GS8662R18BGD-400I [GSI]

Standard SRAM, 4MX18, 0.45ns, CMOS, PBGA165, 13 X 15 MM, 1 MM PITCH, ROHS COMPLIANT, FPBGA-165;
GS8662R18BGD-400I
型号: GS8662R18BGD-400I
厂家: GSI TECHNOLOGY    GSI TECHNOLOGY
描述:

Standard SRAM, 4MX18, 0.45ns, CMOS, PBGA165, 13 X 15 MM, 1 MM PITCH, ROHS COMPLIANT, FPBGA-165

时钟 静态存储器 内存集成电路
文件: 总35页 (文件大小:1209K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GS8662R08/09/18/36BD-400/350/333/300/250  
400 MHz–250 MHz  
165-Bump BGA  
Commercial Temp  
Industrial Temp  
72Mb SigmaDDR-IITM  
Burst of 4 SRAM  
1.8 V V  
DD  
1.8 V and 1.5 V I/O  
inputs, not differential inputs to a single differential clock input  
buffer. The device also allows the user to manipulate the  
output register clock inputs quasi independently with the C and  
C clock inputs. C and C are also independent single-ended  
clock inputs, not differential inputs. If the C clocks are tied  
high, the K clocks are routed internally to fire the output  
registers instead.  
Features  
• Simultaneous Read and Write SigmaDDR™ Interface  
• Common I/O bus  
• JEDEC-standard pinout and package  
• Double Data Rate interface  
• Byte Write (x36, x18 and x9) and Nybble Write (x8) function  
• Burst of 4 Read and Write  
• 1.8 V +100/–100 mV core power supply  
• 1.5 V or 1.8 V HSTL Interface  
Each internal read and write operation in a SigmaDDR-II B4  
RAM is four times wider than the device I/O bus. An input  
data bus de-multiplexer is used to accumulate incoming data  
before it is simultaneously written to the memory array. An  
output data multiplexer is used to capture the data produced  
from a single memory array read and then route it to the  
appropriate output drivers as needed.  
• Pipelined read operation with self-timed Late Write  
• Fully coherent read and write pipelines  
• ZQ pin for programmable output drive strength  
• IEEE 1149.1 JTAG-compliant Boundary Scan  
• Pin-compatible with present 9Mb, 18Mb, 36Mb and 72Mb  
devices  
• 165-bump, 13 mm x 15 mm, 1 mm bump pitch BGA package  
• RoHS-compliant 165-bump BGA package available  
When a new address is loaded into a x18 or x36 version of the  
part, A0 and A1 are used to initialize the pointers that control  
the data multiplexer / de-multiplexer so the RAM can perform  
"critical word first" operations. From an external address point  
of view, regardless of the starting point, the data transfers  
always follow the same linear sequence {00, 01, 10, 11} or  
{01, 10, 11, 00} or {10, 11, 00, 01} or {11, 00, 01, 10} (where  
the digits shown represent A1, A0).  
SigmaDDRFamily Overview  
The GS8662R08/09/18/36BD are built in compliance with the  
SigmaDDR-II SRAM pinout standard for Common I/O  
synchronous SRAMs. They are 75,497,472-bit (72Mb)  
SRAMs. The GS8662R08/09/18/36BD SigmaDDR-II SRAMs  
are just one element in a family of low power, low voltage  
HSTL I/O SRAMs designed to operate at the speeds needed to  
implement economical high performance networking systems.  
Unlike the x18 and x36 versions, the input and output data  
multiplexers of the x8 and x9 versions are not preset by  
address inputs and therefore do not allow "critical word first"  
operations. The address fields of the x8 and x9 SigmaDDR-II  
B4 RAMs are two address pins less than the advertised index  
depth (e.g., the 8M x 8 has a 2M addressable index, and A0 and  
A1 are not accessible address pins).  
Clocking and Addressing Schemes  
The GS8662R08/09/18/36BD SigmaDDR-II SRAMs are  
synchronous devices. They employ two input register clock  
inputs, K and K. K and K are independent single-ended clock  
Parameter Synopsis  
-400  
2.5 ns  
0.45 ns  
-350  
2.86 ns  
0.45 ns  
-333  
3.0 ns  
0.45 ns  
-300  
3.3 ns  
0.45 ns  
-250  
4.0 ns  
0.45 ns  
tKHKH  
tKHQV  
Rev: 1.02c 12/2011  
1/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
2M x 36 SigmaDDR-II SRAM—Top View  
1
2
3
4
5
6
7
8
9
10  
11  
NC/SA  
(144Mb)  
A
B
CQ  
SA  
R/W  
BW2  
K
BW1  
LD  
SA  
SA  
CQ  
NC/SA  
(288Mb)  
NC  
DQ27  
DQ18  
SA  
BW3  
SA  
K
BW0  
SA1  
SA  
NC  
DQ8  
C
D
E
F
NC  
NC  
NC  
NC  
NC  
Doff  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
NC  
DQ28  
DQ19  
DQ20  
DQ21  
DQ22  
V
V
SA0  
V
NC  
NC  
NC  
NC  
NC  
DQ17  
NC  
DQ7  
DQ16  
DQ6  
DQ5  
DQ14  
ZQ  
SS  
SS  
SS  
SS  
DQ29  
NC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
V
V
V
V
V
V
V
V
DQ15  
NC  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DQ30  
DQ31  
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
G
H
J
V
V
V
NC  
V
V
V
V
REF  
REF  
DDQ  
DDQ  
NC  
NC  
DQ32  
DQ23  
DQ24  
DQ34  
DQ25  
DQ26  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
SA  
DQ13  
DQ12  
NC  
DQ4  
DQ3  
DQ2  
DQ1  
DQ10  
DQ0  
TDI  
K
L
V
DQ33  
NC  
V
V
V
V
V
DDQ  
SS  
SS  
SS  
SS  
M
N
P
R
V
V
DQ11  
NC  
SS  
SS  
SS  
SS  
DQ35  
NC  
V
SA  
SA  
SA  
SA  
C
SA  
SA  
SA  
V
SA  
SA  
SA  
SA  
DQ9  
TMS  
TCK  
C
11 x 15 Bump BGA—13 x 15 mm Body—1 mm Bump Pitch  
Notes:  
1. BW0 controls writes to DQ0:DQ8; BW1 controls writes to DQ9:DQ17; BW2 controls writes to DQ18:DQ26; BW3 controls writes to  
DQ27:DQ35.  
