HCPL-3760 [HP]

AC/DC to Logic Interface Optocouplers; AC / DC到逻辑接口光电耦合器
HCPL-3760
型号: HCPL-3760
厂家: HEWLETT-PACKARD    HEWLETT-PACKARD
描述:

AC/DC to Logic Interface Optocouplers
AC / DC到逻辑接口光电耦合器

光电 输出元件
文件: 总13页 (文件大小:231K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
H
AC/DC to Logic Interface  
Optocouplers  
Technical Data  
HCPL-3700  
HCPL-3760  
Features  
• Standard (HCPL-3700) and  
Low Input Current  
(HCPL-3760) Versions  
• AC or DC Input  
• Programmable Sense Voltage  
• Hysteresis  
• Logic Compatible Output  
• Thresholds Guaranteed over  
Temperature  
Description  
The HCPL-3700 and HCPL-3760  
are voltage/current threshold  
detection optocouplers. The  
HCPL-3760 is a low-current  
version of the HCPL-3700. To  
obtain lower current operation,  
the HCPL-3760 uses a high-  
efficiency AlGaAs LED which  
provides higher light output at  
lower drive currents. Both  
The input buffer incorporates  
several features: hysteresis for  
extra noise immunity and  
switching immunity, a diode  
bridge for easy use with ac input  
signals, and internal clamping  
• Thresholds Independent of  
LED Optical Parameters  
devices utilize threshold sensing  
input buffer ICs which permit  
control of threshold levels over a  
wide range of input voltages with  
a single external resistor.  
• Recognized under UL 1577  
and CSA Approved for  
Dielectric Withstand Proof  
Test Voltage of 2500 Vac, 1  
Minute  
Functional Diagram  
Applications  
• Limit Switch Sensing  
• Low Voltage Detector  
• 5 V-240 V AC/DC Voltage  
Sensing  
• Relay Contact Monitor  
• Relay Coil Voltage Monitor  
• Current Sensing  
AC  
1
8
7
6
5
V
CC  
DC+  
DC-  
AC  
2
3
4
NC  
V
O
GND  
• Microprocessor Interfacing  
TRUTH TABLE  
(POSITIVE LOGIC)  
INPUT OUTPUT  
H
L
L
H
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to  
prevent damage and/or degradation which may be induced by ESD.  
1-348  
5965-3582E  
diodes to protect the buffer and  
LED from a wide range of over-  
voltage and over-current  
transients. Because threshold  
sensing is done prior to driving  
the LED, variations in optical  
coupling from the LED to the  
detector will have no effect on the  
threshold levels.  
The buffer IC for the HCPL-3760  
was redesigned to permit a lower  
input current. The nominal turn  
on threshold for the HCPL-3760  
is 1.2 mA (ITH +) and 3.7 volts  
(VTH +).  
saturation voltages and CMOS  
compatible breakdown voltages.  
By combining several unique  
functions in a single package, the  
user is provided with an ideal  
component for industrial control  
computer input boards and other  
applications where a predeter-  
mined input threshold level is  
desirable.  
The high gain output stage  
features an open collector output  
providing both TTL compatible  
The HCPL-3700's input buffer IC  
has a nominal turn on threshold  
of 2.5 mA (ITH +) and 3.7 volts  
(VTH +).  
Ordering Information  
Specify Part Number followed by Option Number (if desired)  
Example  
HCPL-3700#XXX  
300 = Gull Wing Surface Mount Option  
500 = Tape/Reel Package Option (1 K min.)  
Option data sheets available. Contact your Hewlett-Packard sales representative or authorized distributor for  
