HA17339F-EL

更新时间:2024-09-18 12:58:35
品牌:HITACHI
描述:暂无描述

HA17339F-EL 概述

暂无描述

HA17339F-EL 数据手册

通过下载HA17339F-EL数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
HA17901, HA17339 Series  
Quadruple Comparators  
Description  
The HA17901 and HA17339 series products are comparators designed for use in power or control systems.  
These IC operate from a single power-supply voltage over a wide range of voltages, and feature a reduced  
power-supply current since the power-supply voltage is determined independently.  
These comparators have the unique characteristic of ground being included in the common-mode input  
voltage range, even when operating from a single-voltage power supply. These products have a wide range  
of applications, including limit comparators, simple A/D converters, pulse/square-wave/time delay  
generators, wide range VCO circuits, MOS clock timers, multivibrators, and high-voltage logic gates.  
Features  
Wide power-supply voltage range: 2 to 36V  
Extremely low current drain: 0.8mA  
Low input bias current: 25nA  
Low input offset current: 5nA  
Low input offset voltage: 2mV  
The common-mode input voltage range includes ground.  
Low output saturation voltage: 1mV (5µA), 70mV (1mA)  
Output voltages compatible with CMOS logic systems  
HA17901, HA17339 Series  
Ordering Information  
Type No.  
Application  
Package  
DP-14  
HA17901PJ  
HA17901FPJ  
HA17901FPK  
HA17901P  
HA17901FP  
HA17339  
Car use  
FP-14DA  
FP-14DA  
DP-14  
Industrial use  
FP-14DA  
DP-14  
Commercial use  
HA17339F  
FP-14DA  
Pin Arrangement  
Vout2  
1
2
3
4
5
6
7
14 Vout3  
13 Vout4  
12 GND  
Vout1  
VCC  
1
4
+
+
Vin(–)1  
Vin(+)1  
Vin(–)2  
Vin(+)2  
11 Vin(+)4  
10 Vin(–)4  
9
8
Vin(+)3  
Vin(–)3  
+2  
3+  
(Top view)  
2
HA17901, HA17339 Series  
Circuit Structure (1/4)  
VCC  
Q3  
Q2  
Q4  
Vin(+)  
Vin(–)  
Q1  
Vout  
Q8  
Q7  
Q5  
Q6  
3
HA17901, HA17339 Series  
Absolute Maximum Ratings (Ta = 25°C)  
17901  
P
17901  
PJ  
17901  
FP  
17901  
FPJ  
17901  
FPK  
17339  
17339  
F
Item  
Symbol  
Unit  
Power-  
supply  
voltage  
VCC  
36  
36  
36  
36  
36  
36  
36  
V
Differential  
input  
Vin(diff)  
±VCC  
±VCC  
±VCC  
±VCC  
±VCC  
±VCC  
±VCC  
V
voltage  
Input  
Vin  
–0.3 to  
+VCC  
–0.3 to  
+VCC  
–0.3 to  
+VCC  
–0.3 to  
+VCC  
–0.3 to  
+VCC  
–0.3 to  
+VCC  
–0.3 to  
+VCC  
V
voltage  
Output  
current  
Iout*2  
PT  
20  
20  
20  
20  
20  
20  
20  
mA  
mW  
Allowable  
power  
625*1  
625*1  
625*3  
625*3  
625*3  
625*1  
625*3  
dissipation  
Operating  
Topr  
Tstg  
Vout  
–20 to  
+75  
–40 to  
+85  
–20 to  
+75  
–40 to  
+85  
–40 to  
+125  
–20 to  
+75  
–20 to  
+75  
°C  
°C  
V
temperature  
Storage  
–55 to  
+125  
–55 to  
+125  
–55 to  
+125  
–55 to  
+125  
–55 to  
+150  
–55 to  
+125  
–55 to  
+125  
temperature  
Output pin  
voltage  
36  
36  
36  
36  
36  
36  
36  
Notes: 1. These are the allowable values up to Ta = 50°C. Derate by 8.3mW/°C above that temperature.  
2. These products can be destroyed if the output and VCC are shorted together. The maximum  
output current is the allowable value for continuous operation.  