2. A2 and B9 are the expansion addresses.  
Rev: 1.02c 12/2011  
2/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
4M x 18 SigmaDDR-II SRAM—Top View  
1
2
3
4
5
6
7
8
9
10  
11  
NC/SA  
(144Mb)  
A
B
CQ  
SA  
SA  
R/W  
BW1  
K
LD  
SA  
SA  
CQ  
NC/SA  
(288Mb)  
NC  
DQ9  
NC  
SA  
K
BW0  
SA1  
SA  
NC  
NC  
DQ8  
C
D
E
F
NC  
NC  
NC  
NC  
NC  
Doff  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
NC  
NC  
NC  
V
V
SA  
SA0  
V
NC  
NC  
NC  
NC  
NC  
DQ7  
NC  
NC  
NC  
NC  
NC  
NC  
SS  
SS  
SS  
SS  
DQ10  
DQ11  
NC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
NC  
V
V
V
V
V
V
V
V
DQ6  
DQ5  
NC  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DQ12  
NC  
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
G
H
J
DQ13  
V
V
V
V
V
V
V
REF  
ZQ  
REF  
DDQ  
DDQ  
NC  
NC  
NC  
DQ14  
NC  
NC  
DQ4  
NC  
NC  
K
L
V
NC  
NC  
NC  
NC  
NC  
SA  
DQ3  
DQ2  
NC  
DQ15  
NC  
V
V
V
V
V
NC  
DDQ  
SS  
SS  
SS  
SS  
M
N
P
R
NC  
V
V
DQ1  
NC  
SS  
SS  
SS  
SS  
NC  
DQ16  
DQ17  
SA  
V
SA  
SA  
SA  
SA  
C
SA  
SA  
SA  
V
NC  
NC  
SA  
SA  
SA  
SA  
NC  
DQ0  
TDI  
TCK  
C
TMS  
11 x 15 Bump BGA—13 x 15 mm Body—1 mm Bump Pitch  
Notes:  
1. BW0 controls writes to DQ0:DQ8; BW1 controls writes to DQ9:DQ17.  
2. A7 and B5 are the expansion addresses.  
Rev: 1.02c 12/2011  
3/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
8M x 9 SigmaDDR-II SRAM—Top View  
1
2
3
4
5
6
7
8
9
10  
11  
NC/SA  
(144Mb)  
A
B
CQ  
SA  
SA  
R/W  
NC  
K
LD  
SA  
SA  
CQ  
NC/SA  
(288Mb)  
NC  
NC  
NC  
SA  
K
BW0  
SA  
SA  
NC  
NC  
DQ4  
C
D
E
F
NC  
NC  
NC  
NC  
NC  
Doff  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
V
V
SA  
NC  
V
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
SS  
SS  
SS  
SS  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
DQ5  
NC  
V
V
V
V
V
V
V
V
DQ3  
NC  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
G
H
J
DQ6  
V
V
V
NC  
V
V
V
V
ZQ  
REF  
DDQ  
DDQ  
REF  
NC  
NC  
NC  
NC  
NC  
NC  
DQ8  
SA  
NC  
DQ2  
NC  
K
L
NC  
DQ7  
NC  
V
NC  
NC  
NC  
NC  
NC  
SA  
NC  
NC  
NC  
V
V
V
V
V
DQ1  
NC  
DDQ  
SS  
SS  
SS  
SS  
M
N
P
R
V
V
NC  
SS  
SS  
SS  
SS  
NC  
V
SA  
SA  
SA  
SA  
C
SA  
SA  
SA  
V
NC  
NC  
NC  
SA  
SA  
SA  
SA  
NC  
DQ0  
TDI  
TCK  
C
TMS  
11 x 15 Bump BGA—13 x 15 mm Body—1 mm Bump Pitch  
Notes:  
1. Unlike the x36 and x18 versions of this device, the x8 and x9 versions do not give the user access to A0 and A1. SA0 and SA1 are set to  
0 at the beginning of each access.  
2. BW0 controls writes to DQ0:DQ8.  
3. A7 and B5 are the expansion addresses.  
Rev: 1.02c 12/2011  
4/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
8M x 8 SigmaDDR-II SRAM—Top View  
1
2
3
4
5
6
7
8
9
10  
11  
NC/SA  
(144Mb)  
A
B
CQ  
SA  
SA  
R/W  
NW1  
K
LD  
SA  
SA  
CQ  
NC/SA  
(288Mb)  
NC  
NC  
NC  
SA  
K
NW0  
SA  
SA  
NC  
NC  
DQ3  
C
D
E
F
NC  
NC  
NC  
NC  
NC  
Doff  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
V
V
SA  
NC  
V
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DQ2  
NC  
NC  
ZQ  
SS  
SS  
SS  
SS  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
DQ4  
NC  
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
G
H
J
DQ5  
V
V
V
V
V
V
V
REF  
REF  
DDQ  
DDQ  
NC  
NC  
NC  
NC  
NC  
NC  
DQ7  
SA  
NC  
DQ1  
NC  
NC  
DQ0  
NC  
NC  
NC  
TDI  
K
L
NC  
DQ6  
NC  
V
NC  
NC  
NC  
NC  
NC  
SA  
NC  
NC  
V
V
V
V
V
DDQ  
SS  
SS  
SS  
SS  
M
N
P
R
V
V
NC  
SS  
SS  
SS  
SS  
NC  
V
SA  
SA  
SA  
SA  
C
SA  
SA  
SA  
V
NC  
NC  
SA  
SA  
SA  
SA  
NC  
TCK  
C
TMS  
11 x 15 Bump BGA—13 x 15 mm Body—1 mm Bump Pitch  
Notes:  
1. Unlike the x36 and x18 versions of this device, the x8 and x9 versions do not give the user access to A0 and A1. SA0 and SA1 are set to  
0 at the beginning of each access.  
