GS882Z36BD-225IT [GSI]

ZBT SRAM, 256KX36, 6ns, CMOS, PBGA165, 13 X 15 MM, 1 MM PITCH, FBGA-165;
GS882Z36BD-225IT
型号: GS882Z36BD-225IT
厂家: GSI TECHNOLOGY    GSI TECHNOLOGY
描述:

ZBT SRAM, 256KX36, 6ns, CMOS, PBGA165, 13 X 15 MM, 1 MM PITCH, FBGA-165

静态存储器 内存集成电路
文件: 总33页 (文件大小:1021K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GS882Z18/36BB/D-250/225/200/166/150/133  
119 and 165 BGA  
Commercial Temp  
Industrial Temp  
250 MHz133 MHz  
9Mb Pipelined and Flow Through  
2.5 V or 3.3 V VDD  
2.5 V or 3.3 V I/O  
Synchronous NBT SRAM  
Features  
Functional Description  
• NBT (No Bus Turn Around) functionality allows zero wait  
Read-Write-Read bus utilization; fully pin-compatible with  
both pipelined and flow through NtRAM™, NoBL™ and  
ZBT™ SRAMs  
The GS882Z18/36B is a 9Mbit Synchronous Static SRAM.  
GSI's NBT SRAMs, like ZBT, NtRAM, NoBL or other  
pipelined read/double late write or flow through read/single  
late write SRAMs, allow utilization of all available bus  
bandwidth by eliminating the need to insert deselect cycles  
when the device is switched from read to write cycles.  
• 2.5 V or 3.3 V +10%/–10% core power supply  
• 2.5 V or 3.3 V I/O supply  
• User-configurable Pipeline and Flow Through mode  
• ZQ mode pin for user-selectable high/low output drive  
• IEEE 1149.1 JTAG-compatible Boundary Scan  
• On-chip parity encoding and error detection  
• LBO pin for Linear or Interleave Burst mode  
• Pin-compatible with 2M, 4M, and 18M devices  
• Byte write operation (9-bit Bytes)  
Because it is a synchronous device, address, data inputs, and  
read/write control inputs are captured on the rising edge of the  
input clock. Burst order control (LBO) must be tied to a power  
rail for proper operation. Asynchronous inputs include the  
Sleep mode enable (ZZ) and Output Enable. Output Enable can  
be used to override the synchronous control of the output  
drivers and turn the RAM's output drivers off at any time.  
Write cycles are internally self-timed and initiated by the rising  
edge of the clock input. This feature eliminates complex off-  
chip write pulse generation required by asynchronous SRAMs  
and simplifies input signal timing.  
• 3 chip enable signals for easy depth expansion  
• ZZ Pin for automatic power-down  
• JEDEC-standard 119-bump BGA and 165-bump FPBGA  
packages  
-250 -225 -200 -166 -150 -133 Unit  
The GS882Z18/36B may be configured by the user to operate  
in Pipeline or Flow Through mode. Operating as a pipelined  
synchronous device, in addition to the rising-edge-triggered  
registers that capture input signals, the device incorporates a  
rising edge triggered output register. For read cycles, pipelined  
SRAM output data is temporarily stored by the edge-triggered  
output register during the access cycle and then released to the  
output drivers at the next rising edge of clock.  
Pipeline  
3-1-1-1  
t
2.5 2.7 3.0 3.4 3.8 4.0 ns  
4.0 4.4 5.0 6.0 6.7 7.5 ns  
KQ  
tCycle  
Curr (x18) 280 255 230 200 185 165 mA  
Curr (x32/x36) 330 300 270 230 215 190 mA  
3.3 V  
2.5 V  
Curr (x18) 275 250 230 195 180 165 mA  
Curr (x32/x36) 320 295 265 225 210 185 mA  
Flow  
Through  
2-1-1-1  
t
5.5 6.0 6.5 7.0 7.5 8.5 ns  
5.5 6.0 6.5 7.0 7.5 8.5 ns  
KQ  
tCycle  
The GS882Z18/36B is implemented with GSI's high  
performance CMOS technology and is available in JEDEC-  
standard 119-bump BGA and 165-bump FPBGA packages.  
Curr (x18) 175 165 160 150 145 135 mA  
Curr (x32/x36) 200 190 180 170 165 150 mA  
3.3 V  
2.5 V  
Curr (x18) 175 165 160 150 145 135 mA  
Curr (x32/x36) 200 190 180 170 165 150 mA  
Flow Through and Pipelined NBT SRAM Back-to-Back Read/Write Cycles  
Clock  
Address  
A
R
B
C
R
D
E
R
F
Read/Write  
W
W
W
Flow Through  
Data I/O  
Q
D
Q
D
D
Q
E
A
B
C
D
Pipelined  
Data I/O  
Q
Q
D
Q
E
A
B
C
D
Rev: 1.00b 12/2002  
1/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
NoBL is a trademark of Cypress Semiconductor Corp.. NtRAM is a trademark of Samsung Electronics Co.. ZBT is a trademark of Integrated Device Technology, Inc.  
GS882Z18/36BB/D-250/225/200/166/150/133  
GS882Z36B Pad Out  
119 Bump BGATop View (Package B)  
1
2
3
4
5
6
7
A
B
C
D
E
F
V
A6  
A7  
A4  
A3  
NC  
A8  
A9  
V
DDQ  
DDQ  
NC  
NC  
E2  
ADV  
A15  
A14  
E3  
NC  
NC  
A5  
V
A16  
DD  
DQC4  
DQC3  
DQC9  
DQC8  
DQC7  
DQC6  
DQC5  
V
ZQ  
E1  
G
V
V
V
DQB9  
DQB8  
DQB7  
DQB6  
DQB5  
DQB4  
DQB3  
SS  
SS  
SS  
SS  
SS  
SS  
V
V
V
V
DDQ  
DDQ  
G
H
J
DQC2  
DQC1  
BC  
A17  
W
BB  
DQB2  
DQB1  
V
V
SS  
SS  
V
V
NC  
V
NC  
V
V
DDQ  
DDQ  
DD  
DD  
DD  
K
L
DQD1  
DQD2  
DQD5  
DQD6  
DQD7  
DQD8  
DQD9  
A2  
V
CK  
NC  
CKE  
A1  
V
DQA5  
DQA6  
DQA7  
DQA8  
DQA9  
A13  
DQA1  
DQA2  
SS  
SS  
BD  
BA  
M
N
P
R
T
V
V
V
V
DDQ  
DDQ  
SS  
SS  
SS  
SS  
SS  
SS  
DQD3  
DQD4  
NC  
V
V
V
V
DQA3  
DQA4  
PE  
A0  
LBO  
A10  
V
FT  
DD  
NC  
NC  
A11  
A12  
NC  
ZZ  
U
V
TMS  
TDI  
TCK  
TDO  
NC  
V
DDQ  
DDQ  
Rev: 1.00b 12/2002  
2/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36BB/D-250/225/200/166/150/133  
GS882Z18B Pad Out  
119 Bump BGATop View (Package B)  
1
2
3
4
5
6
7
A
B
C
D
E
F
V
A6  
A7  
A4  
A3  
NC  
A8  
A9  
V
DDQ  
DDQ  
NC  
NC  
E2  
ADV  
A15  
A14  
E3  
NC  
NC  
A5  
V
A16  
DD  
DQB1  
NC  
NC  
V
ZQ  
E1  
G
V
V
V
DQA9  
NC  
NC  
SS  
SS  
SS  
SS  
SS  
SS  
DQB2  
NC  
V
V
DQA8  
V
DQA7  
NC  
V
DDQ  
DDQ  
G
H
J
NC  
DQB3  
NC  
BB  
A17  
W
NC  
DQA6  
NC  
DQB4  
V
V
DQA5  
SS  
SS  
V
V
NC  
V
NC  
V
V
DDQ  
DDQ  
DD  
DD  
DD  
K
L
NC  
DQB5  
NC  
V
CK  
NC  
CKE  
A1  
V
NC  
DQA3  
NC  
DQA4  
NC  
SS  
SS  
DQB6  
NC  
BA  
M
N
P
R
T
V
DQB7  
NC  
V
V
V
V
V
DDQ  
DDQ  
SS  
SS  
SS  
SS  
SS  
SS  
DQB8  
NC  
V
V
DQA2  
NC  
NC  
DQA1  
PE  
DQB9  
A2  
A0  
NC  
LBO  
A11  
V
FT  
A13  
DD  
NC  
A10  
NC  
A12  
A18  
ZZ  
U
V
TMS  
TDI  
TCK  
TDO  
NC  
V
DDQ  
DDQ  
Rev: 1.00b 12/2002  
3/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36BB/D-250/225/200/166/150/133  
165 Bump BGA—x18 Commom I/O—Top View (Package D)  
1
2
3
4
5
6
7
8
9
10  
A
11  
A
B
C
D
E
F
NC  
A
E1  
BB  
NC  
E3  
CKE  
ADV  
A17  
A18  
A
B
C
D
E
F
NC  
NC  
A
E2  
NC  
BA  
CK  
W
G
NC  
A
NC  
NC  
NC  
NC  
NC  
ZQ  
NC  
DQA  
DQA  
DQA  
DQA  
DQA  
ZZ  
NC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
SS  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
NC  
DQB  
DQB  
DQB  
DQB  
MCH  
NC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
NC  
NC  
G
H
J
NC  
G
H
J
FT  
NC  
NC  
DQB  
DQB  
DQB  
DQB  
