GS882Z36CGD-150T [GSI]

ZBT SRAM, 256KX36, 7.5ns, CMOS, PBGA165, 13 X 15 MM, 1 MM PITCH, ROHS COMPLIANT, FPBGA-165;
GS882Z36CGD-150T
型号: GS882Z36CGD-150T
厂家: GSI TECHNOLOGY    GSI TECHNOLOGY
描述:

ZBT SRAM, 256KX36, 7.5ns, CMOS, PBGA165, 13 X 15 MM, 1 MM PITCH, ROHS COMPLIANT, FPBGA-165

静态存储器 内存集成电路
文件: 总34页 (文件大小:486K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GS882Z18/36CB/D-xxx  
333 MHz150 MHz  
9Mb Pipelined and Flow Through  
119-bump and 165-bump BGA  
Commercial Temp  
2.5 V or 3.3 V V  
DD  
Synchronous NBT SRAM  
2.5 V or 3.3 V I/O  
Features  
Functional Description  
• NBT (No Bus Turn Around) functionality allows zero wait  
Read-Write-Read bus utilization; fully pin-compatible with  
both pipelined and flow through NtRAM™, NoBL™ and  
ZBT™ SRAMs  
The GS882Z18/36C882Z18C is a 9Mbit Synchronous Static  
SRAM. GSI's NBT SRAMs, like ZBT, NtRAM, NoBL or  
other pipelined read/double late write or flow through read/  
single late write SRAMs, allow utilization of all available bus  
bandwidth by eliminating the need to insert deselect cycles  
when the device is switched from read to write cycles.  
• 2.5 V or 3.3 V +10%/–10% core power supply  
• 2.5 V or 3.3 V I/O supply  
• User-configurable Pipeline and Flow Through mode  
• ZQ mode pin for user-selectable high/low output drive  
• IEEE 1149.1 JTAG-compatible Boundary Scan  
• LBO pin for Linear or Interleave Burst mode  
• Pin-compatible with 2M, 4M, and 18M devices  
• Byte write operation (9-bit Bytes)  
• 3 chip enable signals for easy depth expansion  
• ZZ Pin for automatic power-down  
• JEDEC-standard 119-bump BGA and 165-bump FPBGA  
packages  
Because it is a synchronous device, address, data inputs, and  
read/write control inputs are captured on the rising edge of the  
input clock. Burst order control (LBO) must be tied to a power  
rail for proper operation. Asynchronous inputs include the  
Sleep mode enable (ZZ) and Output Enable. Output Enable can  
be used to override the synchronous control of the output  
drivers and turn the RAM's output drivers off at any time.  
Write cycles are internally self-timed and initiated by the rising  
edge of the clock input. This feature eliminates complex off-  
chip write pulse generation required by asynchronous SRAMs  
and simplifies input signal timing.  
• RoHS-compliant 119-bump and 165-bump BGA packages  
available  
The GS882Z18/36C may be configured by the user to operate  
in Pipeline or Flow Through mode. Operating as a pipelined  
synchronous device, in addition to the rising-edge-triggered  
registers that capture input signals, the device incorporates a  
rising edge triggered output register. For read cycles, pipelined  
SRAM output data is temporarily stored by the edge-triggered  
output register during the access cycle and then released to the  
output drivers at the next rising edge of clock.  
The GS882Z18/36C is implemented with GSI's high  
performance CMOS technology and is available in JEDEC-  
standard 119-bump BGA and 165-bump FPBGA packages.  
Parameter Synopsis  
-333  
-300  
-250  
-200  
-150  
Unit  
tKQ  
2.5  
3.0  
2.5  
3.3  
2.5  
4.0  
3.0  
5.0  
3.8  
6.7  
ns  
ns  
tCycle  
Pipeline  
3-1-1-1  
Curr (x18)  
Curr (x32/x36)  
240  
280  
225  
260  
195  
225  
170  
195  
140  
160  
mA  
mA  
tKQ  
4.5  
4.5  
5.0  
5.0  
5.5  
5.5  
6.5  
6.5  
7.5  
7.5  
ns  
ns  
tCycle  
Flow Through  
2-1-1-1  
Curr (x18)  
Curr (x32/x36)  
180  
205  
165  
190  
160  
180  
140  
160  
128  
145  
mA  
mA  
Rev: 1.05 7/2012  
1/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36CB/D-xxx  
GS882Z36C Pad Out—119-Bump BGA—Top View (Package B)  
1
2
A
3
A
A
A
4
5
A
A
A
6
A
7
A
B
C
D
E
F
V
NC  
V
DDQ  
DDQ  
NC  
NC  
E2  
ADV  
E3  
NC  
NC  
A
V
A
DD  
DQC  
DQC  
DQPC  
DQC  
DQC  
DQC  
DQC  
V
ZQ  
E1  
G
V
DQPB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
SS  
SS  
SS  
SS  
SS  
SS  
V
V
V
V
V
V
DDQ  
DDQ  
G
H
J
DQC  
BC  
A
BB  
DQB  
DQC  
V
W
V
DQB  
SS  
SS  
V
V
NC  
V
NC  
V
V
DDQ  
DDQ  
DD  
DD  
DD  
K
L
DQD  
DQD  
DQD  
DQD  
DQD  
DQPD  
A
V
CK  
V
DQA  
DQA  
DQA  
DQA  
DQPA  
A
DQA  
SS  
SS  
DQD  
BD  
NC  
CKE  
A1  
BA  
DQA  
M
N
P
R
T
V
V
V
V
DDQ  
DDQ  
SS  
SS  
SS  
SS  
SS  
SS  
DQD  
V
V
V
V
DQA  
DQD  
NC  
A0  
DQA  
PE  
LBO  
A
V
FT  
A
DD  
NC  
NC  
A
NC  
ZZ  
U
V
TMS  
TDI  
TCK  
TDO  
NC  
V
DDQ  
DDQ  
Rev: 1.05 7/2012  
2/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36CB/D-xxx  
GS882Z18C Pad Out—119-Bump BGA—Top View (Package B)  
1
2
A
3
A
A
A
4
5
A
A
A
6
A
7
A
B
C
D
E
F
V
NC  
V
DDQ  
DDQ  
NC  
NC  
E2  
ADV  
E3  
NC  
NC  
A
V
A
DD  
DQB  
NC  
NC  
DQB  
NC  
DQB  
NC  
V
ZQ  
E1  
G
V
DQPA  
NC  
DQA  
NC  
DQA  
NC  
SS  
SS  
SS  
SS  
SS  
SS  
V
V
V
V
DQA  
V
V
DDQ  
DDQ  
G
H
J
NC  
BB  
A
NC  
DQA  
DQB  
V
W
V
NC  
SS  
SS  
V
V
NC  
V
NC  
V
V
DDQ  
DDQ  
DD  
DD  
DD  
K
L
NC  
DQB  
NC  
V
CK  
V
NC  
DQA  
NC  
DQA  
NC  
A
DQA  
SS  
SS  
DQB  
NC  
NC  
CKE  
A1  
BA  
NC  
M
N
P
R
T
V
DQB  
NC  
V
V
V
V
V
DDQ  
DDQ  
SS  
SS  
SS  
SS  
SS  
SS  
DQB  
V
V
NC  
NC  
NC  
NC  
DQPB  
A
A0  
DQA  
PE  
LBO  
A
V
FT  
A
DD  
A
NC  
A
ZZ  
U
V
TMS  
TDI  
TCK  
TDO  
NC  
V
DDQ  
DDQ  
Rev: 1.05 7/2012  
3/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36CB/D-xxx  
165 Bump BGA—x18 Commom I/O—Top View (Package D)  
1
2
3
4
5
6
7
8
9
10  
A
11  
A
B
C
D
E
F
NC  
A
E1  
BB  
NC  
E3  
CKE  
ADV  
A17  
A18  
A
B
C
D
E
F
NC  
NC  
A
E2  
NC  
BA  
CK  
W
G
NC  
A
NC  
DQA  
DQA  
DQA  
DQA  
DQA  
ZZ  
NC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
NC  
NC  
NC  
NC  
NC  
ZQ  
DQA  
DQA  
DQA  
DQA  
NC  
A
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
SS  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
NC  
DQB  
DQB  
DQB  
DQB  
MCH  
NC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
NC  
NC  
G
H
J
NC  
G
H
J
FT  
NC  
NC  
DQB  
DQB  
DQB  
DQB  
DQB  
NC  
V
V
NC  
NC  
NC  
NC  
NC  
NC  
A
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
K
L
NC  
V
V
V
V
V
V
V
V
K
L
NC  
M
N
P
R
NC  
M
N
P
R
DNU  
NC  
V
NC  
TDI  
NC  
A1  
A0  
NC  
V
SS  
DDQ  
SS  
DDQ  
A
A
A
TDO  
TCK  
A
A
A
LBO  
NC  
A
TMS  
A
A
11 x 15 Bump BGA—13 mm x 15 mm Body—1.0 mm Bump Pitch  
Rev: 1.05 7/2012  
4/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36CB/D-xxx  
165 Bump BGA—x36 Common I/O—Top View (Package D)  
1
2
3
4
5
6
7
8
9
10  
A
11  
A
B
C
D
E
F
NC  
A
E1  
BC  
BB  
E3  
CKE  
ADV  
A17  
NC  
A
B
C
D
E
F
NC  
DQPC  
DQC  
DQC  
DQC  
DQC  
FT  
A
E2  
BD  
BA  
CK  
W
G
NC  
A
NC  
DQPB  
DQB  
DQB  
DQB  
DQB  
ZZ  
NC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
NC  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
SS  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DQC  