information.  
Schematic  
1-349  
Package Outline Drawings  
Standard DIP Package  
9.40 (0.370)  
9.90 (0.390)  
8
1
7
6
5
TYPE NUMBER  
DATE CODE  
0.20 (0.008)  
0.33 (0.013)  
6.10 (0.240)  
6.60 (0.260)  
HP XXXX  
YYWW  
7.36 (0.290)  
7.88 (0.310)  
U R  
4
5° TYP.  
UL  
2
3
RECOGNITION  
PIN ONE  
1.19 (0.047) MAX.  
1.78 (0.070) MAX.  
1
2
AC  
V
8
7
4.70 (0.185) MAX.  
0.51 (0.020) MIN.  
CC  
DC+  
NC  
3
4
DC-  
AC  
V
6
5
O
2.92 (0.115) MIN.  
GND  
0.76 (0.030)  
1.40 (0.056)  
0.65 (0.025) MAX.  
2.28 (0.090)  
2.80 (0.110)  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
Gull Wing Surface Mount Option 300  
PAD LOCATION (FOR REFERENCE ONLY)  
9.65 ± 0.25  
(0.380 ± 0.010)  
1.016 (0.040)  
1.194 (0.047)  
7
6
5
8
1
4.826  
TYP.  
TYPE NUMBER  
DATE CODE  
(0.190)  
HP XXXX  
YYWW  
6.350 ± 0.25  
(0.250 ± 0.010)  
U R  
4
9.398 (0.370)  
9.906 (0.390)  
2
3
MOLDED  
0.381 (0.015)  
0.635 (0.025)  
UL  
RECOGNITION  
1.194 (0.047)  
1.778 (0.070)  
9.65 ± 0.25  
(0.380 ± 0.010)  
1.780  
(0.070)  
MAX.  
1.19  
(0.047)  
MAX.  
7.62 ± 0.25  
(0.300 ± 0.010)  
0.20 (0.008)  
0.33 (0.013)  
4.19  
MAX.  
(0.165)  
0.635 ± 0.25  
(0.025 ± 0.010)  
1.080 ± 0.320  
(0.043 ± 0.013)  
0.635 ± 0.130  
(0.025 ± 0.005)  
12° NOM.  
2.540  
(0.100)  
BSC  
DIMENSIONS IN MILLIMETERS (INCHES).  
TOLERANCES (UNLESS OTHERWISE SPECIFIED): xx.xx = 0.01  
xx.xxx = 0.005  
LEAD COPLANARITY  
MAXIMUM: 0.102 (0.004)  
1-350  
Maximum Solder Reflow Thermal Profile  
260  
240  
T = 145°C, 1°C/SEC  
220  
200  
180  
160  
140  
120  
100  
80  
T = 115°C, 0.3°C/SEC  
T = 100°C, 1.5°C/SEC  
60  
40  
20  
0
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
TIME – MINUTES  
(NOTE: USE OF NON-CHLORINE ACTIVATED FLUXES IS RECOMMENDED.)  
Regulatory Information  
The HCPL-3700/60 has been  
approved by the following  
organizations:  
UL  
Recognized under UL 1577,  
component recognition program,  
File E55361.  
CSA  
Approved under CSA Component  
Acceptance Notice #5, File CA  
88324.  
1-351  
Insulation and Safety Related Specifications  
Parameter  
Symbol Value Units  
Conditions  
Min. External Air Gap  
(External Clearance)  
L(IO1)  
7.1  
mm  
Measured from input terminals to output terminals,  
shortest distance through air  
Min. External Tracking  
Path (External Creepage)  
L(IO2)  
7.4  
mm  
Measured from input terminals to output terminals,  
shortest distance path along body  
Min. Internal Plastic  
Gap (Internal Clearance)  
0.08 mm  
Through insulation distance, conductor to conductor,  
usually the direct distance between the photoemitter  
and photodetector inside the optocoupler cavity  
Tracking Resistance  
(Comparative  
Tracking Index)  
CTI  
200  
IIIa  
V
DIN IEC 112/VDE 0303 PART 1  
Isolation Group  
Material Group (DIN VDE 0110, 1/89, Table 1)  
Option 300 – surface mount classification is Class A in accordance with CECC 00802.  
Absolute Maximum Ratings (No derating required up to 70°C)  
Parameter  
Storage Temperature  
Symbol  
Min.  
-55  
Max.  
125  
85  
Units  
°C  
Note  
TS  
TA  
Operating Temperature  
Lead Soldering Cycle  
-40  
°C  
Temperature  
