GMS34140T [HYNIX]

4-BIT SINGLE CHIP MICROCOMPUTERS; 4位单芯片微型计算机
GMS34140T
型号: GMS34140T
厂家: HYNIX SEMICONDUCTOR    HYNIX SEMICONDUCTOR
描述:

4-BIT SINGLE CHIP MICROCOMPUTERS
4位单芯片微型计算机

外围集成电路 光电二极管 计算机 时钟
文件: 总49页 (文件大小:321K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
4-BIT SINGLE CHIP MICROCOMPUTERS  
GMS34XXXT SERIES  
USER`S MANUAL  
• GMS34004T  
• GMS34112T  
• GMS34140T  
Revision 1.0  
Published by  
MCU Application Team in Hyundai Electronics Industrial Co., Ltd.  
Hyundai Electronics Industrial Co., Ltd. 1996 All Right Reserved.  
Editor's E-Mail :  
kanghan@hei.co.kr  
lbkd@hei.co.kr  
rhja@hei.co.kr  
Additional information of this manual may be served by Hyundai Electronics Industrial Offices in  
Korea or Distributors and Representative listed at address directory.  
Hyundai Electronics Industrial reserves the right to make changes to any Information here in at  
any time without notice.  
The information, diagrams, and other data in this manual are correct and reliable; however, Hyundai  
Electronics Industrial Co., Ltd. is in no way responsible for any violations of patents or other rights of  
the third party generated by the use of this manual.  
Table of Contents  
Table of Contents  
Chapter 1  
Introduction  
............................................................................................1-1  
Outline of Characteristics  
.................................................................1-1  
..................................................................................1-1  
..................................................................................1-2  
Characteristics  
Block Diagram  
Pin Assignment and Terminal  
Pin Dimension ..................................................................................1-4  
Pin Description and Circuit .................................................................1-7  
..........................................................1-3  
I/O circuit types and options  
Electrical Characteristics  
.............................................................1-8  
................................................................1-10  
Chapter 2  
Architecture  
...........................................................................................2-1  
Block Description  
Program Memory (ROM)  
EPROM Address Register  
Data Memory (RAM)  
.............................................................................2-1  
..................................................................2-1  
................................................................2-2  
........................................................................2-3  
X-Register (X)  
...................................................................................2-3  
Y-Register (Y) ...................................................................................2-4  
Accumulator (Acc) ............................................................................2-4  
Arithmetic and Logic Unit (ALU) .......................................................2-4  
State Counter (SC)  
Clock Generator  
Pulse Generator  
...........................................................................2-5  
...............................................................................2-6  
...............................................................................2-7  
Initial Reset Circuit ............................................................................2-8  
Watch Dog Timer (WDT) .................................................................2-8  
Stop Function ....................................................................................2-9  
Port Operation  
..................................................................................2-9  
Chapter 3  
Instruction  
........................................................................................3-1  
Table of Contents  
Chapter 4  
EPROM  
.................................................................................................4-1  
GMS34004TK/34112TK/34140TK  
.........................................................4-1  
Mode Define  
Port Define  
Programming Data  
Write/Read Data Conversion  
.....................................................................................4-1  
.......................................................................................4-2  
...........................................................................4-2  
............................................................4-3  
Checksum .........................................................................................4-3  
Programming Control ........................................................................4-3  
Programming DC Specification .........................................................4-3  
EPROM read mode(1/2)  
EPROM read mode (2/2)  
...................................................................4-4  
..................................................................4-4  
EPROM write mode (1/2) ..................................................................4-5  
EPROM write mode (2/2) ..................................................................4-5  
Lock bit write mode (1/2)  
Lock bit write mode (2/2)  
Lock bit read mode (1/2)  
Lock bit read mode (2/2)  
..................................................................4-6  
..................................................................4-6  
..................................................................4-7  
..................................................................4-7  
GMS34004T/112T/140T (Pin assignment & Package) .....................4-8  
EPROM (KHz) mode .........................................................................4-9  
EPROM write only mode  
..................................................................4-9  
GMS34004TK/34112TK/34140TK .............................................................4-10  
Mode Define .....................................................................................4-10  
Port Define ........................................................................................4-11  
Programming Data ...........................................................................4-11  
Write/Read Data Conversion ............................................................4-12  
