HA17431FPA [HITACHI]

Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp.; 关于文件中提到的名字,如日立电器和日立XX的变化,瑞萨科技公司
HA17431FPA
型号: HA17431FPA
厂家: HITACHI SEMICONDUCTOR    HITACHI SEMICONDUCTOR
描述:

Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp.
关于文件中提到的名字,如日立电器和日立XX的变化,瑞萨科技公司

光电二极管
文件: 总26页 (文件大小:234K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
To all our customers  
Regarding the change of names mentioned in the document, such as Hitachi  
Electric and Hitachi XX, to Renesas Technology Corp.  
The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas  
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog  
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)  
Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand  
names are mentioned in the document, these names have in fact all been changed to Renesas  
Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and  
corporate statement, no changes whatsoever have been made to the contents of the document, and  
these changes do not constitute any alteration to the contents of the document itself.  
Renesas Technology Home Page: http://www.renesas.com  
Renesas Technology Corp.  
Customer Support Dept.  
April 1, 2003  
Cautions  
Keep safety first in your circuit designs!  
1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better  
and more reliable, but there is always the possibility that trouble may occur with them. Trouble with  
semiconductors may lead to personal injury, fire or property damage.  
Remember to give due consideration to safety when making your circuit designs, with appropriate  
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or  
(iii) prevention against any malfunction or mishap.  
Notes regarding these materials  
1. These materials are intended as a reference to assist our customers in the selection of the Renesas  
Technology Corporation product best suited to the customer's application; they do not convey any  
license under any intellectual property rights, or any other rights, belonging to Renesas Technology  
Corporation or a third party.  
2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any  
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or  
circuit application examples contained in these materials.  
3. All information contained in these materials, including product data, diagrams, charts, programs and  
algorithms represents information on products at the time of publication of these materials, and are  
subject to change by Renesas Technology Corporation without notice due to product improvements or  
other reasons. It is therefore recommended that customers contact Renesas Technology Corporation  
or an authorized Renesas Technology Corporation product distributor for the latest product information  
before purchasing a product listed herein.  
The information described here may contain technical inaccuracies or typographical errors.  
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss  
rising from these inaccuracies or errors.  
Please also pay attention to information published by Renesas Technology Corporation by various  
means, including the Renesas Technology Corporation Semiconductor home page  
(http://www.renesas.com).  
4. When using any or all of the information contained in these materials, including product data, diagrams,  
charts, programs, and algorithms, please be sure to evaluate all information as a total system before  
making a final decision on the applicability of the information and products. Renesas Technology  
Corporation assumes no responsibility for any damage, liability or other loss resulting from the  
information contained herein.  
5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device  
or system that is used under circumstances in which human life is potentially at stake. Please contact  
Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor  
when considering the use of a product contained herein for any specific purposes, such as apparatus or  