2. NW0 controls writes to DQ0:DQ3; NW1 controls writes to DQ4:DQ7.  
3. A7 and B5 are the expansion addresses.  
Rev: 1.02c 12/2011  
5/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
Pin Description Table  
Symbol  
SA  
Description  
Synchronous Address Inputs  
No Connect  
Type  
Input  
Comments  
NC  
Read: Active High  
Write: Active Low  
R/W  
Synchronous Read/Write  
Synchronous Byte Writes  
Nybble Write Control Pin  
Input  
Input  
Input  
Active Low  
x18/x36 only  
BW0–BW3  
NW0–NW1  
Active Low  
x8 only  
LD  
K
Synchronous Load Pin  
Input Clock  
Input  
Input  
Active Low  
Active High  
K
Input Clock  
Input  
Active Low  
C
Output Clock  
Input  
Active High  
C
Output Clock  
Input  
Active Low  
TMS  
TDI  
TCK  
TDO  
VREF  
Test Mode Select  
Test Data Input  
Input  
Input  
Test Clock Input  
Input  
Test Data Output  
HSTL Input Reference Voltage  
Output Impedance Matching Input  
Must Connect Low  
Data I/O  
Output  
Input  
ZQ  
MCL  
DQ  
Input  
Input/Output  
Input  
Three State  
Active Low  
Disable DLL when low  
Output Echo Clock  
Output Echo Clock  
Power Supply  
Doff  
CQ  
Output  
Output  
Supply  
CQ  
VDD  
1.8 V Nominal  
VDDQ  
VSS  
Isolated Output Buffer Supply  
Power Supply: Ground  
Supply  
Supply  
1.8 V or 1.5 V Nominal  
Notes:  
1. NC = Not Connected to die or any other pin  
2. When ZQ pin is directly connected to V , output impedance is set to minimum value and it cannot be connected to ground or left  
DDQ  
unconnected.  
3. C, C, K, K cannot be set to V  
voltage.  
REF  
Rev: 1.02c 12/2011  
6/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
Background  
Common I/O SRAMs, from a system architecture point of view, are attractive in read dominated or block transfer applications.  
Therefore, the SigmaDDR-II SRAM interface and truth table are optimized for burst reads and writes. Common I/O SRAMs are  
unpopular in applications where alternating reads and writes are needed because bus turnaround delays can cut high speed  
Common I/O SRAM data bandwidth in half.  
Burst Operations  
Read and write operations are “burst” operations. In every case where a read or write command is accepted by the SRAM, it will  
respond by issuing or accepting four beats of data, executing a data transfer on subsequent rising edges of K and K#, as illustrated  
in the timing diagrams. It is not possible to stop a burst once it starts. Four beats of data are always transferred. This means that it is  
possible to load new addresses every other K clock cycle. Addresses can be loaded less often, if intervening deselect cycles are  
inserted.  
Deselect Cycles  
Chip Deselect commands are pipelined to the same degree as read commands. This means that if a deselect command is applied to  
the SRAM on the next cycle after a read command captured by the SRAM, the device will complete the four beat read data transfer  
and then execute the deselect command, returning the output drivers to high-Z.A high on the LD# pin prevents the RAM from  
loading read or write command inputs and puts the RAM into deselect mode as soon as it completes all outstanding burst transfer  
operations.  
SigmaDDR-II B4 SRAM Read Cycles  
The status of the Address, LD and R/W pins are evaluated on the rising edge of K. Because the device executes a four beat burst  
transfer in response to a read command, if the previous command captured was a read or write command, the Address, LD and R/  
W pins are ignored. If the previous command captured was a deselect, the control pin status is checked.The SRAM executes  
pipelined reads. The read command is clocked into the SRAM by a rising edge of K. After the next rising edge of K, the SRAM  
produces data out in response to the next rising edge of C (or the next rising edge of K, if C and C are tied high). The second beat  
of data is transferred on the next rising edge of C, then on the next rising edge of C and finally on the next rising edge of C, for a  
total of four transfers per address load.  
SigmaDDR-II B4 SRAM Write Cycles  
The status of the Address, LD and R/W pins are evaluated on the rising edge of K. Because the device executes a four beat burst  
transfer in response to a write command, if the previous command captured was a read or write command, the Address, LD and R/  
W pins are ignored at the next rising edge of K. If the previous command captured was a deselect, the control pin status is  
checked.The SRAM executes “late write” data transfers. Data in is due at the device inputs on the rising edge of K following the  
rising edge of K clock used to clock in the write command and the write address. To complete the remaining three beats of the burst  
of four write transfer the SRAM captures data in on the next rising edge of K, the following rising edge of K and finally on the next  
rising edge of K, for a total of four transfers per address load.  
Special Functions  
Byte Write and Nybble Write Control  
Byte Write Enable pins are sampled at the same time that Data In is sampled. A high on the Byte Write Enable pin associated with  
a particular byte (e.g., BW0 controls D0–D8 inputs) will inhibit the storage of that particular byte, leaving whatever data may be  
stored at the current address at that byte location undisturbed. Any or all of the Byte Write Enable pins may be driven high or low  
during the data in sample times in a write sequence.  
Each write enable command and write address loaded into the RAM provides the base address for a 4 beat data transfer. The x18  
version of the RAM, for example, may write 72 bits in association with each address loaded. Any 9-bit byte may be masked in any  
write sequence.  
Rev: 1.02c 12/2011  
7/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
Nybble Write (4-bit) write control is implemented on the 8-bit-wide version of the device. For the x8 version of the device,  
“Nybble Write Enable” and “NBx” may be substituted in all the discussion above.  
Example x18 RAM Write Sequence using Byte Write Enables  
Data In Sample Time  
BW0  
BW1  
D0–D8  
Data In  
D9–D17  
Don’t Care  
Data In  
Beat 1  
Beat 2  
Beat 3  
Beat 4  
0
1
0
1
1
0
0
0
Don’t Care  
Data In  
Data In  
Don’t Care  
Data In  
Resulting Write Operation  
Byte 1  
D0–D8  
Byte 2  
D9–D17  
Byte 1  
D0–D8  
Byte 2  
D9–D17  
Byte 1  
D0–D8  
Byte 2  
D9–D17  
Byte 1  
D0–D8  
Byte 2  
D9–D17  
Written  
Unchanged  
Unchanged  
Written  
Written  
Written  
Unchanged  
Written  
Beat 1  
Beat 2  
Beat 3  
Beat 4  
Output Register Control  
SigmaDDR-II SRAMs offer two mechanisms for controlling the output data registers. Typically, control is handled by the Output  
Register Clock inputs, C and C. The Output Register Clock inputs can be used to make small phase adjustments in the firing of the  
output registers by allowing the user to delay driving data out as much as a few nanoseconds beyond the next rising edges of the K  
and K clocks. If the C and C clock inputs isare tied high, the RAM reverts to K and K control of the outputs, allowing the RAM to  
function as a conventional pipelined read SRAM.  