Time  
260  
10  
°C  
1
s
Input Current  
Average  
Surge  
50  
2
IIN  
140  
500  
mA  
2, 3  
Transient  
Input Voltage (Pins 2-3)  
Input Power Dissipation  
VIN  
PIN  
PT  
-0.5  
V
230  
305  
210  
30  
mW  
mW  
mW  
mA  
V
4
5
6
7
Total Package Power Dissipation  
Output Power Dissipation  
PO  
Output Current  
Average  
IO  
Supply Voltage (Pins 8-5)  
Output Voltage (Pins 6-5)  
Solder Reflow Temperature Profile  
VCC  
VO  
-0.5  
-0.5  
20  
20  
V
See Package Outline Drawings section  
Recommended Operating Conditions  
Parameter  
Symbol  
Min.  
Max.  
18  
Units  
V
Note  
Supply Voltage  
VCC  
TA  
f
2
0
0
Operating Temperature  
Operating Frequency  
70  
°C  
4
kHz  
8
1-352  
Electrical Specifications  
Over Recommended Temperature T = 0°C to 70°C, Unless Otherwise Specified.  
A
Parameter  
Input Threshold  
Current  
Sym.  
Device  
Min. Typ.[9] Max. Units  
Conditions  
Fig. Note  
ITH+ HCPL-3700 1.96  
HCPL-3760 0.87  
2.5  
1.2  
1.3  
0.6  
3.7  
3.11  
1.56  
1.62  
0.80  
4.05  
mA  
V
IN = VTH+; VCC = 4.5 V;  
VO = 0.4 V; IO 4.2 mA  
2, 3 14  
ITH- HCPL-3700 1.00  
HCPL-3760 0.43  
V
IN = VTH-; VCC = 4.5 V;  
VO = 2.4 V; IOH 100 µA  
IN = V2 - V3; Pins 1 & 4 Open  
VCC = 4.5 V; VO = 0.4 V;  
O 4.2 mA  
IN = V2 - V3; Pins 1 & 4 Open  
VCC = 4.5 V; VO = 2.4 V;  
O 100 µA  
Input  
DC  
VTH+  
3.35  
2.01  
4.23  
V
V
V
V
Threshold (Pins 2, 3)  
Voltage  
I
VTH-  
2.6  
4.9  
2.86  
5.50  
V
I
AC  
VTH+  
VIN = |V1 - V4|;  
14, 15  
(Pins 1, 4)  
Pins 2 & 3 Open  
VCC = 4.5 V; VO = 0.4 V;  
IO 4.2 mA  
VTH-  
2.87  
3.7  
4.20  
V
V
IN = |V1 - V |;  
4
Pins 2 & 3 Open  
VCC = 4.5 V; VO = 2.4 V;  
IO 100 µA  
Hysteresis  
IHYS HCPL-3700  
HCPL-3760  
VHYS  
1.2  
0.6  
1.2  
6.0  
mA IHYS = ITH+ – ITH-  
2
1
V
V
VHYS = VTH+ VTH-  
IHC1 = V2 - V3; V3 = GND;  
Input Clamp Voltage  
VIHC1  
5.4  
6.1  
6.6  
7.3  
V
IIN = 10 mA; Pins 1 & 4  
Connected to Pin 3  
V
IHC2  
6.7  
V
VIHC2 = |V - V |;  
1 4  
|IIN| = 10 mA;  
Pins 2 & 3 Open  
V
12.0  
13.4  
V
V
V
IHC3 = V2 - V3; V = GND;  
IHC3  
3
IIN = 15 mA; Pins 1 & 4 Open  
V
-0.76  
VILC = V2 - V ; V = GND;  
3 3  
ILC  
IIN = -10 mA  
Input Current  
IIN HCPL-3700 3.0  
HCPL-3760 1.5  
VD1,2 HCPL-3700  
HCPL-3760  
3.7  
1.8  
4.4  
2.2  
mA  
V
= V V3 = 5.0 V  
5
IN  
2
Pins 1 & 4 Open  
Bridge Diode  
Forward Voltage  
0.59  
0.51  
0.74  
0.71  
0.1  
V
V
IIN = 3 mA  
IIN = 1.5 mA  
VD3,4 HCPL-3700  
HCPL-3760  
IIN = 3 mA  
IIN = 1.5 mA  
Logic Low Output  
Voltage  
VOL  
0.4  
VCC = 4.5 V; IOL = 4.2 mA  
5
14  
14  
Logic High  
IOH  
100  
µA VOH = VCC = 18 V  
Output Current  
Logic Low Supply  
Current  
ICCL HCPL-3700  
HCPL-3760  
ICCH  
1.2  
0.7  
4
3
4
mA V2 V3 = 5.0 V; VO = Open;  
VCC = 5.0 V  
6
4
Logic High Supply  
Current  
0.002  
µA VCC = 18 V; VO = Open  
14  
Input Capacitance  
CIN  
50  
pF f = 1 MHz; VIN = 0 V,  
Pins 2 & 3, Pins 1 & 4 Open  
1-353  
Switching Specifications  
TA = 25°C, VCC = 5.0 V, Unless Otherwise Specified.  
Parameter  
Sym.  
Device  
Min.  
Typ.  
Max. Units  
Test Conditions  
Fig.  
Note  
Propagation Delay  
Time to Logic Low  
at Output  
HCPL-3700  
4.0  
tPHL  
15.0  
40.0  
µs  
µs  
RL = 4.7 k, CL = 30 pF  
