BB305M [HITACHI]

Build in Biasing Circuit MOS FET IC UHF/VHF RF Amplifier; 打造偏置电路MOS FET的IC UHF / VHF射频放大器
BB305M
型号: BB305M
厂家: HITACHI SEMICONDUCTOR    HITACHI SEMICONDUCTOR
描述:

Build in Biasing Circuit MOS FET IC UHF/VHF RF Amplifier
打造偏置电路MOS FET的IC UHF / VHF射频放大器

晶体 射频放大器 小信号场效应晶体管 射频小信号场效应晶体管 光电二极管
文件: 总12页 (文件大小:71K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BB305M  
Build in Biasing Circuit MOS FET IC  
UHF/VHF RF Amplifier  
ADE-208-607C (Z)  
4th. Edition  
May 1998  
Features  
Build in Biasing Circuit; To reduce using parts cost & PC board space.  
Superior cross modulation characteristics.  
High gain; (PG = 28 dB typ. at f = 200 MHz)  
Wide supply voltage range;  
Applicable with 5V to 9V supply voltage.  
Withstanding to ESD;  
Build in ESD absorbing diode. Withstand up to 200V at C=200pF, Rs=0 conditions.  
Provide mini mold packages; MPAK-4(SOT-143mod)  
Outline  
MPAK-4  
2
3
1
4
1. Source  
2. Gate1  
3. Gate2  
4. Drain  
Note: 1. Marking is “EW–”.  
2. BB305M is individual type number of HITACHI BBFET.  
BB305M  
Absolute Maximum Ratings (Ta = 25°C)  
Item  
Symbol  
VDS  
Ratings  
12  
Unit  
V
Drain to source voltage  
Gate1 to source voltage  
VG1S  
+10  
V
–0  
Gate2 to source voltage  
Drain current  
VG2S  
ID  
±10  
V
25  
mA  
mW  
°C  
Channel power dissipation  
Channel temperature  
Storage temperature  
Pch  
Tch  
Tstg  
150  
150  
–55 to +150  
°C  
2
BB305M  
Electrical Characteristics (Ta = 25°C)  
Item  
Symbol Min  
Typ  
Max Unit Test Conditions  
Drain to source breakdown  
voltage  
V(BR)DSS 12  
V
V
V
ID = 200µA, VG1S = VG2S = 0  
Gate1 to source breakdown V(BR)G1SS +10  
voltage  
IG1 = +10µA, VG2S = VDS = 0  
IG2 = ±10µA, VG1S = VDS = 0  
Gate2 to source breakdown V(BR)G2SS ±10  
voltage  
Gate1 to source cutoff current IG1SS  
Gate2 to source cutoff current IG2SS  
Gate1 to source cutoff voltage VG1S(off)  
Gate2 to source cutoff voltage VG2S(off)  
+100 nA  
VG1S = +9V, VG2S = VDS = 0  
VG2S = ±9V, VG1S = VDS = 0  
VDS = 5V, VG2S = 4V, ID = 100µA  
VDS = 5V, VG1S = 5V, ID = 100µA  
VDS = 5V, VG1 = 5V  
±100 nA  
0.4  
0.4  
2.3  
1.1  
1.0  
1.0  
3.5  
1.9  
V
V
Input capacitance  
Output capacitance  
ciss  
2.8  
1.5  
pF  
pF  
coss  
VG2S =4V, RG = 82kΩ  
Reverse transfer capacitance crss  
Drain current ID(op)  
0.017 0.04 pF  
f = 1MHz  
1
2
10  
15  
13  
28  
28  
28  
28  
1.4  
1.4  
20  
1.9  
mA  
mA  
mS  
mS  
dB  
VDS = 5V, VG1 = 5V, VG2S = 4V  
RG = 82kΩ  
ID(op)  
23  
24  
VDS = 9V, VG1 = 9V, VG2S =6V  
RG = 220kΩ  
Forward transfer admittance |yfs|1  
|yfs|2  
VDS = 5V, VG1 = 5V, VG2S =4V  
RG =82k, f = 1kHz  
VDS = 9V, VG1 = 9V, VG2S =6V  
RG = 220k, f = 1kHz  
Power gain  
PG1  
PG2  
NF1  
NF2  
VDS = 5V, VG1 = 5V, VG2S =4V  
RG = 82k, f = 200MHz  
dB  
VDS = 9V, VG1 = 9V, VG2S =6V  
RG = 220k, f = 200MHz  
Noise figure  
dB  
VDS = 5V, VG1 = 5V, VG2S =4V  
RG = 82k, f = 200MHz  
dB  
VDS = 9V, VG1 = 9V, VG2S =6V  
RG = 220k, f = 200MHz  
3
BB305M  
Main Characteristics  
Test Circuit for Operating Items (I  
, |yfs|, Ciss, Coss, Crss, NF, PG)  
D(op)  
V
G2  
V
G1  
R
G
Gate 1  
Source  
Gate 2  
Drain  