FLXDrive-II Output Driver Impedance Control  
HSTL I/O SigmaDDR-II SRAMs are supplied with programmable impedance output drivers. The ZQ pin must be connected to  
V
via an external resistor, RQ, to allow the SRAM to monitor and adjust its output driver impedance. The value of RQ must be  
SS  
5X the value of the desired RAM output impedance at mid-rail. The allowable range of RQ to guarantee impedance matching  
continuously is between 175Ω and 350Ω. Periodic readjustment of the output driver impedance is necessary as the impedance is  
affected by drifts in supply voltage and temperature. The SRAM’s output impedance circuitry compensates for drifts in supply  
voltage and temperature. A clock cycle counter periodically triggers an impedance evaluation, resets and counts again. Each  
impedance evaluation may move the output driver impedance level one step at a time towards the optimum level. The output  
drivers implemented with discrete binary weighted impedance steps is implemented with discrete binary weighted impedance  
steps.  
Rev: 1.02c 12/2011  
8/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
Example Four Bank Depth Expansion Schematic  
LD  
LD  
3
2
LD  
LD  
1
0
R/W  
A –A  
0
n
K
Bank 3  
Bank 1  
Bank 2  
Bank 0  
A
A
A
A
LD  
LD  
LD  
LD  
R/W  
R/W  
R/W  
R/W  
CQ  
K
CQ  
K
CQ  
K
CQ  
DQ  
K
DQ  
C
DQ  
C
DQ  
C
C
C
DQ1–DQn  
CQ  
Note:  
For simplicity BWn (or NWn), K, and C are not shown.  
Rev: 1.02c 12/2011  
9/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
Common I/O SigmaDDR-II B4 SRAM Truth Table  
DQ  
K
LD  
R/W  
Operation  
n
A + 0  
Hi-Z  
A + 1  
Hi-Z  
A + 2  
Hi-Z  
A + 3  
Hi-Z  
1
0
X
0
Deselect  
Write  
D@Kn+1  
Q@Kn+1  
D@Kn+1  
Q@Kn+2  
D@Kn+2  
Q@Kn+2  
D@Kn+2  
Q@Kn+3  
0
1
or  
Cn+1  
or  
Cn+2  
or  
Cn+2  
or  
Cn+3  
Read  
Note:  
Q is controlled by K clocks if C clocks are not used.  
Burst of 4 Byte Write Clock Truth Table  
BW  
BW  
BW  
BW  
Current Operation  
D
D
D
D
K ↑  
n+1  
K ↑  
n+2  
K ↑  
n+2½  
K ↑  
n
K ↑  
n+1  
K ↑  
n+1½  
K ↑  
n+2  
K ↑  
n+2½  
K ↑  
(tn+1½  
(t  
)
)
(t  
)
(t  
)
(t )  
(t  
)
(t  
)
(t  
)
(t  
)
Write  
T
T
F
T
F
F
F
T
T
F
F
F
T
F
D0  
D1  
X
D2  
D3  
X
Dx stored if BWn = 0 in all four data transfers  
Write  
T
F
F
F
F
F
F
T
F
F
D0  
X
X
X
Dx stored if BWn = 0 in 1st data transfer only  
Write  
D1  
X
X
Dx stored if BWn = 0 in 2nd data transfer only  
Write  
X
D2  
X
X
Dx stored if BWn = 0 in 3rd data transfer only  
Write  
X
X
D3  
X
Dx stored if BWn = 0 in 4th data transfer only  
Write Abort  
X
X
X
No Dx stored in any of the four data transfers  
Notes:  
1. “1” = input “high”; “0” = input “low”; “X” = input “don’t care”; “T” = input “true”; “F” = input “false”.  
2. If one or more BWn = 0, then BW = “T”, else BW = “F”.  
Rev: 1.02c 12/2011  
10/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
Burst of 4 Nybble Write Clock Truth Table  
NW  
NW  
NW  
NW  
Current Operation  
D
D
D
D
K ↑  
n+1  
K ↑  
n+1½  
K ↑  
n+2  
K ↑  
n+2½  
K ↑  
n
K ↑  
n+1  
K ↑  
n+1½  
K ↑  
n+2  
K ↑  
n+2½  
(t  
)
(t  
)
(t  
)
(t  
)
(t )  
(t  
)
(t  
)
(t  
)
(t  
)
Write  
T
T
F
T
F
F
F
T
T
F
F
F
T
F
D0  
D1  
X
D2  
D3  
X
Dx stored if NWn = 0 in all four data transfers  
Write  
T
F
F
F
F
F
F
T
F
F
D0  
X
X
X
Dx stored if NWn = 0 in 1st data transfer only  
Write  
D1  
X
X
Dx stored if NWn = 0 in 2nd data transfer only  
Write  
X
D2  
X
X
Dx stored if NWn = 0 in 3rd data transfer only  
Write  
X
X
D3  
X
Dx stored if NWn = 0 in 4th data transfer only  
Write Abort  
X
X
X
No Dx stored in any of the four data transfers  
Notes:  
1. “1” = input “high”; “0” = input “low”; “X” = input “don’t care”; “T” = input “true”; “F” = input “false”.  
2. If one or more NWn = 0, then NW = “T”, else NW = “F”.  
Rev: 1.02c 12/2011  
11/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
x36 Byte Write Enable (BWn) Truth Table  
BW0  
BW1  
BW2  
BW3  
D0–D8  
Don’t Care  
Data In  
D9–D17  
Don’t Care  
Don’t Care  
Data In  
D18–D26  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Data In  
D27–D35  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Data In  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
Don’t Care  
Data In  
Data In  
Don’t Care  
Data In  
Don’t Care  
Don’t Care  
Data In  
Data In  
Don’t Care  
Data In  
Data In  
Data In  
Data In  
Don’t Care  
Data In  
Don’t Care  
Don’t Care  
Data In  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Data In  
Data In  
Don’t Care  
Data In  
Data In  
Data In  
Data In  
Don’t Care  
Data In  
Don’t Care  
Don’t Care  
Data In  
Data In  
Data In  
Data In  
Don’t Care  
Data In  
Data In  
Data In  
Data In  
Data In  
Data In  
x18 Byte Write Enable (BWn) Truth Table  
BW0  
BW1  
D0–D8  
Don’t Care  
Data In  
D9–D17  
Don’t Care  
Don’t Care  
Data In  
1
0
1
0
1
1
0
0
Don’t Care  
Data In  
Data In  
x8 Nybble Write Enable (NWn) Truth Table  
NW0  
NW1  
D0–D3  
Don’t Care  
Data In  
D4–D7  
Don’t Care  
Don’t Care  
Data In  
1
0
1
0
1
1
0
0
Don’t Care  
Data In  
Data In  
Rev: 1.02c 12/2011  
12/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
Absolute Maximum Ratings  
(All voltages reference to V  
)
SS  
Symbol  
VDD  
Description  
Value  
–0.5 to 2.9  
Unit  
Voltage on VDD Pins  
Voltage in VDDQ Pins  
Voltage in VREF Pins  
V
VDDQ  
VREF  
VI/O  
–0.5 to VDD  
V
V
–0.5 to VDDQ  
–0.5 to VDDQ +0.5 (2.9 V max.)  
