CA3018 [HARRIS]

General Purpose Transistor Arrays; 通用晶体管阵列
CA3018
型号: CA3018
厂家: HARRIS CORPORATION    HARRIS CORPORATION
描述:

General Purpose Transistor Arrays
通用晶体管阵列

晶体 晶体管
文件: 总6页 (文件大小:50K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CA3018, CA3018A  
Semiconductor  
January 1999  
File Number 338.5  
General Purpose Transistor Arrays  
Features  
• Matched Monolithic General Purpose Transistors  
• h Matched . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±10%  
The CA3018 and CA3018A consist of four general purpose  
silicon NPN transistors on a common monolithic substrate.  
FE  
Two of the four transistors are connected in the Darlington  
• V Matched  
BE  
[ /Title configuration. The substrate is connected to a separate  
()  
- CA3018A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2mV  
- CA3018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5mV  
terminal for maximum flexibility.  
/Sub-  
ject ()  
/Autho  
r ()  
/Key-  
words  
()  
/Cre-  
ator ()  
/DOCI  
NFO  
pdf-  
The transistors of the CA3018 and the CA3018A are well  
suited to a wide variety of applications in low power systems  
in the DC through VHF range. They may be used as discrete  
transistors in conventional circuits but in addition they  
provide the advantages of close electrical and thermal  
matching inherent in integrated circuit construction.  
• Operation From DC to 120MHz  
• Wide Operating Current Range  
• CA3018A Performance Characteristics Controlled from  
10µA to 10mA  
• Low Noise Figure . . . . . . . . . . . . . . . . 3.2dB (Typ) at 1kHz  
o
o
The CA3018A is similar to the CA3018 but features tighter  
control of current gain, leakage, and offset parameters  
making it suitable for more critical applications requiring  
premium performance.  
• Full Military Temperature Range . . . . . . . -55 C to 125 C  
Applications  
Two Isolated Transistors and a Darlington Connected  
Transistor Pair for Low Power Applications at Frequencies  
from DC through the VHF Range  
Part Number Information  
TEMP.  
PKG.  
NO.  
o
• Custom Designed Differential Amplifiers  
Temperature Compensated Amplifiers  
PART NUMBER RANGE ( C)  
PACKAGE  
mark  
CA3018 (obsolete)  
CA3018A  
-55 to 125 12 Pin Metal Can T12.B  
-55 to 125 12 Pin Metal Can T12.B  
[
• See Application Note, AN5296 “Application of the CA3018  
Integrated Circuit Transistor Array” for Suggested Applica-  
tions  
/Page-  
Mode  
/Use-  
Out-  
lines  
/DOC-  
VIEW  
pdf-  
Pinout  
CA3018, CA3018A  
(METAL CAN)  
TOP VIEW  
12  
11  
1
mark  
Q
4
SUBSTRATE  
10  
2
4
9
3
Q
3
Q
8
1
Q
2
5
7
6
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
Copyright © Harris Corporation 1999  