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.  
6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in  
whole or in part these materials.  
7. If these products or technologies are subject to the Japanese export control restrictions, they must be  
exported under a license from the Japanese government and cannot be imported into a country other  
than the approved destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the  
country of destination is prohibited.  
8. Please contact Renesas Technology Corporation for further details on these materials or the products  
contained therein.  
HA17431 Series  
Shunt Regulator  
ADE-204-049A (Z)  
Rev.1  
Sep. 2002  
Description  
The HA17431 series is temperature-compensated variable shunt regulators. The main application of these  
products is in voltage regulators that provide a variable output voltage. The on-chip high-precision  
reference voltage source can provide 1% accuracy in the V versions, which have a VKA max of 16 volts.  
The HA17431VLP, which is provided in the MPAK-5 package, is designed for use in switching mode  
power supplies. It provides a built-in photocoupler bypass resistor for the PS pin, and an error amplifier  
can be easily constructed on the supply side.  
Features  
The V versions provide 2.500 V 1% at Ta = 25°C  
The HA17431VLP includes a photocoupler bypass resistor (2 k)  
The reference voltage has a low temperature coefficient  
The MPAK-5(5-pin), MPAK(3-pin) and UPAK miniature packages are optimal for use on high  
mounting density circuit boards  
Car use is provided  
Block Diagram  
K
PS*  
2kΩ  
+
REF  
2.500V  
A
Note: * The PS pin is only provided by the HA17431VLP.  
HA17431 Series  
Application Circuit Example  
Switching power supply secondary-side error amplification circuit  
Vout  
R
R1  
+
K
A
PS  
2kΩ  
REF  
R2  
GND  
HA17431VLP  
Ordering Information  
Version  
Operating  
Temperature  
Range  
Normal  
Version  
Item  
Package  
V Version  
1ꢀ  
A Version  
2ꢁ2ꢀ  
Reference  
voltage  
(at 25°C)  
Accuracy  
Max  
4ꢀ  
2ꢁ525 V  
2ꢁ550 V  
2ꢁ595 V  
2ꢁ495 V  
2ꢁ395 V  
40 V max  
Typ  
2ꢁ500 V  
2ꢁ495 V  
Min  
2ꢁ475 V  
2ꢁ440 V  
Cathode voltage  
Cathode current  
Car use  
16 V max  
50 mA max  
HA17431VPJ  
40 V max  
150 mA max  
150 mA max  
TO-92  
40 to +85°C  
HA17431PNAJ  
HA17431PAJ  
TO-92MOD  
FP-8D  
HA17431PJ  
HA17431FPAJ  
HA17431FPJ  
Rev.1, Sep. 2002, page 2 of 24  
HA17431 Series  
Ordering Information (cont.)  
Version  
Operating  
Temperature  
Range  
Normal  
Version  
Item  
Package  
V Version  
A Version  
Industrial use  
HA17431VLTP  
HA17432VLTP  
HA17431VLP  
HA17431VP  
MPAK  
20 to +85°C  
MPAK-5  
TO-92  
HA17431PNA  
HA17431UPA  
HA17431VUP  
HA17432VUP  
UPAK  
HA17432UPA  
HA17431PA  
TO-92MOD  
FP-8D  
HA17431P  
HA17431FPA  
HA17431FP  
Commercial use  
HA17431UA  
HA17432UA  
UPAK  
Pin Arrangement  
MPAK-5  
MPAK  
(HA17431VLTP)  
MPAK  
(HA17432VLTP)  
UPAK  
UPAK  
(HA17431UA/UPA/VUP)  
(HA17432UA/UPA/VUP)  
A
A
NC  
PS  
A
3
A
5
4
3
3
1
2
1
REF  
2
1
2
1
REF  
2
3
1
2
3
REF  
REF A  
K
K
K
REF  
A
K
K
A
FP-8D  
TO-92  
TO-92MOD  
Mark side  
REF NC  
A
6
NC  
5
8
7
Mark side  
1
2
3
1
2
3
1
2
3
4
K
NC NC NC  
REF A  
K
REF A  
K
Revꢁ1, Sepꢁ 2002, page 3 of 24  
HA17431 Series  
Absolute Maximum Ratings  
(Ta = 25°C)  
Item  
Symbol HA17431VLP  
HA17431VP  
HA17431VPJ  
Unit  
V
Notes  
1
Cathode voltage  
PS termꢁ voltage  
VKA  
VPS  
IK  
16  
16  
16  
VKA to 16  
50 to +50  
V
1,2,3  
Continuous  
50 to +50  
50 to +50  
mA  
cathode current  
Reference input  
current  
Iref  
0ꢁ05 to +10  
0ꢁ05 to +10  
0ꢁ05 to +10  
mA  
Power dissipation PT  
150 *4  
500 *5  
500 *5  
mW  
4, 5  
Operating  
temperature  
range  
Topr  
20 to +85  
20 to +85  
40 to +85  
°C  
Storage  
Tstg  
55 to +150  
55 to +150  
55 to +150  
°C  
temperature  
Item  
Symbol HA17431VUP/HA17432VUP  
HA17431VLTP/HA17432VLTP  
Unit  
V
Notes  
1
Cathode voltage  
PS termꢁ voltage  