–0.5 to VDDQ +0.5 (2.9 V max.)  
Voltage on I/O Pins  
V
VIN  
Voltage on Other Input Pins  
Input Current on Any Pin  
V
IIN  
+/–100  
+/–100  
125  
mA dc  
mA dc  
IOUT  
Output Current on Any I/O Pin  
Maximum Junction Temperature  
Storage Temperature  
oC  
oC  
TJ  
TSTG  
–55 to 125  
Note:  
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended  
Operating Conditions. Exposure to conditions exceeding the Recommended Operating Conditions, for an extended period of time, may affect  
reliability of this component.  
Recommended Operating Conditions  
Power Supplies  
Parameter  
Supply Voltage  
Symbol  
VDD  
Min.  
1.7  
Typ.  
1.8  
Max.  
1.9  
Unit  
V
VDDQ  
VREF  
VDD  
I/O Supply Voltage  
Reference Voltage  
1.4  
V
0.68  
0.95  
V
Note:  
The power supplies need to be powered up simultaneously or in the following sequence: V , V , V , followed by signal inputs. The power  
DD DDQ REF  
down sequence must be the reverse. V  
must not exceed V . For more information, read AN1021 SigmaQuad and SigmaDDR Power-Up.  
DD  
DDQ  
Operating Temperature  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Junction Temperature  
(Commercial Range Versions)  
TJ  
0
25  
85  
°C  
Junction Temperature  
(Industrial Range Versions)*  
TJ  
–40  
25  
100  
°C  
Note:  
* The part numbers of Industrial Temperature Range versions end with the character “I”. Unless otherwise noted, all performance specifications  
quoted are evaluated for worst case in the temperature range marked on the device.  
Rev: 1.02c 12/2011  
13/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
Thermal Impedance  
Test PCB  
Substrate  
θ JA (C°/W)  
Airflow = 0 m/s  
θ JA (C°/W)  
Airflow = 1 m/s  
θ JA (C°/W)  
Airflow = 2 m/s  
θ JB (C°/W)  
θ JC (C°/W)  
Package  
165 BGA  
4-layer  
22.300  
18.572  
17.349  
9.292  
2.310  
Notes:  
1. Thermal Impedance data is based on a number of of samples from mulitple lots and should be viewed as a typical number.  
2. Please refer to JEDEC standard JESD51-6.  
3. The characteristics of the test fixture PCB influence reported thermal characteristics of the device. Be advised that a good thermal path to  
the PCB can result in cooling or heating of the RAM depending on PCB temperature.  
HSTL I/O DC Input Characteristics  
Parameter  
Symbol  
VIH (dc)  
VIL (dc)  
Min  
Max  
Units  
Notes  
VREF + 0.10  
VDDQ + 0.3 V  
VREF – 0.10  
V
V
1
1
DC Input Logic High  
DC Input Logic Low  
–0.3 V  
Notes:  
1. Compatible with both 1.8 V and 1.5 V I/O drivers  
2. These are DC test criteria. DC design criteria is V  
± 50 mV. The AC V /V levels are defined separately for measuring timing parame-  
REF  
IH IL  
ters.  
3. V (Min) DC = –0.3 V, V (Min) AC = –1.5 V (pulse width 3 ns).  
IL  
IL  
4.  
V
(Max) DC = V  
+ 0.3 V, V (Max) AC = V  
+ 0.85 V (pulse width 3 ns).  
IH  
DDQ  
IH  
DDQ  
HSTL I/O AC Input Characteristics  
Parameter  
AC Input Logic High  
Symbol  
VIH (ac)  
VIL (ac)  
Min  
Max  
Units  
Notes  
2,3  
VREF + 0.20  
V
V
V
VREF – 0.20  
5% VREF (DC)  
2,3  
AC Input Logic Low  
V
Peak-to-Peak AC Voltage  
VREF (ac)  
1
REF  
Notes:  
1. The peak-to-peak AC component superimposed on V  
may not exceed 5% of the DC component of V  
.
REF  
REF  
2. To guarantee AC characteristics, V ,V , Trise, and Tfall of inputs and clocks must be within 10% of each other.  
IH IL  
3. For devices supplied with HSTL I/O input buffers. Compatible with both 1.8 V and 1.5 V I/O drivers.  
Rev: 1.02c 12/2011  
14/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
Undershoot Measurement and Timing  
Overshoot Measurement and Timing  
V
IH  
20% tKHKH  
V
+ 1.0 V  
50%  
DD  
V
SS  
50%  
V
DD  
V
– 1.0 V  
SS  
20% tKHKH  
V
IL  
Note:  
Input Undershoot/Overshoot voltage must be 2 V > Vi < V +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.  
DDn  
Capacitance  
o
(T = 25 C, f = 1 MHZ, V = 1.8 V)  
A
DD  
Parameter  
Symbol  
CIN  
Test conditions  
VIN = 0 V  
Typ.  
Max.  
Unit  
pF  
Input Capacitance  
Output Capacitance  
Clock Capacitance  
4
6
5
5
7
6
COUT  
CCLK  
VOUT = 0 V  
pF  
pF  
Note:  
This parameter is sample tested.  
AC Test Conditions  
Parameter  
Input high level  
Input low level  
Conditions  
VDDQ  
0 V  
Max. input slew rate  
Input reference level  
Output reference level  
2 V/ns  
VDDQ/2  
VDDQ/2  
Note:  
Test conditions as specified with output loading as shown unless otherwise noted.  
AC Test Load Diagram  
DQ  
RQ = 250 Ω (HSTL I/O)  
= 0.75 V  
V
REF  
50Ω  
VT = V /2  
DDQ  
Rev: 1.02c 12/2011  
15/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
Input and Output Leakage Characteristics  
Parameter  
Symbol  
Test Conditions  
VIN = 0 to VDD  
Min.  