1
CA3018, CA3018A  
Absolute Maximum Ratings  
Thermal Information  
o
o
CA3018  
. . . . . . . . . . 15V  
CA3018A  
15V  
Thermal Resistance (Typical, Note 2)  
Metal Can Package . . . . . . . . . . . . . . .  
θ
( C/W)  
θ
( C/W)  
JA  
JC  
Collector-to-Emitter Voltage, V  
CEO  
200  
120  
Collector-to-Base Voltage, V  
. . . . . . . . . . . . 20V  
30V  
40V  
5V  
50mA  
Maximum Power Dissipation (Any One Transistor) . . . . . . . 300mW  
CBO  
Collector-to-Substrate Voltage, V  
o
(Note 1). . 20V  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . .175 C  
CIO  
. . . . . . . . . . . . . 5V  
o
o
Emitter-to-Base Voltage, V  
Maximum Storage Temperature Range. . . . . . . . . . -65 C to 150 C  
EBO  
o
Collector Current, I . . . . . . . . . . . . . . . . . . . . . 50mA  
C
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300 C  
Operating Conditions  
o
o
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . -55 C to 125 C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. The collector of each transistor of the CA3018 and CA3018A is isolated from the substrate by an integral diode. The substrate (Terminal 10) must  
be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor ac-  
tion.  
2. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
o
Electrical Specifications T = 25 C  
A
CA3018  
TYP  
CA3018A  
TYP MAX UNITS  
PARAMETER  
DC CHARACTERISTICS  
SYMBOL  
TEST CONDITIONS  
MIN  
MAX  
MIN  
Collector Cutoff Current (Figure 1)  
Collector Cutoff Current (Figure 2)  
I
I
V
V
= 10V, I = 0  
-
-
0.002  
100  
5
-
-
0.002  
40  
nA  
CBO  
CB  
CE  
E
= 10V, I = 0  
See  
See  
0.5  
µA  
CEO  
B
Fig. 2  
Fig. 2  
Collector Cutoff Current Darlington Pair  
Collector-to-Emitter Breakdown Voltage  
Collector-to-Base Breakdown Voltage  
Emitter-to-Base Breakdown Voltage  
Collector-to-Substrate Breakdown Voltage  
Collector-to-Emitter Saturation Voltage  
I
V
= 10V, I = 0  
-
15  
20  
5
-
-
-
-
5
µA  
V
V
V
V
V
-
CEOD  
CE  
B
V
V
V
I
I
I
I
I
= 1mA, I = 0  
24  
-
15  
30  
5
24  
-
(BR)CEO  
(BR)CBO  
(BR)EBO  
C
C
E
C
B
B
= 10µA, I = 0  
60  
-
60  
-
E
= 10µA, I = 0  
7
-
7
-
C
V
= 10µA, I = 0  
CI  
20  
-
60  
-
40  
-
60  
-
0.5  
-
(BR)CIO  
V
= 1mA, I = 10mA  
0.23  
100  
100  
54  
-
0.23  
100  
100  
54  
CES  
C
Forward Current Transfer Ratio (Note 3)  
(Figure 3)  
h
V
= 3V  
I
I
I
= 10mA  
= 1mA  
= 10µA  
-
-
50  
60  
30  
0.9  
FE  
CE  
C
C
C
30  
-
200  
200  
-
-
-
-
-
Magnitude of Static-Beta Ratio (Isolated  
V
= 3V,  
0.9  
0.97  
0.97  
-
-
CE  
Transistors Q and Q ) (Figure 3)  
I = I = 1mA  
C1 C2  
1
2
Forward Current Transfer Ratio Darling-  
ton Pair (Q and Q ) (Figure 4)  