3. See notes of SOP Package Usage in Reliability section.  
4
HA17901, HA17339 Series  
Electrical Characteristics 1 (VCC = 5V, Ta = 25°C)  
Item  
Symbol Min  
Typ  
Max  
Unit  
Test Condition  
Input offset  
voltage  
VIO  
2
7
mV  
Output switching point: when  
VO = 1.4V, RS = 0Ω  
Input bias current IIB  
25  
5
250  
50  
nA  
nA  
IIN(+) or IIN(–)  
IIN(+) – IIN(–)  
Input offset  
current  
IIO  
Common-mode  
input voltage*1  
VCM  
0
VCC – 1.5  
V
Supply current  
Voltage Gain  
Response time*2  
ICC  
6
0.8  
200  
1.3  
16  
2
mA  
RL = ∞  
AVD  
tR  
V/mV RL = 15kΩ  
µs  
VRL = 5V, RL = 5.1kΩ  
Output sink  
current  
Iosink  
mA  
VIN(–) = 1V, VIN(+) = 0, VO 1.5V  
Output saturation  
voltage  
VO sat  
ILO  
200  
0.1  
400  
mV  
nA  
VIN(–) = 1V, VIN(+) = 0, Iosink =  
3mA  
Output leakage  
current  
VIN(+) = 1V, VIN(–) = 0, VO = 5V  
Notes: 1. Voltages more negative than –0.3V are not allowed for the common-mode input voltage or for  
either one of the input signal voltages.  
2. The stipulated response time is the value for a 100 mV input step voltage that has a 5mV  
overdrive.  
Electrical Characteristics 2 (VCC = 5V, Ta = – 41 to + 125°C)  
Item  
Symbol Min  
Typ  
Max  
Unit  
Test Condition  
Input offset  
voltage  
VIO  
7
mV  
Output switching point: when  
VO = 1.4V, RS = 0Ω  
Input offset  
current  
IIO  
200  
nA  
IIN(-) – IIN(+)  
Input bias current IIB  
0
500  
nA  
V
Common-mode  
input voltage*1  
VCM  
VCC – 2.0  
Output saturation  
voltage  
VO  
ILO  
ICC  
440  
mV  
µA  
VIN(–) 1V, VIN(+) = 0, Iosink ≤  
4mA  
sat  
Output leakage  
current  
1.0  
VIN(–) = 0V, VIN(+) 1V, VO = 30V  
Supply current  
4.0  
mA  
All comparators: RL = ,  
All channels ON  
Note: 1. Voltages more negative than –0.3V are not allowed for the common-mode input voltage or for  
either one of the input signal voltages.  
5
HA17901, HA17339 Series  
Test Circuits  
1. Input offset voltage (VIO), input offset current (IIO), and Input bias current (I ) test circuit  
IB  
Rf 5k  
VCC  
SW1  
SW1 SW2 Vout  
R
S 50  
RL 51k  
+
On  
Off  
On  
Off  
On  
Off  
Off  
On  
VO1  
VO2  
1
2
VC1  
=
VCC  
R 20 k  
R 20 k  
VO  
RS 50  
+
VO3 VC2 = 1.4V  
VO4  
470µ  
V
SW2  
Rf 5 k  
VC2  
VC1  
| VO1  
1 + Rf / RS  
|
VIO  
=
(mV)  
| VO2 – VO1  
R(1 + Rf / RS)  
|
IIO  
=
(nA)  
(nA)  
| VO4 – VO3  
2 · R(1 + Rf / RS)  
|
IIB  
=
2. Output saturation voltage (VO sat) output sink current (Iosink), and common-mode input voltage (VCM  
test circuit  
)
VCC  
Item VC1  
VC2  
VC3  
SW1  
SW2  
SW3  
Unit  
VOsat 2V  
0V  
1
1
1 at  
V
50  
1.6k  
4.87k  
VCC = 5V  
SW2  
1
VC3  
SW1  
1
3 at  
SW3  
V
2
3
CC = 15V  
+
2
2
Iosink 2V  
0V  
–1 to  
VCC  
1.5V  
1
2
1
mA  
V
VC1  
5k  
50  
50  
VCM  
2V  
Switched  
between  
1 and 2  
VC2  
3. Supply current (ICC) test circuit  
A
VCC  
+
ICC: RL = ∞  
1V  
6
HA17901, HA17339 Series  
4. Voltage gain (AVD) test circuit (RL = 15k)  
+V  
VCC  
20k  
RL 15k  
Vin  
+
10k  
30k  
+
10µ  
VO  
20k  
–V  
50  
50  
V
O1 — VO2  
AVD = 20 log  
(dB)  
VIN1 — VIN2  
5. Response time (tR) test circuit  
VCC  
RL 5.1k  
+
Vin  
+V  
VO  
50  
24k  
P.G  
VR  
5 k  
30k  
120k  
SW  
12V  
50  
–V  
tR: RL = 5.1k, a 100mV input step voltage that has a 5mV overdrive  
With VIN not applied, set the switch SW to the off position and adjust VR so that VO is in the vicinity of  
1.4V.  