–2 uA  
–20 uA  
–2 uA  
Max  
2 uA  
2 uA  
2 uA  
Input Leakage Current  
(except mode pins)  
IIL  
IILDOFF  
IOL  
VIN = 0 to VDD  
Doff  
Output Disable,  
VOUT = 0 to VDDQ  
Output Leakage Current  
Programmable Impedance HSTL Output Driver DC Electrical Characteristics  
Parameter  
Symbol  
VOH1  
Min.  
Max.  
Units  
Notes  
1, 3  
VDDQ/2 – 0.12 VDDQ/2 + 0.12  
VDDQ/2 – 0.12 VDDQ/2 + 0.12  
Output High Voltage  
Output Low Voltage  
Output High Voltage  
V
V
V
V
VOL1  
2, 3  
VOH2  
VDDQ – 0.2  
Vss  
VDDQ  
0.2  
4, 5  
VOL2  
4, 6  
Output Low Voltage  
Notes:  
1.  
I
= (V /2) / (RQ/5) +/– 15% @ V = V /2 (for: 175Ω ≤ RQ 350Ω).  
DDQ OH DDQ  
OH  
2.  
I
= (V /2) / (RQ/5) +/– 15% @ V = V /2 (for: 175Ω ≤ RQ 350Ω).  
OL  
DDQ  
OL  
DDQ  
3. Parameter tested with RQ = 250Ω and V  
4. 0Ω ≤ RQ ≤ ∞Ω  
= 1.5 V or 1.8 V  
DDQ  
5.  
I
= –1.0 mA  
OH  
6.  
I
= 1.0 mA  
OL  
Rev: 1.02c 12/2011  
16/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
Operating Currents  
-400  
-350  
-333  
-300  
-250  
Parameter  
Symbol  
Test Conditions  
Notes  
0
to  
40  
to  
0
to  
40  
to  
0
to  
40  
to  
0
to  
40  
to  
0
to  
40  
to  
70°C 85°C 70°C 85°C 70°C 85°C 70°C 85°C 70°C 85°C  
VDD = Max, IOUT = 0 mA  
Operating Current (x36):  
DDR  
800  
mA  
810  
mA  
755  
mA  
765  
mA  
685  
mA  
695  
mA  
625  
mA  
635  
mA  
620  
mA  
630  
mA  
IDD  
IDD  
IDD  
IDD  
2, 3  
2, 3  
2, 3  
2, 3  
Cycle Time tKHKH Min  
VDD = Max, IOUT = 0 mA  
Operating Current (x18):  
DDR  
625  
mA  
635  
mA  
590  
mA  
600  
mA  
535  
mA  
545  
mA  
495  
mA  
505  
mA  
425  
mA  
435  
mA  
Cycle Time tKHKH Min  
VDD = Max, IOUT = 0 mA  
Operating Current (x9):  
DDR  
625  
mA  
635  
mA  
590  
mA  
600  
mA  
535  
mA  
545  
mA  
495  
mA  
505  
mA  
425  
mA  
435  
mA  
Cycle Time tKHKH Min  
VDD = Max, IOUT = 0 mA  
Operating Current (x8):  
DDR  
625  
mA  
635  
mA  
590  
mA  
600  
mA  
535  
mA  
545  
mA  
495  
mA  
505  
mA  
425  
mA  
435  
mA  
Cycle Time tKHKH Min  
Device deselected,  
IOUT = 0 mA, f = Max,  
Standby Current (NOP):  
DDR  
245  
mA  
255  
mA  
240  
mA  
250  
mA  
230  
mA  
240  
mA  
220  
mA  
230  
mA  
205  
mA  
215  
mA  
ISB1  
2, 4  
All Inputs 0.2 V or VDD – 0.2 V  
Notes:  
1.  
2.  
Power measured with output pins floating.  
Minimum cycle, IOUT = 0 mA  
Operating current is calculated with 50% read cycles and 50% write cycles.  
Standby Current is only after all pending read and write burst operations are completed.  
3.  
4.  
Rev: 1.02c 12/2011  
17/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
AC Electrical Characteristics  
-400  
-350  
-333  
-300  
-250  
Parameter  
Symbol  
Units  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Clock  
tKHKH  
tCHCH  
K, K Clock Cycle Time  
C, C Clock Cycle Time  
2.5  
8.4  
0.2  
2.86  
8.4  
0.2  
3.0  
8.4  
0.2  
3.3  
8.4  
0.2  
4.0  
8.4  
0.2  
ns  
ns  
ns  
tKCVar  
tKC Variable  
6
tKHKL  
tCHCL  
K, K Clock High Pulse Width  
C, C Clock High Pulse Width  
1.0  
1.13  
1.2  
1.32  
1.6  
tKLKH  
tCLCH  
K, K Clock Low Pulse Width  
C, C Clock Low Pulse Width  
1.0  
1.0  
1.0  
1.13  
1.13  
1.13  
1.2  
1.32  
1.49  
1.49  
1.6  
1.8  
1.8  
ns  
ns  
ns  
tKHKH  
tCHCH  
K to K High  
C to C High  
1.35  
1.35  
tKHKH  
tCHCH  
K to K High  
C to C High  
tKHCH  
tKCLock  
tKCReset  
K, K Clock High to C, C Clock High  
DLL Lock Time  
0
1.13  
0
1.29  
0
1.35  
0
1.49  
0
1.8  
ns  
cycle  
ns  
1024  
30  
1024  
30  
1024  
30  
1024  
30  
1024  
30  
7
K Static to DLL reset  
Output Times  
tKHQV  
tCHQV  
K, K Clock High to Data Output Valid  
C, C Clock High to Data Output Valid  
0.45  
0.45  
0.45  
0.45  
0.45  
ns  
ns  
ns  
ns  
4
4
tKHQX  
tCHQX  
K, K Clock High to Data Output Hold  
C, C Clock High to Data Output Hold  
–0.45  
–0.45  
–0.45  
–0.45  
–0.45  
tKHCQV  
tCHCQV  
K, K Clock High to Echo Clock Valid  
C, C Clock High to Echo Clock Valid  
0.45  
0.45  
0.45  
0.45  
0.45  
tKHCQX  
tCHCQX  
K, K Clock High to Echo Clock Hold  
C, C Clock High to Echo Clock Hold  
–0.45  
–0.45  
–0.45  
–0.45  
–0.45  
tCQHQV  
tCQHQX  
tCQHCQH  
tCQHCQH  
tKHQZ  
tCHQZ  
tKHQX1  
tCHQX1  
CQ, CQ High Output Valid  
CQ, CQ High Output Hold  
0.20  
0.23  
0.25  
0.27  
0.30  
ns  
ns  
8
8
–0.20  
–0.23  
–0.25  
–0.27  
–0.30  
CQ Phase Distortion  
0.9  
0.45  
1.0  
0.45  
1.10  
0.45  
1.24  
0.45  
1.55  
0.45  
ns  
ns  
ns  
K Clock High to Data Output High-Z  
C Clock High to Data Output High-Z  
4
4
K Clock High to Data Output Low-Z  
C Clock High to Data Output Low-Z  
–0.45  
–0.45  
–0.45  
–0.45  
–0.45  
Setup Times  
tAVKH  
tIVKH  
Address Input Setup Time  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
ns  
ns  
1
2
Control Input Setup Time(R/ W) (LD)  
Control Input Setup Time  
(BWX) (NWX)  
tIVKH  
0.28  
0.28  
0.28  
0.28  
0.28  
0.28  
0.3  
0.3  
0.35  
0.35  
ns  
ns  
3
tDVKH  
Data Input Setup Time  
Rev: 1.02c 12/2011  
18/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
AC Electrical Characteristics (Continued)  
-400  
-350  
-333  
-300  
-250  
Parameter  
Symbol  
Units  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Hold Times  
tKHAX  
tKHIX  
Address Input Hold Time  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
ns  
ns  
1
2
Control Input Hold Time (R/ W) (LD)  
Control Input Hold Time  
(BWX) (NWX)  
tKHIX  
0.28  
0.28  
0.28  
0.28  
0.28  
0.28  
0.3  
0.3  
0.35  
0.35  
ns  
ns  
3
tKHDX  
Data Input Hold Time  
Notes:  
1.  