Checksum ........................................................................................4-12  
Programming Control ......................................................................4-12  
Programming DC Specification ........................................................4-12  
EPROM read mode(1/2) ...................................................................4-13  
EPROM read mode (2/2) ...................................................................4-13  
EPROM write mode (1/4) ..................................................................4-14  
EPROM write mode (2/4) ..................................................................4-14  
EPROM write mode (3/4) ..................................................................4-15  
EPROM write mode (4/4) ..................................................................4-15  
Lock bit write mode (1/3) ..................................................................4-16  
Lock bit write mode (2/3) ..................................................................4-16  
Lock bit write mode (3/3) ..................................................................4-16  
Lock bit read mode (1/2) ..................................................................4-18  
Lock bit read mode (2/2) ..................................................................4-18  
INTRODUCTION  
ARCHITECTURE  
INSTRUCTION  
EPROM  
1
2
3
4
Chapter 1. Introduction  
CHAPTER 1. Introduction  
OUTLINE OF CHARACTERISTICS  
The GMS340 series are remote control transmitter which uses CMOS technology,  
and the EPROM version of GMS34XXX series.  
This enables transmission code outputs of different configurations, multiple custom  
code output, and double push key output for easy fabrication.  
The GMS340 series are suitable for remote control of TV, VCR, FANS, Air-  
conditioners, Audio Equipments, Toys, Games etc.  
Characteristics  
·
Program memory : 512bytes for GMS34004T  
1,024 bytes for GMS34112T/140T  
¡ ¿  
4 bits  
43 types of instruction set  
3 levels of subroutine nesting  
1 bit output port for a large current (REMOUT signal)  
Operating frequency :300KHz~500KHz at KHz version  
2.4MHz~4MHz at MHz version  
·
·
·
·
·
Data memory : 32  
300KHz~4.2MHz at WIDE version  
·
Instruction cycle : fOSC/6 at KHz and WIDE version  
fOSC/48 at MHz version  
·
·
·
·
·
·
CMOS process (3.0V or 5.0V power supply)  
Stop mode (Through internal instruction)  
Released stop mode by key input  
Built in capacitor for ceramic oscillation circuit at KHz version  
Built in a watch dog timer (WDT)  
Low operating voltage : 2.2~4.5V (at KHz and MHz version)  
Normal operating voltage: 4.0~5.0V (at WIDE version)  
Series  
Program memory  
Data memory  
I/O ports  
GMS34004T  
GMS34112T  
GMS34140T  
¡ ç  
¡ ç  
¡ ç  
¡ ç  
512  
1,024  
¡ ¿  
¡ ç  
32  
4
-
4
¡ ç  
Input ports  
4
6
¡ ç  
¡ ç  
10  
D0 ~ D9  
Output ports  
D0 ~ D5  
Package  
16DIP  
20DIP/SOP/SSOP  
GMS34112TK  
GMS34112TM  
GMS34112TW  
24DIP/SOP  
GMS34140TK  
GMS34140TM  
GMS34140TW  
KHz version  
MHz version  
WIDE version  
GMS34004TK  
GMS34004TM  
GMS34004TW  
Table 1-1 GMS34XXXT series members  
1 - 1  
Chapter 1. Introduction  
Block Diagram  
RESET/Vpp VDD  
GND  
2
1
24  
Reset  
ROM  
10  
Watchdog  
timer  
Stack  
¡ ¿  
64word  
16page  
¡ ¿  
Program counter  
10  
8bit  
8
4
4
8
4
Instruction  
Decoder  
4
ALU  
MUX  
4
4
RAM  
Word  
Selector  
Control Signal  
2
16  
RAM  
16word x  
2page x 4bit  
X-Reg  
Y-Reg  
ST  
4
ACC  
4
10  
4
R-Latch  
D-Latch  
10  
OSC  
Pulse  
Generator  
4
4
4
23 22  
7
8
9
10  
3
4
5
6
11 12 13 14 15 16 17 18 19 20  
D0 ~ D9  
21  
OSC1 OSC2  
K0 ~ K3  
R0 ~ R3  
REMOUT  
Fig 1-1 Block Diagram (In case of GMS34140T)  
1 - 2  
Chapter 1. Introduction  
Pin Assignment and terminals  
Pin Assignment  
RESET/Vpp  
1
2
3
4
5
6
7
8
16 VDD  
15 OSC1  
14 OSC2  
13 REMOUT  
12 D5  
K0  
K1  
K2  
K3  
D0  
D1  
D2  
D3  
D4  
1
2
3
4
5
6
7
8
9
20 R3  
GND  
K0  
19 R2  
18 R1  
K1  
17 R0  
K2  
16 GND  
15 RESET/Vpp  
14 VDD  
13 OSC1  
12 OSC2  
11 REMOUT  
K3  
11 D4  
D0  
D1  
10 D3  
9
D2  
D5 10  
Fig 1-2 GMS34004T Pin Assignment  
(16PDIP)  
Fig 1-3 GMS34112T Pin Assignment  
(20DIP/SOP)  
GND  
R0  
R1  
R2  
R3  
K0  
1
2
3
4
5
6
7
8
9
20 RESET/Vpp  
19 VDD  
18 OSC1  
17 OSC2  
16 REMOUT  
15 D5  
RESET/Vpp  
1
2
3
4
5
6
7
8
9
24 VDD  
23 OSC1  
22 OSC2  
21 REMOUT  
20 D7  
GND  
R0  
R1  
R2  
R3  
K0  
19 D6  
K1  
14 D4  
18 D5  
K2  
13 D3  
K1  
17 D4  
K3  
12 D2  
K2  
16 D3  
D0 10  
11 D1  
K3 10  
D0 11  
D8 12  
15 D2  
14 D1  
13 D9  
Fig 1-4 GMS34112T Pin Assignment  
(20SSOP only)  
Fig 1-5 GMS34140T Pin Assignment  
(24DIP/SOP)  
1 - 3  
Chapter 1. Introduction  
Pin Dimension  
16 15 14 13 12 11 10  
9
1
2
3
4
5
6
7
8
0.300BSC  
0.260MAX  
0.240MIN  
0.785MAX  
0.745MIN  
0.065MAX  
0.050MIN  
0.100BSC  
0.014MAX  
0~15¡ Ç  
0.022MAX  
0.015MIN  
¡ æ ¡ ç  
¡ æ ¡ ç  
0.008MIN  
0.040MAX  
0.020MIN  
Outline (Unit:Inch)  
Fig 1-6 16PDIP Pin Dimension  
20 19 18 17 16 15 14 13 12 11  
1
2
3
4
5
6
7
8
9
10  
0.3TYP  
0.270MAX  
0.250MIN  
0.984MAX  
0.968MIN  
0.1TYP  
0.012MAX  
0.065MAX  
0.055MIN  
0.022MAX  
0.015MIN  
0~15¡ Ç  
¡ æ ¡ ç  
¡ æ ¡ ç  
0.008MIN  
Outline (Unit : Inch)  
Fig 1-7 20PDIP Pin Dimension  
1 - 4  
Chapter 1. Introduction  
20 19 1 8 17 16 15 14 13 12 11  
1
2
3
4
5
6
7
8
9
10  
0.419MAX  
0.398MIN  
0.5118MAX  
0.4961MIN  
0.299MAX  
0.292MIN  
0.042MAX  
0.016MIN  
¡ æ  
¡ ç  
0.0125MAX  
0.0091MIN  
0.05TYP  
0.020MAX  
0.014MIN  
Outline (Unit : Inch)  
Fig 1-8 20SOP Pin Dimension  
20 19 1 8 17 16 15 14 13 12 11  
0.244MAX  
0.234MIN  
1
2
3
4
5
6
7
8
9
10  
0.157MAX  
0.150MIN  
0.344MAX  
0.337MIN  
0-8¢ª  
¡ é  
¡ è  
¡ æ  
¡ ç  
0.022MIN  
0.025BSC  
0.012MAX  
0.008MIN  
0.032MAX  
Outline (Unit : Inch)  
Fig 1-9 20SSOP Pin Dimension  
1 - 5  
Chapter 1. Introduction  
13  
12  
24 23 22 21 20 19 18 17 16 15 14  
1
2
3
4
5
6
7
8
9
10 11  
0.3TYP  
0.270MAX  
0.250MIN  
1.255MAX  
1.245MIN  
0.1TYP  
0.012MAX  
0.065MAX  
0.055MIN  
0.022MAX  
0.015MIN  
0~15¢ª  
¡ æ ¡ ç  
¡ æ ¡ ç  
0.008MIN  
Outline (Unit : Inch)  
Fig 1-10 24Skinny DIP Pin Dimension  
13  
24 23 22 21 20 19 18 17 16 15 14  
1
2
3
4
5
6
7
8
9
10 11 12  
0.419MAX  
0.398MIN  
0.299MAX  
0.292MIN  
0.616MAX  
0.595MIN  
0.042MAX  
0.016MIN  
¡ æ  