DQB  
NC  
V
V
DQA  
DQA  
DQA  
DQA  
NC  
A
NC  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
K
L
NC  
V
V
V
V
V
V
V
V
NC  
K
L
NC  
NC  
M
N
P
R
NC  
NC  
M
N
P
R
DNU  
NC  
V
NC  
TDI  
NC  
A1  
A0  
NC  
V
NC  
DDQ  
SS  
SS  
DDQ  
A
A
A
TDO  
TCK  
A
A
A
NC  
LBO  
NC  
A
TMS  
A
A
A
11 x 15 Bump BGA—13 mm x 15 mm Body—1.0 mm Bump Pitch  
Rev: 1.00b 12/2002  
4/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36BB/D-250/225/200/166/150/133  
165 Bump BGA—x36 Common I/O—Top View (Package D)  
1
2
3
4
5
6
7
8
9
10  
A
11  
A
B
C
D
E
F
NC  
A
E1  
BC  
BB  
E3  
CKE  
ADV  
A17  
NC  
A
B
C
D
E
F
NC  
A
E2  
BD  
BA  
CK  
W
G
NC  
A
NC  
DQB  
DQB  
DQB  
DQB  
DQB  
ZZ  
DQC  
DQC  
DQC  
DQC  
DQC  
FT  
NC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
NC  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
SS  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DQC  
DQC  
DQC  
DQC  
MCH  
DQD  
DQD  
DQD  
DQD  
DNU  
NC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DQB  
DQB  
DQB  
DQB  
ZQ  
G
H
J
G
H
J
NC  
NC  
DQD  
DQD  
DQD  
DQD  
DQD  
NC  
V
V
DQA  
DQA  
DQA  
DQA  
NC  
DQA  
DQA  
DQA  
DQA  
DQA  
NC  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
K
L
V
V
V
V
V
V
V
V
K
L
M
N
P
R
M
N
P
R
V
NC  
TDI  
NC  
A1  
A0  
NC  
V
SS  
DDQ  
SS  
DDQ  
A
A
A
TDO  
TCK  
A
A
A
A
LBO  
NC  
A
TMS  
A
A
A
11 x 15 Bump BGA—13 mm x 15 mm Body—1.0 mm Bump Pitch  
Rev: 1.00b 12/2002  
5/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36BB/D-250/225/200/166/150/133  
GS882Z18/36B BGA Pin Description  
Symbol  
A0, A1  
An  
Type  
Description  
I
I
I
Address field LSBs and Address Counter Preset Inputs  
Address Inputs  
Address Inputs  
A17, A18  
DQA1–DQA9  
DQB1–DQB9  
DQC1–DQC9  
DQD1–DQD9  
I/O  
Data Input and Output pins  
BA, BB, BC, BD  
I
I
Byte Write Enable for DQA, DQB, DQC, DQD I/Os; active low  
No Connect  
NC  
CK  
CKE  
W
Clock Input Signal; active high  
Clock Enable; active low  
I
I
Write Enable; active low  
E1  
I
Chip Enable; active low  
E3  
I
Chip Enable; active low  
E2  
I
Chip Enable; active high  
G
I
Output Enable; active low  
ADV  
ZZ  
I
Burst address counter advance enable; active high  
Sleep mode control; active high  
Flow Through or Pipeline mode; active low  
Linear Burst Order mode; active low  
I
FT  
I
LBO  
I
FLXDrive Output Impedance Control (Low = Low Impedance [High Drive], High = High Impedance [Low  
Drive])  
ZQ  
I
I
I
Scan Test Mode Select  
Scan Test Data In  
TMS  
TDI  
O
I
Scan Test Data Out  
Scan Test Clock  
TDO  
TCK  
MCH  
DNU  
I
Must Connect High  
Do Not Use  
V
Core power supply  
I/O and Core Ground  
Output driver power supply  
DD  
V
I
SS  
V
I
DDQ  
Rev: 1.00b 12/2002  
6/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36BB/D-250/225/200/166/150/133  
Functional Details  
Clocking  
Deassertion of the Clock Enable (CKE) input blocks the Clock input from reaching the RAM's internal circuits. It may be used to  
suspend RAM operations. Failure to observe Clock Enable set-up or hold requirements will result in erratic operation.  
Pipeline Mode Read and Write Operations  
All inputs (with the exception of Output Enable, Linear Burst Order and Sleep) are synchronized to rising clock edges. Single cycle  
read and write operations must be initiated with the Advance/Load pin (ADV) held low, in order to load the new address. Device  
activation is accomplished by asserting all three of the Chip Enable inputs (E1, E2, and E3). Deassertion of any one of the Enable  
inputs will deactivate the device.  
Function  
Read  
W
H
L
BA  
X
BB  
X
BC  
X
BD  
X
Write Byte “a”  
Write Byte “b”  
Write Byte “c”  
Write Byte “d”  
Write all Bytes  
Write Abort/NOP  
L
H
L
H
H
L
H
H
H
L
L
H
H
H
L
L
H
H
L
L
H
L
L
L
L
H
H
H
H
Read operation is initiated when the following conditions are satisfied at the rising edge of clock: CKE is asserted low, all three  
chip enables (E1, E2, and E3) are active, the write enable input signals W is deasserted high, and ADV is asserted low. The address  
presented to the address inputs is latched into the address register and presented to the memory core and control logic. The control  
logic determines that a read access is in progress and allows the requested data to propagate to the input of the output register. At  
the next rising edge of clock the read data is allowed to propagate through the output register and onto the output pins.  
Write operation occurs when the RAM is selected, CKE is active, and the Write input is sampled low at the rising edge of clock.  
The Byte Write Enable inputs (BA, BB, BC, and BD) determine which bytes will be written. All or none may be activated. A write  
cycle with no Byte Write inputs active is a no-op cycle. The pipelined NBT SRAM provides double late write functionality,  
matching the write command versus data pipeline length (2 cycles) to the read command versus data pipeline length (2 cycles). At  
the first rising edge of clock, Enable, Write, Byte Write(s), and Address are registered. The Data In associated with that address is  
required at the third rising edge of clock.  
Flow Through Mode Read and Write Operations  
Operation of the RAM in Flow Through mode is very similar to operations in Pipeline mode. Activation of a Read Cycle and the  
use of the Burst Address Counter is identical. In Flow Through mode the device may begin driving out new data immediately after  
new address are clocked into the RAM, rather than holding new data until the following (second) clock edge. Therefore, in Flow  
Through mode the read pipeline is one cycle shorter than in Pipeline mode.  
Write operations are initiated in the same way, but differ in that the write pipeline is one cycle shorter as well, preserving the ability  
to turn the bus from reads to writes without inserting any dead cycles. While the pipelined NBT RAMs implement a double late  
write protocol in Flow Through mode a single late write protocol mode is observed. Therefore, in Flow Through mode, address  
and control are registered on the first rising edge of clock and data in is required at the data input pins at the second rising edge of  
clock.  
Rev: 1.00b 12/2002  
7/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36BB/D-250/225/200/166/150/133  
Synchronous Truth Table  
Operation  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Continue  
Read Cycle, Begin Burst  
Read Cycle, Continue Burst  
NOP/Read, Begin Burst  
Dummy Read, Continue Burst  
