Roꢆꢈ  
Add±  
Roꢆꢈ  
Add1  
Din  
N
Din  
M
I/Ox  
R/B  
82ꢇ  
12ꢇ  
72ꢇ  
I/O2  
Seriaꢄ Data  
Input Command  
Proꢅram  
Command  
Read Status  
Command  
1 up to m Bꢂte  
Seriaꢄ Input  
Coꢄumn Address  
Roꢆ Address  
I/O2=2 Successꢁuꢄ Proꢅram  
I/O2=1 Error in Proꢅram  
NOTES: tADL is tꢇe time ꢁrocꢄeꢈ  
Page Program Operation with R
CLE  
CE  
tWC  
tWC  
WE  
tADL  
tADL  
tWHR  
tWB  
tPROG  
ALE  
RE  
Col.  
Add1  
Col.  
Add2  
Col.  
Add1  
Col.  
Add2  
Row  
Add1  
Row  
Add2  
Row  
Add3  
Din  
Din  
J
Din  
N
Din  
K
85h  
IOx  
R/B  
12ꢇ  
80h  
70h  
IO0  
M
Read Status  
Command  
Serial Data  
Input Command  
Random Data  
Proꢅram  
Command  
Column Address  
Column Address  
Column Address  
Serial Input  
Input Command  
NOTES : 1. tADL is the time from the WE risinig edge of final address cycle to the WE rising edge of first data cycle.  
2. For EDC operation. only one time random data input is possible at same address.  
Figure 16: Random Data In  
Rev 1.4 / OCT. 2010  
40  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
Figure 17: Copy back read with optional data readout  
Copy- Back Program Operation With Random Data Input  
Figure 18: Copy Back Program with Random Data Input  
Rev 1.4 / OCT. 2010  
41  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
Block Erase Operation  
CLE  
CE  
tWC  
WE  
tWHR  
tBERS  
tWB  
ALE  
RE  
70h  
Roꢆ Add1 Roꢆ Add±  
Roꢆ Add3  
D0h  
I/O0  
62ꢇ  
IOx  
R/B  
Row Address  
BUSY  
Auto Block Erase  
Setup Command  
IO0=0 Successful Erase  
IO0=1 Error in Erase  
Erase Command  
Read Status  
Command  
Fe Block)  
Two-Plane Page Program Operat
CLE  
CE  
tWC  
WE  
tWB  
tPROG  
tWHR  
ALE  
RE  
DL  
tADL  
Col.  
Col.  
Row  
Din  
M
Row  
Din  
N
Din  
N
Row  
80h  
10h  
IO  
70h  
Add1  
Coꢄumn Address  
I/Ox  
Add2 Add1  
Add2  
Paꢅe Roꢆ Address  
Add3  
1 up to ±
Data Se
Seriaꢄ Data  
Input Command  
Program Confirm  
Command (True)  
Read Staus  
Command  
R/B  
tDBSY: typ. 500us  
max. 1us  
Ex.) Tow-Plane Page Program  
tPROG  
tDBSY  
R/B  
IO 0~7  
Address & Data Input  
12ꢇ  
82ꢇ  
Address & Data Input  
11ꢇ  
81ꢇ  
72ꢇ  
Col Add 1,2 & Row Add 1,2,3  
2112 Byte Data)  
Col Add 1,2 & Row Add 1,2,3  
2112 Byte Data)  
Note  
A0 ~ A11 : Valid  
A0 ~ A11 : Valid  
A12 ~ A17 : Valid  
A12 ~ A17 : Fixed ‘Low’  
A18  
: Fixed ‘Low’  
A18  
: Fixed “High’  
A19 ~ A28 : Fixed ‘Low’  
A19 ~ A28 : Valid  
Note : Anꢂ command betꢆeen 11ꢇ and 81ꢇ is proꢇibited except 72ꢇ and FFꢇ  
NOTES:  
1) the figure refers to x8 case. Please refer to Section 1.4 for address remapping rules for the x16 case  
2) any command between 11h and 81h is prohibited except 70h, 78h and FFh  
Figure 20: Multiple plane page program (traditional protocol)  
Rev 1.4 / OCT. 2010  
42  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
ADDR ADDR ADDR  
Cꢂcꢄe Tꢂpe  
ADDR ADDR  
DIN  
ꢈꢈꢈ  
CMD  
11ꢇ  
CMD  
82ꢇ  
DIN  
DIN  
DIN  
tADL  
C1  
A
C±  
A
DnA  
R±  
A
R3  
A
D2  
A
D1A  
R1  
A
DQx  
tADL  
tIPBSY  
SR[6]  
A
Cꢂcꢄe Tꢂpe  
DQx  
DIN  
ꢈꢈꢈ  
ADDR ADDR ADDR  
DIN  
DIN  
DIN  
CMD  