A
I
D
Power Gain, Noise Figure Test Circuit  
V
G2  
V
T
V
T
1000p  
1000p  
1000p  
47k  
BBFET  
47k  
1000p  
Output(50 ¶)  
47k  
L1  
1000p  
L2  
Input(50 ¶)  
10p max  
1000p  
1000p  
RFC  
1SV70  
R
82k  
1SV70  
36p  
G
1000p  
Unit @Resistance @( )  
@ @ Capacitance @(F)  
V
= V  
G1  
D
L1 : 1mm Enameled Copper Wire,Inside dia 10mm, 2Turns  
L2 : 1mm Enameled Copper Wire,Inside dia 10mm, 2Turns  
RFC : 1mm Enameled Copper Wire,Inside dia 5mm, 2Turns  
.
4
BB305M  
Maximum Channel Power  
Dissipation Curve  
Typical Output Characteristics  
25  
20  
15  
10  
5
200  
150  
100  
50  
V
V
= 4 V @  
G2S  
G1  
= V  
DS  
W
180 k  
0
0
50  
100  
150  
200  
1
2
3
4
5
Drain to Source Voltage  
V
(V)  
DS  
Ambient Temperature Ta (°C)  
Drain Current vs.  
Gate2 to Source Voltage  
Drain Current vs. Gate1 Voltage  
25  
20  
15  
10  
5
20  
16  
12  
8
V
= V = 5 V  
G1  
V
R
= 5 V  
DS  
= 68 k  
DS  
W
G
4 V  
3 V  
2 V  
= 1 V  
4
V
3
G2S  
0
0
1
2
4
(V)  
5
0.8  
1.6  
2.4  
3.2  
4.0  
(V)  
Gate1 Voltage  
V
Gate2 to Source Voltage  
V
G1  
G2S  
Å@  
5
BB305M  
Drain Current vs. Gate1 Voltege  
Drain Current vs. Gate1 Voltege  
20  
16  
12  
8
20  
16  
12  
8
V
R
= 5 V  
V
R
= 5 V  
DS  
= 82 k  
DS  
= 100 k  
W
W
G
G
4 V  
4 V  
3 V  
3 V  
2 V  
2 V  
4
4
V
= 1 V  
V
3
= 1 V  
G2S  
G1  
G2S  
0
0
1
2
3
V
4
(V)  
5
1
2
4
(V)  
5
Gate1 Voltage  
Gate1 Voltage  
V
G1  
Forward Transfer Admittance  
vs. Gate1 Voltage  
Forward Transfer Admittance  
vs. Gate1 Voltage  
30  
30  
24  
18  
12  
6
V
R
= 5 V  
V
R
= 5 V  
DS  
DS  
= 68 k  
W
= 82 k  
f = 1 kHz  
4 V  
G
W
G
4 V  
f = 1 kHz  
24  
18  
12  
6
3 V  
3 V  
2 V  
2 V  
V
3
= 1 V  
V
= 1 V  
G2S  
G2S  
0
0
1
2
3
4
5
1
2
4
5
Gate1 Voltage  
V
G1  
(V)  
Gate1 Voltage  
V
G1  
(V)  
6
BB305M  
Forward Transfer Admittance  
vs. Gate1 Voltage  
Power Gain vs. Gate Resistance  
40  
35  
30  
25  
20  
30  
24  
18  
12  
6
V
R
= 5 V  
DS  
= 100 k  
f = 1 kHz  
W
G
4 V  
3 V  
2 V  
V
V
V
= 5 V  
= 5 V  
DS  
G1  
15  
10  
= 4 V  
G2S  
f = 200 MHz  
V
= 1 V  
G2S  
0
10  
20  
50 100 200  
500 1000  
(k W )  
1
2
3
4
5
Gate1 Voltage  
V
G1  
(V)  
Gate Resistance  
R
G
Noise Figure vs. Gate Resistance  
Power Gain vs. Drain Current  
4
3
2
40  
35  
30  
25  
20  
15  
10  
V
V
V
= 5 V  
= 5 V  
DS  
G1  
= 4 V  
G2S  
f = 200 MHz  
V
V
V
R
= 5 V  
= 5 V  
DS  
G1  
1
0
= 4 V  
G2S  
= variable  
G
f = 200 MHz  
20 25  
(mA)  
0
10  
20  
50 100 200  
500 1000  
(k )  
W
G
5
10  
15  
30  
Gate Resistance  
R
Drain Current  
I
D
7
BB305M  
Noise Figure vs. Drain Current  
Drain Current vs. Gate Resistance  
4
3
2
1
30  
25  
20  
15  
10  
V
V
V
R
= 5 V  
= 5 V  
DS  
G1  
= 4 V  
G2S  
= variable  
G
f = 200 MHz  
V
V
V
= 5 V  
= 5 V  
DS  
5
0
G1  
= 4 V  
G2S  
0
5
10  
15  
20  
25  
10  
20  
50 100 200  
500 1000  
30  
Drain Current  
I
(mA)  
Gate Resistance  
R
(k  
)
W
G
D
Input Capacitance vs.  
Gate2 to Source Voltage  
Gain Reduction vs.  
Gate2 to Source Voltage  
60  
50  
40  
30  
20  
10  
6
5
4
3
2
1
0
V
V
V
R
= 5 V  
= 5 V  
DS  
G1  
= 4 V  
G2S  
= 82 k  
W
G
f = 200 MHz  
V
V
R
= 5 V  