Write Cycle, Begin Burst  
Write Cycle, Continue Burst  
NOP/Write Abort, Begin Burst  
Write Abort, Continue Burst  
Clock Edge Ignore, Stall  
Sleep Mode  
Type Address E1 E2 E3 ZZ ADV W Bx G CKE CK DQ Notes  
D
D
D
D
R
B
None  
None  
H
X
X
X
L
X
X
L
X
H
X
X
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
L
X
X
X
X
H
X
H
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
L
L
L
L
L
L
L
L
L
L
L
L
L
H
X
L-H High-Z  
L-H High-Z  
L-H High-Z  
L-H High-Z  
None  
L
None  
X
H
X
H
X
H
X
H
X
X
X
H
L
1
External  
Next  
L-H  
L-H  
Q
Q
X
L
X
L
H
L
L
1,10  
2
R
B
External  
Next  
H
H
X
X
X
X
X
X
L-H High-Z  
X
L
X
L
H
L
L-H High-Z 1,2,10  
W
B
External  
Next  
L-H  
L-H  
D
D
3
X
L
X
L
H
L
X
L
L
1,3,10  
2,3  
W
B
None  
H
H
X
X
L-H High-Z  
Next  
X
X
X
X
X
X
H
X
X
X
X
X
L-H High-Z 1,2,3,10  
Current  
None  
L-H  
X
-
4
High-Z  
Notes:  
1. Continue Burst cycles, whether Read or Write, use the same control inputs. A Deselect continue cycle can only be entered into if a  
Deselect cycle is executed first.  
2. Dummy Read and Write abort can be considered NOPs because the SRAM performs no operation. A Write abort occurs when the W pin  
is sampled low but no Byte Write pins are active, so no write operation is performed.  
3. G can be wired low to minimize the number of control signals provided to the SRAM. Output drivers will automatically turn off during write  
cycles.  
4. If CKE High occurs during a pipelined read cycle, the DQ bus will remain active (Low Z). If CKE High occurs during a write cycle, the bus  
will remain in High Z.  
5. X = Don’t Care; H = Logic High; L = Logic Low; Bx = High = All Byte Write signals are high; Bx = Low = One or more Byte/Write signals  
are Low  
6. All inputs, except G and ZZ must meet setup and hold times of rising clock edge.  
7. Wait states can be inserted by setting CKE high.  
8. This device contains circuitry that ensures all outputs are in High Z during power-up.  
9. A 2-bit burst counter is incorporated.  
10. The address counter is incriminated for all Burst continue cycles.  
Rev: 1.00b 12/2002  
8/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36BB/D-250/225/200/166/150/133  
Pipelined and Flow Through Read Write Control State Diagram  
D
B
Deselect  
R
D
D
W
New Read  
New Write  
R
R
W
B
B
R
W
W
R
Burst Read  
Burst Write  
B
B
D
D
Key  
Notes  
Input Command Code  
1. The Hold command (CKE Low) is not  
shown because it prevents any state change.  
ƒ
Transition  
2. W, R, B, and D represent input command  
codes as indicated in the Synchronous Truth Table.  
Current State (n)  
Next State (n+1)  
n
n+1  
n+2  
n+3  
Clock (CK)  
Command  
ƒ
ƒ
ƒ
ƒ
Current State  
Next State  
Current State and Next State Definition for Pipelined and Flow through Read/Write Control State Diagram  
Rev: 1.00b 12/2002  
9/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36BB/D-250/225/200/166/150/133  
Pipeline Mode Data I/O State Diagram  
Intermediate  
Intermediate  
R
B
W
B
Intermediate  
R
Data Out  
(Q Valid)  
High Z  
(Data In)  
W
D
Intermediate  
D
Intermediate  
W
R
High Z  
B
D
Intermediate  
Key  
Notes  
Input Command Code  
1. The Hold command (CKE Low) is not  
shown because it prevents any state change.  
ƒ
Transition  
Transition  
2. W, R, B, and D represent input command  
codes as indicated in the Truth Tables.  
Current State (n)  
Next State (n+2)  
Intermediate State (N+1)  
n
n+1  
n+2  
n+3  
Clock (CK)  
Command  
ƒ
ƒ
ƒ
ƒ
Intermediate  
State  
Current State  
Next State  
Current State and Next State Definition for Pipeline Mode Data I/O State Diagram  
Rev: 1.00b 12/2002  
10/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36BB/D-250/225/200/166/150/133  
Flow Through Mode Data I/O State Diagram  
R
B
W
B
R
Data Out  
(Q Valid)  
High Z  
(Data In)  
W
D
D
W
R
High Z  
B
D
Key  
Notes  
Input Command Code  
1. The Hold command (CKE Low) is not  
shown because it prevents any state change.  
ƒ
Transition  
2. W, R, B, and D represent input command  
codes as indicated in the Truth Tables.  
Current State (n)  
Next State (n+1)  
n
n+1  
n+2  
n+3  
Clock (CK)  
Command  
ƒ
ƒ
ƒ
ƒ
Current State  
Next State  
Current State and Next State Definition for: Pipeline and Flow Through Read Write Control State Diagram  
Rev: 1.00b 12/2002  
11/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36BB/D-250/225/200/166/150/133  
Burst Cycles  
Although NBT RAMs are designed to sustain 100% bus bandwidth by eliminating turnaround cycle when there is transition from  
read to write, multiple back-to-back reads or writes may also be performed. NBT SRAMs provide an on-chip burst address  
generator that can be utilized, if desired, to further simplify burst read or write implementations. The ADV control pin, when  
driven high, commands the SRAM to advance the internal address counter and use the counter generated address to read or write  
the SRAM. The starting address for the first cycle in a burst cycle series is loaded into the SRAM by driving the ADV pin low, into  
Load mode.  
Burst Order  
The burst address counter wraps around to its initial state after four addresses (the loaded address and three more) have been  
accessed. The burst sequence is determined by the state of the Linear Burst Order pin (LBO). When this pin is Low, a linear burst  
sequence is selected. When the RAM is installed with the LBO pin tied high, Interleaved burst sequence is selected. See the tables  
below for details.  
FLXDrive™  
The ZQ pin allows selection between NBT RAM nominal drive strength (ZQ low) for multi-drop bus applications and low drive  
strength (ZQ floating or high) point-to-point applications. See the Output Driver Characteristics chart for details.  
Mode Pin Functions  
Pin  
Mode Name  
Burst Order Control  
Power Down Control  
State  
Function  
Name  
L
Linear Burst  
Interleaved Burst  
Active  
LBO  
H
L or NC  
H
ZZ  
Standby, I = I  
DD SB  
Note:  
There are pull-up devices on the ZQ and FT pins and a pull-down device on the ZZ pin, so those input pins can be unconnected and  
the chip will operate in the default states as specified in the above tables.  
Burst Counter Sequences  
Linear Burst Sequence  
Interleaved Burst Sequence  
A[1:0] A[1:0] A[1:0] A[1:0]  
A[1:0] A[1:0] A[1:0] A[1:0]  
1st address  
2nd address  
3rd address  
4th address  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
1st address  
2nd address  
3rd address  
4th address  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Note: The burst counter wraps to initial state on the 5th clock.  