12ꢇ  
ADDR ADDR  
CMD  
82ꢇ  
tADL  
Dn  
B
D2  
B
D1BA  
C1  
B
C±  
B
R1B  
R±  
B
R3B  
tADL  
tPROG  
SR[6]  
Figure 2protocol)  
NOTES :  
C1A-C2A Column address for pa
R1A-R3A Row address for page
D0A-DnA Data to program for p
C1B-C2B Column address for pa
R1B-R3B Row address for page
D0B-DnB Data to program for p
Same restrictions on address of apply  
Rev 1.4 / OCT. 2010  
43  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
Figure 22: Multiple plane copy back program (traditional protocol)  
NOTE: the figure refers to x8 case. Please refer to Section 1.4 for address remapping rules for the x16 case  
Rev 1.4 / OCT. 2010  
44  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
CLE  
WE  
ALE  
RE  
C2B  
C1B  
00h  
C2A R1A  
R3A  
R1B  
C1A  
R2A  
35h  
R2  
B
00h  
R3B 35h  
IOx  
t
t
R
R
SR[6]  
Figure 23: Multiple plane copy back read (ONFI 1.0 protocol)  
A
NOTES:  
C1A-C2A Column address for page
R1A-R3A Row address for page A. 
C1B-C2B Column address for page
R1B-R3B Row address for page B. 
CLE  
WE  
ALE  
RE  
C2D  
IOx  
C1D  
85h  
C2C R1C  
R3C  
85h  
R1D  
C1C  
R2C  
11h  
R2  
D
R3D 10h  
t
t
IPBSY  
PROG  
SR[6]  
A
Figure 24: Multiple plane copy back program (ONFI 1.0 protocol)  
NOTES:  
C1C-C2C Column address for page C. C1A is the least significant byte.  
R1C-R3C Row address for page C. R1A is the least significant byte.  
D0C-DnC Data to program for page C.  
C1D-C2D Column address for page D. C1B is the least significant byte.  
R1D-R3D Row address for page D. R1B is the least significant byte.  
D0D-DnD Data to program for page D.  
Same restrictions on address of pages C and D, and allowed commands as Figure 21 apply  
Rev 1.4 / OCT. 2010  
45  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
Two-Plane Block Erase Operation  
CLE  
CE  
tWC  
tWC  
WE  
tWHR  
tWB  
tBERS  
ALE  
RE  
62ꢇ Roꢆ Add1 Roꢆ Add±  
D2ꢇ  
Roꢆ Add3  
Roꢆ Add3  
I/O2  
62ꢇ  
Roꢆ Add1 Roꢆ Add±  
72ꢇ  
I/Ox  
Roꢆ Address  
Roꢆ Address  
R/B  
Bꢄock Erase Setup Command1  
Bꢄ
Read Status Command  
I/O 1 = 2 Successꢁuꢄ Erase  
I/O 1 = 1 Error in pꢄane  
Exꢈ) Address Restriction ꢁor Tꢆo
R/B  
I/O0~7  
Address  
Roꢆ Add1,±,3  
62ꢇ  
62
A1± ~ A17 : Fixed ‘Loꢆ’  
A18  
: Fixed ‘Loꢆ’  
A19 ~ A±8 : Fixed ‘Loꢆ’  
Figure 2rotocol)  
NOTE: the figure refers to x8 casrules for the x16 case  
Rev 1.4 / OCT. 2010  
46  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
CLE  
WE  
ALE  
RE  
IOx  
R2B R3B  
R1A  
R1B  
D0h  
60h  
R2A R3A  
60h  
D1h  
t
IEBSY  
t
BERS  
SR[6]  
Figure rotocol)  
NOTES:  
R1A-R3A Row address for block on
R1B-R3B Row address for block on
Same restrictions on address of bloas Figure 24 apply  
Rev 1.4 / OCT. 2010  
47  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
Read ID Operation  
CLE  
CE  
WE  
tAR  
ALE  
RE  
tREA  
Device  
code  
3rd cyc.  
ADh  
4th cyc.  
5th cyc.  
90h  
00h  
I/Ox  
Read ID Command  
Maker Code  
Deꢃice Code  
Address 1 Cꢂcꢄe  
Figure 27: ID Read  
CLE  
WE  
ALE  
RE  
IO0~7  
90h  
49h  
Figure 28: ONFI signature timing diagram  
Rev 1.4 / OCT. 2010  