¡ ç  
0.05TYP  
0.0125MAX  
0.0091MIN  
0.020MAX  
0.014MIN  
0.018MAX  
0.004MIN  
Outline (Unit : Inch)  
Fig 1-11 24SOP Pin Dimension  
1 - 6  
Chapter 1. Introduction  
Pin Description and Circuit  
Pin Description  
Pin  
I/O  
Function  
VDD  
-
Connected to 2.2~4.5V power supply at KHz and MHz  
version or 4.0 ~ 5.5V power supply at WIDE version.  
GND  
-
Connected to 0V power supply.  
Used to input a manual reset. When the pin goes "L",  
the D-output ports and REMOUT-output port are initialized to  
"L", and ROM address is set to address 0 on page 0.  
For programming, this pin receives 12.5V programming  
voltage.  
RESET  
Input  
4-bit input port.  
STOP mode is released by "L" input of each pin.  
K0~K3  
D0~D9  
Input  
Output  
The output is the structure of N-channel-open-drain.  
4-bit I/O port. (Input mode is set only when each of them  
output "H".)  
In outputting, each can be set and reset independently(or at  
once.)  
R0~R3  
I/O  
The output is in the form of C-MOS.  
STOP mode is released by "L" input of each pin.  
High current output port.  
The output is in the form of C-MOS.  
The state of large current on is "H".  
REMOUT  
Output  
Oscillator input. Input to the oscillator circuit and connection  
point for ceramic resonator.  
Internal capacitors available at KHz version.  
OSC1  
OSC2  
Input  
A feedback resistor is connected between this pin and OSC2.  
Output  
Connect a resonator between this pin and OSC1.  
1 - 7  
Chapter 1. Introduction  
I/O circuit types and options  
Pin  
I/O  
I/Ocircuit  
Note  
¡ æ  
¡ ç  
Hysteresis Input Type.  
Built in pull-up-resistor,  
Reset/Vpp  
I
§Ú  
Typical 800  
¡ æ  
¡ ç  
pull-up  
CMOS output.  
"H" output at reset.  
Built in MOS Tr for  
¡ ç  
¡ æ  
¡ ç  
R0~R3  
I/O  
¡ æ  
§Ú  
.
pull-up about 120  
pull-up  
¡ æ  
K0~K3  
I
¡ æ  
¡ ç  
Built in MOS Tr for  
§Ú  
pull-up About 120  
.
D0~D9  
Open drain output.  
"L" output at reset.  
O
¡ ç  
CMOS output.  
"L" output at reset.  
High current output  
source.  
¡ æ  
¡ ç  
REMOUT  
O
1 - 8  
Chapter 1. Introduction  
Pin  
I/O  
I/Ocircuit  
Note  
Built in feedback-resistor  
STOP  
§Û  
about 1  
OSC2  
O
¡ æ  
¡ ç  
OSC1  
OSC2  
Rd  
Built in damping-resistor  
§Ú  
Rd = 4  
¡ æ  
¡ ç  
[No resistor in MHz  
operation]  
Built in resonance  
Capacitor at KHz version  
¡ ¾  
C1=C2 = 100pF 15%  
¡ è  
¡ è  
[C1,C2 are not available  
for MHz and WIDE  
version]  
OSC1  
I
C1  
C2  
Rf  
Frequency  
ResonatorMaker  
Part Name  
Load Capacitor  
320KHz  
500KHz  
CQ  
CQ  
ZTB320D  
ZTB500E  
C1=C2=Open  
C1=C2=Open  
CQ recommend 430KHz~500KHz resonator  
3.43MHz  
3.52MHz  
CQ  
TDK  
CQ  
ZTA3.43MG  
FCR3.52M5  
ZTA3.64MG  
FCR3.64M5  
ZTA3.84MG  
FCR3.84M5  
ZTA4.00MG  
C1=C2=30pF  
C1=C2=33pF  
C1=C2=30pF  
C1=C2=33pF  
C1=C2=30pF  
C1=C2=33pF  
C1=C2=30pF  
3.64MHz  
TDK  
CQ  
3.84MHz  
4.00MHz  
TDK  
CQ  
1 - 9  
Chapter 1. Introduction  
Electrical Characteristics  
¡ É  
Absolute maximum ratings (Ta = 25  
)
Parameter  
Symbol  
Max. rating  
Unit  
Supply Voltage  
VDD  
-0.3 ~ 7.0  
V
Programming Voltage  
Power dissipation  
Storage temperature range  
Input voltage  
VPP  
PD  
-0.3 ~ 13.5  
700 *  
V
mW  
¡ É  
Tstg  
VIN  
-55 ~ 125  
-0.3 ~ VDD+0.3  
-0.3 ~ VDD+0.3  
V
V
Output voltage  
VOUT  
¡ É  
* Thermal derating above 25  
¡ É  
rise in temperature.  
: 6mW per degree  
Recommended operation condition  
Parameter  
Symbol  
Condition  
300 ~ 500KHz  
2.4 ~ 4MHz  
Rating  
2.2 ~ 4.5  
2.2 ~ 4.5  
Unit  
V
VDD  
Supply Voltage  
300KHz ~ 4.2MHz  
-
4.0 ~ 5.5  
-20 ~ +70  
Topr  
Operating temperature  
¡ É  
1 - 10  
Chapter 1. Introduction  
¡ É  
Electrical characteristics for low voltage products (Ta=25 , VDD=3V)  
Limits  
Unit  
Condition  
Parameter  
Symbol  
Min. Typ. Max.  
1
uA  
uA  
VI=VDD  
IIH  
-
-
Input H current  
-16  
VI=GND  
IIL2  
-2  
-7.5  
RESET input L current  
VI=GND, Output  
off, Pull-Up resistor  
provided.  
-50  
uA  
IIL1  
-9  
-25  
K, R input L current  
-
0.9  
-
V
V
-
VIH1  
VIL1  
VIH2  
VIL2  
2.1  
-
-
-
-
K, R input H voltage  
K, R input L voltage  
-
-
2.25  
-
V
-
RESET input H voltage  
RESET input L voltage  
0.75  
0.4  
0.4  
-
V
V
V
IOL=1mA  
IOL=100uA  
IOH=-8mA  
IOL=70uA  
IOH=70uA  
VOL2  
VOL1  
VOH1  
VOL3  
VOH3  
-
-
0.15  
0.15  
2.5  
D. R output L voltage  
REMOUT output L voltage  
V
V
2.1  
-
REMOUT output H voltage  
OSC2 output L voltage  
0.9  
-
V
0.4  
V
2.1  
2.5  
OSC2 output H voltage  
D, R output leakage current  
1
uA  
uA  
IOL  
-
-
-
-
V0UT=VDD, Output off  
At STOP mode  
fOSC=455KHz  
1
ISTOP  
Current on STOP mode  
4.0  
4.0  
500  
4
mA  
mA  
IDD1  
IDD2  
*
*
-
0.3  
0.5  
-
Operating supply current 1  
fOSC=4MHz  
-
Operating supply current 2  
fOSC/6  
KHz  
MHz  
KHz version  
MHz version  
fOSC  
fOSC  
300  
2.4  
System  
clock  
frequency  
fOSC/48  
-
* IDD1, IDD2, is measured at RESET mode.  
1 - 11  
Chapter 1. Introduction  
¡ É  
Electrical characteristics (Ta=25 , VDD=5V)  
Limits  
Unit  
Condition  
Parameter  
Symb  
ol  
Min.  
Typ. Max.  
5
uA  
uA  
VI=VDD  
IIH  
-
-
-
Input H current  
-20  
VI=GND  
IIL2  
-2  
-9  
RESET input L current  
VI=GND, Output  
off, Pull-Up resistor  
provided.  
-150  
uA  
IIL1  
-
K, R input L current  
-
V
V
-
VIH1  
VIL1  
VIH2  
VIL2  
0.7*VDD  
-
-
-
-
K, R input H voltage  
K, R input L voltage  
0.3*VDD  
-
-
-
V
-
0.75*VDD  
-
RESET input H voltage  
RESET input L voltage  
0.25*VDD  
V
V
0.4  
0.4  
-
V
IOL=2mA  
IOL=100uA  
IOH=-8mA  
IOL=70uA  
IOH=-70uA  
VOL2  
VOL1  
VOH1  
VOL3  
VOH3  
-
-
-
-
-
-
D. R output L voltage  
REMOUT output L voltage  
V
-
V
VDD-1.0  
-
REMOUT output H voltage  
OSC2 output L voltage  
0.9  
-
V
V
VDD-1.0  
OSC2 output H voltage  
D, R output leakage current  
5
uA  
uA  
mA  
IOL  
ISTOP  
IDD  
-
-
-
-
-
-
V0UT=VDD, Output off  
At STOP mode  
10  
10  
Current on STOP mode  
Operating supply current  
At RESET mode  
System  
fOSC/6  
4.2  
MHz  
WIDE version  
0.3  
-
fOSC  
clock  
frequency  
1 - 12  
INTRODUCTION  
ARCHITECTURE  
INSTRUCTION  
EPROM  
1
2
3
4
Chapter 2. Architecture  
CHAPTER 2. Architecture  
BLOCK DESCRIPTION  
Program Memory (EPROM)  
¡ ¿  
The GMS34XXXT series can incorporate maximum 1,024 words (64 words 16  
¡ ¿  
pages 8bits) for program memory. Program counter PC (A0~A5) and page  