DQC  
DQC  
DQC  
MCH  
DQD  
DQD  
DQD  
DQD  
DNU  
NC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DQB  
DQB  
DQB  
DQB  
ZQ  
G
H
J
G
H
J
NC  
NC  
DQD  
DQD  
DQD  
DQD  
DQPD  
NC  
V
V
DQA  
DQA  
DQA  
DQA  
NC  
DQA  
DQA  
DQA  
DQA  
DQPA  
NC  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
K
L
V
V
V
V
V
V
V
V
K
L
M
N
P
R
M
N
P
R
V
NC  
TDI  
NC  
A1  
A0  
NC  
V
SS  
DDQ  
SS  
DDQ  
A
A
A
TDO  
TCK  
A
A
A
A
LBO  
NC  
A
TMS  
A
A
A
11 x 15 Bump BGA—13 mm x 15 mm Body—1.0 mm Bump Pitch  
Rev: 1.05 7/2012  
5/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36CB/D-xxx  
GS882Z18/36C BGA Pin Description  
Symbol  
A0, A1  
A
Type  
Description  
I
I
Address field LSBs and Address Counter Preset Inputs  
Address Inputs  
In  
In  
In  
In  
I
Byte Write signal for data inputs DQA; active low  
Byte Write signal for data inputs DQB; active low  
Byte Write signal for data inputs DQC; active low  
Byte Write signal for data inputs DQD; active low  
No Connect  
BA  
BB  
BC  
BD  
NC  
Clock Input Signal; active high  
Clock Enable; active low  
CK  
I
CKE  
W
I
Write Enable; active low  
I
Chip Enable; active low  
E1  
I
Chip Enable; active low  
E3  
I
Chip Enable; active high  
E2  
I
Output Enable; active low  
G
I
Burst address counter advance enable; active high  
Byte A Data Input and Output pins  
Byte B Data Input and Output pins  
Byte C Data Input and Output pins  
Byte D Data Input and Output pins  
9th Data I/O Pin; Byte A  
ADV  
DQA  
DQB  
DQC  
DQD  
DQPA  
DQPB  
DQPC  
DQPD  
ZZ  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
9th Data I/O Pin; Byte B  
9th Data I/O Pin; Byte C  
9th Data I/O Pin; Byte D  
Sleep mode control; active high  
Flow Through or Pipeline mode; active low  
Linear Burst Order mode; active low  
I
FT  
I
LBO  
FLXDrive Output Impedance Control (Low = Low Impedance [High Drive], High = High Impedance [Low  
Drive])  
I
ZQ  
I
I
Scan Test Mode Select  
Scan Test Data In  
TMS  
TDI  
Rev: 1.05 7/2012  
6/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36CB/D-xxx  
GS882Z18/36C BGA Pin Description  
Symbol  
TDO  
Type  
Description  
Scan Test Data Out  
Scan Test Clock  
O
I
TCK  
I
Must Connect High  
Do Not Use  
MCH  
DNU  
V
Core power supply  
I/O and Core Ground  
Output driver power supply  
DD  
V
I
SS  
V
I
DDQ  
Rev: 1.05 7/2012  
7/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36CB/D-xxx  
Functional Details  
Clocking  
Deassertion of the Clock Enable (CKE) input blocks the Clock input from reaching the RAM's internal circuits. It may be used to  
suspend RAM operations. Failure to observe Clock Enable set-up or hold requirements will result in erratic operation.  
Pipeline Mode Read and Write Operations  
All inputs (with the exception of Output Enable, Linear Burst Order and Sleep) are synchronized to rising clock edges. Single cycle  
read and write operations must be initiated with the Advance/Load pin (ADV) held low, in order to load the new address. Device  
activation is accomplished by asserting all three of the Chip Enable inputs (E1, E2, and E3). Deassertion of any one of the Enable  
inputs will deactivate the device.  
Function  
Read  
W
H
L
BA  
X
BB  
X
BC  
X
BD  
X
Write Byte “a”  
Write Byte “b”  
Write Byte “c”  
Write Byte “d”  
Write all Bytes  
Write Abort/NOP  
L
H
L
H
H
L
H
H
H
L
L
H
H
H
L
L
H
H
L
L
H
L
L
L
L
H
H
H
H
Read operation is initiated when the following conditions are satisfied at the rising edge of clock: CKE is asserted low, all three  
chip enables (E1, E2, and E3) are active, the write enable input signals W is deasserted high, and ADV is asserted low. The address  
presented to the address inputs is latched into the address register and presented to the memory core and control logic. The control  
logic determines that a read access is in progress and allows the requested data to propagate to the input of the output register. At  
the next rising edge of clock the read data is allowed to propagate through the output register and onto the output pins.  
Write operation occurs when the RAM is selected, CKE is active, and the Write input is sampled low at the rising edge of clock.  
The Byte Write Enable inputs (BA, BB, BC, and BD) determine which bytes will be written. All or none may be activated. A write  
cycle with no Byte Write inputs active is a no-op cycle. The pipelined NBT SRAM provides double late write functionality,  
matching the write command versus data pipeline length (2 cycles) to the read command versus data pipeline length (2 cycles). At  
the first rising edge of clock, Enable, Write, Byte Write(s), and Address are registered. The Data In associated with that address is  
required at the third rising edge of clock.  
Flow Through Mode Read and Write Operations  
Operation of the RAM in Flow Through mode is very similar to operations in Pipeline mode. Activation of a Read Cycle and the  
use of the Burst Address Counter is identical. In Flow Through mode the device may begin driving out new data immediately after  
new address are clocked into the RAM, rather than holding new data until the following (second) clock edge. Therefore, in Flow  
Through mode the read pipeline is one cycle shorter than in Pipeline mode.  
Write operations are initiated in the same way, but differ in that the write pipeline is one cycle shorter as well, preserving the ability  
to turn the bus from reads to writes without inserting any dead cycles. While the pipelined NBT RAMs implement a double late  
write protocol in Flow Through mode a single late write protocol mode is observed. Therefore, in Flow Through mode, address  
and control are registered on the first rising edge of clock and data in is required at the data input pins at the second rising edge of  
clock.  
Rev: 1.05 7/2012  
8/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36CB/D-xxx  
Synchronous Truth Table  
Operation  
Read Cycle, Begin Burst  
Read Cycle, Continue Burst  
NOP/Read, Begin Burst  
Dummy Read, Continue Burst  
Write Cycle, Begin Burst  
Write Abort, Begin Burst  
Write Cycle, Continue Burst  
Write Abort, Continue Burst  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Continue  
Sleep Mode  
Type  
R
Address  
External  
Next  
CK CKE ADV  
W
H
X
H
X
L
Bx E1 E2 E3  
G
L
ZZ  
L
L
L
L
L
L
L
L
L
L
L
L
H
L
DQ  
Q
Notes  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
X
L
L
L
L
L
L
L
L
L
L
L
L
X
H
L
H
L
X
X
X
X
L
L
X
L
H
X
H
X
H
H
X
X
X
X
L
L
X
L
B
L
Q
1,10  
2
1,2,10  
3
R
External  
Next  
H
H
X
X
X
X
X
X
X
X
X
X
High-Z  
High-Z  
D
B
H
L
X
L
X
L
W
D
External  
None  
1
L
L
H
L
L
L
High-Z  
D
1,3,10  
B
Next  
H
H
L
X
X
X
X
X
X
X
X
X
X
H
X
X
X
X
X
X
X
X
H
X
X
X
X
B
Next  
H
X
X
X
X
X
X