48  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
WE  
ALE  
CLE  
RE#  
FF  
DQ7:0  
t
RST  
RB#  
As deꢁined ꢁor  
Read  
Cꢂcꢄe Tꢂpe  
DOUT  
D2  
CMD  
CMD  
31ꢇ  
32ꢇ  
DQx  
tWB  
tWB  
tRR  
tR  
tCBSYR  
SR[6]  
Figure 30: "sequential" read cache timings, start (and continuation) of cache operation  
Rev 1.4 / OCT. 2010  
49  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
Figure 31: "random" n) of cache operation  
Figure 32 : read cache timings, end of cache operation  
Rev 1.4 / OCT. 2010  
50  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
ꢀcc(min)  
ꢀcc(min)  
ꢀtꢇ  
tꢇ  
ꢀCC  
2ꢀ  
don’t  
care  
don’t  
care  
CE  
IH  
Operation  
5ms max  
IL  
IL  
WP  
122u smax  
Inꢃaꢄid  
don’t  
care  
ReadꢂBusꢂ  
Figngs  
NOTE: VTH = 1.2 Volt for 1.8 ces.  
Rev 1.4 / OCT. 2010  
51  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
Rp  
1.8V device - VOL : 0.1V. VOH : VCC-0.1V  
2.7V device - VOL : 0.4V. VOH : VCCQ-0.4V  
3.3V device - VOL : 0.4V. VOH : 2.4V  
ibusy  
Vcc  
Ready  
VCC  
R/B  
open drain output  
VOL : 0.4V, VOH : 2.4V  
VOH  
C
L
VOL  
Busy  
tf  
tr  
GND  
Device  
Rp vs tr, tf & Rp vs ibusy  
@ ꢀcc = ±ꢈ7, Ta = ±5°C, C  
L
=32pF  
@ ꢀcc = 3ꢈ3, Ta = ±5°C, C  
L
=52pF  
@ ꢀcc = 1ꢈ8, Ta = ±5°C, C  
L
=32pF  
ibusy [A]  
ibusy [A]  
3m  
ibusy [A]  
2.4  
200  
ibusy  
n  
300n  
200n  
150  
1.2  
ibusy  
1.70  
n  
n  
2m  
1m  
100  
120  
0.85  
0.8  
90  
0.57  
tr  
tr  
60  
50  
30  
100n  
0.43  
0.6  
1.8  
1.8  
1K  
1.8  
2K  
1.8  
1.70  
1.70  
1.70  
tf  
tf  
1.70  
c]  
tr,tf [c]  
3K  
4K  
1K  
2K  
3K  
4K  
Rp(ohm)  
Rp(ohm)  
Rp va
1.85V  
=
1.8V version  
3.0V version  
ꢄP$ꢃꢅꢃ™,  
L
2.5V  
ꢄP$ꢃꢅꢃ™,  
3.2V  
L
L
Vcc (Max.) - VOL (Max.)  
Rp (min. 3.3V part) =  
,
OL + ™,  
L
ꢆP$ꢃꢅꢃ™,  
ꢆꢇere IL is tꢇe sum oꢁ tꢇe input currnts oꢁ aꢄꢄ deꢃices tied to tꢇe R/B pinꢈ  
Rp(max) is determined bꢂ maximum permissibꢄe ꢄimit oꢁ tr  
Figure 34: Ready/Busy Pin electrical application  
Rev 1.4 / OCT. 2010  
52  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
WE  
IOx  
WE  
IOx  
t
WW  
t
WW  
82ꢇ  
12ꢇ  
82ꢇ  
12ꢇ  
WP  
R/B  
WP  
R/B  
Figure 35: program Enabling / Disabling through WP# handling  
WE  
IOx  
t
WW  
62ꢇ  
D2ꢇ  
WP  
R/B  
Figure 36handling  
CLE  
WE  
ALE  
RE  
IO0-7  
R/B  
...  
...  
P10  
00h  
P00  
P01  
P1  
1
ECh  
t
R
Figure 37: Read Parameter Page timings  
Rev 1.4 / OCT. 2010  
53  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
CLE  
WE  
tWHR  
ALE  
RE  
70h  
IO0-7  
SR  
tREA  
Figure 38: Read Status Timings  
CLE  
WE  
ALE  
RE  
IO0-7  
R3  
R1  
R2  
SR  
78h  
Figure 39: Read Status Enhanced timings  
Rev 1.4 / OCT. 2010  
54  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
CLE  
CE  
tWC  
tWC  
WE  
tWB  
ALE  
RE  
Col.  
Add1  
Col.  
Add1  
Col. Row.  
Add2 Add1  
Row.  
Add2  
Row.  
Add3  
Col. Row.  
Add2 Add1  
Row.  
Add2  
Row.  
Add3  
Din  
N
Din  
M
Din  
N
Din  
M
80h  
15h  
15h  
80h  
IOx  
R/B  
Coꢄumn Address  
Roꢆ Address  
Roꢆ Address  
Coꢄumn Address  
tPCSBY  
tCBSYR  
1
CLE  
CE  
tWC  
WE  
ALE  
RE  
Col.  