VKA  
VPS  
IK  
16  
16  
V
1,2,3  
Continuous  
50 to +50  
50 to +50  
mA  
cathode current  
Reference input  
current  
Iref  
0ꢁ05 to +10  
0ꢁ05 to +10  
mA  
Power dissipation PT  
800 *8  
150 *4  
mW  
4, 8  
Operating  
temperature  
range  
Topr  
20 to +85  
20 to +85  
°C  
Storage  
Tstg  
55 to +150  
55 to +150  
°C  
temperature  
HA17431UA/UPA/  
Item  
Symbol HA17431PNA HA17431P/PA HA17431FP/FPA HA17432UA/UPA  
Unit  
V
Notes  
VKA  
IK  
40  
40  
40  
40  
1
Cathode voltage  
100 to +150  
100 to +150  
100 to +150  
100 to +150  
mA  
Continuous  
cathode current  
Iref  
0ꢁ05 to +10  
0ꢁ05 to +10  
0ꢁ05 to +10  
0ꢁ05 to +10  
mA  
Reference input  
current  
PT  
500 *5  
800 *6  
500 *7  
800 *8  
mW  
5,6,7,8  
Power dissipation  
Topr  
20 to +85  
20 to +85  
20 to +85  
20 to +85  
°C  
Operating  
temperature  
range  
Tstg  
55 to +150  
55 to +150  
55 to +125  
55 to +150  
°C  
Storage  
temperature  
Revꢁ1, Sepꢁ 2002, page 4 of 24  
HA17431 Series  
Absolute Maximum Ratings (cont.)  
(Ta = 25°C)  
Item  
Symbol HA17431PNAJ  
HA17431PJ/PAJ  
40  
HA17431FPJ/FPAJ  
40  
Unit  
V
Notes  
Cathode voltage  
VKA  
IK  
40  
1
Continuous  
100 to +150  
100 to +150  
100 to +150  
mA  
cathode current  
Reference input  
current  
Iref  
0ꢁ05 to +10  
0ꢁ05 to +10  
0ꢁ05 to +10  
mA  
Power dissipation PT  
500 *5  
800 *6  
500 *7  
mW  
5,6,7  
Operating  
temperature  
range  
Topr  
40 to +85  
40 to +85  
40 to +85  
°C  
Storage  
Tstg  
55 to +150  
55 to +150  
55 to +125  
°C  
temperature  
Notes: 1ꢁ Voltages are referenced to anodeꢁ  
2ꢁ The PS pin is only provided by the HA17431VLPꢁ  
3ꢁ The PS pin voltage must not fall below the cathode voltageꢁ If the PS pin is not used, the PS pin  
is recommended to be connected with the cathodeꢁ  
4ꢁ Ta 25°Cꢁ If Ta > 25°C, derate by 1ꢁ2 mW/°Cꢁ  
5ꢁ Ta 25°Cꢁ If Ta > 25°C, derate by 4ꢁ0 mW/°Cꢁ  
6ꢁ Ta 25°Cꢁ If Ta > 25°C, derate by 6ꢁ4 mW/°Cꢁ  
7ꢁ 50 mm × 50 mm × 1ꢁ5mmt glass epoxy board(5ꢀ wiring density), Ta 25°Cꢁ If Ta > 25°C,  
derate by 5 mW/°Cꢁ  
8ꢁ 15 mm × 25 mm × 0ꢁ7mmt alumina ceramic board,Ta 25°Cꢁ If Ta > 25°C, derate by 6ꢁ4  
mW/°Cꢁ  
Revꢁ1, Sepꢁ 2002, page 5 of 24  
HA17431 Series  
Electrical Characteristics  
HA17431VLP/VP/VPJ/VUP/VLTP, HA17432VUP/VLTP  
(Ta = 25°C, IK = 10 mA)  
Item  
Symbol  
Vref  
Min  
2ꢁ475  
Typ  
2ꢁ500  
10  
Max  
2ꢁ525  
Unit  
V
Test Conditions  
Notes  
Reference voltage  
VKA = Vref  
Reference voltage  
temperature  
deviation  
Vref(dev)  
mV  
VKA = Vref,  
1
Ta = 20°C to +85°C  
Reference voltage  
temperature  
Vref/Ta  
30  
ppm/°C VKA = Vref,  
0°C to 50°C gradient  
coefficient  
Reference voltage  
regulation  
Vref/VKA  
Iref  
2ꢁ0  
2
3ꢁ7  
6
mV/V  
µA  
VKA = Vref to 16 V  
Reference input  
current  
R1 = 10 k, R2 = ∞  
Reference current  
temperature  
deviation  
Iref(dev)  
0ꢁ5  
µA  
R1 = 10 k, R2 = ,  
Ta = 20°C to +85°C  
Minimum cathode  
current  
Imin  
Ioff  
ZKA  
0ꢁ4  
1ꢁ0  
1ꢁ0  
0ꢁ5  
mA  
µA  
VKA = Vref  
2
Off state cathode  
current  
0ꢁ001  
0ꢁ2  
VKA = 16 V, Vref = 0 V  
Dynamic  
impedance  
VKA = Vref,  
IK = 1 mA to 50 mA  
Bypass resistance  
RPS  
1ꢁ6  
2ꢁ0  
2ꢁ4  
kΩ  
IPS = 1 mA  
3
3
Bypass resistance  
temperature  
RPS/Ta  
+2000  
ppm/°C IPS = 1 mA,  
0°C to 50°C gradient  
coefficient  
Revꢁ1, Sepꢁ 2002, page 6 of 24  
HA17431 Series  
Electrical Characteristics (cont.)  
HA17431PJ/PAJ/FPJ/FPAJ/P/PA/UA/UPA/FP/FPA/PNA/PNAJ, HA17432UA/UPA  
(Ta = 25°C, IK = 10 mA)  
Item  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions  
Notes  
A
Reference voltage  
Vref  
2ꢁ440  
2ꢁ395  
2ꢁ495  
2ꢁ495  
11  
2ꢁ550  
2ꢁ595  
(30)  
V
VKA = Vref  
Normal  
1, 4  
Reference voltage  
temperature  
deviation  
Vref(dev)  
mV  
VKA = Vref Ta =  
20°C to  
+85°C  
5
(17)  
Ta = 0°C  
to +70°C  
1, 4  
Reference voltage  
regulation  
Vref/VKA  
1ꢁ4  
1
3ꢁ7  
2ꢁ2  
6
mV/V  
VKA = Vref to 10 V  
VKA = 10 V to 40 V  
R1 = 10 k, R2 = ∞  
Reference input  
current  
Iref  