Note: The burst counter wraps to initial state on the 5th clock.  
BPR 1999.05.18  
Sleep Mode  
During normal operation, ZZ must be pulled low, either by the user or by its internal pull down resistor. When ZZ is pulled high,  
Rev: 1.00b 12/2002  
12/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36BB/D-250/225/200/166/150/133  
the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to  
low, the SRAM operates normally after ZZ recovery time.  
Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to I 2. The duration of  
SB  
Sleep mode is dictated by the length of time the ZZ is in a High state. After entering Sleep mode, all inputs except ZZ become  
disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode.  
When the ZZ pin is driven high, I 2 is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending  
SB  
operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated  
until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a Deselect or Read commands  
may be applied while the SRAM is recovering from Sleep mode.  
Sleep Mode Timing Diagram  
CK  
tZZR  
ZZ  
Sleep  
tZZS  
tZZH  
Designing for Compatibility  
The GSI NBT SRAMs offer users a configurable selection between Flow Through mode and Pipeline mode via the FT signal found  
on Bump 5R. Not all vendors offer this option, however most mark Bump 5R as V or V  
on pipelined parts and V on flow  
DD  
DDQ  
SS  
through parts. GSI NBT SRAMs are fully compatible with these sockets.  
Rev: 1.00b 12/2002  
13/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36BB/D-250/225/200/166/150/133  
Absolute Maximum Ratings  
(All voltages reference to V  
)
SS  
Symbol  
Description  
Value  
Unit  
V
V
Voltage on V Pins  
0.5 to 4.6  
DD  
DD  
V
Voltage in V  
Pins  
DDQ  
0.5 to 4.6  
V
DDQ  
V
0.5 to V  
+0.5 (4.6 V max.)  
DDQ  
Voltage on I/O Pins  
Voltage on Other Input Pins  
Input Current on Any Pin  
Output Current on Any I/O Pin  
Package Power Dissipation  
Storage Temperature  
V
I/O  
V
0.5 to V +0.5 (4.6 V max.)  
V
IN  
DD  
I
+/20  
+/20  
mA  
mA  
W
IN  
I
OUT  
P
1.5  
D
o
T
55 to 125  
55 to 125  
C
STG  
o
T
Temperature Under Bias  
C
BIAS  
Note:  
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended  
Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of  
this component.  
Rev: 1.00b 12/2002  
14/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36BB/D-250/225/200/166/150/133  
Power Supply Voltage Ranges  
Parameter  
Symbol  
Min.  
3.0  
Typ.  
3.3  
Max.  
3.6  
Unit  
Notes  
V
3.3 V Supply Voltage  
2.5 V Supply Voltage  
V
V
V
V
DD3  
V
2.3  
2.5  
2.7  
DD2  
3.3 V V  
2.5 V V  
I/O Supply Voltage  
I/O Supply Voltage  
V
3.0  
3.3  
3.6  
DDQ  
DDQ  
DDQ3  
V
2.3  
2.5  
2.7  
DDQ2  
Notes:  
1. The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are  
evaluated for worst case in the temperature range marked on the device.  
2. Input Under/overshoot voltage must be 2 V > Vi < VDDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.  
V
Range Logic Levels  
Parameter  
DDQ3  
Symbol  
Min.  
2.0  
Typ.  
Max.  
Unit  
Notes  
V
Input High Voltage  
V
V
+ 0.3  
DD  
V
V
V
V
1
DD  
IH  
V
Input Low Voltage  
V
0.3  
2.0  
0.8  
+ 0.3  
1
DD  
IL  
V
I/O Input High Voltage  
I/O Input Low Voltage  
V
V
1,3  
1,3  
DDQ  
IHQ  
DDQ  
V
V
0.3  
0.8  
DDQ  
ILQ  
Notes:  
1. The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are  
evaluated for worst case in the temperature range marked on the device.  
2. Input Under/overshoot voltage must be 2 V > Vi < VDDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.  
3. VIHQ (max) is voltage on VDDQ pins plus 0.3 V.  
V
Range Logic Levels  
Parameter  
DDQ2  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Notes  
V
Input High Voltage  
V
0.6*V  
V
+ 0.3  
DD  
V
V
V
V
1
DD  
IH  
DD  
V
Input Low Voltage  
V
0.3*V  
DD  
0.3  
1
DD  
IL  
V
I/O Input High Voltage  
I/O Input Low Voltage  
V
0.6*V  
V
+ 0.3  
DDQ  
1,3  
1,3  
DDQ  
IHQ  
DD  
V
V
0.3*V  
DD  
0.3  
DDQ  
ILQ  
Notes:  
1. The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are  
evaluated for worst case in the temperature range marked on the device.  
2. Input Under/overshoot voltage must be 2 V > Vi < VDDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.  
3. VIHQ (max) is voltage on VDDQ pins plus 0.3 V.  
Rev: 1.00b 12/2002  
15/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36BB/D-250/225/200/166/150/133  
Recommended Operating Temperatures  
Parameter  
Symbol  
Min.  
0
Typ.  
25  
Max.  
70  
Unit  
°C  
Notes  
T
Ambient Temperature (Commercial Range Versions)  
2
2
A
T
Ambient Temperature (Industrial Range Versions)  
Note:  
40  
25  
85  
°C  
A
1. The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are  
evaluated for worst case in the temperature range marked on the device.  
2. Input Under/overshoot voltage must be 2 V > Vi < VDDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.  
Undershoot Measurement and Timing  
Overshoot Measurement and Timing  
V
IH  
20% tKC  
V
+ 2.0 V  
50%  
DD  
V
SS  
50%  
V
DD  
V
2.0 V  
SS  
20% tKC  
V
IL  
Capacitance  
o
(T = 25 C, f = 1 MHZ, V = 2.5 V)  
A
DD  
Parameter  
Symbol  
Test conditions  
Typ.  
Max.  
Unit  
pF  
C
V
= 0 V  
Input Capacitance  
4
6
5
7
IN  
IN  
C
V
OUT  
= 0 V  
Input/Output Capacitance  
pF  
I/O  
Note: These parameters are sample tested.  
Package Thermal Characteristics  
Rating  
Junction to Ambient (at 200 lfm)  
Junction to Ambient (at 200 lfm)  
Junction to Case (TOP)  
Notes:  
Layer Board  
Symbol  
Max  
40  
Unit  
Notes  
1,2  
R
R
R
single  
four  
°C/W  
°C/W  
°C/W  
ΘJA  
ΘJA  
ΘJC  
24  
1,2  
9
3
1. Junction temperature is a function of SRAM power dissipation, package thermal resistance, mounting board temperature, ambient.  
Temperature air flow, board density, and PCB thermal resistance.  
2. SCMI G-38-87  
3. Average thermal resistance between die and top surface, MIL SPEC-883, Method 1012.1  
Rev: 1.00b 12/2002  
16/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36BB/D-250/225/200/166/150/133  
AC Test Conditions  
Parameter  
Conditions  
V
– 0.2 V  
Input high level  
Input low level  
DD  
0.2 V  
1 V/ns  
/2  
Input slew rate  
V
Input reference level  
DD  
V
/2  
Output reference level  
Output load  
DDQ  
Fig. 1  
Notes:  
1. Include scope and jig capacitance.  
2. Test conditions as specified with output loading as shown in Fig. 1  
unless otherwise noted.  
3. Device is deselected as defined by the Truth Table.  