Add1  
A
IOx  
Q  
80h  
Coꢄumn Ad
R/B  
1
Rev 1.4 / OCT. 2010  
55  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
Command Input  
82ꢇ  
11ꢇ  
81ꢇ  
Address Input  
Data Input  
15ꢇ  
Address Input  
Data Input  
A13~A17:Fixed”Loꢆ”  
A18:Fixed”Loꢆ”  
A19~A31:Fixed”Loꢆ”  
A13~A17:ꢀaꢄid  
A18:Fixed”Loꢆ”  
A19~A31:Fixed”Loꢆ”  
t
t
PCBSY  
DBSY  
RY/BY  
1
Return to 1  
Repeat a max oꢁ 63 times  
Command Input  
11ꢇ  
81ꢇ  
Address Input  
Data Input  
12ꢇ  
Address Input  
Data Input  
82ꢇ  
A13~A17:Fixed”Loꢆ”  
A18:Fixed”Loꢆ”  
A19~A31:Fixed”Loꢆ”  
A13~A17:ꢀaꢄid  
A18:Fixed”Loꢆ”  
A19~A31:Fixed”Loꢆ”  
t
t
PROG  
DBSY  
RY/BY  
1
CLE  
CE  
tWB  
WE  
ALE  
RE  
tADL  
IOx  
Din  
N
Din  
M
Col.  
Add1  
Col.  
Add2  
Row  
Add1  
Row  
Add2  
Row  
Add2  
Row  
Add3  
80h  
15h  
Coꢄumn Address  
Roꢆ Addr
Address  
R/B  
1
tCBSY  
CLE  
CE  
WC  
tWB  
WE  
ALE  
RE  
Din  
N
Din  
M
Din  
N
Din  
M
Col.  
Add1  
Col.  
Add2  
Row  
Add1  
Row  
Add2  
Row  
Add3  
Col.  
Add1  
Col.  
Add2  
Row  
Add1  
Row  
Add2  
Row  
Add3  
80h  
81h  
11h  
10h  
I/O  
Q
70h  
IOx  
Coꢄumn Address  
Roꢆ Address  
Roꢆ Address  
Coꢄumn Address  
R/B  
1
tPROG  
tDBSY  
Figure 41: multi-plane cache program (traditional protocol)  
NOTE:  
1) the figure refers to x8 case. Please refer to Section 1.4 for address remapping rules for the x16 case  
2) Read Status register (70h) is used in the figure. Read Status Enhanced (78h) can be also used  
Rev 1.4 / OCT. 2010  
56  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
Command Input  
82ꢇ  
11ꢇ  
82ꢇ  
Address Input  
Data Input  
15ꢇ  
Address Input  
Data Input  
A13~A17:Fixed”Loꢆ”  
A18:Fixed”Loꢆ”  
A19~A31:Fixed”Loꢆ”  
A13~A17:ꢀaꢄid  
A18:Fixed”Loꢆ”  
A19~A31:Fixed”Loꢆ”  
t
t
PCBSY  
DBSY  
RY/BY  
1
Return to 1  
Repeat a max oꢁ 63 times  
Command Input  
11ꢇ  
82ꢇ  
Address Input  
Data Input  
12ꢇ  
Address Input  
Data Input  
82ꢇ  
A13~A17:Fixed”Loꢆ”  
A18:Fixed”Loꢆ”  
A19~A31:Fixed”Loꢆ”  
A13~A17:ꢀaꢄid  
A18:Fixed”Loꢆ”  
A19~A31:Fixed”Loꢆ”  
t
t
PROG  
DBSY  
RY/BY  
1
CLE  
CE  
tWB  
WE  
ALE  
RE  
tADL  
IOx  
Din  
N
Din  
M
Col.  
Add1  
Col.  
Add2  
Row  
Add1  
R
Ad
Row  
Add2  
Row  
Add3  
80h  
15h  
Coꢄumn Address  
Roꢆ A
oꢆ Address  
R/B  
1
tCBSY  
CLE  
CE  
tWC  
tWB  
WE  
ALE  
RE  
Din  
N
Din  
M
Din  
N
Din  
M
Col.  
Add1  
Col.  
Add2  
Row  
Add1  
Row  
Add2  
Row  
Add3  
Col.  
Add1  
Col.  
Add2  
Row  
Add1  
Row  
Add2  
Row  
Add3  
80h  
80h  
11h  
10h  
I/O  
Q
F1h  
IOx  
Coꢄumn Address  
Roꢆ Address  
Roꢆ Address  
Coꢄumn Address  
R/B  
1
tPROG  
tDBSY  
Figure 42: multi-plane cache program (ONFI protocol)  
NOTE:  
3) the figure refers to x8 case. Please refer to Section 1.4 for address remapping rules for the x16 case  
4) Read Status register (70h) is used in the figure. Read Status Enhanced (78h) can be also used  
Rev 1.4 / OCT. 2010  
57  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
7 Package Mechanical  
ꢂꢃ  
H
$ꢀ  
$
'
%
/
Į
$ꢄ  
ꢀꢂ  
ꢀꢁ  
',(  
(ꢄ  
(
&
&3  
Figure 43. 48-TSOP1 - 48-lead Plastic Thin Small Outline, 12 x 20mm, Package Outline  