2.  
3.  
4.  
5.  
All Address inputs must meet the specified setup and hold times for all latching clock edges.  
Control signals are R/ W, LD.  
Control signals are BW0, BW1, and (NW0, NW1 for x8) and (BW2, BW3 for x36).  
If C, C are tied high, K, K become the references for C, C timing parameters  
To avoid bus contention, at a given voltage and temperature tCHQX1 is bigger than tCHQZ. The specs as shown do not imply bus contention because tCHQX1 is a MIN  
parameter that is worst case at totally different test conditions (0°C, 1.9 V) than tCHQZ, which is a MAX parameter (worst case at 70°C, 1.7 V). It is not possible for two SRAMs  
on the same board to be at such different voltages and temperatures.  
6.  
7.  
Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.  
VDD slew rate must be less than 0.1 V DC per 50 ns for DLL lock retention. DLL lock time begins once VDD and input clock are stable.  
8.  
Echo clock is very tightly controlled to data valid/data hold. By design, there is a ±0.1 ns variation from echo clock to data. The datasheet parameters reflect tester guard bands  
and test setup variations.  
Rev: 1.02c 12/2011  
19/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
Rev: 1.02c 12/2011  
20/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
Rev: 1.02c 12/2011  
21/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
Rev: 1.02c 12/2011  
22/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
Rev: 1.02c 12/2011  
23/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
JTAG Port Operation  
Overview  
The JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan  
interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with V . The JTAG output  
DD  
drivers are powered by V  
.
DD  
Disabling the JTAG Port  
It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless  
clocked. TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG  
Port unused, TCK, TDI, and TMS may be left floating or tied to either V or V . TDO should be left unconnected.  
DD  
SS  
JTAG Pin Descriptions  
Pin  
Pin Name  
I/O  
Description  
Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate  
from the falling edge of TCK.  
TCK  
Test Clock  
In  
The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP  
TMS  
TDI  
Test Mode Select  
Test Data In  
In controller state machine. An undriven TMS input will produce the same result as a logic one input  
level.  
The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers  
placed between TDI and TDO. The register placed between TDI and TDO is determined by the  
In state of the TAP Controller state machine and the instruction that is currently loaded in the TAP  
Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce  
the same result as a logic one input level.  
Output that is active depending on the state of the TAP state machine. Output changes in  
Out response to the falling edge of TCK. This is the output side of the serial registers placed between  
TDI and TDO.  
TDO  
Test Data Out  
Note:  
This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is  
held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.  
JTAG Port Registers  
Overview  
The various JTAG registers, refered to as Test Access Port or TAP Registers, are selected (one at a time) via the sequences of 1s  
and 0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the  
rising edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the  
TDI and TDO pins.  
Instruction Register  
The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or  
the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the  
TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the  
controller is placed in Test-Logic-Reset state.  
Bypass Register  
The Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through  
the RAM’s JTAG Port to another device in the scan chain with as little delay as possible.  
Rev: 1.02c 12/2011  
24/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
Boundary Scan Register  
The Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins.  
The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The  
Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the  
device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan  
Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in  
Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z,  
SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.  
JTAG TAP Block Diagram  
·
·
·
·
·
·
·
·
Boundary Scan Register  
·
·
·
0
Bypass Register  
2
1 0  
Instruction Register  
TDI  
TDO  
ID Code Register  
31 30 29  
2 1  
0
·
· · ·  
Control Signals  
Test Access Port (TAP) Controller  
TMS  
TCK  
Identification (ID) Register  
The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in  
Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM.  
It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the  
controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins.  
Rev: 1.02c 12/2011  
25/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
ID Register Contents  
GSI Technology  
JEDEC Vendor  
ID Code  
See BSDL Model  
Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  
0 1 1 0 1 1 0 0 1  
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
Tap Controller Instruction Set  
Overview  
There are two classes of instructions defined in the Standard 1149.1-1990; the standard (Public) instructions, and device specific  
(Private) instructions. Some Public instructions are mandatory for 1149.1 compliance. Optional Public instructions must be  
implemented in prescribed ways. The TAP on this device may be used to monitor all input and I/O pads, and can be used to load  
address, data or control signals into the RAM or to preload the I/O buffers.  
When the TAP controller is placed in Capture-IR state the two least significant bits of the instruction register are loaded with 01.  
When the controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired  
instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the  
TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP instruction set for this  
device is listed in the following table.  