Output Load 1  
DQ  
*
50Ω  
30pF  
V
DDQ/2  
* Distributed Test Jig Capacitance  
DC Electrical Characteristics  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Input Leakage Current  
(except mode pins)  
I
V = 0 to V  
IN DD  
1 uA  
1 uA  
IL  
V
V V  
IN  
1 uA  
1 uA  
1 uA  
100 uA  
DD  
IH  
IH  
I
I
ZZ and PE Input Current  
FT, ZQ Input Current  
IN1  
IN2  
0 V V V  
IN  
V
V V  
IN  
100 uA  
1 uA  
1 uA  
1 uA  
DD  
IL  
IL  
0 V V V  
IN  
I
Output Disable, V  
= 0 to V  
DD  
Output Leakage Current  
Output High Voltage  
Output High Voltage  
Output Low Voltage  
1 uA  
1.7 V  
2.4 V  
1 uA  
OL  
OUT  
DDQ  
DDQ  
V
V
I
I
= 8 mA, V  
= 8 mA, V  
= 2.375 V  
= 3.135 V  
OH2  
OH3  
OH  
OH  
V
I
= 8 mA  
OL  
0.4 V  
OL  
Rev: 1.00b 12/2002  
17/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36BB/D-250/225/200/166/150/133  
Rev: 1.00b 12/2002  
18/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36BB/D-250/225/200/166/150/133  
AC Electrical Characteristics  
-250  
-225  
-200  
-166  
-150  
-133  
Parameter  
Symbol  
Unit  
Min Max Min Max Min Max Min Max Min Max Min Max  
Clock Cycle Time  
Clock to Output Valid  
Clock to Output Invalid  
Clock to Output in Low-Z  
Setup time  
tKC  
tKQ  
4.0  
2.5  
5.5  
4.4  
2.7  
6.0  
5.0  
3.0  
6.5  
6.0  
3.4  
7.0  
6.7  
3.8  
7.5  
7.5  
1.5  
1.5  
1.5  
0.5  
8.5  
3.0  
3.0  
1.5  
0.5  
1.7  
2
4.0  
8.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tKQX  
1.5  
1.5  
1.2  
0.2  
5.5  
3.0  
3.0  
1.5  
0.5  
1.3  
1.5  
1.5  
1.5  
1.3  
0.3  
6.0  
3.0  
3.0  
1.5  
0.5  
1.3  
1.5  
1.5  
1.5  
1.4  
0.4  
6.5  
3.0  
3.0  
1.5  
0.5  
1.3  
1.5  
1.5  
1.5  
1.5  
0.5  
7.0  
3.0  
3.0  
1.5  
0.5  
1.3  
1.5  
1.5  
1.5  
1.5  
0.5  
7.5  
3.0  
3.0  
1.5  
0.5  
1.5  
1.7  
Pipeline  
1
tLZ  
tS  
tH  
Hold time  
Clock Cycle Time  
Clock to Output Valid  
Clock to Output Invalid  
Clock to Output in Low-Z  
Setup time  
tKC  
tKQ  
tKQX  
Flow  
Through  
1
tLZ  
tS  
tH  
Hold time  
Clock HIGH Time  
Clock LOW Time  
tKH  
tKL  
Clock to Output in  
High-Z  
1
1.5  
2.5  
1.5  
2.7  
1.5  
3.0  
1.5  
3.0 1.5 3.0 1.5 3.0  
ns  
tHZ  
G to Output Valid  
G to output in Low-Z  
G to output in High-Z  
ZZ setup time  
tOE  
0
2.5  
2.5  
0
2.7  
2.7  
0
3.2  
3.0  
0
3.5  
3.0  
0
3.8  
3.0  
0
4.0  
3.0  
ns  
ns  
ns  
ns  
ns  
ns  
1
tOLZ  
tOHZ  
1
5
5
5
5
5
5
2
tZZS  
tZZH  
2
ZZ hold time  
1
1
1
1
1
1
ZZ recovery  
tZZR  
20  
20  
20  
20  
20  
20  
Notes:  
1. These parameters are sampled and are not 100% tested.  
2. ZZ is an asynchronous signal. However, in order to be recognized on any given clock cycle, ZZ must meet the specified setup and hold  
times as specified above.  
Rev: 1.00b 12/2002  
19/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36BB/D-250/225/200/166/150/133  
Rev: 1.00b 12/2002  
20/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36BB/D-250/225/200/166/150/133  
Rev: 1.00b 12/2002  
21/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36BB/D-250/225/200/166/150/133  
JTAG Port Operation  
Overview  
The JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan  
interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with V . The JTAG output  
DD  
drivers are powered by V  
.
DDQ  
Disabling the JTAG Port  
It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless  
clocked. TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG  
Port unused, TCK, TDI, and TMS may be left floating or tied to either V or V . TDO should be left unconnected.  
DD  
SS  
JTAG Pin Descriptions  
Pin  
Pin Name  
I/O  
Description  
Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate  
from the falling edge of TCK.  
TCK  
Test Clock  
In  
The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP  
TMS  
TDI  
Test Mode Select  
Test Data In  
In controller state machine. An undriven TMS input will produce the same result as a logic one input  
level.  
The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers  
placed between TDI and TDO. The register placed between TDI and TDO is determined by the  
In state of the TAP Controller state machine and the instruction that is currently loaded in the TAP  
Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce  
the same result as a logic one input level.  
Output that is active depending on the state of the TAP state machine. Output changes in  
Out response to the falling edge of TCK. This is the output side of the serial registers placed between  
TDI and TDO.  
TDO  
Test Data Out  
Note:  
This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is  
held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.  
JTAG Port Registers  
Overview  
The various JTAG registers, refered to as Test Access Port orTAP Registers, are selected (one at a time) via the sequences of 1s and  
0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the rising  
edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the TDI  
and TDO pins.  
Instruction Register  
The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or  
the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the  
TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the  
controller is placed in Test-Logic-Reset state.  
Rev: 1.00b 12/2002  
22/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36BB/D-250/225/200/166/150/133  
Bypass Register  
The Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through  
the RAM’s JTAG Port to another device in the scan chain with as little delay as possible.  
Boundary Scan Register  
The Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins.  
The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The  
Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the  
device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan  
Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in  
Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z,  
SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.  
JTAG TAP Block Diagram  
0
Bypass Register  
2
1 0  
Instruction Register  
TDI  
TDO  
ID Code Register  
31 30 29  
2 1 0  
·
· · ·  
Boundary Scan Register  
n
2 1 0  
· · · · · · · · ·  
TMS  
TCK  
Test Access Port (TAP) Controller  
Identification (ID) Register  
The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in  
Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM.  
It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the  
controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins.  