= 5 V  
= 82 k W  
DS  
G1  
G
f = 1 MHz  
0
1
2
3
5
4
0
1
2
3
5
4
Gate2 to Source Voltage  
V
G2S  
(V)  
Gate2 to Source Voltage  
V
G2S  
(V)  
8
BB305M  
S21 Parameter vs. Frequency  
S11 Parameter vs. Frequency  
Scale: 1 / div.  
1
90°  
.8  
1.5  
60°  
.6  
120°  
2
.4  
3
30°  
4
150°  
.2  
5
10  
.2  
.4 .6 .8 1  
1.5 2 3 4 5 10  
0
180°  
0°  
–10  
–5  
–4  
–.2  
–30°  
–150°  
–3  
–.4  
–2  
–60°  
–120°  
–.6  
–1.5  
–.8  
–1  
–90°  
Test Condition :  
V
V
= 5 V , V = 5 V  
G1  
Test Condition :  
V
V
= 5 V , V = 5 V  
G1  
DS  
DS  
= 4 V , R = 82 k W  
= 4 V , R = 82 k W  
G2S  
G
G2S  
G
50 1000 MHz (50 MHz step)  
50 1000 MHz (50 MHz step)  
S12 Parameter vs. Frequency  
S22 Parameter vs. Frequency  
Scale: 0.002 / div.  
1
90°  
.8  
1.5  
60°  
.6  
120°  
2
.4  
3
30°  
150°  
4
.2  
5
10  
.2  
.4 .6 .8 1  
1.5 2 3 4 5 10  
0
180°  
0°  
–10  
–5  
–4  
–.2  
–30°  
–150°  
–3  
–.4  
–2  
–60°  
–120°  
–.6  
–1.5  
–.8  
–1  
–90°  
Test Condition :  
V
V
= 5 V , V = 5 V  
G1  
DS  
Test Condition :  
V
V
= 5 V , V = 5 V  
G1  
DS  
= 4 V , R = 82 k W  
G2S  
G
= 4 V , R = 82 k W  
G2S  
G
50 1000 MHz (50 MHz step)  
50 1000 MHz (50 MHz step)  
9
BB305M  
Sparameter (VDS = VG1 = 5V, VG2S = 4V, RG = 82k, Zo = 50)  
S11  
S21  
MAG  
2.69  
2.68  
2.66  
2.62  
2.60  
2.54  
2.47  
2.42  
2.38  
2.32  
2.25  
2.18  
2.12  
2.06  
2.00  
1.94  
1.89  
1.83  
1.78  
1.73  
S12  
S22  
f (MHz) MAG  
ANG  
ANG  
174.9  
169.3  
163.4  
157.5  
152.0  
146.3  
140.9  
135.7  
130.5  
125.7  
120.8  
116.2  
111.5  
106.8  
102.5  
98.4  
MAG  
ANG  
91.4  
90.5  
73.8  
74.9  
70.1  
69.0  
63.7  
64.8  
56.8  
58.6  
54.4  
53.3  
49.5  
48.6  
49.7  
51.6  
53.3  
57.9  
72.9  
78.9  
MAG  
0.991  
0.992  
0.991  
0.989  
0.985  
0.981  
0.977  
0.973  
0.967  
0.962  
0.957  
0.952  
0.944  
0.939  
0.933  
0.927  
0.921  
0.915  
0.909  
0.904  
ANG  
–2.2  
50  
0.991  
0.991  
0.982  
0.975  
0.972  
0.956  
0.942  
0.928  
0.920  
0.906  
0.894  
0.880  
0.868  
0.854  
0.842  
0.835  
0.820  
0.802  
0.801  
0.789  
–4.8  
0.00090  
0.00153  
0.00243  
0.00293  
0.00370  
0.00444  
0.00478  
0.00535  
0.00551  
0.00549  
0.00584  
0.00542  
0.00562  
0.00509  
0.00465  
0.00427  
0.00416  
0.00289  
0.00288  
0.00241  
100  
150  
200  
250  
300  
350  
400  
450  
500  
550  
600  
650  
700  
750  
800  
850  
900  
950  
1000  
–9.9  
–4.8  
–15.4  
–20.7  
–25.6  
–30.6  
–35.5  
–40.1  
–44.9  
–49.2  
–53.6  
–57.8  
–62.1  
–66.2  
–70.3  
–73.9  
–77.7  
–81.5  
–84.7  
–87.9  
–7.5  
–9.9  
–12.6  
–15.0  
–17.3  
–19.7  
–22.0  
–24.5  
–26.9  
–29.2  
–31.5  
–33.8  
–36.1  
–38.3  
–40.5  
–42.7  
–44.9  
–47.1  
94.0  
89.6  
85.6  
82.1  
10  
BB305M  
Package Dimensions  
Unit: mm  
+ 0.3  
– 0.1  
2.8  
1.9  
0.95  
0.95  
+ 0.1  
– 0.06  
0.16  
+ 0.1  
– 0.05  
+ 0.1  
0.4  
0.4  
– 0.05  
3
4
2
0 ~ 0.1  
1
+ 0.1  
– 0.05  
+ 0.1  
– 0.05  
0.4  
0.6  
0.95  
1.8  
0.85  
MPAK–4  
SC–61AA  
Hitachi Code  
EIAJ  
JEDEC  
11  
Cautions  
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,  