address register (A6~A9) are used to address the whole area of program  
memory having an instruction (8bits) to be next executed.  
The program memory consists of 64 words on each page, and thus each page  
can hold up to 64 steps of instructions.  
The program memory is composed as shown below.  
Program capacity (pages)  
0
1
2
3
4
8
5
6
7
Page 0  
Page 1  
Page 2  
Page 15  
63  
0
1
2
15  
A0~A5  
A6~A9  
Program counter (PC)  
6
Page address register (PA)  
Page buffer (PB)  
4
4
Stack register  
(Level "1")  
(Level "2")  
(Level "3")  
(SR)  
(PSR)  
Fig 2-1 Configuration of Program Memory  
2 - 1  
Chapter 2. Architecture  
EPROM Address Register  
The following registers are used to address the EPROM.  
• Page address register (PA) :  
Holds EPROM's page number (0~Fh) to be addressed.  
• Page buffer register (PB) :  
Value of PB is loaded by an LPBI command when newly addressing a page.  
Then it is shifted into the PA when rightly executing a branch instruction (BR)  
and a subroutine call (CAL).  
• Program counter (PC) :  
Available for addressing word on each page.  
• Stack register (SR) :  
Stores returned-word address in the subroutine call mode.  
(1) Page address register and page buffer register :  
Address one of pages #0 to #15 in the EPROM by the 4-bit binary counter.  
Unlike the program counter, the page address register is usually unchanged  
so that the program will repeat on the same page unless a page changing  
command is issued. To change the page address, take two steps such as  
(1) writing in the page buffer what page to jump (execution of LPBI) and  
(2) execution of BR or CAL, because instruction code is of eight bits so  
that page and word can not be specified at the same time.  
In case a return instruction (RTN) is executed within the subroutine that has  
been called in the other page, the page address will be changed at the  
same time.  
(2) Program counter :  
This 6-bit binary counter increments for each fetch to address a word in the  
currently addressed page having an instruction to be next executed.  
For easier programming, at turning on the power, the program counter is  
reset to the zero location. The PA is also set to "0". Then the program  
counter specifies the next EPROM address in random sequence.  
When BR, CAL or RTN instructions are decoded, the switches on each step  
are turned off not to update the address. Then, for BR or CAL, address  
data are taken in from the instruction operands (a0 to a5), or for RTN, and  
address is fetched from stack register No. 1.  
(3) Stack register :  
This stack register provides two stages each for the program counter (6  
bits) and the page address register (4bits) so that subroutine nesting can be  
made on two levels.  
2 - 2  
Chapter 2. Architecture  
Data memory (RAM)  
¡ ¿  
¡ ¿  
4bits) is incorporated for storing data.  
Up to 32 nibbles (16 words  
2pages  
The whole data memory area is indirectly specified by a data pointer (X,Y). Page  
number is specified by zero bit of X register, and words in the page by 4 bits in  
Y-register. Data memory is composed in 16 nibbles/page. Figure 2-2 shows the  
configuration.  
D0  
D9 R0 R3 REMOUT  
Data memory page (0~1)  
Output port  
0
1
2
3
Page 0  
Page 1  
15  
4
A0~A3  
0
1
Y-register (Y)  
X-register (X)  
4
2
Fig 2-2 Composition of Data Memory  
X-register (X)  
X-register is consist of 2bit, X0 is a data pointer of page in the RAM, X1 is only  
used for selecting of D8~D9 with value of Y-register  
X1=0  
D0  
X1=1  
D8  
Y=0  
Y=1  
D1  
D9  
Table 2-1 Mapping table between X and Y register  
2 - 3  
Chapter 2. Architecture  
Y-register (Y)  
Y-register has 4 bits. It operates as a data pointer or a general-purpose register.  
Y-register specifies and address (a0~a3) in a page of data memory, as well as it  
is used to specify an output port. Further it is used to specify a mode of carrier  
signal outputted from the REMOUT port. It can also be treated as a general-  
purpose register on a program.  
Accumulator (ACC  
)
The 4-bit register for holding data and calculation results.  
Arithmetic and Logic Unit (ALU)  
In this unit, 4bits of adder/comparator are connected in parallel as it's main  
components and they are combined with status latch and status logic (flag.)  
(1) Operation circuit (ALU) :  
The adder/comparator serves fundamentally for full addition and data  
comparison. It executes subtraction by making a complement by processing  
an inversed output of ACC (ACC+1)  
(2) Status logic :  
This is to bring an ST, or flag to control the flow of a program. It occurs when  
a specified instruction is executed in three cases such as overflow or  
underflow in operation and two inputs unequal.  
2 - 4  
Chapter 2. Architecture  
State Counter (SC)  
A fundamental machine cycle timing chart is shown below. Every instruction is  
one byte length. Its execution time is the same. Execution of one instruction  
takes 6 clocks for fetch cycle and 6 clocks for execute cycle (12 clocks in total).  
Virtually these two cycles proceed simultaneously, and thus it is apparently  
completed in 6 clocks (one machine cycle). Exceptionally BR, CAL and RTN  
instructions is normal execution time since they change an addressing  
sequentially. Therefore, the next instruction is prefetched so that its execution  
is completed within the fetch cycle.  
T1 T2 T3 T4 T5 T6 T1 T2 T3 T4 T5 T6  
Fetch cycle N  
Execute cycle N  
Fetch cycle N-1  
Execute cycle N-1  
¥°  
Phase  
¥±  
Phase  
¥²  
Phase  
Machine  
Cycle  
Machine  
Cycle  
Fig. 2-3 Fundamental timing chart  
2 - 5  
Chapter 2. Architecture  
Clock Generator  
The GMS34XXXT series has an internal clock oscillator. The oscillator circuit is  
designed to operate with an external ceramic resonator. Internal capacitors are  
available at KHz version. Oscillator circuit is able to organize by connecting  
ceramic resonator to outside.  
* It is necessary to connect capacitor to outside in order to change ceramic  
resonator, you must refer to a manufacturer`s resonator matching guide.  
OSC1  
OSC2  
OSC1  
23  
OSC2  
22  
23  
22  
C1  
C2  
<Circuit 1>  
<Circuit 2>  
Version  
Operating Frequency  
Oscillation Circuit  
Internal capacitor  
No Internal capacitor  
No Internal capacitor  
No Internal capacitor  
Circuit 2  
KHz  
300KHz ~ 500KHz  