3ꢁ8  
µA  
µA  
Reference current  
temperature  
deviation  
Iref(dev)  
0ꢁ5  
(2ꢁ5)  
R1 = 10 k, R2 = ,  
Ta = 0°C to +70°C  
4
2
Minimum cathode  
current  
Imin  
Ioff  
ZKA  
0ꢁ4  
1ꢁ0  
1ꢁ0  
0ꢁ5  
mA  
µA  
VKA = Vref  
Off state cathode  
current  
0ꢁ001  
0ꢁ2  
VKA = 40 V, Vref = 0 V  
Dynamic  
impedance  
VKA = Vref,  
IK = 1 mA to 100 mA  
Notes: 1ꢁ Vref(dev) = Vref(max) Vref(min)  
Vref(max)  
Vref(dev)  
Vref(min)  
Ta Max  
Ta Min  
2ꢁ Imin is given by the cathode current at Vref = Vref(IK=10mA) 15 mVꢁ  
3ꢁ RPS is only provided in HA17431VLPꢁ  
4ꢁ The maximum value is a design value (not measured)ꢁ  
Revꢁ1, Sepꢁ 2002, page 7 of 24  
HA17431 Series  
MPAK-5(5-pin), MPAK(3-pin) and UPAK Marking Patterns  
The marking patterns shown below are used on MPAK-5, MPAK and UPAK products. Note that the  
product code and mark pattern are different. The pattern is laser-printed.  
HA17431VLP  
HA17431VLTP  
HA17432VLTP  
HA17431UA  
HA17431UPA  
NC  
PS  
A
A
REF  
A
REF  
A
4
A
4
B
(1)  
(2)  
P
(b)  
(4)  
(1)  
3
(2)  
A
(b)  
(4)  
(c)  
(1)  
3
(2)  
B
(b)  
(4)  
(c)  
(1)  
(2)  
(1)  
(2)  
4
A
A
(a)  
(c)  
(a)  
(a)  
Band mark  
K
Band mark  
K
REF  
A
K
REF  
K
K
REF  
(3)  
(4)  
(5)  
(3)  
(4)  
(5)  
HA17432UA  
HA17432UPA  
HA17431VUP  
HA17432VUP  
K
A
K
A
REF  
K
4
C
4
F
4
R
4
S
(1)  
(2)  
(1)  
(2)  
(1)  
(2)  
(1)  
(2)  
A
A
A
A
A
A
Band mark  
REF  
Band mark  
REF  
Band mark  
K
Band mark  
REF  
(3)  
(4)  
(5)  
(3)  
(4)  
(5)  
(3)  
(4)  
(5)  
(3)  
(4)  
(5)  
Notes: 1ꢁ Boxes (1) to (5) in the figures show the position of the letters or numerals, and are not actually  
marked on the packageꢁ  
2ꢁ The letters (1) and (2) show the product specific mark patternꢁ  
Product  
(1)  
4
(2)  
P
R
S
A
B
A
B
C
F
HA17431VLP  
HA17431VUP  
HA17432VUP  
HA17431VLTP  
HA17432VLTP  
HA17431UA  
HA17431UPA  
HA17432UA  
HA17432UPA  
4
4
3
3
4
4
4
4
3ꢁ The letter (3) shows the production year code (the last digit of the year) for UPAK productsꢁ  
4ꢁ The bars (a), (b) and (c) show a production year code for MPAK-5 and MPAK products as shown  
belowꢁ After 2010 the code is repeated every 8 yearsꢁ  
Year  
(a)  
2002  
None  
None  
Bar  
2003  
None  
Bar  
2004  
None  
Bar  
2005  
Bar  
2006  
Bar  
2007  
Bar  
2008  
Bar  
2009  
None  
None  
None  
(b)  
None  
None  
None  
Bar  
Bar  
Bar  
(c)  
None  
Bar  
None  
Bar  
5ꢁ The letter (4) shows the production month code (see table below)ꢁ  
Production month  
Marked code  
Janꢁ Febꢁ Marꢁ Aprꢁ Mayꢁ Junꢁ Julꢁ Augꢁ Sepꢁ Octꢁ  
Novꢁ Decꢁ  
A
B
C
D
E
F
G
H
J
K
L
M
6ꢁ The letter (5) shows manufacturing codeꢁ For UPAK productsꢁ  
Revꢁ1, Sepꢁ 2002, page 8 of 24  
HA17431 Series  
Characteristics Curves  
HA17431VLP/VP/VPJ/VUP/VLTP, HA17432VUP/VLTP  
Reference Voltage Temperature Characteristics  
2ꢁ575  
V =Vref  
K
I =10mA  
K
2ꢁ550  
2ꢁ525  
2.500  
2ꢁ475  
2ꢁ450  
2ꢁ425  
K
A
V
I
Vref  
K
REF  
20  
0
20  
40  
60  
80 85  
Ambient temperature Ta (˚C)  
Cathode Current vs. Cathode Voltage Characteristics 1  
1.0  
Cathode Current vs. Cathode Voltage Characteristics 2  
50  
V =Vref  
K
V =Vref  
K
0.5  
0
0
50  
0
1
2
3
4
5
5  
0
5
1V/DIV  
1V/DIV  
Cathode voltage VK (V)  
Cathode voltage VK (V)  
Revꢁ1, Sepꢁ 2002, page 9 of 24  
HA17431 Series  
Dynamic Impedance vs. Frequency Characteristics  
100  
10  
K
A
V
V
K
I
io  
K
REF  
1
0.1  
i
= 2 mA  
P-P  
O
V
K
Z
=
()  
KA  
i
O
0.01  
100  
1k  
10k  
100k  
1M  
Frequency f (Hz)  
Open Loop Voltage Gain, Phase vs. Frequency Characteristics  
0
220Ω  
Vo  
50  
I =10mA  
K
15kΩ  
10µF  
K
A
+
GVOL  
REF  
180  
360  
Vi  
8.2kΩ  
0
Vo  
Vi  
G = 20log  
(dB)  
100  
1k  
10k  
100k  
1M  
10M  
Frequency f (Hz)  
Rev.1, Sep. 2002, page 10 of 24  
HA17431 Series  
HA17431PJ/PAJ/FPJ/FPAJ/P/PA/UA/UPA/FP/FPA/PNA/PNAJ, HA17432UA/UPA  
Oscillation Stability vs. Load Capacitance between Anode and Cathode  
1.5  
150  
Oscillation  
region  
Stable  
region  
100  
50  
0
V
CC  
C
L
0.0001  
0.001  