High-Z 1,2,3,10  
High-Z  
D
None  
D
None  
L
High-Z  
D
None  
L
High-Z  
1
4
D
None  
H
X
X
X
X
X
High-Z  
High-Z  
-
None  
Clock Edge Ignore, Stall  
Current  
L-H  
Notes:  
1. Continue Burst cycles, whether read or write, use the same control inputs. A Deselect continue cycle can only be entered into if a Deselect  
cycle is executed first.  
2. Dummy Read and Write abort can be considered NOPs because the SRAM performs no operation. A Write abort occurs when the W pin is  
sampled low but no Byte Write pins are active so no write operation is performed.  
3. G can be wired low to minimize the number of control signals provided to the SRAM. Output drivers will automatically turn off during write  
cycles.  
4. If CKE High occurs during a pipelined read cycle, the DQ bus will remain active (Low Z). If CKE High occurs during a write cycle, the bus  
will remain in High Z.  
5. X = Don’t Care; H = Logic High; L = Logic Low; Bx = High = All Byte Write signals are high; Bx = Low = One or more Byte/Write signals  
are Low  
6. All inputs, except G and ZZ must meet setup and hold times of rising clock edge.  
7. Wait states can be inserted by setting CKE high.  
8. This device contains circuitry that ensures all outputs are in High Z during power-up.  
9. A 2-bit burst counter is incorporated.  
10. The address counter is incriminated for all Burst continue cycles.  
Rev: 1.05 7/2012  
9/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36CB/D-xxx  
Pipelined and Flow Through Read Write Control State Diagram  
D
B
Deselect  
R
D
D
W
New Read  
New Write  
R
R
W
B
B
R
W
W
R
Burst Read  
Burst Write  
B
B
D
D
Key  
Notes  
Input Command Code  
1. The Hold command (CKE Low) is not  
shown because it prevents any state change.  
ƒ
Transition  
2. W, R, B, and D represent input command  
codes as indicated in the Synchronous Truth Table.  
Current State (n)  
Next State (n+1)  
n
n+1  
n+2  
n+3  
Clock (CK)  
Command  
ƒ
ƒ
ƒ
ƒ
Current State  
Next State  
Current State and Next State Definition for Pipelined and Flow through Read/Write Control State Diagram  
Rev: 1.05 7/2012  
10/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36CB/D-xxx  
Pipeline Mode Data I/O State Diagram  
Intermediate  
Intermediate  
R
W
B
Intermediate  
R
B
Data Out  
(Q Valid)  
High Z  
(Data In)  
W
D
Intermediate  
D
Intermediate  
W
R
High Z  
B
D
Intermediate  
Key  
Notes  
Input Command Code  
1. The Hold command (CKE Low) is not  
shown because it prevents any state change.  
ƒ
Transition  
Transition  
2. W, R, B, and D represent input command  
codes as indicated in the Truth Tables.  
Current State (n)  
Next State (n+2)  
Intermediate State (N+1)  
n
n+1  
n+2  
n+3  
Clock (CK)  
Command  
ƒ
ƒ
ƒ
ƒ
Intermediate  
State  
Current State  
Next State  
Current State and Next State Definition for Pipeline Mode Data I/O State Diagram  
Rev: 1.05 7/2012  
11/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36CB/D-xxx  
Flow Through Mode Data I/O State Diagram  
R
W
B
B
R
Data Out  
(Q Valid)  
High Z  
(Data In)  
W
D
D
W
R
High Z  
B
D
Key  
Notes  
Input Command Code  
1. The Hold command (CKE Low) is not  
shown because it prevents any state change.  
ƒ
Transition  
2. W, R, B, and D represent input command  
codes as indicated in the Truth Tables.  
Current State (n)  
Next State (n+1)  
n
n+1  
n+2  
n+3  
Clock (CK)  
Command  
ƒ
ƒ
ƒ
ƒ
Current State  
Next State  
Current State and Next State Definition for: Pipeline and Flow Through Read Write Control State Diagram  
Rev: 1.05 7/2012  
12/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36CB/D-xxx  
Burst Cycles  
Although NBT RAMs are designed to sustain 100% bus bandwidth by eliminating turnaround cycle when there is transition from  
read to write, multiple back-to-back reads or writes may also be performed. NBT SRAMs provide an on-chip burst address  
generator that can be utilized, if desired, to further simplify burst read or write implementations. The ADV control pin, when  
driven high, commands the SRAM to advance the internal address counter and use the counter generated address to read or write  
the SRAM. The starting address for the first cycle in a burst cycle series is loaded into the SRAM by driving the ADV pin low, into  
Load mode.  
Burst Order  
The burst address counter wraps around to its initial state after four addresses (the loaded address and three more) have been  
accessed. The burst sequence is determined by the state of the Linear Burst Order pin (LBO). When this pin is Low, a linear burst  
sequence is selected. When the RAM is installed with the LBO pin tied high, Interleaved burst sequence is selected. See the tables  
below for details.  
FLXDrive™  
The ZQ pin allows selection between NBT RAM nominal drive strength (ZQ low) for multi-drop bus applications and low drive  
strength (ZQ floating or high) point-to-point applications. See the Output Driver Characteristics chart for details.  
Mode Pin Functions  
Mode Name  
Pin Name  
State  
Function  
Linear Burst  
Interleaved Burst  
Flow Through  
Pipeline  
L
Burst Order Control  
LBO  
H
L
H or NC  
L or NC  
H
Output Register Control  
Power Down Control  
FT  
ZZ  
ZQ  
PE  
Active  
Standby, I = I  
DD SB  
L
High Drive (Low Impedance)  
Low Drive (High Impedance)  
FLXDrive Output Impedance Control  
9th Bit Enable  
H or NC  
L or NC  
H
Activate DQPx I/Os (x18/x3672 mode)  
Deactivate DQPx I/Os (x16/x3272 mode)  
Note:  
There are pull-up devices on the ZQ and FT pins and a pull-down device on the ZZ and PE pins, so those input pins can be unconnected and  
the chip will operate in the default states as specified in the above tables.  
Rev: 1.05 7/2012  
13/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36CB/D-xxx  
Burst Counter Sequences  
Linear Burst Sequence  
Interleaved Burst Sequence  
A[1:0] A[1:0] A[1:0] A[1:0]  
A[1:0] A[1:0] A[1:0] A[1:0]  
1st address  
2nd address  
3rd address  
4th address  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
1st address  
2nd address  
3rd address  
4th address  
00  
01  
01  
00  
10  
11  
11  
10  
10  
11  
11  
10  
00  
01  
01  
00  
Note:  
Note:  
The burst counter wraps to initial state on the 5th clock.  
The burst counter wraps to initial state on the 5th clock.  
BPR 1999.05.18  
Sleep Mode  
During normal operation, ZZ must be pulled low, either by the user or by its internal pull down resistor. When ZZ is pulled high,  
the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to  
low, the SRAM operates normally after ZZ recovery time.  
Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to I 2. The duration of  
SB  
Sleep mode is dictated by the length of time the ZZ is in a High state. After entering Sleep mode, all inputs except ZZ become  
disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode.  
When the ZZ pin is driven high, I 2 is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending  
SB  
operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated  
until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a Deselect or Read commands  
may be applied while the SRAM is recovering from Sleep mode.  
Sleep Mode Timing Diagram  
tKH  
tKC  
tKL  
CK  
ZZ  
tZZR  
tZZS  
tZZH  
Designing for Compatibility  
The GSI NBT SRAMs offer users a configurable selection between Flow Through mode and Pipeline mode via the FT signal  
found on Bump 5R. Not all vendors offer this option, however most mark Bump 5R as V or V  
on pipelined parts and V  
DD  
DDQ  
SS  
on flow through parts. GSI NBT SRAMs are fully compatible with these sockets.  
Rev: 1.05 7/2012  
14/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36CB/D-xxx  
Absolute Maximum Ratings  
(All voltages reference to V  
)
SS  
Symbol  
VDD  
Description  
Value  
Unit  
V
Voltage on VDD Pins  
Voltage in VDDQ Pins  
0.5 to 4.6  
0.5 to 4.6  
VDDQ  
VI/O1  
VI/O2  
VIN  
V
0.5 to VDD +0.5 (4.6 V max.)  
Voltage on I/O Pins  
Voltage on I/O Pins  
V
V
0.5 to VDDQ +0.5 (4.6 V max.)  
0.5 to VDD +0.5 (4.6 V max.)  
Voltage on Other Input Pins  
Input Current on Any Pin  
Output Current on Any I/O Pin  
Package Power Dissipation  
Storage Temperature  
V
IIN  
+/20  
+/20  
mA  
mA  
W
IOUT  
PD  
1.5  
oC  
oC  
TSTG  
55 to 125  
55 to 125  
TBIAS  
Temperature Under Bias  
Notes:  
1. Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recom-  
mended Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect  
reliability of this component.  
2. Both V  
V
must be met.  
I/O1 and I/O2  
Power Supply Voltage Ranges  
Parameter  
3.3 V Supply Voltage  
Symbol  
VDD3  
Min.  
3.0  
Typ.  
3.3  
Max.  
3.6  
Unit  
V
VDD2  
2.5 V Supply Voltage  
2.3  
2.5  
2.7  
V
3.3 V VDDQ I/O Supply Voltage  
VDDQ3  
VDDQ2  
VDD  
VDD  
3.0  
3.3  
V
2.5 V VDDQ I/O Supply Voltage  
2.3  
2.5  
V
Note:  
V
must be less than or equal to V + 0.3 V at all times.  
DD  
DDQ  
Rev: 1.05 7/2012  
15/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36CB/D-xxx  
V
Range Logic Levels  
DD3  
Parameter  
Symbol  
VIH  
Min.  
2.0  
Typ.  
Max.  
Unit  
V
VDD + 0.3  
VDD + 0.3  
VDDQ + 0.3  
Input High Voltage  
Input High Voltage for Data I/O pins  
Input High Voltage for Data I/O pins  
Input Low Voltage  
VIH(I/O)1  
VIH(I/O)2  
VIL  
2.0  
V
2.0  
V
0.3  
0.8  
V
Notes:  
1.  
2.  
3.  
4.  
V
V
V
V
(max) must be met for any instantaneous value of V .  
DD  
IH  
(max) must be met for any instantaneous value of V  
(max) must be met for any instantaneous value of V  
.
DD  
IH(I/O)1  
.
IH(I/O)2  
DDQ  
needs to power-up before or at the same time as V  
to make sure V (max) is not exceeded.  
IH  
DD  
DDQ  
V
Range Logic Levels  
DD2  
Parameter  
Symbol  
VIH  
Min.  
Typ.  
Max.  
Unit  
V
0.6*VDD  
0.6*VDD  
0.6*VDD  
V
DD + 0.3  
Input High Voltage  
Input High Voltage for Data I/O pins  
Input High Voltage for Data I/O pins  
Input Low Voltage  
VIH(I/O)1  
VIH(I/O)2  
VIL  
VDD + 0.3  
V
V
DDQ + 0.3  
0.3*VDD  
V
0.3  
V
Notes:  
1.  
2.  
3.  
4.  
V
V
V
V
(max) must be met for any instantaneous value of V .  
DD  
IH  
(max) must be met for any instantaneous value of V  
(max) must be met for any instantaneous value of V  
.
DD  
IH(I/O)1  
.
IH(I/O)2  
DDQ  
needs to power-up before or at the same time as V  
to make sure V (max) is not exceeded.  
IH  
DD  
DDQ  
Recommended Operating Temperatures  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
TA  
Ambient Temperature (Commercial Range Versions)  
0
25  
70  
°C  
Note:  
Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device.  
Rev: 1.05 7/2012  
16/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36CB/D-xxx  
Thermal Impedance  
Test PCB  
Substrate  
θ JA (C°/W)  
Airflow = 0 m/s  
θ JA (C°/W)  
Airflow = 1 m/s  
θ JA (C°/W)  
Airflow = 2 m/s  
Package  
θ JB (C°/W)  
θ JC (C°/W)  
119 BGA  
165 BGA  
4-layer  
28.0  
27.4  
24.8  
24.2  
23.7  
23.2  
17.4  
15.3  
8.3  
7.8  
4-layer  
Notes:  
1. Thermal Impedance data is based on a number of samples from multiple lots and should be viewed as a typical number.  
2. Please refer to JEDEC standard JESD51-6.  
3. The characteristics of the test fixture PCB influence reported thermal characteristics of the device. Be advised that a good thermal path to  
the PCB can result in cooling or heating of the RAM depending on PCB temperature.  
Undershoot Measurement and Timing  
Overshoot Measurement and Timing  
V
IH  
20% tKC  
V
+ 2.0 V  
DD  
V
SS  
50%  
50%  
V
DD  
V
2.0 V  
SS  
20% tKC  
V
IL  
Note:  
Input Under/overshoot voltage must be 2 V > Vi < V +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.  
DDn  
Capacitance  
o
(T = 25 C, f = 1 MHZ, V = 2.5 V)  
A
DD  
Parameter  
Symbol  
CIN  
Test conditions  
VIN = 0 V  
Typ.  
Max.  
Unit  
pF  
Input Capacitance  
4
6
5
7
CI/O  
VOUT = 0 V  
Input/Output Capacitance  
pF  
Note:  
These parameters are sample tested.  
Rev: 1.05 7/2012  
17/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36CB/D-xxx  
AC Test Conditions  
Parameter  
Input high level  
Input low level  
Conditions  
VDD – 0.2 V  
0.2 V  
Input slew rate  
1 V/ns  
VDD/2  
Input reference level  
VDDQ/2  
Output reference level  
Output load  
Fig. 1  
Notes:  
1. Include scope and jig capacitance.  
2. Test conditions as specified with output loading as shown in Fig. 1 unless otherwise noted.  
3. Device is deselected as defined by the Truth Table.  
Output Load 1  
DQ  
*
50Ω  
30pF  
V
DDQ/2  
* Distributed Test Jig Capacitance  
DC Electrical Characteristics  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Input Leakage Current  
(except mode pins)  
IIL  
VIN = 0 to VDD  
1 uA  
1 uA  
VDD VIN VIH  
0 V VIN VIH  
1 uA  
1 uA  
1 uA  
100 uA  
IIN1  
ZZ Input Current  
VDD VIN VIL  
0 V VIN VIL  
100 uA  
1 uA  
1 uA  
1 uA  
IIN2  
FT, ZQ Input Current  
IOL  
Output Disable, VOUT = 0 to VDD  
IOH = 8 mA, VDDQ = 2.375 V  
IOH = 8 mA, VDDQ = 3.135 V  
IOL = 8 mA  
Output Leakage Current  
Output High Voltage  
Output High Voltage  
Output Low Voltage  
1 uA  
1.7 V  
2.4 V  
1 uA  
VOH2  
VOH3  
VOL  
0.4 V  
Rev: 1.05 7/2012  
18/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36CB/D-xxx  
Operating Currents  
-333  
0
-300  
0
-250  
0
-200  
0
-150  
0
Parameter  
Test Conditions  
Mode  
Symbol  
Unit  
to 70°C to 70°C to 70°C to 70°C to 70°C  
IDD  
240  
40  
225  
35  
195  
30  
170  
25  
140  
20  
Pipeline  
mA  
mA  
mA  
mA  
IDDQ  
(x32/x36)  
(x18)  
IDD  
180  
25  
165  
25  
155  
25  
140  
20  
130  
15  
Device Selected;  