h
V
V
V
= 3V  
= 3V  
I
I
I
I
= 1mA  
1500  
5400  
-
-
-
2000  
1000  
5400  
2800  
-
-
-
-
FED  
CE  
CE  
CE  
C
C
E
E
3
4
= 100µA  
= 1mA  
-
-
-
-
Base-to-Emitter Voltage (Figure 5)  
Input Offset Voltage (Figures 5, 7)  
V
0.715  
0.800  
0.48  
-
0.600 0.715 0.800  
V
BE  
= 10mA  
-
-
-
0.800 0.900  
V
= 3V, I = 1mA  
5
0.48  
-1.9  
2
-
mV  
E
V
BE1  
BE2  
V  
o
Temperature Coefficient: Base-to-Emitter  
Voltage Q , Q (Figure 6)  
V
= 3V, I = 1mA  
-
-1.9  
-
-
mV/ C  
CE  
E
V  
BE  
------------------  
1
2
T  
2
CA3018, CA3018A  
o
Electrical Specifications T = 25 C (Continued)  
A
CA3018  
TYP  
CA3018A  
TYP MAX UNITS  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
MAX  
MIN  
Base (Q )-to-Emitter (Q ) Voltage Dar-  
lington Pair (Figure 8)  
V
(V  
)
V
V
= 3V  
I
I
= 10mA  
= 1mA  
-
-
-
1.46  
-
-
-
-
1.10  
-
1.46  
1.60  
1.50  
-
V
V
3
4
BED 9-1  
CE  
E
1.32  
1.32  
E
o
Temperature Coefficient: Base-to-Emitter  
Voltage Darlington Pair (Q and Q )  
= 3V, I = 1mA  
4.4  
4.4  
mV/ C  
CE  
E
V  
BED  
3
4
---------------------  
T  
(Figure 9)  
o
V
V  
Temperature Coefficient: Magnitude  
of Input Offset Voltage  
V
= 6V, V = -6V,  
EE  
= I = 1mA  
-
-
10  
-
-
-
-
10  
-
-
µV/ C  
CC  
BE1  
BE2  
------------------------------------  
I
T  
C1 C2  
DYNAMIC CHARACTERISTICS  
Low Frequency Noise Figure  
(Figures 10 - 12)  
NF  
f = 1kHz, V  
= 3V,  
= 100µA, Source  
3.25  
3.25  
dB  
CE  
I
C
Resistance = 1kΩ  
Low Frequency, Small Signal Equivalent  
Circuit Characteristics  
Forward Current Transfer Ratio  
(Figure 13)  
h
f = 1kHz, V  
= 3V,  
= 3V,  
= 3V,  
= 3V,  
-
-
-
-
110  
3.5  
-
-
-
-
-
-
-
-
110  
3.5  
-
-
-
-
-
FE  
CE  
CE  
CE  
CE  
I
= 1mA  
C
Short Circuit Input Impedance  
(Figure 13)  
h
f = 1kHz, V  
= 1mA  
kΩ  
µS  
-
IE  
I
C
Open Circuit Output Impedance  
(Figure 13)  
h
h
f = 1kHz, V  
= 1mA  
15.6  
1.8 x  
15.6  
1.8 x  
OE  
RE  
I
C
Open Circuit Reverse Voltage  
Transfer Ratio (Figure 13)  
f = 1kHz, V  
= 1mA  
-4  
-4  
I
10  
10  
C
Admittance Characteristics  
Forward Transfer Admittance  
(Figure 14)  
Y
f = 1MHz, V  
= 3V,  
= 3V,  
= 3V,  
= 3V,  
-
-
-
31 -  
j1.5  
-
-
-
-
-
-
31 -  
j1.5  
-
-
-
mS  
mS  
mS  
mS  
FE  
CE  
CE  
CE  
CE  
I
= 1mA  
C
Input Admittance (Figure 15)  
Y
f = 1MHz, V  
= 1mA  
0.3 +  
j0.04  
0.3 +  
j0.04  
IE  
I
C
Output Admittance (Figure 16)  
Y
f = 1MHz, V  
= 1mA  
0.001  
+ j0.03  
0.001  
+ j0.03  
OE  
I
C
Reverse Transfer Admittance  
(Figure 17)  
Y
f = 1MHz, V  
= 1mA  
See Figure 17  
RE  
I
C
Gain Bandwidth Product (Figure 18)  
Emitter-to-Base Capacitance  
Collector-to-Base Capacitance  
Collector-to-Substrate Capacitance  