Circuit 1  
Circuit 1  
Circuit 1  
MHz  
2.4MHz ~ 4MHz  
WIDE  
300KHz ~ 4.2MHz  
2 - 6  
Chapter 2. Architecture  
Pulse generator  
The following frequency and duty ratio are selected for carrier signal outputted  
from the REMOUT port depending on a PMR (Pulse Mode Register) value set in  
a program.  
T
T1  
PMR  
REMOUTsignal  
0
1
2
3
4
5
6
7
T=1/fPUL = 12/fOSC [96/fOSC],  
T1/T = 1/2  
T1/T = 1/3  
T1/T = 1/2  
T1/T = 1/4  
T1/T = 4/11  
T=1/fPUL = 12/fOSC [96/fOSC],  
T=1/fPUL = 8/fOSC [64/fOSC],  
T=1/fPUL = 8/fOSC [64/fOSC],  
T=1/fPUL = 11/fOSC [88/fOSC],  
No Pulse (same to D0~D9)  
T=1/fPUL = 12/fOSC [96/fOSC],  
No pulse (same to D0 ~ D9)  
T1/T = 1/4  
* Default value is "0"  
* [ ] means the value of "T", when Instruction cycle is fOSC/48 in MHz version  
Table 2-2 PMR selection table  
2 - 7  
Chapter 2. Architecture  
Initial Reset Circuit  
RESET pin must be down to "L" more than 4 machine cycle by outside  
capacitor or other for power on reset.  
The mean of 1 machine cycle is 6/fOSC or 48/fOSC, however, operating voltage  
must be in recommended operating conditions, and clock oscillating stability.  
* It is required to adjust C value depending on rising time of power supply.  
(Example shows the case of rising time shorter than 10ms.)  
1
RESET  
0.1uF  
Watch Dog Timer (WDT)  
Watch dog timer is organized binary of 14 steps. The signal of fOSC/6 cycle comes  
in the first step of WDT after WDT reset. If this counter was overflowed, reset  
signal automatically come out so that internal circuit is initialized.  
¡ ¿  
¡ ¿ ¡ ¿  
The overflow time is 6  
8
2
13/fOSC (108.026ms at fOSC=455KHz.)  
13  
6
2 /fOSC (108.026ms at fOSC = 3.64MHz)  
Normally, the binary counter must be reset before the overflow by using reset  
instruction (WDTR) or / and REMOUT port HIGH(Y-reg=8, So instruction execution).  
* It is constantly reset in STOP mode. When STOP is released, counting is  
restarted. (Refer to 2-9 STOP function>)  
Binary counter  
(14 steps)  
RESET (edge-trigger)  
CPU reset  
fOSC/6 or fOSC/48  
Reset  
by instruction  
REMOUT  
output  
2 - 8  
Chapter 2. Architecture  
STOP Operation  
Stop mode can be achieved by STOP instructions.  
In stop mode :  
1. Oscillator is stopped, the operating current is low.  
2. Watch dog timer is reset, D8~D9 output and REMOUT output are "L".  
3. Part other than WDT, D8~D9 output and REMOUT output have a value before  
come into stop mode.  
Stop mode is released when one of K or R input is going to "L".  
1. State of D0~D7 output and REMOUT output is return to state of before stop mode  
is achieved.  
¡ ¿  
2. After 1,024 8 enable clocks for stable oscillating, First instruction start to operate.  
3. In return to normal operation, WDT is counted from zero again.  
But, at executing stop instruction, if one of K or R input is chosen to "L", stop instruction  
is same to NOP instruction.  
Port Operation  
Value of X-reg  
Value of X-reg  
Operation  
¡ ç  
¡ ç  
0
0 or 1  
0 ~ 7  
S0 : D(Y)  
1, R0 : D(Y)  
REMOUT port repeats "H" and "L" in pulse  
frequency. (When PMR = 5, it is fixed at "H")  
0 or 1  
8
¡ ç  
S0 : REMOUT(PMR)  
R0 : REMOUT(PMR)  
1
0
¡ ç  
¡ ç  
¡ ç  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
2 or 3  
2 or 3  
9
S0 : D0 ~ D9  
R0 : D0 ~ D9  
1 (High-Z)  
0
¡ ç  
¡ ç  
A ~ D  
S0 : R(Y-Ah)  
R0 : R(Y-Ah)  
1
0
¡ ç  
¡ ç  
E
F
0
1
S0 : R0 ~ R3  
R0 : R0 ~ R3  
1
0
¡ ç  
¡ ç  
¡ ç  
¡ ç  
S0 : D0 ~ D9  
R0 : D0 ~ D9  
1, R0 ~ R3  
0, R0 ~ R3  
1
0
¡ ç  
¡ ç  
S0 : D(8)  
R0 : D(8)  
1
0
¡ ç  
¡ ç  
S0 : D(9)  
R0 : D(9)  
1
0
2 - 9  
INTRODUCTION  
ARCHITECTURE  
INSTRUCTION  
EPROM  
1
2
3
4
Chapter 3. Instruction  
CHAPTER 3. Instruction  
InstructionTable  
The GMS34XXXT series provides the following 43 basic instructions.  
Category Mnemonic  
Function  
ST*1  
S
S
S
S
S
S
S
S
S
S
S
S
S
E
S
S
S
S
C
B
C
B
S
C
B
¡ ç  
¡ ç  
¡ ç  
1
LAY  
A
Y
A
Y
A
0
Register to  
LYA  
Register  
LAZ  
2
3
¡ ç  
¡ ç  
4
LMA  
M(X,Y)  
M(X,Y)  
A
¡ ç  
Y+1  
5
LMAIY  
A, Y  
RAM to  
LYM  
Register  
LAM  
¡ ç  
¡ ç  
¡ ê  
¡ ç  
6
Y
A
A
Y
M(X,Y)  
M(X,Y)  
M(X,Y)  
i
7
8
XMA  
LYI i  
9
¡ ç  
¡ ç  
Y+1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
LMIIY i  
LXI n  
SEM n  
REM n  
TM n  
BR a  
CAL a  
RTN  
LPBI i  
AM  
M(X,Y)  
i, Y  
Immediate  
¡ ç  
X
n
¡ ç  
¡ ç  
M(n)  
M(n)  
1
RAM Bit  
Manipulation  
0
TEST M(n) = 1  
if ST = 1 then Branch  
if ST = 1 then Subroutine call  
Return from Subroutine  
ROM  
Address  
¡ ç  
PB  
i
¡ ç  
A
A
A
A
A
Y
A
A + M(X,Y)  
¡ ç  
¡ ç  
¡ ç  
¡ ç  
¡ ç  
¡ ç  
SM  
M(X,Y) - A  
M(X,Y) + 1  
M(X,Y) - 1  
A + 1  
IM  
Arithmetic  
DM  
IA  
IY  
Y + 1  
DA  
A - 1  
3 - 1  
Chapter 3. Instruction  
Category Mnemonic  
Function  
ST*1  
B
¡ ç  
¡ ç  
¡ ç  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
DY  
Y
A
A
Y - 1  
Arithmetic  
EORM  
NEGA  
ALEM  
ALEI i  
MNEZ  
YNEA  
YNEI i  
KNEZ  
RNEZ  
LAK  
A + M (X,Y)  
A + 1  
S
Z
¡ Â  
¡ Â  
TEST A  
TEST A  
M(X,Y)  
E
i
E
¡ Á  
TEST M(X,Y)  
0
N
N
N
N
N
S
Comparison  
¡ Á  
¡ Á  
¡ Á  
¡ Á  
TEST Y  
TEST Y  
TEST K  
TEST R  
A
i
0
0
¡ ç  
¡ ç  
A
A
K
R
LAR  
S
Input /  
Output  
1*2  
0*2  
S
¡ ç  
¡ ç  
SO  
Output(Y)  
Output(Y)  
RO  
S
WDTR  
STOP  
LPY  
Watch Dog Timer Reset  
Stop operation  
S
S
Control  
¡ ç  
PMR  
Y
S
NOP  
No operation  
S
Note) i = 0~f, n = 0~3, a = 6bit PC Address  
*1 Column ST indicates conditions for changing status. Symbols have the following  
meanings  
S : On executing an instruction, status is unconditionally set.  
C : Status is only set when carry or borrow has occurred in operation.  
B : Status is only set when borrow has not occurred in operation.  
E : Status is only set when equality is found in comparison.  
N : Status is only set when equality is not found in comparison.  
Z : Status is only set when the result is zero.  
*2 Operation is settled by a value of Y-register.  
3 - 2  
INTRODUCTION  
ARCHITECTURE  
INSTRUCTION  
EPROM  
1
2
3
4
Chapter 4. EPROM  
CHAPTER 4. EPROM  
GMS34004TK / 34112TK / 34140TK  
Mode define  
Item  
Device operation  
Modesetting  
User mode  
Exact User pgm  
RESETB = 0 ~ 3V  
Vcc=3V  
RESETB  
=12.5V  
EPROM read mode  
Address in, Data out  
K3~0=0110  
Vcc=6.0V  
1Byte PGM Write Address in, Data in  
2Byte PGM Write Address in, Data in  
K3~0=0110  
K3~0=0111  
-
EPROM  