All other inputs  
VIH or VIL  
Flow Through  
Pipeline  
IDDQ  
Operating  
Current  
IDD  
220  
20  
205  
20  
180  
15  
155  
15  
130  
10  
Output open  
IDDQ  
IDD  
165  
15  
150  
15  
145  
15  
130  
10  
120  
8
Flow Through  
IDDQ  
ISB  
ISB  
IDD  
Pipeline  
Flow Through  
Pipeline  
25  
25  
70  
25  
25  
65  
25  
25  
65  
25  
25  
65  
25  
25  
60  
mA  
mA  
mA  
Standby  
Current  
ZZ VDD – 0.2 V  
Device Deselected;  
All other inputs  
VIH or VIL  
Deselect  
Current  
IDD  
Flow Through  
70  
65  
65  
65  
60  
mA  
Notes:  
1.  
I
and I  
apply to any combination of V , V , V  
, and V  
operation.  
DDQ2  
DD  
DDQ  
DD3 DD2 DDQ3  
2. All parameters listed are worst case scenario.  
Rev: 1.05 7/2012  
19/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36CB/D-xxx  
AC Electrical Characteristics  
-333  
-300  
-250  
-200  
-150  
Parameter  
Symbol  
Unit  
Min  
3.0  
Max  
2.5  
4.5  
Min  
3.3  
Max  
2.5  
5.0  
Min  
4.0  
Max  
2.5  
5.5  
Min  
5.0  
Max  
3.0  
6.5  
Min  
6.7  
Max  
3.8  
7.5  
Clock Cycle Time  
Clock to Output Valid  
Clock to Output Invalid  
tKC  
tKQ  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tKQX  
1.5  
1.5  
1.0  
0.1  
4.5  
1.5  
1.5  
1.0  
0.1  
5.0  
1.5  
1.5  
1.2  
0.2  
5.5  
1.5  
1.5  
1.4  
0.4  
6.5  
1.5  
1.5  
1.5  
0.5  
7.5  
Pipeline  
tLZ1  
tS  
Clock to Output in Low-Z  
Setup time  
Hold time  
tH  
Clock Cycle Time  
Clock to Output Valid  
tKC  
tKQ  
tKQX  
Clock to Output Invalid  
2.0  
2.0  
1.3  
0.3  
1.0  
2.0  
2.0  
1.4  
0.4  
1.0  
2.0  
2.0  
1.5  
0.5  
1.3  
2.0  
2.0  
1.5  
0.5  
1.3  
2.0  
2.0  
1.5  
0.5  
1.5  
Flow  
Through  
tLZ1  
tS  
Clock to Output in Low-Z  
Setup time  
Hold time  
tH  
Clock HIGH Time  
tKH  
Clock LOW Time  
tKL  
1.2  
1.5  
1.2  
1.5  
1.5  
1.5  
1.5  
1.5  
1.7  
1.5  
ns  
ns  
Clock to Output in  
High-Z  
tHZ1  
tOE  
2.5  
2.5  
2.5  
3.0  
3.0  
G to Output Valid  
G to output in Low-Z  
G to output in High-Z  
ZZ setup time  
0
2.5  
2.5  
0
2.5  
2.5  
0
2.5  
2.5  
0
3.0  
3.0  
0
3.8  
3.0  
ns  
ns  
ns  
ns  
ns  
ns  
tOLZ1  
tOHZ1  
tZZS2  
tZZH2  
tZZR  
5
5
5
5
5
ZZ hold time  
1
1
1
1
1
ZZ recovery  
20  
20  
20  
20  
20  
Notes:  
1. These parameters are sampled and are not 100% tested.  
2. ZZ is an asynchronous signal. However, in order to be recognized on any given clock cycle, ZZ must meet the specified setup and hold  
times as specified above.  
Rev: 1.05 7/2012  
20/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36CB/D-xxx  
Pipeline Mode Timing (NBT)  
Write A  
Read B  
Suspend  
tKH  
Read C  
tKC  
Write D  
Write No-op Read E  
Deselect  
tKL  
CK  
A
tH  
tH  
tH  
tH  
tH  
tH  
tS  
A
B
C
D
E
tS  
tS  
tS  
tS  
tS  
CKE  
E*  
ADV  
W
tH  
tS  
Bn  
tH  
tLZ  
tKQ  
tHZ  
tS  
tKQX  
D(A)  
Q(B)  
Q(C)  
D(D)  
Q(E)  
DQ  
Rev: 1.05 7/2012  
21/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36CB/D-xxx  
Flow Through Mode Timing (NBT)  
Write A  
Write B  
Write B+1 Read C  
tKL  
Cont  
Read D  
Write E  
Read F  
Write G  
tKH  
tKC  
CK  
CKE  
E
tH  
tH  
tH  
tH  
tH  
tH  
tS  
tS  
tS  
tS  
tS  
tS  
ADV  
W
Bn  
A0–An  
A
B
C
D
E
F
G
tKQ  
tLZ  
tH  
tKQ  
tLZ  
D(B+1)  
tKQX  
tS  
D(A)  
tHZ  
Q(D)  
tKQX  
D(G)  
DQ  
D(B)  
Q(C)  
D(E)  
Q(F)  
tOLZ  
tOE  
tOHZ  
G
*Note: E = High(False) if E1 = 1 or E2 = 0 or E3 = 1  
Rev: 1.05 7/2012  
22/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36CB/D-xxx  
JTAG Port Operation  
Overview  
The JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan  
interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with V . The JTAG output  
DD  
drivers are powered by V  
.
DDQ  
Disabling the JTAG Port  
It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless  
clocked. TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG  
Port unused, TCK, TDI, and TMS may be left floating or tied to either V or V . TDO should be left unconnected.  
DD  
SS  
JTAG Pin Descriptions  
Pin  
Pin Name  
I/O  
Description  
Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate  
from the falling edge of TCK.  
TCK  
Test Clock  
In  
The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP  
TMS  
TDI  
Test Mode Select  
Test Data In  
In controller state machine. An undriven TMS input will produce the same result as a logic one input  
level.  
The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers  
placed between TDI and TDO. The register placed between TDI and TDO is determined by the  
In state of the TAP Controller state machine and the instruction that is currently loaded in the TAP  
Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce  
the same result as a logic one input level.  
Output that is active depending on the state of the TAP state machine. Output changes in  
Out response to the falling edge of TCK. This is the output side of the serial registers placed between  
TDI and TDO.  
TDO  
Test Data Out  
Note:  
This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is  
held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.  
JTAG Port Registers  
Overview  
The various JTAG registers, refered to as Test Access Port orTAP Registers, are selected (one at a time) via the sequences of 1s  
and 0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the  
rising edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the  
TDI and TDO pins.  
Instruction Register  
The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or  
the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the  
TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the  
controller is placed in Test-Logic-Reset state.  
Bypass Register  
The Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through  
the RAM’s JTAG Port to another device in the scan chain with as little delay as possible.  
Rev: 1.05 7/2012  
23/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36CB/D-xxx  
Boundary Scan Register  
The Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins.  
The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The  
Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the  
device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan  
Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in  
Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z,  
SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.  
JTAG TAP Block Diagram  
·
·
·
·
·
·
·
·
Boundary Scan Register  
·
·
·
0
Bypass Register  
2
1 0  
Instruction Register  
TDI  
TDO  
ID Code Register  
31 30 29  
2 1  
0
·
· · ·  
Control Signals  
Test Access Port (TAP) Controller  
TMS  
TCK  
* For the value of M, see the BSDL file, which is available at by contacting us at apps@gsitechnology.com.  
Identification (ID) Register  