Apply VIN and turn the switch SW on.  
90%  
10%  
tR  
7
HA17901, HA17339 Series  
Characteristics Curve  
Input Bias Current vs.  
Input Bias Current vs.  
Ambient Temperature Characteristics  
Power-Supply Voltage Characteristics  
90  
60  
50  
40  
30  
20  
10  
VCC = 5 V  
Ta = 25°C  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
10  
20  
30  
40  
–55 –35 –15  
5
25 45 65 85 105 125  
Power-Supply Voltage VCC (V)  
Ambient Temperature Ta (°C)  
Supply Current vs.  
Supply Current vs.  
Ambient Temperature Characteristics  
Power-Supply Voltage Characteristics  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
VCC = 5 V  
RL =  
Ta = 25°C  
RL = ∞  
0
10  
20  
30  
40  
–55 –35 –15  
5
25 45 65 85 105 125  
Power-Supply Voltage VCC (V)  
Ambient Temperature Ta (°C)  
8
HA17901, HA17339 Series  
Output Sink Current vs.  
Ambient Temperature Characteristics  
Output Sink Current vs.  
Power-Supply Voltage Characteristics  
45  
40  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
VCC = 5 V  
Vin(–) = 1 V  
Vin(+) = 0  
Vout = 1.5 V  
0
0
–55 –35 –15  
5
25 45 65 85 105 125  
0
10  
20  
30  
40  
Ambient Temperature Ta (°C)  
Power-Supply Voltage VCC (V)  
Voltage Gain vs.  
Ambient Temperature Characteristics  
Voltage Gain vs.  
Power-Supply Voltage Characteristics  
130  
125  
120  
115  
110  
105  
100  
95  
130  
120  
110  
100  
90  
VCC = 5 V  
RL = 15 kΩ  
Ta = 25°C  
RL = 15 kΩ  
80  
90  
70  
85  
0
10  
20  
30  
40  
–55 –35 –15  
5
25 45 65 85 105 125  
Power-Supply Voltage VCC (V)  
Ambient Temperature Ta (°C)  
9
HA17901, HA17339 Series  
HA17901 Application Examples  
The HA17901 houses four independent comparators in a single package, and operates over a wide voltage  
range at low power from a single-voltage power supply. Since the common-mode input voltage range starts  
at the ground potential, the HA17901 is particularly suited for single-voltage power supply applications.  
This section presents several sample HA17901 applications.  
HA17901 Application Notes  
1. Square-Wave Oscillator  
The circuit shown in figure one has the same structure as a single-voltage power supply astable  
multivibrator. Figure 2 shows the waveforms generated by this circuit.  
VCC  
4.3k  
100k  
R
VCC  
75pF  
C
Vout  
HA17901  
+
VCC  
100k  
100k  
100k  
Figure 1 Square-Wave Oscillator  
(2)  
Horizontal: 5 V/div, Vertical: 5 µs/div, VCC = 15 V  
(1)  
Horizontal: 2 V/div, Vertical: 5 µs/div, VCC = 5 V  
Figure 2 Operating Waveforms  
10  
HA17901, HA17339 Series  
2. Pulse Generator  
The charge and discharge circuits in the circuit from figure 1 are separated by diodes in this circuit. (See  
figure 3.) This allows the pulse width and the duty cycle to be set independently. Figure 4 shows the  
waveforms generated by this circuit.  
VCC  
R1 1M  
D1 IS2076  
R2 100k D2 IS2076  
VCC  
C
80pF  
Vout  
HA17901  
+
VCC  
1M  
1M  
1M  
Figure 3 Pulse Generator  
Horizontal: 5 V/div, Vertical: 20 µs/div, VCC = 15 V  
Horizontal: 2 V/div, Vertical: 20 µs/div, VCC = 5 V  
Figure 4 Operating Waveforms  
3. Voltage Controlled Oscillator  
In the circuit in figure 5, comparator A operates as an integrator, A2 operates as a comparator with  
1
hysteresis, and A3 operates as the switch that controls the oscillator frequency. If the output Vout1 is at  
the low level, the A3 output will go to the low level and the A1 inverting input will become a lower  
level than the A1 noninverting input. The A1 output will integrate this state and its output will increase  
towards the high level. When the output of the integrator A1 exceeds the level on the comparator A2  
inverting input, A2 inverts to the high level and both the output Vout1 and the A3 output go to the high  
level. This causes the integrator to integrate a negative state, resulting in its output decreasing towards  
the low level. Then, when the A1 output level becomes lower than the level on the A2 noninverting  
input, the output Vout1 is once again inverted to the low level. This operation generates a square wave  
on Vout1 and a triangular wave on Vout2.  