0.01  
0.1  
1.0 2.0  
Load capacitance CL (µF)  
Open Loop Voltage Gain, Phase vs. Frequency Characteristics (1)  
(With no feedback capacitance)  
60  
GV  
IK = 10 mA  
50  
0
40  
φ
30  
20  
10  
0
90  
220 Ω  
15 kΩ  
10 µF  
Vout  
180  
Vin  
8.2 kGND  
10  
100  
1 k  
10 k  
100 k  
Frequency f (Hz)  
Open Loop Voltage Gain, Phase vs. Frequency Characteristics (2)  
(When a feedback capacitance (Cf) is provided)  
IK = 5 mA  
10  
Gυ  
Gυ  
8
5
180  
Cf = 0.022 µF  
φ
Cf = 0.22 µF  
270  
360  
2 k  
Vout  
+
Cf  
0
200 µF  
20 V  
2.4 kΩ  
Vin  
GND  
50 Ω  
4  
10  
100  
1 k  
10 k  
Frequency f (Hz)  
Rev.1, Sep. 2002, page 11 of 24  
HA17431 Series  
Reference Voltage Pin Input Current vs. Cathode Voltage Characteristics  
2.5  
2.0  
1.5  
1.0  
IK = 10 mA  
0.5  
0
5
10  
15  
20  
25  
30  
35  
40  
Cathode voltage VK (V)  
Reference Voltage Temperature Characteristics  
2.50  
Pulse Response  
INPUT  
(P.G)  
5
4
3
2
1
VKA = Vref  
IK = 10 mA  
2.49  
2.48  
2.47  
2.46  
2.45  
2.44  
OUTPUT  
(Vout)  
220 Ω  
50 Ω  
Vout  
GND  
P.G  
f = 100 kHz  
0
1
2
3
4
5
6
20  
0
20  
40  
60  
80 85  
Time t (µs)  
Ambient temperature Ta (˚C)  
Rev.1, Sep. 2002, page 12 of 24  
HA17431 Series  
Reference Voltage Pin Input Current  
Temperature Characteristics  
Cathode Current vs. Cathode Voltage Characteristics (1)  
150  
3
2.5  
2
R1 = 10 kΩ  
R2 = ∞  
120  
100  
80  
IK = 10 mA  
60  
40  
1.5  
1
20  
0
20  
VK = Vref  
Ta = 25˚C  
40  
0.5  
60  
80  
0
20  
100  
0
20  
40  
60  
80 85  
2 1  
0
1
2
3
Ambient temperature Ta (˚C)  
Cathode voltage VK (V)  
Cathode Current Temperature Characteristics  
Cathode Current vs. Cathode Voltage Characteristics (2)  
1.2  
when Off State  
2
VKA = 40 V  
Vref = 0  
VKA = Vref  
Ta = 25˚C  
1.0  
0.8  
0.6  
1.5  
Imin  
0.4  
1
0.2  
0.5  
20  
0
1
2
3
0
20  
40  
60  
80 85  
Cathode voltage VK (V)  
Ambient temperature Ta (˚C)  
Rev.1, Sep. 2002, page 13 of 24  
HA17431 Series  
Application Examples  
As shown in the figure on the right, this IC operates as an inverting amplifier, with the REF pin as input  
pin. The open-loop voltage gain is given by the reciprocal of reference voltage deviation by cathode  
voltage changein the electrical specifications, and is approximately 50 to 60 dB. The REF pin has a high  
input impedance, with an input current Iref of 3.8 µA Typ (V version: Iref = 2 µA Typ). The output  
impedance of the output pin K (cathode) is defined as dynamic impedance ZKA, and ZKA is low (0.2 ) over  
a wide cathode current range. A (anode) is used at the minimum potential, such as ground.  
K
REF  
VCC  
OUT  
+
VEE  
VZ 2.5V  
A
Figure 1 Operation Diagram  
Application Hints  
No.  
Application Example  
Reference voltage generation circuit  
Description  
1
This is the simplest reference voltage circuit. The value  
of the resistance R is set so that cathode current IK 1  
Vin  
Vout  
mA.  
R
K
A
Output is fixed at Vout 2.5 V.  
CL  
GND  
REF  
The external capacitor CL (CL 3.3 µF) is used to  
prevent oscillation in normal applications.  
GND  
2
Variable output shunt regulator circuit  
This is circuit 1 above with variable output provided.  
Vin  
Vout  
(R1 + R2)  
Here, Vout 2.5 V ×  
R2  
R
Iref  
R1  
R2  
K
A
Since the reference input current Iref = 3.8 µA Typ (V  
version: Iref = 2 µA Typ) flows through R1, resistance  
values are chosen to allow the resultant voltage drop to  
be ignored.  
CL  
REF  
GND  
GND  
Rev.1, Sep. 2002, page 14 of 24  
HA17431 Series  
Application Hints (cont.)  
No.  
Application Example  
Description  
3
Single power supply inverting  
comparator circuit  
This is an inverting type comparator with an input  
threshold voltage of approximately 2.5 V. Rin is the  
REF pin protection resistance, with a value of several  
kto several tens of k.  
VCC  
RL  
RL is the load resistance, selected so that the cathode  
current IK 1 mA when Vout is low.  
Vout  
Rin  
K
A
Vin  
Condition Vin  
Vout  
IC  
REF  