10  
HCPL-3760  
HCPL-3700  
4.5  
7, 10  
Propagation Delay  
Time to Logic High  
at Output  
10.0  
tPLH  
RL = 4.7 k, CL = 30 pF  
11  
HCPL-3760  
HCPL-3700  
8.0  
20  
Output Rise Time  
(10-90%)  
tr  
µs  
µs  
RL = 4.7 k, CL = 30 pF  
RL = 4.7 k, CL = 30 pF  
HCPL-3760  
HCPL-3700  
14  
8
0.3  
Output Fall Time  
(90-10%)  
tf  
HCPL-3760  
0.4  
Common Mode  
IIN = 0 mA, RL = 4.7 k,  
Transient Immunity  
at Logic High Output  
|CMH|  
|CML|  
4000  
V/µs  
V/µs  
VO min = 2.0 V, VCM = 1400 V  
9, 11 12, 13  
Common Mode  
Transient Immunity  
at Logic Low Output  
HCPL-3700  
HCPL-3760  
IIN = 3.11 mA RL = 4.7 k,  
VO max = 0.8 V,  
IIN = 1.56 mA VCM = 140 V  
600  
Package Characteristics  
Over Recommended Temperature TA = 0°C to 70°C, Unless Otherwise Specified.  
Parameter  
Sym. Min. Typ.[9] Max. Units  
Conditions  
Fig. Note  
Input-Output Momentary  
Withstand Voltage*  
V
ISO  
2500  
V rms RH 50%, t = 1 min;  
TA = 25°C  
16,  
17  
Input-Output Resistance  
Input-Output Capacitance  
RI-O  
CI-O  
1012  
0.6  
V
I-O = 500 Vdc  
16  
pF  
f = 1 MHz; VI-O = 0 Vdc  
*The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output  
continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Characteristics Table (if applicable), your  
equipment level safety specification, or HP Application Note 1074, “Optocoupler Input-Output Endurance Voltage.”  
1-354  
Notes:  
1. Measured at a point 1.6 mm below seating plane.  
2. Current into/out of any single lead.  
3. Surge input current duration is 3 ms at 120 Hz pulse repetition rate. Transient input current duration is 10 µs at 120 Hz pulse  
repetition rate. Note that maximum input power, PIN, must be observed.  
4. Derate linearly above 70°C free-air temperature at a rate of 4.1 mW/°C. Maximum input power dissipation of 230 mW allows an input  
IC junction temperature of 125°C at an ambient temperature of TA = 70°C with a typical thermal resistance from junction to ambient  
of θJA1 = 240°C/W. Excessive PIN and TJ may result in IC chip degradation.  
5. Derate linearly above 70°C free-air temperature at a rate of 5.4 mW/°C.  
6. Derate linearly above 70°C free-air temperature at a rate of 3.9 mW/°C. Maximum output power dissipation of 210 mW allows an  
output IC junction temperature of 125°C at an ambient temperature of TA = 70°C with a typical thermal resistance from junction to  
ambient of θJA0 = 265°C/W.  
7. Derate linearly above 70°C free-air temperature at a rate of 0.6 mA/°C.  
8. Maximum operating frequency is defined when output waveform Pin 6 obtains only 90% of VCC with RL = 4.7 k, CL = 30 pF using  
a 5 V square wave input signal.  
9. All typical values are at TA = 25°C, VCC = 5.0 V unless otherwise stated.  
10. The tPHL propagation delay is measured from the 2.5 V level of the leading edge of a 5.0 V input pulse (1 µs rise time) to the 1.5 V  
level on the leading edge of the output pulse (see Figure 10).  
11. The tPLH propagation delay is measured from the 2.5 V level of the trailing edge of a 5.0 V input pulse (1 µs fall time) to the 1.5 V  
level on the trailing edge of the output pulse (see Figure 10).  