The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in  
Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM.  
It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the  
controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins.  
Rev: 1.05 7/2012  
24/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36CB/D-xxx  
ID Register Contents  
GSI Technology  
JEDEC Vendor  
ID Code  
Not Used  
Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  
0 1 1 0 1 1 0 0 1  
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
Tap Controller Instruction Set  
Overview  
There are two classes of instructions defined in the Standard 1149.1-1990; the standard (Public) instructions, and device specific  
(Private) instructions. Some Public instructions are mandatory for 1149.1 compliance. Optional Public instructions must be  
implemented in prescribed ways. The TAP on this device may be used to monitor all input and I/O pads, and can be used to load  
address, data or control signals into the RAM or to preload the I/O buffers.  
When the TAP controller is placed in Capture-IR state the two least significant bits of the instruction register are loaded with 01.  
When the controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired  
instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the  
TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP instruction set for this  
device is listed in the following table.  
Rev: 1.05 7/2012  
25/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36CB/D-xxx  
JTAG Tap Controller State Diagram  
Test Logic Reset  
1
0
1
1
1
Run Test Idle  
Select DR  
Select IR  
0
0
0
1
1
1
Capture DR  
Capture IR  
0
0
Shift DR  
Shift IR  
0
0
1
1
1
Exit1 DR  
Exit1 IR  
0
0
Pause DR  
Pause IR  
0
0
0
1
1
Exit2 DR  
Exit2 IR  
0
1
1
Update DR  
Update IR  
1
0
1
0
Instruction Descriptions  
BYPASS  
When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This  
occurs when the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facili-  
tate testing of other devices in the scan path.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is  
loaded in the Instruction Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and  
I/O buffers into the Boundary Scan Register. Boundary Scan Register locations are not associated with an input or I/O pin, and  
are loaded with the default state identified in the Boundary Scan Chain table at the end of this section of the datasheet. Because  
the RAM clock is independent from the TAP Clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents  
while the input buffers are in transition (i.e. in a metastable state). Although allowing the TAP to sample metastable inputs will  
not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the  
TAPs input data capture set-up plus hold time (tTS plus tTH). The RAMs clock inputs need not be paused for any other TAP  
operation except capturing the I/O ring contents into the Boundary Scan Register. Moving the controller to Shift-DR state then  
places the boundary scan register between the TDI and TDO pins.  
EXTEST  
EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register is loaded with  
all logic 0s. The EXTEST command does not block or override the RAM’s input pins; therefore, the RAM’s internal state is  
Rev: 1.05 7/2012  
26/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36CB/D-xxx  
still determined by its input pins.  
Typically, the Boundary Scan Register is loaded with the desired pattern of data with the SAMPLE/PRELOAD command.  
Then the EXTEST command is used to output the Boundary Scan Register’s contents, in parallel, on the RAM’s data output  
drivers on the falling edge of TCK when the controller is in the Update-IR state.  
Alternately, the Boundary Scan Register may be loaded in parallel using the EXTEST command. When the EXTEST instruc-  
tion is selected, the sate of all the RAM’s input and I/O pins, as well as the default values at Scan Register locations not asso-  
ciated with a pin, are transferred in parallel into the Boundary Scan Register on the rising edge of TCK in the Capture-DR  
state, the RAM’s output pins drive out the value of the Boundary Scan Register location with which each output pin is associ-  
ated.  
IDCODE  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and  
places the ID register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction  
loaded in at power up and any time the controller is placed in the Test-Logic-Reset state.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (high-  
Z) and the Boundary Scan Register is connected between TDI and TDO when the TAP controller is moved to the Shift-DR  
state.  
RFU  
These instructions are Reserved for Future Use. In this device they replicate the BYPASS instruction.  
JTAG TAP Instruction Set Summary  
Instruction  
EXTEST  
Code  
000  
Description  
Notes  
1
Places the Boundary Scan Register between TDI and TDO.  
Preloads ID Register and places it between TDI and TDO.  
IDCODE  
001  
1, 2  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and  
SAMPLE-Z  
RFU  
010  
011  
TDO.  
1
1
Forces all RAM output drivers to High-Z.  
Do not use this instruction; Reserved for Future Use.  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
SAMPLE/  
PRELOAD  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and  
TDO.  
100  
101  
110  
111  
1
1
1
1
GSI  
RFU  
GSI private instruction.  
Do not use this instruction; Reserved for Future Use.  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
BYPASS  
Places Bypass Register between TDI and TDO.  
Notes:  
1. Instruction codes expressed in binary, MSB on left, LSB on right.  
2. Default instruction automatically loaded at power-up and in test-logic-reset state.  
Rev: 1.05 7/2012  
27/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36CB/D-xxx  
JTAG Port Recommended Operating Conditions and DC Characteristics (2.5/3.3 V Version)  
Parameter  
Symbol  
Min.  
Max.  
Unit Notes  
V
0.6 * V  
V
+0.3  
DD2  
2.5 V Test Port Input High Voltage  
2.5 V Test Port Input Low Voltage  
3.3 V Test Port Input High Voltage  
3.3 V Test Port Input Low Voltage  
TMS, TCK and TDI Input Leakage Current  
TMS, TCK and TDI Input Leakage Current  
TDO Output Leakage Current  
V
V
1
1
IHJ2  
DD2  
V
–0.3  
0.3 * V  
DD2  
ILJ2  
V
V
+0.3  
DD3  
2.0  
0.3  
300  
1  
V
1
IHJ3  
V
0.8  
V
1
ILJ3  
I
1
100  
1
uA  
uA  
uA  
V
2
INHJ  
I
3
INLJ  
I
1  
4
OLJ  
V
Test Port Output High Voltage  
1.7  
0.4  
5, 6  
5, 7  
5, 8  
5, 9  
OHJ  
V
Test Port Output Low Voltage  
V
OLJ  
V
V
– 100 mV  
DDQ  
Test Port Output CMOS High  
V
OHJC  
V
Test Port Output CMOS Low  
100 mV  
V
OLJC  
Notes:  
1. Input Under/overshoot voltage must be 2 V < Vi < V  