copyright, trademark, or other intellectual property rights for information contained in this document.  
Hitachi bears no responsibility for problems that may arise with third party’s rights, including  
intellectual property rights, in connection with use of the information contained in this document.  
2. Products and product specifications may be subject to change without notice. Confirm that you have  
received the latest product standards or specifications before final design, purchase or use.  
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,  
contact Hitachi’s sales office before using the product in an application that demands especially high  
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk  
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,  
traffic, safety equipment or medical equipment for life support.  
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly  
for maximum rating, operating supply voltage range, heat radiation characteristics, installation  
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used  
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable  
failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-  
safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other  
consequential damage due to operation of the Hitachi product.  
5. This product is not designed to be radiation resistant.  
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without  
written approval from Hitachi.  
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor  
products.  
Hitachi, Ltd.  
Semiconductor & Integrated Circuits.  
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan  
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109  
URL  
NorthAmerica  
Europe  
: http:semiconductor.hitachi.com/  
: http://www.hitachi-eu.com/hel/ecg  
Asia (Singapore)  
Asia (Taiwan)  
: http://www.has.hitachi.com.sg/grp3/sicd/index.htm  
: http://www.hitachi.com.tw/E/Product/SICD_Frame.htm  
Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm  
Japan  
: http://www.hitachi.co.jp/Sicd/indx.htm  
For further information write to:  
Hitachi Semiconductor  
(America) Inc.  
Hitachi Europe GmbH  
Hitachi Asia (Hong Kong) Ltd.  
Group III (Electronic Components)  
7/F., North Tower, World Finance Centre,  
Harbour City, Canton Road, Tsim Sha Tsui,  
Kowloon, Hong Kong  
Tel: <852> (2) 735 9218  
Fax: <852> (2) 730 0281  
Hitachi Asia Pte. Ltd.  
16 Collyer Quay #20-00  
Hitachi Tower  
Singapore 049318  
Tel: 535-2100  
Electronic components Group  
Dornacher Stra§e 3  
D-85622 Feldkirchen, Munich  
Germany  
Tel: <49> (89) 9 9180-0  
Fax: <49> (89) 9 29 30 00  
179 East Tasman Drive,  
San Jose,CA 95134  
Tel: <1> (408) 433-1990  
Fax: <1>(408) 433-0223  
Fax: 535-1533  
Hitachi Asia Ltd.  
Taipei Branch Office  
3F, Hung Kuo Building. No.167,  
Tun-Hwa North Road, Taipei (105)  
Tel: <886> (2) 2718-3666  
Fax: <886> (2) 2718-8180  
Telex: 40815 HITEC HX  
Hitachi Europe Ltd.  
Electronic Components Group.  
Whitebrook Park  
Lower Cookham Road  
Maidenhead  
Berkshire SL6 8YA, United Kingdom  
Tel: <44> (1628) 585000  
Fax: <44> (1628) 778322  
Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.  