ID Register Contents  
Die  
Revision  
Code  
GSI Technology  
JEDEC Vendor  
ID Code  
I/O  
Not Used  
Configuration  
Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  
0
1
1
x36  
x18  
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
1
0
0
0
0
0
0
0 1 1 0 1 1 0 0 1  
0 1 1 0 1 1 0 0 1  
Rev: 1.00b 12/2002  
23/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36BB/D-250/225/200/166/150/133  
Tap Controller Instruction Set  
Overview  
There are two classes of instructions defined in the Standard 1149.1-1990; the standard (Public) instructions, and device specific  
(Private) instructions. Some Public instructions are mandatory for 1149.1 compliance. Optional Public instructions must be  
implemented in prescribed ways. The TAP on this device may be used to monitor all input and I/O pads, and can be used to load  
address, data or control signals into the RAM or to preload the I/O buffers.  
When the TAP controller is placed in Capture-IR state the two least significant bits of the instruction register are loaded with 01.  
When the controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired  
instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the  
TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP instruction set for this  
device is listed in the following table.  
JTAG Tap Controller State Diagram  
Test Logic Reset  
1
0
1
1
1
Run Test Idle  
Select DR  
Select IR  
0
0
0
1
1
1
1
Capture DR  
Capture IR  
0
0
Shift DR  
Shift IR  
0
0
1
1
Exit1 DR  
Exit1 IR  
0
0
Pause DR  
Pause IR  
0
0
0
0
1
1
Exit2 DR  
Exit2 IR  
1
1
Update DR  
Update IR  
1
0
1
0
Instruction Descriptions  
BYPASS  
When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This occurs when  
the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices  
in the scan path.  
Rev: 1.00b 12/2002  
24/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36BB/D-250/225/200/166/150/133  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is loaded in the Instruc-  
tion Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and I/O buffers into the Boundary Scan  
Register. Boundary Scan Register locations are not associated with an input or I/O pin, and are loaded with the default state identified in the  
Boundary Scan Chain table at the end of this section of the datasheet. Because the RAM clock is independent from the TAP Clock (TCK) it  
is possible for the TAP to attempt to capture the I/O ring contents while the input buffers are in transition (i.e. in a metastable state). Although  
allowing the TAP to sample metastable inputs will not harm the device, repeatable results cannot be expected. RAM input signals must be  
stabilized for long enough to meet the TAPs input data capture set-up plus hold time (tTS plus tTH). The RAMs clock inputs need not be  
paused for any other TAP operation except capturing the I/O ring contents into the Boundary Scan Register. Moving the controller to Shift-  
DR state then places the boundary scan register between the TDI and TDO pins.  
EXTEST  
EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register is loaded with all logic 0s. The  
EXTEST command does not block or override the RAM’s input pins; therefore, the RAM’s internal state is still determined by its input pins.  
Typically, the Boundary Scan Register is loaded with the desired pattern of data with the SAMPLE/PRELOAD command. Then the EXTEST  
command is used to output the Boundary Scan Register’s contents, in parallel, on the RAM’s data output drivers on the falling edge of TCK  
when the controller is in the Update-IR state.  
Alternately, the Boundary Scan Register may be loaded in parallel using the EXTEST command. When the EXTEST instruction is selected,  
the sate of all the RAM’s input and I/O pins, as well as the default values at Scan Register locations not associated with a pin, are trans-  
ferred in parallel into the Boundary Scan Register on the rising edge of TCK in the Capture-DR state, the RAM’s output pins drive out the  
value of the Boundary Scan Register location with which each output pin is associated.  
IDCODE  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and places the ID  
register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up and any  
time the controller is placed in the Test-Logic-Reset state.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (high-Z) and the Bound-  
ary Scan Register is connected between TDI and TDO when the TAP controller is moved to the Shift-DR state.  
RFU  
These instructions are Reserved for Future Use. In this device they replicate the BYPASS instruction.  
Rev: 1.00b 12/2002  
25/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36BB/D-250/225/200/166/150/133  
JTAG TAP Instruction Set Summary  
Instruction  
EXTEST  
IDCODE  
Code  
000  
001  
Description  
Notes  
1
1, 2  
Places the Boundary Scan Register between TDI and TDO.  
Preloads ID Register and places it between TDI and TDO.  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and  
SAMPLE-Z  
010  
011  
TDO.  
1
1
Forces all RAM output drivers to High-Z.  
Do not use this instruction; Reserved for Future Use.  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
RFU  
SAMPLE/  
PRELOAD  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and  
TDO.  
GSI private instruction.  
Do not use this instruction; Reserved for Future Use.  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
100  
101  
110  
111  
1
1
1
1
GSI  
RFU  
BYPASS  
Places Bypass Register between TDI and TDO.  
Notes:  
1. Instruction codes expressed in binary, MSB on left, LSB on right.  
2. Default instruction automatically loaded at power-up and in test-logic-reset state.  
Rev: 1.00b 12/2002  
26/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36BB/D-250/225/200/166/150/133  
JTAG Port Recommended Operating Conditions and DC Characteristics  
Parameter  
Symbol  
Min.  
2.0  
Max.  
Unit Notes  
V
V
V
+0.3  
DD3  
3.3 V Test Port Input High Voltage  
3.3 V Test Port Input Low Voltage  
2.5 V Test Port Input High Voltage  
2.5 V Test Port Input Low Voltage  
TMS, TCK and TDI Input Leakage Current  
TMS, TCK and TDI Input Leakage Current  
TDO Output Leakage Current  
V
V
1
1
IHJ3  
V
0.3  
0.8  
+0.3  
ILJ3  
V
0.6 * V  
V
1
IHJ2  
DD2  
DD2  
V
0.3 * V  
1
0.3  
300  
1  
V
1
ILJ2  
DD2  
I
uA  
uA  
uA  
V
2
INHJ  
I
100  
1
3
INLJ  
I
1  
4
OLJ  
V
Test Port Output High Voltage  
1.7  
5, 6  
5, 7  
5, 8  
5, 9  
OHJ  
V
Test Port Output Low Voltage  
0.4  
V
OLJ  
V
V