inches  
Min  
Symbol  
Typ  
Max  
0.047  
0.006  
0.041  
0.001  
0.008  
0.003  
0.476  
0.795  
0.728  
A
A1  
A2  
B
0.10  
1.00  
0.22  
0.002  
0.037  
0.007  
0.004  
C
CP  
D
12.00  
20.00  
18.40  
0.50  
0.60  
3°  
0.024  
3°  
0.468  
0.779  
0.720  
-
E
E1  
e
L
0.50  
0°  
0.70  
5°  
0.020  
0°  
0.028  
5°  
a
Table 29: 48-TSOP1 - 48-lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data  
Rev 1.4 / OCT. 2010  
58  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
x8  
x8  
R/Vss  
R
R
R
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
R
R
R
R/B4#  
R/B3#  
R/B2#  
R/B1#  
RE#  
CE1#  
CE2#  
R
IO7  
IO6  
43  
IO5  
42  
IO4  
41  
R
9
40  
R/Vcc  
39  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
R
38  
Vcc  
37  
Vss  
36  
Vcc  
Vss  
R
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
CE3#  
CE4#  
CLE  
ALE  
WE#  
WP#  
R
R/Vcc  
R
IO3  
IO2  
IO1  
IO0  
R
R
R
R
R
R
R
R/Vss  
Figure 44: ONFI 1.0 TSOP ti RyBYconfiguration) (*)  
NOTES:  
1) TSOP48 "ONFI" is supported on
2) Pins marked in Red are used in RyBy and CE# pins. If this is not  
the case, CE# for the stack is pd in Red Bold are Reserved ("R")  
3) this package is supported o
7.1 Power consumptions and pin capacitance for allowed stacking configurations  
Table 28 reports the power consumptions related to the single chip case. When multiple dice are stacked in the same  
package the power consumption of the stack will increase according to the nr of chips of it. As an example, the standby  
current is the sum of the standby currents of all the chips, while the active power consumption depends on the nr of chips  
concurrently executing different operations.  
Similarly, Table 26 reports the pin capacitance for the single chip case. When multiple dice are stacked in the same pack-  
age the pin/ball capacitance for the single input and the single input/output of the combo package must be calculated  
based on the number of chips sharing that input or that pin/ball.  
Rev 1.4 / OCT. 2010  
59  
B34416/177.179.157.84/2010-10-08 10:08  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
8 Application notes and comments  
8.1 System Interface using CE# don't care  
To simplify system interface, CE# may be un-asserted during data loading or sequential data-reading as shown below. By  
operating in this way, it is possible to connect NAND Flash to a microprocessor.  
Contrary to standard Nand, CE# don't care devices do not allow sequential read function.  
CLE  
CE don’t-care  
CE  
WE  
ALE  
80h  
Start
Data Input  
10h  
I/Ox  
Figurare.  
&/(  
&(  
,IꢃVHTXHQWLDO
&(ꢃPXVWꢃEHꢃ
GRQ¶WꢈFDUH  
5(  
$/(  
5ꢊ%  
W5  
:(  
,ꢊ2[  
ꢉꢉK  
6WDUWꢃ$GGꢀꢋꢌ&\FOHꢍ  
ꢄꢉK  
'DWDꢃ2XWSXWꢋVHTXHQWLDOꢍ  
Figure 46: Read Operation with CE# don't-care.  
Rev 1.4 / OCT. 2010  
60  
B34416/177.179.157.84/2010-10-08 10:09  
*ba53f20d-240c*  
APCPCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
8.2 System Bad Block Replacement  
Over the lifetime of the device additional Bad Blocks may develop. In this case each bad block has to be replaced by  