12. Common mode transient immunity in Logic High level is the maximum tolerable (positive) dVCM/dt on the leading edge of the  
common mode pulse, VCM, to insure that the output will remain in a Logic High state (i.e., VO > 2.0 V). Common mode transient  
immunity in Logic Low level is the maximum tolerable (negative) dVCM/dt on the trailing edge of the common mode pulse signal,  
VCM, to insure that the output will remain in a Logic Low state (i.e., VO < 0.8 V). See Figure 11.  
13. In applications where dVCM/dt may exceed 50,000 V/µs (such as static discharge), a series resistor, RCC, should be included to  
protect the detector IC from destructively high surge currents. The recommended value for RCC is 240 per volt of allowable drop  
in VCC (between Pin 8 and VCC) with a minimum value of 240 .  
14. Logic low output level at Pin 6 occurs under the conditions of VIN VTH+ as well as the range of VIN > VTH– once VIN has exceeded  
VTH+. Logic high output level at Pin 6 occurs under the conditions of VIN VTH- as well as the range of VIN < VTH+ once VIN has  
decreased below VTH-  
.
15. AC voltage is instantaneous voltage.  
16. Device considered a two terminal device: Pins 1, 2, 3, 4 connected together, and Pins 5, 6, 7, 8 connected together.  
17. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage 3000 V rms for 1 second  
(leakage detection current limit, Ii-o 5 µA).  
Figure 1. Typical Input Characteristics, IIN vs. VIN (AC Voltage is Instantaneous Value).  
1-355  
INPUT  
DEVICE  
TH+  
TH–  
CONNNECTION  
ITH  
HCPL-3700 2.5 mA 1.3 mA  
HCPL-3760 1.2 mA 0.6 mA  
PINS 2, 3  
OR 1, 4  
VTH(dc)  
VTH(ac)  
BOTH  
BOTH  
3.7 V  
4.9 V  
2.6 V  
3.7 V  
PINS 2, 3  
PINS 1, 4  
Figure 2. Typical Transfer Characteristics.  
HCPL-3700  
HCPL-3760  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
4.2  
4.0  
3.8  
3.6  
3.4  
1.6  
1.5  
1.4  
1.3  
1.2  
V
I
TH+  
V
I
TH+  
TH+  
TH+  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
V
TH-  
TH-  
V
TH-  
I
I
TH-  
0.4  
-40 -20  
T
0
20  
40  
60  
80  
-40 -25  
0
25  
– TEMPERATURE – °C  
A
50  
75 85  
– TEMPERATURE – °C  
T
A
Figure 3. Typical DC Threshold Levels vs. Temperature.  
1-356  
0
10  
I
-1  
-2  
-3  
CCH  
= 18 V  
10  
10  
10  
I
CCH  
V
V
I
CC  
= OPEN  
= 0 mA  
O
IN  
-4  
10  
10  
-5  
-40 -25  
0
25  
50  
75 85  
T
– TEMPERATURE – °C  
A
Figure 4. Typical High Level Supply Current, ICCH vs.  
Temperature.  
HCPL-3700  
HCPL-3760  
4.2  
4.0  
3.8  
3.6  
3.4  
240  
220  
200  
180  
160  
2.1  
2.0  
1.9  
1.8  
1.7  
240  
220  
200  
180  
160  
I
IN  
= 5.0 V  
I
IN  
V
IN  
(PINS 2, 3)  
V
= 5.0 V  
IN  
(PINS 2, 3)  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
140  
120  
100  
80  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
140  
120  
100  
80  
V
= 5.0 V  
CC  
V
= 5.0 V  
CC  
V
V
OL  
OL  
= 5.0 V  
V
I
= 5.0 V  
= 4.2 mA  
V
I
CC  
CC  
= 4.2 mA  
60  
60  
OL  
OL  
40  
40  
20  
20  
0
0
-40 -20  
T
0
20  
40  
60  
80  
-40 -25  
0
25  
– TEMPERATURE – °C  
A
50  
75 85  
– TEMPERATURE – °C  
T
A
Figure 5. Typical Input Current, IIN, and Low Level Output Voltage, VOL, vs. Temperature.  
HCPL-3700  
HCPL-3760  
4.00  
3.50  