Program  
mode  
RESETB  
=12.5V  
Vcc=6.0V  
Program verify  
Lock bit Write  
Lock bit Read  
Address in, Data out  
Lock bit write(set D5 to 1)  
Lock bit out  
K3~0=0100  
K3~0=0101  
Lock bit  
Program  
mode  
Vcc=6.0V,  
Lock bit is D5.  
(Default : unlock)  
RESETB  
=12.5V  
4 - 1  
Chapter 4. EPROM  
Port define  
Port Name  
User Mode  
EPROMMode  
VDD  
RESETB  
OSC1  
K0  
3.0V  
6.0V  
Reset (0, 3.0V)  
Clock input  
K0(Input)  
K1(Input)  
K2(Input)  
K3(Input)  
D0(Output)  
D1(Output)  
D2(Output)  
D3(Output)  
D4(Output)  
D5(Output)  
0V  
Vpp (0, 12.5V)  
Clock input  
K1  
Read / Write Control  
Address / Data Control  
K2  
K3  
D0  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
Da0  
Da1  
Da2  
Da3  
-
Da4  
Da5  
Da6  
Da7  
-
D1  
NMOS open drain I/O  
in EPROM mode  
D2  
D3  
D4  
D5  
Lock bit output  
GND  
* Undefined ports in this table are N.C (No Connection)  
Programming data  
Blank data  
Device Name ROM Size  
Lock bit Device address File address  
(HEX)  
GMS34004TK  
GMS34112TK  
GMS34140TK  
512bytes  
FF  
Yes  
Yes  
Yes  
0000 ~ 01FF  
0000 ~ 03FF  
0000 ~ 03FF  
0000 ~ 01FF  
0000 ~ 03FF  
0000 ~ 03FF  
1,024bytes  
1,024bytes  
FF  
FF  
- If lock bit is set, the EPROM of the device can not be read, because output is always FF.  
- Input file : Intel Hexa format ( *.RHX )  
4 - 2  
Chapter 4. EPROM  
Write / Read data conversion  
¡ ê  
- You must change MSB ~ LSB  
- Example  
LSB ~ MSB.  
File / buffer data  
Device (D3 ~ D0)  
Hex  
Binary (MSB~LSB)  
Hex  
Binary (MSB~LSB)  
Write  
Read  
2C  
E4  
8D  
0010 1100  
1110 0100  
1000 1101  
34  
27  
B1  
0011 0100  
0010 0111  
1011 0001  
Checksum  
- It is calculated from the Buffer of the programmer.  
- Address range is the same as device address.  
- Calculate method is the same as normal EPROM devices (ex:27C128, 256 etc)  
Programming control  
- OSC1 & RESETB control OTP device, so you must count OSC1 clocks in every state.  
- K ports control the internal state of the OTP device(ex: Read, Write...).  
- D5~D0 ports are NMOS open drain I/O in EPROM mode.  
It must be pulled up by resistors (about 4.7~ 47K ohm).  
- The frequency rate of the OSC1 clock is 10KHz ~ 500KHz.  
You can hold OSC1 HIGH or LOW state when you need.  
Programming DC specification  
Item  
Range  
¡ ¾  
VCC  
0 ~ 6.0V  
0.25V  
¡ ¾  
RESETB  
0 ~ 12.5V  
0.5V  
K-port  
D-port  
0 ~ 0.2VCC(Low)  
0.8VCC ~ VCC (High)  
4 - 3  
Chapter 4. EPROM  
EPROM read mode (1/2)  
For device verify or read.  
If you set Lock bit, output data is always FF.  
14.5clocks  
¨ ç ¨ è  
2us at 500KHz  
¨ ô ¨ õ  
OSC  
CK1  
CK2  
CK3  
6V  
0V  
VCC  
RESETB  
12.5V  
0110  
0000  
1101  
0000  
1101  
0000  
1101  
0000  
1101  
K3 ~ K0  
D4 ~ D0  
AH AL  
OH OL AH AL  
OH OL AH AL  
OH OL AH AL  
OH OL  
Addr. 0  
Addr. 1  
Addr. 2  
Addr. 3  
1
2
3
AH : High Address (A9~5) Input Latch  
AL : Low Address (A4~0) Input Latch  
OH : High Data (D7~4) Output  
OL : Low Data (D3~0) Output  
* Note : 1. AH, AL, DH, DL Inputs released at 100~200nS after OSC rising edge and  
width is 1OSC cycle ( if OSC is 500KHz, width is 2uS ).  
EPROM read mode (2/2)  
START  
¨ ç  
Reset  
(Set EPROM read mode)  
Address=First address  
¨ è  
Set address  
Read data  
¨ é  
Address ++  
Address > Last address  
RESETB=0V  
VCC=0V  
END  
4 - 4  
Chapter 4. EPROM  
EPROM write mode (1/2)  
14.5clocks  
2us at 500KHz  
¨ ç ¨ è  
¨ ô ¨ õ  
OSC  
CK1  
CK2  
CK3  
6V  
0V  
VCC  
RESETB  
12.5V  
9.5V  
PGM Write ( 0110 )  
0000  
1000  
1110  
1101  
0000  
1000  
K3 ~ K0  
D4 ~ D0  
AH AL DH DL  
OH OL AH AL DH DL  
10times Repeat  
12us X 10 = 120us  
Verify  
Next Write  
1
2
3
4
AH : High bit Address Input Latch  
AL : Low bit Address Input Latch  
DH : High bit Data Input Latch  
DL : Low bit Data Input Latch  
OH : High bit Data Output  
OL : Low bit Data Output  
* Note : 1. AH, AL, DH, DL Inputs are released at 100~200nS after OSC rising edge and  
width is 1OSC cycle ( if OSC is 500KHz, width is 2uS ).  
EPROM write mode (2/2)  
START  
¨ é  
EPROM write  
(Write one more time)  
¨ ç  
Reset  
(Set EPROM write mode)  
Address ++  
Address=First address  
No  
Address > Last address  
Yes  
¨ è  
Set address & data  
Count=0  
RESETB=0V  
VCC=0V  
Pass  
EPROM read mode  
Verify all  
¨ é  
EPROM write  
Repeat until near 100uS.  
When 500KHz OSC1, repeat 10  
times (12uS*10=120uS)  
Fail  
Device fail  
Device OK  
Count ++  
RESETB=0V  
VCC=0V  
Pass  
¨ ê  
Verify  
Fail  
END  
No  
Yes  
Count=25?  
4 - 5  
Chapter 4. EPROM  
Lock bit write mode (1/2)  
14.5clocks  
¨ ç ¨ è  
2us at 500KHz  
¨ ô ¨ õ  
OSC  
CK1  
CK2  
CK3  
6V  
0V  
VCC  
RESETB  
K3 ~ K0  
12.5V  
Lock Write ( 0100 )  
0000  
1110  
10 times Repeat  
12us X 10 = 120us  
Lock bit write  
1
2
3
Lock bit write mode (2/2)  
START  
¨ ç  
(Set Lock bit write mode)  
Reset  
¨ è  
Wait cycle  
Count=0  
*1 Repeat until near 100uS.  
When 500KHz OSC1, repeat 10times  
(12uS * 10 = 120uS)  
¨ é  
Write cycle *1  
Count++  
No  
Count=10?  
Yes  
RESETB=0V  
VCC=0V  
END  
4 - 6  
Chapter 4. EPROM  
Lock bit read mode (1/2)  
14.5clocks  
¨ ç ¨ è  
2us at 500KHz  
¨ ô ¨ õ  
OSC1  
6V  
0V  
VCC  
12.5V  
Lock Read ( 0101 )  
Lock bit output  
1
2
Lock bit read mode (2/2)  
START  
¨ ç  
(Set Lock bit read mode)  
Reset  
¨ è  
Read Lock bit (D5)  
RESETB=0V  
VCC=0V  
END  
4 - 7  
Chapter 4. EPROM  
GMS34004T/112T/140T (Pin assignment & Package)  
RESETB  
GND  
K0  
1
2
3
4
5
6
7
8
16 VDD  
16DIP (Standard TTL DIP Size)  
15 OSC1  
- Width 300mil  
- Pin to pin 100mil  
14  
13  
-
-
K1  
K2  
12 D5  
11 D4  
10 D3  
K3  
D0  
D1  
9
D2  
K0  
K1  
K2  
K3  
D0  
D1  
D2  
D3  
D4  
1
2
3
4
5
6
7
8
9
20  
19  
18  
17  
-
-
-
-
20DIP (Standard TTL DIP Size)  
- Width 300mil  
- Pin to pin 100mil  
16 GND  
15 RESETB  
14 VDD  
20SOP (Standard TTL SOP Size)  
13 OSC1  
12  
11  
-
-
D5 10  
RESETB  
1
2
3
4
5
6
7
8
9
24 VDD  
24DIP (Skinny DIP Size)  
GND  
23 OSC1  
- Width 300mil  
- Pin to pin 100mil  
-
-
22  
21  
20  
19  
-
-
-
-
-
-
24SOP (Standard SOP Size)  
K0  
K1  
K2  
18 D5  
17 D4  
16 D3  
15 D2  
14 D1  
K3 10  
D0 11  
- 12  
13  
-
4 - 8  
Chapter 4. EPROM  
EPROM(KHz) mode  
EPROM write only mode  
14.5clocks  
2us at 500KHz  
¨ ç ¨ è  
¨ ô ¨ õ  
OSC  
CK1  
CK2  
CK3  
6V  
0V  
VCC  
RESETB  
12.5V  