11  
HA17901, HA17339 Series  
100k  
VCC  
VCC  
VCC  
VCC  
500p  
A1  
100k  
3k  
0.01µ  
3k  
5.1k  
+VC  
10  
A2  
+
HA17901  
+
0.1µ  
20k  
Output 1  
Output 2  
HA17901  
Frequency  
control  
voltage  
input  
VCC/2  
20k  
VCC  
50k  
A3  
VCC/2  
HA17901  
+
V
CC = 30V  
+250mV < +VC < +50V  
700Hz < / < 100kHz  
Figure 5 Voltage Controlled Oscillator  
4. Basic Comparator  
The circuit shown in figure 6 is a basic comparator. When the input voltage VIN exceeds the reference  
voltage VREF, the output goes to the high level.  
VCC  
3kΩ  
Vin  
+
VREF  
Figure 6 Basic Comparator  
5. Noninverting Comparator (with Hysteresis)  
Assuming +VIN is 0V, when VREF is applied to the inverting input, the output will go to the low level  
(approximately 0V). If the voltage applied to +VIN is gradually increased, the output will go high when  
the value of the noninverting input, +VIN × R2/(R1 + R ), exceeds +VREF. Next, if +VIN is gradually  
2
lowered, Vout will be inverted to the low level once again when the value of the noninverting input,  
(Vout – VIN) × R1/(R1 + R2), becomes lower than VREF. With the circuit constants shown in figure 7,  
assuming VCC = 15V and +VREF = 6V, the following formula can be derived, i.e. +VIN × 10M/(5.1M +  
10M) > 6V, and Vout will invert from low to high when +VIN is > 9.06V.  
R1  
(Vout – VIN) ×  
+ VIN < 6V  
R1 + R2  
(Assuming Vout = 15V)  
When +VIN is lowered, the output will invert from high to low when +VIN < 1.41V. Therefore this  
circuit has a hysteresis of 7.65V. Figure 8 shows the input characteristics.  
12  
HA17901, HA17339 Series  
VCC  
VCC  
3k  
+VREF  
+Vin  
Vout  
HA17901  
+
R1  
5.1M  
10M  
R2  
Figure 7 Noninverting Comparator  
20  
VCC = 15 V, +VREF = 6 V  
+Vin = 0 to 10 V  
16  
12  
8
4
0
0
5
10  
15  
Input Voltage VIN (V)  
Figure 8 Noninverting Comparator I/O Transfer Characteristics  
6. Inverting Comparator (with Hysteresis)  
In this circuit, the output Vout inverts from high to low when +VIN > (VCC + Vout)/3. Similarly, the  
output Vout inverts from low to high when +VIN < VCC/3. With the circuit constants shown in figure 9,  
assuming VCC = 15V and Vout = 15V, this circuit will have a 5V hysteresis. Figure 10 shows the I/O  
characteristics for the circuit in figure 9.  
VCC  
VCC  
3k  
+Vin  
VCC  
HA17901  
Vout  
1M  
+
1M  
1M  
Figure 9 Inverting Comparator  
13  
HA17901, HA17339 Series  
20  
16  
12  
8
VCC = 15 V  
4
0
0
5
10  
15  
Input Voltage VIN (V)  
Figure 10 Inverting Comparator I/O Transfer Characteristics  
7. Zero-Cross Detector (Single-Voltage Power Supply)  
In this circuit, the noninverting input will essentially beheld at the potential determined by dividing VCC  
with 100kand 10kresistors. When VIN is 0V or higher, the output will be low, and when VIN is  
negative, Vout will invert to the high level. (See figure 11.)  