+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tTKC.  
DDn  
2.  
V
V V  
ILJ  
IN  
DDn  
3. 0 V V V  
IN  
ILJn  
4. Output Disable, V  
= 0 to V  
DDn  
OUT  
5. The TDO output driver is served by the V  
supply.  
DDQ  
6.  
7.  
8.  
9.  
I
I
I
I
= 4 mA  
OHJ  
= + 4 mA  
OLJ  
= –100 uA  
= +100 uA  
OHJC  
OLJC  
Rev: 1.05 7/2012  
28/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36CB/D-xxx  
JTAG Port AC Test Conditions  
Parameter  
Conditions  
JTAG Port AC Test Load  
DQ  
V
– 0.2 V  
Input high level  
Input low level  
DD  
0.2 V  
1 V/ns  
*
50Ω  
30pF  
Input slew rate  
V
/2  
DDQ  
V
V
/2  
Input reference level  
DDQ  
* Distributed Test Jig Capacitance  
/2  
Output reference level  
DDQ  
Notes:  
1. Include scope and jig capacitance.  
2. Test conditions as shown unless otherwise noted.  
JTAG Port Timing Diagram  
tTKC  
tTKH  
tTKL  
TCK  
tTH  
tTH  
tTS  
tTS  
TDI  
TMS  
tTKQ  
TDO  
tTH  
tTS  
Parallel SRAM input  
JTAG Port AC Electrical Characteristics  
Parameter  
Symbol  
tTKC  
tTKQ  
tTKH  
tTKL  
tTS  
Min  
Max  
Unit  
TCK Cycle Time  
50  
ns  
ns  
ns  
ns  
ns  
ns  
TCK Low to TDO Valid  
TCK High Pulse Width  
TCK Low Pulse Width  
TDI & TMS Set Up Time  
TDI & TMS Hold Time  
20  
20  
20  
10  
10  
tTH  
Rev: 1.05 7/2012  
29/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36CB/D-xxx  
Boundary Scan (BSDL Files)  
For information regarding the Boundary Scan Chain, or to obtain BSDL files for this part, please contact our Applications  
Engineering Department at: apps@gsitechnology.com.  
Package Dimensions—119-Bump FPBGA (Package B, Variation 3)  
TOP VIEW  
BOTTOM VIEW  
A1  
S
A1  
Ø0.10  
C
S
S
S
Ø0.30 C A  
B
Ø0.60~0.90 (119x)  
1
2
3
4
5
6
7
7
6
5
4 3  
2
1
A
B
C
D
E
F
A
B
C
D
E
F
G
H
J
G
H
J
K
L
M
N
P
K
L
M
N
P
R
T
U
R
T
U
B
1.27  
7.62  
14±0.10  
A
0.20(4x)  
SEATING PLANE  
C
Rev: 1.05 7/2012  
30/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36CB/D-xxx  
Package Dimensions—165-Bump FPBGA (Package D)  
A1 CORNER  
TOP VIEW  
BOTTOM VIEW  
A1 CORNER  
M
M
Ø0.10  
C
Ø0.25 C A B  
Ø0.40~0.60 (165x)  
1
2 3 4 5 6 7 8 9 10 11  
11 10 9 8  
7 6 5 4 3 2 1  
A
B
C
D
E
F
A
B
C
D
E
F
G
H
J
G
H
J
K
L
K
L
M
N
P
R
M
N
P
R
A
1.0  
10.0  
1.0  
13±0.05  
B
0.20(4x)  
SEATING PLANE  
C
Rev: 1.05 7/2012  
31/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36CB/D-xxx  
Ordering InformationGSI NBT Synchronous SRAM  
2
Speed  
3
1
Org  
Type  
Package  
T
Part Number  
A
(MHz/ns)  
512K x 18  
512K x 18  
512K x 18  
512K x 18  
512K x 18  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
512K x 18  
512K x 18  
512K x 18  
512K x 18  
512K x 18  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
512K x 18  
512K x 18  
512K x 18  
512K x 18  
512K x 18  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
GS882Z18CB-333  
GS882Z18CB-300  
GS882Z18CB-250  
GS882Z18CB-200  
GS882Z18CB-150  
GS882Z36CB-333  
GS882Z36CB-300  
GS882Z36CB-250  
GS882Z36CB-200  
GS882Z36CB-150  
GS882Z18CGB-333  
GS882Z18CGB-300  
GS882Z18CGB-250  
GS882Z18CGB-200  
GS882Z18CGB-150  
GS882Z36CGB-333  
GS882Z36CGB-300  
GS882Z36CGB-250  
GS882Z36CGB-200  
GS882Z36CGB-150  
GS882Z18CD-333  
GS882Z18CD-300  
GS882Z18CD-250  
GS882Z18CD-200  
GS882Z18CD-150  
GS882Z36CD-333  
GS882Z36CD-300  
GS882Z36CD-250  
GS882Z36CD-200  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
119 BGA (var. 3)  
119 BGA (var. 3)  
333/4.5  
300/5  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
119 BGA (var. 3)  
250/5.5  
200/6.5  
150/7.5  
333/4.5  
300/5  
119 BGA (var. 3)  
119 BGA (var. 3)  
119 BGA (var. 3)  
119 BGA (var. 3)  
119 BGA (var. 3)  
250/5.5  
200/6.5  
150/7.5  
333/4.5  
300/5  
119 BGA (var. 3)  
119 BGA (var. 3)  
RoHS-compliant 119 BGA (var. 3)  
RoHS-compliant 119 BGA (var. 3)  
RoHS-compliant 119 BGA (var. 3)  
RoHS-compliant 119 BGA (var. 3)  
RoHS-compliant 119 BGA (var. 3)  
RoHS-compliant 119 BGA (var. 3)  
RoHS-compliant 119 BGA (var. 3)  
RoHS-compliant 119 BGA (var. 3)  
RoHS-compliant 119 BGA (var. 3)  
RoHS-compliant 119 BGA (var. 3)  
165 BGA  
250/5.5  
200/6.5  
150/7.5  
333/4.5  
300/5  
250/5.5  
200/6.5  
150/7.5  
333/4.5  
300/5  
165 BGA  
165 BGA  
250/5.5  
200/6.5  
150/7.5  
333/4.5  
300/5  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
250/5.5  
200/6.5  
165 BGA  
Notes:  
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS882Z36CB-150T.  
2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each  
device is Pipeline/Flow Through mode-selectable by the user.  
3. T = C = Commercial Temperature Range.  
A
4. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which are  
covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings  
Rev: 1.05 7/2012  
32/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36CB/D-xxx  
Ordering InformationGSI NBT Synchronous SRAM (Continued)  
2
Speed  
3
1
Org  
Type  
Package  
T
Part Number  
A
(MHz/ns)  
256K x 36  
512K x 18  
512K x 18  
512K x 18  
512K x 18  
512K x 18  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
GS882Z36CD-150  
GS882Z18CGD-333  
GS882Z18CGD-300  
GS882Z18CGD-250  
GS882Z18CGD-200  
GS882Z18CGD-150  
GS882Z36CGD-333  
GS882Z36CGD-300  
GS882Z36CGD-250  
GS882Z36CGD-200  
GS882Z36CGD-150  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
165 BGA  
150/7.5  
333/4.5  
300/5  
C
C
C
C
C
C
C
C
C
C
C
RoHS-compliant 165 BGA  
RoHS-compliant 165 BGA  
RoHS-compliant 165 BGA  
RoHS-compliant 165 BGA  
RoHS-compliant 165 BGA  
RoHS-compliant 165 BGA  
RoHS-compliant 165 BGA  
RoHS-compliant 165 BGA  
RoHS-compliant 165 BGA  
RoHS-compliant 165 BGA  
250/5.5  
200/6.5  
150/7.5  
333/4.5  
300/5  
250/5.5  
200/6.5  
150/7.5  
Notes:  
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS882Z36CB-150T.  
2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each  
device is Pipeline/Flow Through mode-selectable by the user.  
3. T = C = Commercial Temperature Range.  
A
4. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which are  
covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings  
Rev: 1.05 7/2012  
33/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36CB/D-xxx  
9Mb Sync SRAM Datasheet Revision History  
Types of Changes  
File Name  
Revision  
Format or Content  
• Creation of new datasheet  
882Z18C_r1  
• Updated 119-BGA package (var. 3)  
• Update to MP datasheet  
882Z18C_r1_01  
882Z18C_r1_02  
Content  
Content  
• Updated Absolute Maximum Ratings  
• Deleted conditional text  
882Z18C_r1_03  
882Z18C_r1_04  
882Z18C_r1_05  
Content  
Content  
Content  
• Updated Absolute Maximum Ratings  
• Added thermal information  
• Updated Absolute Maximum Ratings  
• Removed all Ind Temp references  
Rev: 1.05 7/2012  
34/34  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  