相关型号:

BB305MEW-TL-E

Built in Biasing Circuit MOS FET IC UHF/VHF RF Amplifier
RENESAS

BB3080

3 Port Circulator, 378MHz Min, 512MHz Max
TEMEX

BB308B

100mA, 25V, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-92, PLASTIC, TO-226AA, 3 PIN
ONSEMI

BB308BRL

TRANSISTOR 100 mA, 25 V, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-92, PLASTIC, TO-226AA, 3 PIN, BIP General Purpose Small Signal
ONSEMI

BB308BRL1

100mA, 25V, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-92, PLASTIC, TO-226AA, 3 PIN
ONSEMI

BB308BRLRA

TRANSISTOR 100 mA, 25 V, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-92, PLASTIC, TO-226AA, 3 PIN, BIP General Purpose Small Signal
ONSEMI

BB308BRLRE

100mA, 25V, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-92, PLASTIC, TO-226AA, 3 PIN
ONSEMI

BB308BRLRM

TRANSISTOR 100 mA, 25 V, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-92, PLASTIC, TO-226AA, 3 PIN, BIP General Purpose Small Signal
ONSEMI

BB308BZL1

TRANSISTOR 100 mA, 25 V, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-92, PLASTIC, TO-226AA, 3 PIN, BIP General Purpose Small Signal
ONSEMI

BB329

Si Epitaxial Planar Capacitance Diode
SEMTECH

BB32C1

HC-49/US Microprocessor Crystals
CALIBER