VCC  
VCC  
5.1k  
100k  
5.1k  
100k  
5.1k  
Vin  
HA17901  
+
Vout  
1S2076  
20M  
10k  
Figure 11 Zero-Cross Detector  
14  
HA17901, HA17339 Series  
Package Dimensions  
Unit: mm  
19.20  
20.32 Max  
14  
1
8
7
1.30  
2.39 Max  
7.62  
+ 0.10  
– 0.05  
0.25  
2.54 ± 0.25  
0.48 ± 0.10  
0° – 15°  
Hitachi Code  
DP-14  
JEDEC  
EIAJ  
Mass (reference value)  
Conforms  
Conforms  
0.97 g  
Unit: mm  
10.06  
10.5 Max  
8
7
14  
1
+ 0.20  
7.80  
– 0.30  
1.42 Max  
1.15  
0° – 8°  
1.27  
0.70 ± 0.20  
*0.42 ± 0.08  
0.40 ± 0.06  
0.15  
M
0.12  
Hitachi Code  
JEDEC  
FP-14DA  
EIAJ  
Conforms  
0.23 g  
*Dimension including the plating thickness  
Base material dimension  
Mass (reference value)  
15  
HA17901, HA17339 Series  
Cautions  
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,  
copyright, trademark, or other intellectual property rights for information contained in this document.  
Hitachi bears no responsibility for problems that may arise with third party’s rights, including  
intellectual property rights, in connection with use of the information contained in this document.  
2. Products and product specifications may be subject to change without notice. Confirm that you have  
received the latest product standards or specifications before final design, purchase or use.  
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,  
contact Hitachi’s sales office before using the product in an application that demands especially high  
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk  
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,  
traffic, safety equipment or medical equipment for life support.  
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly  
for maximum rating, operating supply voltage range, heat radiation characteristics, installation  
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used  
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable  
failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-  
safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other  
consequential damage due to operation of the Hitachi product.  
5. This product is not designed to be radiation resistant.  
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without  
written approval from Hitachi.  
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor  
products.  
Hitachi, Ltd.  
Semiconductor & Integrated Circuits.  
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan  
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109  
URL  
NorthAmerica  
Europe  
: http:semiconductor.hitachi.com/  
: http://www.hitachi-eu.com/hel/ecg  
Asia (Singapore)  
Asia (Taiwan)  
: http://www.has.hitachi.com.sg/grp3/sicd/index.htm  
: http://www.hitachi.com.tw/E/Product/SICD_Frame.htm  
Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm  
Japan  
: http://www.hitachi.co.jp/Sicd/indx.htm  
For further information write to:  
Hitachi Semiconductor  
(America) Inc.  
Hitachi Europe GmbH  
Hitachi Asia (Hong Kong) Ltd.  
Group III (Electronic Components)  
7/F., North Tower, World Finance Centre,  
Harbour City, Canton Road, Tsim Sha Tsui,  
Kowloon, Hong Kong  
Tel: <852> (2) 735 9218  
Fax: <852> (2) 730 0281  
Hitachi Asia Pte. Ltd.  
16 Collyer Quay #20-00  
Hitachi Tower  
Singapore 049318  
Tel: 535-2100  
Electronic components Group  
Dornacher Straβe 3  
D-85622 Feldkirchen, Munich  
Germany  
Tel: <49> (89) 9 9180-0  
Fax: <49> (89) 9 29 30 00  
179 East Tasman Drive,  
San Jose,CA 95134  
Tel: <1> (408) 433-1990  
Fax: <1>(408) 433-0223  
Fax: 535-1533  
Hitachi Asia Ltd.  
Taipei Branch Office  
3F, Hung Kuo Building. No.167,  
Tun-Hwa North Road, Taipei (105)  
Tel: <886> (2) 2718-3666  
Fax: <886> (2) 2718-8180  
Telex: 40815 HITEC HX  
Hitachi Europe Ltd.  
Electronic Components Group.  
Whitebrook Park  
Lower Cookham Road  
Maidenhead  
Berkshire SL6 8YA, United Kingdom  
Tel: <44> (1628) 585000  
Fax: <44> (1628) 778322  
Copyright ' Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.  
16  

HA17339F-EL 相关器件

型号 制造商 描述 价格 文档
HA17358 HITACHI Dual Operational Amplifier 获取价格
HA17358 RENESAS OP-AMP, PDIP8, DP-8 获取价格
HA17358/ASERIES ETC 获取价格
HA17358A HITACHI Dual Operational Amplifier 获取价格
HA17358A RENESAS Dual Operational Amplifier 获取价格
HA17358A-E RENESAS 暂无描述 获取价格
HA17358AF RENESAS Dual Operational Amplifier 获取价格
HA17358AFEL-E RENESAS HA17358AFEL-E 获取价格
HA17358AFP HITACHI Dual Operational Amplifier 获取价格
HA17358AFP RENESAS OP-AMP, PDSO8, FP-8D 获取价格

HA17339F-EL 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6