– 100 mV  
DDQ  
Test Port Output CMOS High  
V
OHJC  
V
Test Port Output CMOS Low  
100 mV  
V
OLJC  
Notes:  
1. Input Under/overshoot voltage must be 2 V > Vi < V  
+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tTKC.  
DDn  
2.  
V
V V  
ILJ  
IN  
DDn  
3. 0 V V V  
IN  
ILJn  
4. Output Disable, V  
= 0 to V  
DDn  
OUT  
5. The TDO output driver is served by the V  
supply.  
DDQ  
6.  
7.  
8.  
9.  
I
I
I
I
= 4 mA  
OHJ  
= + 4 mA  
OLJ  
= –100 uA  
= +100 uA  
OHJC  
OHJC  
JTAG Port AC Test Conditions  
Parameter  
Conditions  
JTAG Port AC Test Load  
V
– 0.2 V  
Input high level  
Input low level  
DQ  
DD  
0.2 V  
1 V/ns  
*
50Ω  
Input slew rate  
30pF  
V
V
/2  
Input reference level  
DDQ  
V
/2  
DDQ  
/2  
Output reference level  
DDQ  
* Distributed Test Jig Capacitance  
Notes:  
1. Include scope and jig capacitance.  
2. Test conditions as as shown unless otherwise noted.  
Rev: 1.00b 12/2002  
27/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36BB/D-250/225/200/166/150/133  
JTAG Port Timing Diagram  
tTKL  
tTS  
tTKH  
tTKC  
TCK  
tTH  
TMS  
TDI  
TDO  
tTKQ  
JTAG Port AC Electrical Characteristics  
Parameter  
TCK Cycle Time  
Symbol  
tTKC  
tTKQ  
tTKH  
tTKL  
tTS  
Min  
50  
Max  
Unit  
ns  
ns  
ns  
ns  
TCK Low to TDO Valid  
TCK High Pulse Width  
TCK Low Pulse Width  
TDI & TMS Set Up Time  
TDI & TMS Hold Time  
20  
20  
20  
10  
10  
ns  
ns  
tTH  
Boundary Scan (BSDL Files)  
For information regarding the Boundary Scan Chain, or to obtain BSDL files for this part, please contact our Applications  
Engineering Department at: apps@gsitechnology.com.  
Rev: 1.00b 12/2002  
28/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36BB/D-250/225/200/166/150/133  
Package Dimensions119-Bump PBGA  
Pin 1  
A
Corner  
7 6 5 4 3 2 1  
A
B
C
D
E
F
A
B
C
D
E
F
G
G
G
H
J
K
L
M
N
P
R
T
U
H
D
B
J
S
K
L
M
N
P
R
T
U
R
Bottom View  
Top View  
Package Dimensions—119-Pin PBGA  
Symbol  
Description  
Width  
Min. Nom. Max  
13.9 14.0 14.1  
21.9 22.0 22.1  
A
B
Length  
C
Package Height (including ball) 1.73 1.86 1.99  
D
Ball Size  
0.60 0.75 0.90  
0.50 0.60 0.70  
E
Ball Height  
F
Package Height (excluding balls) 1.16 1.26 1.36  
G
Width between Balls  
Package Height above board  
Width of package between balls  
Length of package between balls  
Variance of Ball Height  
1.27  
K
0.65 0.70 0.75  
R
7.62  
20.32  
0.15  
S
T
Unit: mm  
Side View  
BPR 1999.05.18  
Rev: 1.00b 12/2002  
29/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36BB/D-250/225/200/166/150/133  
Package Dimensions—165-Bump FPBGA (Package D)  
A1 CORNER  
TOP VIEW  
BOTTOM VIEW  
A1 CORNER  
M
M
Ø0.10  
C
Ø0.25 C A B  
Ø0.40~0.50 (165x)  
1
2 3 4 5 6 7 8 9 10 11  
11 10 9 8  
7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
I
A
B
C
D
E
F
G
H
J
J
K
L
K
L
M
N
P
R
M
N
P
R
A
1.0  
10.0  
1.0  
13±0.07  
B
0.20(4x)  
SEATING PLANE  
C
Rev: 1.00b 12/2002  
30/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36BB/D-250/225/200/166/150/133  
Ordering InformationGSI NBT Synchronous SRAM  
2
Speed  
3
1
Org  
Type  
Package  
Status  
T
Part Number  
A
(MHz/ns)  
512K x 18  
512K x 18  
512K x 18  
512K x 18  
512K x 18  
512K x 18  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
512K x 18  
512K x 18  
512K x 18  
512K x 18  
512K x 18  
512K x 18  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
512K x 18  
512K x 18  
512K x 18  
512K x 18  
512K x 18  
512K x 18  
Notes:  
GS882Z18BB-250  
GS882Z18BB-225  
GS882Z18BB-200  
GS882Z18BB-166  
GS882Z18BB-150  
GS882Z18BB-133  
GS882Z36BB-250  
GS882Z36BB-225  
GS882Z36BB-200  
GS882Z36BB-166  
GS882Z36BB-150  
GS882Z36BB-133  
GS882Z18BB-250I  
GS882Z18BB-225I  
GS882Z18BB-200I  
GS882Z18BB-166I  
GS882Z18BB-150I  
GS882Z18BB-133I  
GS882Z36BB-250I  
GS882Z36BB-225I  
GS882Z36BB-200I  
GS882Z36BB-166I  
GS882Z36BB-150I  
GS882Z36BB-133I  
GS882Z18BD-250  
GS882Z18BD-225  
GS882Z18BD-200  
GS882Z18BD-166  
GS882Z18BD-150  
GS882Z18BD-133  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
250/5.5  
225/6  
C
C
C
C
C
C
C
C
C
C
C
C
I
200/6.5  
166/7  
150/7.5  
133/8.5  
250/5.5  
225/6  
200/6.5  
166/7  
150/7.5  
133/8.5  
250/5.5  
225/6  
I
200/6.5  
166/7  
I
I
150/7.5  
133/8.5  
250/5.5  
225/6  
I
I
I
I
200/6.5  
166/7  
I
I
150/7.5  
133/8.5  
250/5.5  
225/6  
I
I
C
C
C
C
C
C
200/6.5  
166/7  
150/7.5  
133/8.5  
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS882Z36B-100IT.  
2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each  
device is Pipeline/Flow Through mode-selectable by the user.  
3. T = C = Commercial Temperature Range. T = I = Industrial Temperature Range.  
A
A
4. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which  
are covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings  
Rev: 1.00b 12/2002  
31/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36BB/D-250/225/200/166/150/133  
2
Speed  
3
1
Org  
Type  
Package  
Status  
T
Part Number  
A
(MHz/ns)  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
GS882Z36BD-250  
GS882Z36BD-225  
GS882Z36BD-200  
GS882Z36BD-166  
GS882Z36BD-150  
GS882Z36BD-133  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
250/5.5  
225/6  
C
C
C
C
C
C
I
200/6.5  
166/7  
150/7.5  
133/8.5  
250/5.5  
225/6  
512K x 18 GS882Z18BD-250I  
512K x 18 GS882Z18BD-225I  
512K x 18 GS882Z18BD-200I  
512K x 18 GS882Z18BD-166I  
512K x 18 GS882Z18BD-150I  
512K x 18 GS882Z18BD-133I  
256K x 36 GS882Z36BD-250I  
256K x 36 GS882Z36BD-225I  
256K x 36 GS882Z36BD-200I  
256K x 36 GS882Z36BD-166I  
256K x 36 GS882Z36BD-150I  
256K x 36 GS882Z36BD-133I  
Notes:  
I
200/6.5  
166/7  
I
I
150/7.5  
133/8.5  
250/5.5  
225/6  
I
I
I
I
200/6.5  
166/7  
I
I
150/7.5  
133/8.5  
I
I
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS882Z36B-100IT.  
2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each  
device is Pipeline/Flow Through mode-selectable by the user.  
3. T = C = Commercial Temperature Range. T = I = Industrial Temperature Range.  
A
A
4. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which  
are covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings  
Rev: 1.00b 12/2002  
32/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS882Z18/36BB/D-250/225/200/166/150/133  
9Mb Sync SRAM Datasheet Revision History  
Types of Changes  
Format or Content  
DS/DateRev. Code: Old;  
Page;Revisions;Reason  
New  
• Creation of new datasheet  
882Z18B_r1  
Rev: 1.00b 12/2002  
33/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  