PGM Write ( 0110 )  
0000  
1000  
1110  
0000  
1000  
1110  
K3 ~ K0  
D4 ~ D0  
AH AL DH DL  
AH AL DH DL  
10times Repeat  
12us X 10 = 120us  
Next Write  
5times Repeat  
EPROM write  
4 - 9  
Chapter 4. EPROM  
GMS34004TM / 34112TM / 34140TM  
Mode define  
Item  
Device operation  
Modesetting  
User mode  
Execute User pgm  
RESETB = 0 ~ 3V  
Vcc=3V  
RESETB  
=12.5V  
EPROM read mode  
Address in, Data out  
K3~0=0010  
Vcc=6.0V  
1Byte PGM Write Address in, Data in  
2Byte PGM Write Address in, Data in  
K3~0=0110  
K3~0=0111  
-
EPROM  
Program  
mode  
RESETB  
=12.5V  
Vcc=6.0V  
Program verify  
Lock bit Write  
Lock bit Read  
Address in, Data out  
Lock bit write(set D5 to 1)  
Lock bit out  
K3~0=0100  
K3~0=0101  
Lock bit  
Program  
mode  
Vcc=6.0V,  
Lock bit is D5.  
(Default : unlock)  
RESETB  
=12.5V  
4 - 10  
Chapter 4. EPROM  
Port define  
Port Name  
User Mode  
EPROMMode  
VDD  
RESETB  
OSC1  
K0  
3.0V  
6.0V  
Reset (0, 3.0V)  
Clock input  
K0(Input)  
K1(Input)  
K2(Input)  
K3(Input)  
D0(Output)  
D1(Output)  
D2(Output)  
D3(Output)  
D4(Output)  
D5(Output)  
0V  
Vpp (0, 12.5V)  
Clock input  
K1  
Read / Write Control  
Address / Data Control  
K2  
K3  
D0  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
Da0  
Da1  
Da2  
Da3  
-
Da4  
Da5  
Da6  
Da7  
-
D1  
NMOS open drain I/O  
in EPROM mode  
D2  
D3  
D4  
D5  
Lock bit output  
GND  
* Undefined ports in this table are N.C (No Connection)  
Programming data  
Blank data  
Device Name ROM Size  
Lock bit Device address File address  
(HEX)  
GMS34004TK  
GMS34112TK  
GMS34140TK  
512bytes  
FF  
Yes  
Yes  
Yes  
0000 ~ 01FF  
0000 ~ 03FF  
0000 ~ 03FF  
0000 ~ 01FF  
0000 ~ 03FF  
0000 ~ 03FF  
1,024bytes  
1,024bytes  
FF  
FF  
- If lock bit is set, the EPROM of the device can not be read, because output is always FF.  
- Input file : Intel Hexa format ( *.RHX )  
4 - 11  
Chapter 4. EPROM  
Write / Read data conversion  
¡ ê  
- You must change MSB ~ LSB  
- Example  
LSB ~ MSB.  
File / buffer data  
Device (D3 ~ D0)  
Hex  
Binary (MSB~LSB)  
Hex  
Binary (MSB~LSB)  
Write  
Read  
2C  
E4  
8D  
0010 1100  
1110 0100  
1000 1101  
34  
27  
B1  
0011 0100  
0010 0111  
1011 0001  
Checksum  
- It is calculated from the Buffer of the programmer.  
- Address range is the same as device address.  
- Calculate mathod is the same as normal EPROM devices (ex:27C128, 256 etc)  
Programming control  
- OSC1 & RESETB control OTP device, so you must count OSC1 clocks in every state.  
- K ports control the internal state of the OTP device(ex: Read, Write...).  
- D5~D0 ports are NMOS open drain I/O in EPROM mode.  
It must be pulled up by resistors (about 4.7~ 47K ohm).  
- The frequency rate of the OSC1 clock is 10KHz ~ 500KHz.  
You can hold OSC1 HIGH or LOW state when you need.  
Programming DC specification  
Item  
Range  
¡ ¾  
VCC  
0 ~ 6.0V  
0.25V  
¡ ¾  
RESETB  
0 ~ 12.5V  
0.5V  
K-port  
D-port  
0 ~ 0.2VCC(Low)  
0.8VCC ~ VCC (High)  
4 - 12  
Chapter 4. EPROM  
EPROM read mode (1/2)  
For device verify or read.  
If you set Lock bit, output data is all 'FF’  
12Clock  
8Clock  
OSC1  
Address setting  
Data read  
1
2
3
Data  
Strobe  
point  
Data  
Strobe  
point  
5Clock  
5Clock  
6V  
0V  
VCC  
RESETB  
12.5V  
ROM Dump Mode ( 0010 )  
K3 ~ K0  
D4 ~ D0  
D5  
A9~A5  
A4~A0  
D7~D4  
D3~D0  
Port Operation  
K Port Latch  
High bit  
Address  
Latch  
Low bit  
Address  
Latch  
Sense  
AMP.  
Operation  
High bit  
Instruction  
Output  
Low bit  
Instruction  
Output  
Repeat  
EPROM read mode (2/2)  
START  
¨ ç  
Reset  
(Set EPROM read mode)  
Address=First address  
¨ è  
Set address  
Read data  
¨ é  
Address ++  
Address > Last address  
RESETB=0V  
VCC=0V  
END  
4 - 13  
Chapter 4. EPROM  
EPROM write mode (1/4)  
12Clock  
8Clock  
OSC1  
1
2
2
6V  
0V  
VCC  
RESETB  
12.5V  
PGM Write ( 0110 (1B))  
0000  
1000  
K3 ~ K0  
D4 ~ D0  
A9~A5  
A4~A0  
D7~D4  
D3~D0  
High bit  
Address  
Latch  
Low bit  
Address  
Latch  
High bit  
Instruction  
Latch  
Low bit  
Instruction  
Latch  
K Port Latch  
First Address Input  
First Data Input  
EPROM write mode (2/4)  
OSC1  
3
3
4
6V  
VCC  
12.5V  
RESETB  
1110  
1110  
1101  
K3 ~ K0  
D4 ~ D0  
Verify  
EPROM write time  
4 - 14  
Chapter 4. EPROM  
EPROM write mode (3/4)  
OSC1  
4
2
2
Data  
Data  
Strobe  
point  
Strobe  
point  
5Clock  
5Clock  
6V  
VCC  
Verify  
12.5V  
RESETB  
1101  
0000  
1000  
K3 ~ K0  
D4 ~ D0  
A9~A5  
A4~A0  
D7~D4  
D3~D0  
D7~D4  
D3~D0  
High bit  
Instruction  
Output  
Low bit  
Instruction  
Output  
High bit  
Address  
Latch  
Low bit  
Address  
Latch  
High bit  
Instruction  
Latch  
Low bit  
Instruction  
Latch  
Next Address Input  
Next Data Input  
EPROM write mode (4/4)  
START  
¨ é  
EPROM write  
(Write one more time)  
¨ ç  
Reset  
(Set EPROM write mode)  
Address ++  
Address=First address  
No  
Address > Last address  
Yes  
¨ è  
Set address & data  
Count=0  
RESETB=0V  
VCC=0V  
Pass  
EPROM read mode  
Verify all  
¨ é  
EPROM write  
Repeat until near 100uS.  
When 4MHz OSC1, repeat 10  
times (12uS*10=120uS)  
Fail  
Device fail  
Device OK  
Count ++  
RESETB=0V  
VCC=0V  
Pass  
Yes  
¨ ê  
Verify  
Fail  
END  
No  
Count=25?  
4 - 15  
Chapter 4. EPROM  
Lock bit write mode (1/3)  
12Clock  
8Clock  
OSC1  
1
2
2
6V  
0V  
VCC  
RESETB  
12.5V  
EPROM Mode Lock Write ( 0100 )  
0000  
0000  
K3 ~ K0  
K Port Latch  
Lock bit write mode (2/3)  
OSC1  
3
4
6V  
VCC  
RESETB  
K3 ~ K0  
12.5V  
1110  
1100  
Write cycle  
Repeat 2 times  
Repeat 10 times  
Lock bit Write  
4 - 16  
Chapter 4. EPROM  
Lock bit write mode (3/3)  
START  
¨ ç  
(Set Lock bit write mode)  
Reset  
¨ è  
Wait cycle  
Count=0  
*1 Repeat until near 100uS.  
When 4MHz OSC1, repeat 10 times  
(12uS * 10 = 120uS)  
¨ é  
Write cycle *1  
Delay cycle  
¨ ê  
(Repeat 2 times)  
Count++  
No  
Count=10  
Yes  
RESETB=0V  
VCC=0V  
END  
4 - 17  
Chapter 4. EPROM  
Lock bit read mode (1/2)  
12Clock  
8Clock  
OSC1  
1
2
3
You can strobe at any time from here  
6V  
0V  
VCC  
RESETB  
K3 ~ K0  
D5  
12.5V  
Lock Read Mode ( 0101 )  
1101  
1101  
Lock bit output  
K Port Latch  
Lock bit read mode (2/2)  
START  
¨ ç  
(Set Lock bit read mode)  
Reset  
¨ è  
Wait cycle  
¨ é  
Read Lock bit (D5)  
RESETB=0V  
VCC=0V  
END  
4 - 18  