3.00  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0
2.50  
2.00  
1.50  
1.00  
0.50  
0
4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0  
4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0  
V
– SUPPLY VOLTAGE – V  
V
– SUPPLY VOLTAGE – V  
CC  
CC  
Figure 6. Typical Logic Low Supply Current vs. Supply Voltage.  
1-357  
HCPL-3700  
HCPL-3760  
24  
22  
20  
18  
16  
24  
22  
20  
18  
16  
R
C
V
= 4.7 k  
= 30 pF  
= 5.0 V  
R
C
V
= 4.7 k  
= 30 pF  
= 5.0 V  
L
L
CC  
L
L
CC  
5.0 V  
5.0 V  
1 ms PULSE WIDTH  
f = 100 Hz  
1 ms PULSE WIDTH  
f = 100 Hz  
V
=
V
=
IN  
IN  
t , t = 1 µs (10-90%)  
t , t = 1 µs (10-90%)  
r
f
t
t
r
f
PLH  
t
t
14  
12  
10  
8
14  
12  
10  
8
PLH  
6
6
4
4
PHL  
PHL  
2
2
0
0
-40 -20  
T
0
20  
40  
60  
80  
-40 -25  
0
25  
50  
75 85  
– TEMPERATURE – °C  
T
– TEMPERATURE – °C  
A
A
Figure 7. Typical Propagation Delay vs. Temperature.  
HCPL-3700  
HCPL-3760  
60  
50  
40  
30  
20  
600  
500  
400  
300  
200  
30  
700  
R
C
V
= 4.7 k  
= 30 pF  
= 5.0 V  
L
L
CC  
25  
20  
15  
10  
5
600  
500  
400  
300  
200  
100  
5.0 V  
1 ms PULSE WIDTH  
f = 100 Hz  
V
=
IN  
t , t = 1 µs (10-90%)  
r
f
t
f
R
C
V
= 4.7 kΩ  
L
L
t
= 30 pF  
= 5.0 V  
r
CC  
5.0 V  
t
r
1 ms PULSE WIDTH  
f = 100 Hz  
t , t = 1 µs (10-90%)  
V
=
IN  
t
10  
0
100  
0
f
r
f
0
-40 -20  
T
0
20  
40  
60  
80  
-40 -25  
0
25  
50  
75 85  
– TEMPERATURE – °C  
T
– TEMPERATURE – °C  
A
A
Figure 8. Typical Rise, Fall Times vs. Temperature.  
5000  
V
I
= 5.0 V  
CC  
IN  
= 3.11 mA (3700)  
= 1.53 mA (3760)  
= 0.8 V  
= 4.7 k  
= 25 °C  
I
IN  
OL  
4000  
3000  
2000  
V
R
T
L
A
CM  
V
= 5.0 V CM  
CC  
L
H
I
= 0 mA  
= 2.0 V  
IN  
V
R
T
OH  
= 4.7 kΩ  
L
= 25 °C  
A
1000  
500  
0
0
400  
800  
1200  
1600  
2000  
V
– COMMON MODE TRANSIENT AMPLITUDE – V  
CM  
Figure 9. Common Mode Transient Immunity  
vs. Common Mode Transient Amplitude.  
1-358  
Figure 10. Switching Test Circuit.  
Figure 11. Test Circuit for Common Mode Transient Immunity and Typical Waveforms.  
V
V
V
V
= 3.7 V  
= 2.6 V  
= 4.9 V  
= 3.7 V  
TH+  
TH–  
TH+  
TH–  
I
I
T
= 2.5 mA  
= 1.3 mA  
= 25 °C  
TH+  
TH–  
A
Figure 12. Typical External Threshold Characteristics, V± vs. RX.  
1-359  
Figure 13. External Threshold Voltage Level Selection.  
Electrical Considerations  
The HCPL-3700/3760 optocoup-  
lers have internal temperature  
compensated, predictable voltage  
and current threshold points  
which allow selection of an  
external resistor, RX, to determine  
larger external threshold voltage  
levels. For a desired external  
threshold voltage, V± , a corre-  
sponding typical value of RX can  
be obtained from Figure 12.  
The low clamp condition in  
For one specifically selected  
external threshold voltage level  
conjunction with the low input  
current feature will ensure  
extremely low input power  
dissipation.  
V+ or V, RX can be determined  
-
without use of RP via  
V - V  
+ (-) TH+(-)  
In applications where dVCM/dt  
may be extremely large (such as  
static discharge), a series resistor,  
RCC, should be connected in  
series with VCC and Pin 8 to pro-  
tect the detector IC from destruc-  
tively high surge currents. See  