NOTE:  
f
V
V
V
V
= 3V, I = 3mA  
300  
500  
0.6  
-
-
-
-
300  
500  
0.6  
-
-
-
-
MHz  
pF  
T
CE  
EB  
CB  
C
C
C
= 3V, I = 0  
-
-
-
-
-
-
EB  
E
= 3V, I = 0  
0.58  
2.8  
0.58  
2.8  
pF  
CB  
C
C
= 3V, I = 0  
pF  
CI  
CI  
C
3. Actual forcing current is via the emitter for this test.  
3
CA3018, CA3018A  
Typical Performance Curves  
2
3
10  
10  
I
= 0  
I
= 0  
B
E
2
10  
10  
V
= 15V  
V
= 10V  
CB  
= 10V  
CE  
V
CB  
= 5V  
10  
1
1
V
CB  
V
= 5V  
CE  
-1  
10  
-2  
-3  
-4  
-1  
10  
10  
10  
10  
-2  
10  
-3  
10  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
o
o
AMBIENT TEMPERATURE ( C)  
AMBIENT TEMPERATURE ( C)  
FIGURE1. TYPICALCOLLECTOR-TO-BASECUTOFFCURRENT  
vs TEMPERATURE  
FIGURE 2. TYPICAL COLLECTOR-TO-EMITTER CUTOFF  
CURRENT vs TEMPERATURE  
120  
110  
100  
90  
1.1  
8000  
V
T
= 3V  
o
V
T
= 3V  
o
CE  
CE  
= 25 C  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
= 25 C  
A
A
h
FE  
1
h
h
FE1  
FE2  
OR  
-------------  
-------------  
h
h
80  
0.9  
0.8  
FE2  
FE1  
70  
60  
50  
0.01  
0.1  
1
10  
0.1  
1
10  
EMITTER CURRENT (mA)  
EMITTER CURRENT (mA)  
FIGURE 3. TYPICAL STATIC FORWARD CURRENT TRANSFER  
RATIO AND BETA RATIO FOR TRANSISTORS Q  
FIGURE 4. TYPICAL STATIC FORWARD CURRENT - TRANSFER  
RATIO FOR DARLINGTON CONNECTED  
1
AND Q vs EMITTER CURRENT  
2
TRANSISTORS Q AND Q vs EMITTER CURRENT  
3
4
4
3
2
1
0
0.8  
0.7  
0.6  
0.5  
0.4  
V
= 3V  
CE  
V
T
= 3V  
o
CE  
= 25 C  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
A
V
BE  
I
= 3mA  
E
I
= 1mA  
E
I
= 0.5mA  
E
V
= |V  
- V |  
BE2  
IO  
BE1  
-75  
-50  
-25  
0
25  
50  
75  
100  
125  
0.01  
0.1  
1.0  
10  
o
AMBIENT TEMPERATURE ( C)  
EMITTER CURRENT (mA)  
FIGURE 5. TYPICAL STATIC BASE-TO-EMITTER VOLTAGE  
CHARACTERISTIC AND INPUT OFFSET VOLTAGE  
FOR Q AND Q vs EMITTER CURRENT  
FIGURE 6. TYPICAL BASE-TO-EMITTER VOLTAGE  
CHARACTERISTIC FOR EACH TRANSISTOR vs  
TEMPERATURE  
1
2
4
CA3018, CA3018A  
Typical Performance Curves (Continued)  
1.7  
1.6  
5
V
= 3V  
V
= 3V  
o
CE  
CE  
= 25 C  
T
A
4
I
= 10mA  
E
3
1.5  
1.4  
1.3  
1.2  
2
0.75  
0.50  
0.25  
0
I
= 1mA  
E
I
= 0.1mA  
E
-75  
-50 -25  
0
25  
50  
75  
100 125  
0.1  
1
10  
o
EMITTER CURRENT (mA)  
AMBIENT TEMPERATURE ( C)  
FIGURE 7. TYPICAL OFFSET VOLTAGE CHARACTERISTIC vs  
TEMPERATURE  
FIGURE 8. TYPICAL STATIC INPUT VOLTAGE CHARACTERISTIC  
FOR DARLINGTON PAIR (Q AND Q ) vs EMITTER  
3
4
CURRENT  
2
V
R
= 3V  
CE  
S
V
= 3V  
CE  
= 500Ω  
o
I
I
= 3mA  
= 1mA  
E
E
T
= 25 C  
A
20  
15  
10  
5
1.75  
1.50  
1.25  
1
f = 0.1kHz  
f = 1kHz  
I
= 0.5mA  
E
f = 10kHz  
0.75  
0
-75  
-50  
-25  
0
25  
50  
75  
100  
125  