C1  
C2  
Less then 2.5 V  
2.5 V or more  
VCC (VOH  
)
OFF  
ON  
GND  
GND  
Approx. 2 V (VOL  
)
4
AC amplifier circuit  
Cf  
This is an AC amplifier with voltage gain G = R1 /  
(R2//R3). The input is cut by capacitance Cin, so that  
the REF pin is driven by the AC input signal, centered  
on 2.5 VDC.  
VCC  
RL  
R1  
R2 also functions as a resistance that determines the  
DC cathode potential when there is no input, but if the  
input level is low and there is no risk of Vout clipping to  
VCC, this can be omitted.  
Vout  
K
A
Cin  
R3  
Vin  
REF  
To change the frequency characteristic, Cf should be  
connected as indicated by the dotted line.  
R2  
GND  
R1  
R2 // R3  
Gain G =  
(DC gain)  
1
Cutoff frequency fc =  
2π Cf (R1 // R2 // R3)  
5
Switching power supply error  
amplification circuit  
This circuit performs control on the secondary side of a  
transformer, and is often used with a switching power  
supply that employs a photocoupler for offlining.  
+
The output voltage (between V+ and V) is given by the  
V
R4  
+
following formula:  
R3  
Cf  
LED  
(R1 + R2)  
Vout 2.5 V ×  
R2  
R1  
(Note)  
In this circuit, the gain with respect to the Vout error is  
as follows:  
Secondary  
side GND  
R2  
R2  
(R1 + R2)  
HA17431 open  
loop gain  
photocoupler  
total gain  
G =  
×
×
V
As stated earlier, the HA17431 open-loop gain is 50 to  
60 dB.  
Note: LED : Light emitting diode in photocoupler  
R3 : Bypass resistor to feed IK(>Imin)  
when LED current vanishes  
R4 : LED protection resistance  
Rev.1, Sep. 2002, page 15 of 24  
HA17431 Series  
Application Hints (cont.)  
No.  
Application Example  
Description  
6
Constant voltage regulator circuit  
This is a 3-pin regulator with a discrete configuration, in  
which the output voltage  
VCC  
R1  
Q
(R2 + R3)  
Vout = 2.5 V ×  
R3  
R1 is a bias resistance for supplying the HA17431  
cathode current and the output transistor Q base  
current.  
Vout  
R2  
Cf  
R3  
GND  
GND  
7
Discharge type constant current circuit  
This circuit supplies a constant current of  
2.5 V  
IL ≅  
[A] into the load. Caution is required  
VCC  
R
RS  
Q
since the HA17431 cathode current is also  
superimposed on IL.  
2.5 V  
RS  
The requirement in this circuit is that the cathode  
current must be greater than Imin = 1 mA. The IL  
setting therefore must be on the order of several mA or  
more.  
+
IL  
GND  
8
Induction type constant current circuit  
In this circuit, the load is connected on the collector  
side of transistor Q in circuit 7 above. In this case, the  
load floats from GND, but the HA17431 cathode current  
is not superimposed on IL, so that IL can be kept small  
(1 mA or less is possible). The constant current value  
is the same as for circuit 7 above:  
+
VCC  
IL  
R
Q
2.5 V  
IL ≅  
[A]  
RS  
2.5 V  
RS  
GND  
Rev.1, Sep. 2002, page 16 of 24  
HA17431 Series  
Design Guide for AC-DC SMPS (Switching Mode Power Supply)  
Use of Shunt Regulator in Transformer Secondary Side Control  
This example is applicable to both forward transformers and flyback transformers. A shunt regulator is  
used on the secondary side as an error amplifier, and feedback to the primary side is provided via a  
photocoupler.  
Transformer  
R1  
SBD  
PWM IC  
HA17384  
HA17385  
IF  
(+)  
Output  
R3  
R2  
IB  
V0  
()  
VF  
Light  
Vref  
VK  
R5  
REF  
Phototransistor  
Photocoupler  
C1  
emitting diode  
K
R4  
A
HA17431  
GND  
Figure 2 Typical Shunt Regulator/Error Amplifier  
Determination of External Constants for the Shunt Regulator  
DC characteristic determination: In figure 2, R1 and R2 are protection resistor for the light emitting diode  
in the photocoupler, and R2 is a bypass resistor to feed IK minimum, and these are determined as shown  
below. The photocoupler specification should be obtained separately from the manufacturer. Using the  
parameters in figure 2, the following formulas are obtained:  
V0 VF VK  
VF  
IB  
R1 =  