相关型号:

GMS34140TK

Microcontroller, 4-Bit, OTPROM, 0.5MHz, CMOS, PDIP24, SKINNY, DIP-24
HYNIX

GMS34140TK-D

Microcontroller, 4-Bit, OTPROM, 0.5MHz, CMOS, PDSO24, SOP-24
HYNIX

GMS34140TK-DT

暂无描述
HYNIX

GMS34140TM-DT

暂无描述
HYNIX

GMS34140TW-D

Microcontroller, 4-Bit, OTPROM, 4.2MHz, CMOS, PDSO24, SOP-24
HYNIX

GMS34140TW-DT

Microcontroller, 4-Bit, OTPROM, 4.2MHz, CMOS, PDSO24, SOP-24
HYNIX

GMS34XXXT

4-BIT SINGLE CHIP MICROCOMPUTERS
ETC

GMS36

4-BIT SINGLE CHIP MICROCOMPUTERS
HYNIX

GMS36004

4-BIT SINGLE CHIP MICROCOMPUTERS
HYNIX

GMS36004(T)

REMOTE CONTROLLER
ETC

GMS36004-XXX

Microcontroller, 4-Bit, MROM, 4MHz, CMOS, PDIP16, 0.300 INCH, PLASTIC, DIP-16
HYNIX

GMS36004-XXXD

Microcontroller, 4-Bit, MROM, 4MHz, CMOS, PDSO16, 0.150 INCH, SOP-16
HYNIX