Note 13 for determination of RCC  
In addition, it is recommended  
that a ceramic disc bypass  
capacitor of 0.01 µF be placed  
between Pins 8 and 5 to reduce  
the effect of power supply noise.  
RX =  
(1)  
ITH+  
(-)  
For two specifically selected  
external threshold voltage levels,  
V+ and V-, the use of RX and RP  
will permit this selection via  
equations (2), (3) provided the  
following conditions are met. If  
the denominator of equation (2)  
is positive, then  
Specific calculation of RX can be  
obtained from Equation (1).  
.
Specification of both V+ and V  
-
voltage threshold levels simul-  
taneously can be obtained by the  
use of RX and RP as shown in  
Figure 13 and determined by  
Equations (2) and (3).  
V+  
V-  
VTH+  
VTH-  
V+ - VTH+ ITH+  
and <  
For interfacing ac signals to TTL  
V- - VTH-  
ITH-  
systems, output low pass filtering  
can be performed with a pullup  
resistor of 1.5 kand 20 µF  
capacitor. This application  
requires a Schmitt trigger gate to  
avoid slow rise time chatter  
problems. For ac input applica-  
tions, a filter capacitor can be  
placed across the dc input  
terminals for either signal or  
transient filtering.  
RX can provide over-current  
transient protection by limiting  
input current during a transient  
condition. For monitoring con-  
tacts of a relay or switch, the  
HCPL-3700/3760 in combination  
with RX and RP can be used to  
allow a specific current to be  
conducted through the contacts  
for cleaning purposes (wetting  
current).  
Conversely, if the denominator of  
equation (2) is negative, then  
V+  
V-  
VTH+  
VTH-  
V+ - VTH+ ITH+  
and >  
V- - VTH-  
ITH-  
VTH- (V+) - VTH+ (V-)  
RX =  
(2)  
ITH+ (VTH-) - ITH- (VTH+  
)
Either ac (Pins 1, 4) or dc  
(Pins 2, 3) input can be used to  
determine external threshold  
levels.  
The choice of which input voltage  
clamp level to choose depends  
upon the application of this  
device (see Figure 1). It is recom-  
mended that the low clamp  
VTH- (V+) - VTH+ (V-)  
RP =  
(3)  
ITH+(V--VTH-)+ITH-(VTH+-V+)  
condition be used when possible.  
1-360  

相关型号:

HCPL-3760#300

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, SURFACE MOUNT, DIP-8
AGILENT

HCPL-3760#300

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, SURFACE MOUNT, DIP-8
AVAGO

HCPL-3760#500

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, SURFACE MOUNT, DIP-8
AGILENT

HCPL-3760-000E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, ROHS COMPLIANT, DIP-8
AVAGO

HCPL-3760-020

AC/DC to Logic Interface Optocouplers
AGILENT

HCPL-3760-020

AC/DC to Logic Interface Optocouplers
HP

HCPL-3760-020

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, DIP-8
AVAGO

HCPL-3760-020E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, LEAD FREE, DIP-8
AVAGO

HCPL-3760-300

AC/DC to Logic Interface Optocouplers
AGILENT

HCPL-3760-300

AC/DC to Logic Interface Optocouplers
HP

HCPL-3760-300E

Logic IC Output Optocoupler, 1-Element, 3750V Isolation, 0.300 INCH, LEAD FREE, SURFACE MOUNT, DIP-8
AGILENT

HCPL-3760-300E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, ROHS COMPLIANT, SURFACE MOUNT, DIP-8
AVAGO