, R2 =  
IF + IB  
VK is the HA17431 operating voltage, and is set at around 3 V, taking into account a margin for fluctuation.  
R2 is the current shunt resistance for the light emitting diode, in which a bias current IB of around 1/5 IF  
flows.  
Next, the output voltage can be determined by R3 and R4, and the following formula is obtained:  
R3 + R4  
V0 =  
× Vref, Vref = 2.5 V Typ  
R4  
The absolute values of R3 and R4 are determined by the HA17431 reference input current Iref and the AC  
characteristics described in the next section. The Iref value is around 3.8 µA Typ. (V version: 2 µA Typ)  
Rev.1, Sep. 2002, page 17 of 24  
HA17431 Series  
AC characteristic determination: This refers to the determination of the gain frequency characteristic of  
the shunt regulator as an error amplifier. Taking the configuration in figure 2, the error amplifier  
characteristic is as shown in figure 3.  
G1  
G2  
When R5 0  
When R5 = 0  
f1 fAC  
f2  
fOSC  
Frequency f (Hz)  
* fOSC : PWM switching frequency  
Figure 3 HA17431 Error Amplification Characteristic  
In Figure 3, the following formulas are obtained:  
Gain  
G1 = G0 50 dB to 60 dB (determined by shunt regulator)  
R5  
G2 =  
R3  
Corner frequencies  
f1 = 1/(2π C1 G0 R3)  
f2 = 1/(2π C1 R5)  
G0 is the shunt regulator open-loop gain; this is given by the reciprocal of the reference voltage fluctuation  
Vref/VKA, and is approximately 50 dB.  
Rev.1, Sep. 2002, page 18 of 24  
HA17431 Series  
Practical Example  
Consider the example of a photocoupler, with an internal light emitting diode VF = 1.05 V and IF = 2.5 mA,  
power supply output voltage V2 = 5 V, and bias resistance R2 current of approximately 1/5 IF at 0.5 mA. If  
the shunt regulator VK = 3 V, the following values are found.  
5V 1.05V 3V  
2.5mA + 0.5mA  
R1 =  
R2 =  
= 316() (330from E24 series)  
1.05V  
0.5mA  
= 2.1(k) (2.2kfrom E24 series)  
Next, assume that R3 = R4 = 10 k. This gives a 5 V output. If R5 = 3.3 kand C1 = 0.022 µF, the  
following values are found.  
G2 = 3.3 k/ 10 k= 0.33 times (10 dB)  
f1 = 1 / (2 × π × 0.022 µF × 316 × 10 k) = 2.3 (Hz)  
f2 = 1 / (2 × π × 0.022 µF × 3.3 k) = 2.2 (kHz)  
Rev.1, Sep. 2002, page 19 of 24  
HA17431 Series  
Package Dimensions  
As of January, 2002  
Unit: mm  
+ 0.10  
– 0.06  
+ 0.10  
– 0.05  
0.16  
0.4  
0 – 0.1  
0.95  
0.95  
1.9 0.ꢀ  
ꢀ.95 0.ꢀ  
Hitachi Code  
JEDEC  
MPAK  
JEITA  
Mass (reference value)  
Conforms  
0.011 g  
As of January, 2002  
Unit: mm  
1.9 0.2  
+ 0.1  
0.05  
0.95  
0.95  
0.16  
0 0.1  
+ 0.1  
0.05  
5 0.4  
2.9 0.2  
Hitachi Code  
JEDEC  
MPAK-5  
JEITA  
Mass (reference value)  
0.015 g  
Rev.1, Sep. 2002, page 20 of 24  
HA17431 Series  
As of January, 2002  
Unit: mm  
4.5 0.1  
1.8 Max  
1.5 0.1  
0.44 Max  
(1.5)  
φ
1
0.53 Max  
0.48 Max  
0.44 Max  
1.5  
1.5  
3.0  
Hitachi Code  
JEDEC  
UPAK  
JEITA  
Mass (reference value)  
Conforms  
0.050 g  
As of January, 2002  
Unit: mm  
4.85  
5.25 Max  
5
8
1
4
+ 0.25  
6.50  
– 0.15  
0.75 Max  
1.05  
0˚ – 8˚  
+ 0.25  
0.60  
0.18  
1.27  
*0.42 0.08  
0.40 0.06  
0.15  
M
0.12  
Hitachi Code  
JEDEC  
FP-8D  
JEITA  
Mass (reference value)  
Conforms  
0.10 g  
*Dimension including the plating thickness  
Base material dimension  
Rev.1, Sep. 2002, page 21 of 24  
HA17431 Series  
As of January, 2002  
Unit: mm  
4.8 0.ꢀ  
ꢀ.8 0.ꢀ  
0.60 Max  
0.55 Max  
0.5 Max  
1.27  
2.54  
Hitachi Code  
JEDEC  
JEITA  
TO-92 (1)  
Conforms  
Conforms  
0.25 g  
Mass (reference value)  
Rev.1, Sep. 2002, page 22 of 24  
HA17431 Series  
As of January, 2002  
Unit: mm  
4.8 0.4  
ꢀ.8 0.4  
0.65 0.1  
0.75 Max  
0.60 Max  
0.55 Max  
0.5 Max  
1.27  
2.54  
Hitachi Code  
JEDEC  
TO-92 Mod  
JEITA  
Mass (reference value)  
Conforms  
0.ꢀ5 g  
Rev.1, Sep. 2002, page 2ꢀ of 24  
HA17431 Series  
Disclaimer  
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,  
copyright, trademark, or other intellectual property rights for information contained in this document.  