copying the data to a valid block. These additional Bad Blocks can be identified as attempts to program or erase them will  
return "fail" after Read Status Register.  
The failure of a page program operation does not affect the data in other pages in the same block, thus the block can be  
replaced by re-programming the current data and copying the rest of the replaced block to an available valid block.  
Refer to Table 30 and Figure 47 for the recommended procedure to follow if an error occurs during an operation.  
Operation  
Erase  
Recommended Procedure  
Block Replacement  
Block Replacement  
ECC  
Program  
Read  
Table 30: Block Failure  
ata  
tꢇ  
n page  
tꢇ  
Fa
n page  
Fh  
Buꢁꢁer memorꢂ oꢁ tꢇe controꢄꢄer  
Figure 47 : Bad Block Replacement  
NOTE:  
1. An error occurs on Nth page of the Block A during program or erase operation.  
2. Data in Block A is copied to same location in Block B which is valid block.  
3. Nth page of block A which is in controller buffer memory is copied into Nth page of Block B  
4. Bad block table should be updated to prevent from erasing or programming Block A  
Rev 1.4 / OCT. 2010  
61  
B34416/177.179.157.84/2010-10-08 10:09  
*ba53f20d-240c*  
PCWM_4828539:WP_0000001WP_0000001  
1
H27(U_S)4G8_6F2D  
4 Gbit (512M x 8 bit) NAND Flash  
8.3 Bad Block Management  
Devices with Bad Blocks have the same quality level and the same AC and DC characteristics as devices where all the  
blocks are valid. A Bad Block does not affect the performance of valid blocks because it is isolated from the bit line and  
common source line by a select transistor. The devices are supplied with all the locations inside valid blocks  
erased(FFh). The Bad Block Information is written prior to shipping. Any block where the 1st Byte in the spare area of  
the 1st or 2nd th page (if the 1st page is Bad) does not contain FFh is a Bad Block. The Bad Block Information must be  
read before any erase is attempted as the Bad Block Information may be erased. For the system to be able to recog-  
nize the Bad Blocks based on the original information it is recommended to create a Bad Block table following the flow-  
chart shown in Figure 48. The 1st block, which is placed on 00h block address is guaranteed to be a valid block.  
67$57  
<HV  
(1'  
Figure 48: Bad Block Management Flowchart  
NOTE :  
1. Check FFh at 1st Byte in the spare area of the 1st or 2nd th page (if the 1st page is Bad).  
Rev 1.4 / OCT. 2010  
62  
B34416/177.179.157.84/2010-10-08 10:09  
*ba53f20d-240c*  

相关型号:

H27U4G8F2DTR-BC

4 Gbit (512M x 8 bit) NAND Flash
HYNIX

H27U4G8F2DTR-BI

4 Gbit (512M x 8 bit) NAND Flash
HYNIX

H27U4G8_6F2D

4 Gbit (512M x 8 bit) NAND Flash
HYNIX

H27U518S2CTR-BC

512 Mb NAND Flash
HYNIX

H27U8G8G5DTR-BC

4 Gbit (512M x 8 bit) NAND Flash
HYNIX

H27U8G8G5DTR-BI

4 Gbit (512M x 8 bit) NAND Flash
HYNIX

H27UAG8T2B

16Gb (2048M x 8bit) NAND Flash
HYNIX

H2800(SERIES)

Peripheral IC
ETC

H2800-10M

Peripheral IC
ETC

H2800-210M

Peripheral IC
ETC

H2810(SERIES)

Peripheral IC
ETC

H2810-10M

Peripheral IC
ETC