相关型号:

GS882Z36BD-250

9Mb Pipelined and Flow Through Synchronous NBT SRAM
GSI

GS882Z36BD-250I

9Mb Pipelined and Flow Through Synchronous NBT SRAM
GSI

GS882Z36BD-250IT

9Mb Pipelined and Flow Through Synchronous NBT SRAM
GSI

GS882Z36BD-250IV

9Mb Pipelined and Flow Through Synchronous NBT SRAM
GSI

GS882Z36BD-250IVT

ZBT SRAM, 256KX36, 5.5ns, CMOS, PBGA165, 13 X 15 MM, 1 MM PITCH, FPBGA-165
GSI

GS882Z36BD-250T

9Mb Pipelined and Flow Through Synchronous NBT SRAM
GSI

GS882Z36BD-250V

9Mb Pipelined and Flow Through Synchronous NBT SRAM
GSI

GS882Z36BD-250VT

ZBT SRAM, 256KX36, 5.5ns, CMOS, PBGA165, 13 X 15 MM, 1 MM PITCH, FPBGA-165
GSI

GS882Z36BD-300

9Mb Pipelined and Flow Through Synchronous NBT SRAM
GSI

GS882Z36BD-300I

9Mb Pipelined and Flow Through Synchronous NBT SRAM
GSI

GS882Z36BD-300IT

9Mb Pipelined and Flow Through Synchronous NBT SRAM
GSI

GS882Z36BD-300T

9Mb Pipelined and Flow Through Synchronous NBT SRAM
GSI