Hitachi bears no responsibility for problems that may arise with third party’s rights, including  
intellectual property rights, in connection with use of the information contained in this document.  
2. Products and product specifications may be subject to change without notice. Confirm that you have  
received the latest product standards or specifications before final design, purchase or use.  
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,  
contact Hitachi’s sales office before using the product in an application that demands especially high  
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk  
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,  
traffic, safety equipment or medical equipment for life support.  
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly  
for maximum rating, operating supply voltage range, heat radiation characteristics, installation  
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used  
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable  
failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-  
safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other  
consequential damage due to operation of the Hitachi product.  
5. This product is not designed to be radiation resistant.  
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without  
written approval from Hitachi.  
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor  
products.  
Sales Offices  
Hitachi, Ltd.  
Semiconductor & Integrated Circuits  
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan  
Tel: (03) 3270-2111 Fax: (03) 3270-5109  
URL  
http://www.hitachisemiconductor.com/  
For further information write to:  
Hitachi Semiconductor  
(America) Inc.  
Hitachi Europe Ltd.  
Hitachi Asia Ltd.  
Hitachi Asia (Hong Kong) Ltd.  
Group III (Electronic Components)  
7/F., North Tower  
Electronic Components Group  
Hitachi Tower  
179 East Tasman Drive Whitebrook Park  
16 Collyer Quay #20-00  
Singapore 049318  
Tel : <65>-6538-6533/6538-8577  
Fax : <65>-6538-6933/6538-3877  
URL : http://semiconductor.hitachi.com.sg  
San Jose,CA 95134  
Lower Cookham Road  
World Finance Centre,  
Tel: <1> (408) 433-1990 Maidenhead  
Fax: <1>(408) 433-0223 Berkshire SL6 8YA, United Kingdom  
Tel: <44> (1628) 585000  
Harbour City, Canton Road  
Tsim Sha Tsui, Kowloon Hong Kong  
Tel : <852>-2735-9218  
Fax : <852>-2730-0281  
URL : http://semiconductor.hitachi.com.hk  
Fax: <44> (1628) 585200  
Hitachi Asia Ltd.  
(Taipei Branch Office)  
4/F, No. 167, Tun Hwa North Road  
Hung-Kuo Building  
Taipei (105), Taiwan  
Tel : <886>-(2)-2718-3666  
Fax : <886>-(2)-2718-8180  
Telex : 23222 HAS-TP  
URL : http://www.hitachi.com.tw  
Hitachi Europe GmbH  
Electronic Components Group  
Dornacher Straße 3  
D-85622 Feldkirchen  
Postfach 201, D-85619 Feldkirchen  
Germany  
Tel: <49> (89) 9 9180-0  
Fax: <49> (89) 9 29 30 00  
Copyright © Hitachi, Ltd., 2002. All rights reserved. Printed in Japan.  
Colophon 6.0  
Rev.1, Sep. 2002, page 24 of 24  

相关型号:

HA17431FPA-E

1-OUTPUT TWO TERM VOLTAGE REFERENCE, 2.495V, PDSO8, 4.40 X 4.85 MM, 1.27 MM PITCH, PLASTIC, SOP-8
RENESAS

HA17431FPAJ

Shunt Regulator
RENESAS

HA17431FPJ

Shunt Regulator
RENESAS

HA17431G

Adjustable Precision Shunt Regulators
RENESAS

HA17431GLP

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 2.5V, PDSO5, SC-74A, MPAK-5
RENESAS

HA17431GLPA

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 2.5V, PDSO5, SC-74A, MPAK-5
RENESAS

HA17431GLTP

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 2.5V, PDSO3, SC-59A, MPAK-3
RENESAS

HA17431GLTPA

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 2.5V, PDSO3, SC-59A, MPAK-3
RENESAS

HA17431GP

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 2.5V, PBCY3, TO-92, SC-43A, 3 PIN
RENESAS

HA17431GUP

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 2.5V, PSSO3, SC-62, UPAK-3
RENESAS

HA17431GUPTL-E

Shunt Regulators, , /
RENESAS

HA17431H

Shunt Regulator
HITACHI