相关型号:

GS882Z36CGD-200

ZBT SRAM, 256KX36, 6.5ns, CMOS, PBGA165, 13 X 15 MM, 1 MM PITCH, ROHS COMPLIANT, FPBGA-165
GSI

GS882Z36CGD-200IV

ZBT SRAM, 256KX36, 6.5ns, CMOS, PBGA165, 13 X 15 MM, 1 MM PITCH, ROHS COMPLIANT, FPBGA-165
GSI

GS882Z36CGD-200T

ZBT SRAM, 256KX36, 6.5ns, CMOS, PBGA165, 13 X 15 MM, 1 MM PITCH, ROHS COMPLIANT, FPBGA-165
GSI

GS882Z36CGD-250

ZBT SRAM, 256KX36, 5.5ns, CMOS, PBGA165, 13 X 15 MM, 1 MM PITCH, ROHS COMPLIANT, FPBGA-165
GSI

GS882Z36CGD-300

ZBT SRAM, 256KX36, 5ns, CMOS, PBGA165, 13 X 15 MM, 1 MM PITCH, ROHS COMPLIANT, FPBGA-165
GSI

GS882Z36CGD-300I

ZBT SRAM, 256KX36, 5ns, CMOS, PBGA165, 13 X 15 MM, 1 MM PITCH, ROHS COMPLIANT, FPBGA-165
GSI

GS882Z36CGD-300T

ZBT SRAM, 256KX36, 5ns, CMOS, PBGA165, 13 X 15 MM, 1 MM PITCH, ROHS COMPLIANT, FPBGA-165
GSI

GS882Z36CGD-333

ZBT SRAM, 256KX36, 4.5ns, CMOS, PBGA165, 13 X 15 MM, 1 MM PITCH, ROHS COMPLIANT, FPBGA-165
GSI

GS882Z36GB-100

ZBT SRAM, 256KX36, 12ns, CMOS, PBGA119, PLASTIC, BGA-119
GSI

GS882Z36GB-100T

ZBT SRAM, 256KX36, 12ns, CMOS, PBGA119, PLASTIC, BGA-119
GSI

GS882Z36GB-11IT

ZBT SRAM, 256KX36, 11ns, CMOS, PBGA119, PLASTIC, BGA-119
GSI

GS882Z36GB-66I

ZBT SRAM, 256KX36, 18ns, CMOS, PBGA119, PLASTIC, BGA-119
GSI