0.01  
0.1  
COLLECTOR CURRENT (mA)  
1
o
AMBIENT TEMPERATURE ( C)  
FIGURE 9. TYPICAL STATIC INPUT VOLTAGE CHARACTERISTIC  
FOR DARLINGTON PAIR (Q AND Q ) vs  
FIGURE 10. NOISE FIGURE vs COLLECTOR CURRENT  
3
4
TEMPERATURE  
30  
V
R
= 3V  
CE  
S
V
R
= 3V  
CE  
S
= 1000Ω  
= 10000Ω  
o
T
= 25 C  
o
A
25  
20  
15  
10  
5
T
= 25 C  
20  
15  
A
f = 0.1kHz  
f = 0.1kHz  
f = 1kHz  
f = 1kHz  
10  
5
f = 10kHz  
f = 10kHz  
0
0
0.01  
0.1  
COLLECTOR CURRENT (mA)  
1
0.01  
0.1  
1
COLLECTOR CURRENT (mA)  
FIGURE 11. NOISE FIGURE vs COLLECTOR CURRENT  
FIGURE 12. NOISE FIGURE vs COLLECTOR CURRENT  
5
CA3018, CA3018A  
Typical Performance Curves (Continued)  
100  
COMMON EMITTER CIRCUIT, BASE INPUT  
V
= 3V  
CE  
f = 1kHz  
o
T
= 25 C, V  
= 3V, I = 1mA  
A
CE C  
40  
30  
20  
10  
0
h
o
h
h
h
h
= 110  
OE  
FE  
IE  
RE  
OE  
T
= 25 C  
A
= 3.5kΩ  
AT  
-4  
1mA  
= 1.88 x 10  
= 15.6µS  
h
IE  
10  
h
RE  
g
FE  
h
FE  
RE  
1.0  
0.1  
b
h
-10  
-20  
FE  
h
IE  
0.1  
1
10  
FREQUENCY (MHz)  
100  
0.01  
0.1  
1.0  
10  
COLLECTOR CURRENT (mA)  
FIGURE 13. h PARAMETERS vs COLLECTOR CURRENT  
FIGURE 14. FORWARD TRANSFER ADMITTANCE (Y  
)
FE  
6
COMMON EMITTER CIRCUIT, BASE INPUT  
6
COMMON EMITTER CIRCUIT, BASE INPUT  
o
o
= 25 C, V  
T
= 3V, I = 1mA  
CE C  
A
T
= 25 C, V  
= 3V, I = 1mA  
A
CE C  
5
4
3
5
4
b
OE  
3
2
1
b
IE  
2
1
0
g
IE  
g
OE  
0
0.1  
1
10  
FREQUENCY (MHz)  
100  
0.1  
1
10  
FREQUENCY (MHz)  
100  
FIGURE 15. INPUT ADMITTANCE (Y  
IE  
)
FIGURE 16. OUTPUT ADMITTANCE (Y )  
OE  
V
T
= 3V  
COMMON EMITTER CIRCUIT, BASE INPUT  
CE  
= 25 C  
o
o
T
= 25 C, V  
= 3V, I = 1mA  
A
A
CE C  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
g
IS SMALL AT FREQUENCIES  
LESS THAN 500MHz  
RE  
0
b
RE  
-0.5  
-1.0  
-1.5  
-2.0  
1
10  
100  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
COLLECTOR CURRENT (mA)  
FREQUENCY (MHz)  
FIGURE 17. REVERSE TRANSFER ADMITTANCE (Y  
)
FIGURE 18. TYPICAL GAIN BANDWIDTH PRODUCT (f ) vs  
T
RE  
COLLECTOR CURRENT  
6

相关型号:

CA3018A

General Purpose Transistor Arrays
HARRIS

CA3018A

GENERAL PURPOSE TRANSISTOR ARRAYS
GE

CA3018AT

4 CHANNEL, VHF BAND, Si, NPN, RF SMALL SIGNAL TRANSISTOR, MO-006AG
RENESAS

CA3018AT3

4 CHANNEL, VHF BAND, Si, NPN, RF SMALL SIGNAL TRANSISTOR, METAL CAN PACKAGE-12
RENESAS

CA3019

ULTRA-FAST LOW-CAPACLTANCE MATCHED DIODES
INTERSIL

CA301A

Voltage-Feedback Operational Amplifier
ETC

CA301AE

Operational Amplifier
ETC

CA301AH

Operational Amplifier, 1 Func, 10000uV Offset-Max, BIPolar
RENESAS

CA301AS

OP-AMP, 10000uV OFFSET-MAX, MBCY8
RENESAS

CA301AT

OP-AMP, 10000uV OFFSET-MAX, MBCY8
RENESAS

CA301E

Analog IC
ETC

CA301S

Analog IC
ETC