Rev: 1.02c 12/2011  
26/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
JTAG Tap Controller State Diagram  
Test Logic Reset  
1
0
1
1
1
Run Test Idle  
Select DR  
Select IR  
0
0
0
1
1
1
1
Capture DR  
Capture IR  
0
0
Shift DR  
Shift IR  
0
0
1
1
Exit1 DR  
Exit1 IR  
0
0
Pause DR  
Pause IR  
0
0
0
0
1
1
Exit2 DR  
Exit2 IR  
1
1
Update DR  
Update IR  
1
0
1
0
Instruction Descriptions  
BYPASS  
When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This  
occurs when the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facili-  
tate testing of other devices in the scan path.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is  
loaded in the Instruction Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and  
I/O buffers into the Boundary Scan Register. Boundary Scan Register locations are not associated with an input or I/O pin, and  
are loaded with the default state identified in the Boundary Scan Chain table at the end of this section of the datasheet. Because  
the RAM clock is independent from the TAP Clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents  
while the input buffers are in transition (i.e. in a metastable state). Although allowing the TAP to sample metastable inputs will  
not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the  
TAPs input data capture set-up plus hold time (tTS plus tTH). The RAMs clock inputs need not be paused for any other TAP  
operation except capturing the I/O ring contents into the Boundary Scan Register. Moving the controller to Shift-DR state then  
places the boundary scan register between the TDI and TDO pins.  
EXTEST  
EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register is loaded with  
all logic 0s. The EXTEST command does not block or override the RAM’s input pins; therefore, the RAM’s internal state is  
still determined by its input pins.  
Rev: 1.02c 12/2011  
27/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
Typically, the Boundary Scan Register is loaded with the desired pattern of data with the SAMPLE/PRELOAD command.  
Then the EXTEST command is used to output the Boundary Scan Register’s contents, in parallel, on the RAM’s data output  
drivers on the falling edge of TCK when the controller is in the Update-IR state.  
Alternately, the Boundary Scan Register may be loaded in parallel using the EXTEST command. When the EXTEST instruc-  
tion is selected, the sate of all the RAM’s input and I/O pins, as well as the default values at Scan Register locations not asso-  
ciated with a pin, are transferred in parallel into the Boundary Scan Register on the rising edge of TCK in the Capture-DR  
state, the RAM’s output pins drive out the value of the Boundary Scan Register location with which each output pin is associ-  
ated.  
IDCODE  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and  
places the ID register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction  
loaded in at power up and any time the controller is placed in the Test-Logic-Reset state.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (high-  
Z) and the Boundary Scan Register is connected between TDI and TDO when the TAP controller is moved to the Shift-DR  
state.  
JTAG TAP Instruction Set Summary  
Instruction  
EXTEST  
Code  
000  
Description  
Notes  
1
Places the Boundary Scan Register between TDI and TDO.  
Preloads ID Register and places it between TDI and TDO.  
IDCODE  
001  
1, 2  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO.  
Forces all RAM output drivers to High-Z.  
SAMPLE-Z  
010  
1
GSI  
011  
100  
101  
110  
111  
GSI private instruction.  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO.  
GSI private instruction.  
1
1
1
1
1
SAMPLE/PRELOAD  
GSI  
GSI  
GSI private instruction.  
BYPASS  
Places Bypass Register between TDI and TDO.  
Notes:  
1. Instruction codes expressed in binary, MSB on left, LSB on right.  
2. Default instruction automatically loaded at power-up and in test-logic-reset state.  
Rev: 1.02c 12/2011  
28/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
JTAG Port Recommended Operating Conditions and DC Characteristics  
Parameter  
Symbol  
Min.  
0.3  
Max.  
Unit Notes  
V
0.3 * V  
Test Port Input Low Voltage  
V
V
1
1
ILJ  
DD  
V
0.7 * V  
V
+0.3  
DD  
Test Port Input High Voltage  
IHJ  
DD  
I
TMS, TCK and TDI Input Leakage Current  
TMS, TCK and TDI Input Leakage Current  
TDO Output Leakage Current  
Test Port Output High Voltage  
Test Port Output Low Voltage  
Test Port Output CMOS High  
Test Port Output CMOS Low  
300  
1  
1
uA  
uA  
uA  
V
2
INHJ  
I
100  
1
3
INLJ  
I
1  
4
OLJ  
V
V
V
– 0.2  
DD  
0.2  
0.1  
5, 6  
5, 7  
5, 8  
5, 9  
OHJ  
V
V
OLJ  
V
– 0.1  
DD  
V
OHJC  
V
V
OLJC  
Notes:  
1. Input Under/overshoot voltage must be 1 V < Vi < V  
+1 V not to exceed V maximum, with a pulse width not to exceed 20% tTKC.  
DDn  
2.  
V
V V  
ILJ  
IN  
DDn  
ILJn  
3. 0 V V V  
IN  
4. Output Disable, V  
= 0 to V  
DDn  
OUT  
5. The TDO output driver is served by the V supply.  
DD  
6.  
7.  
8.  
9.  
I
I
I
I
= 2 mA  
OHJ  
= + 2 mA  
OLJ  
= –100 uA  
= +100 uA  
OHJC  
OLJC  
JTAG Port AC Test Conditions  
Parameter  
Conditions  
JTAG Port AC Test Load  
TDO  
V
– 0.2 V  
Input high level  
Input low level  
DD  
0.2 V  
1 V/ns  
*
50Ω  
30pF  
Input slew rate  
V
/2  
DD  
V
V
/2  
Input reference level  
DD  
* Distributed Test Jig Capacitance  
/2  
Output reference level  
DD  
Notes:  
1. Include scope and jig capacitance.  
2. Test conditions as shown unless otherwise noted.  
Rev: 1.02c 12/2011  
29/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
JTAG Port Timing Diagram  
tTKC  
tTKH  
tTKL  
TCK  
TDI  
tTH  
tTH  
tTS  
tTS  
TMS  
TDO  
tTKQ  
tTH  
tTS  
Parallel SRAM input  
JTAG Port AC Electrical Characteristics  
Parameter  
Symbol  
tTKC  
tTKQ  
tTKH  
tTKL  
tTS  
Min  
Max  
Unit  
TCK Cycle Time  
50  
ns  
ns  
ns  
ns  
ns  
ns  
TCK Low to TDO Valid  
TCK High Pulse Width  
TCK Low Pulse Width  
TDI & TMS Set Up Time  
TDI & TMS Hold Time  
20  
20  
20  
10  
10  
tTH  
Rev: 1.02c 12/2011  
30/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
Package Dimensions—165-Bump FPBGA (Package D)  
A1 CORNER  
TOP VIEW  
BOTTOM VIEW  
A1 CORNER  
M
M
Ø0.10  
C
Ø0.25 C A B  
Ø0.40~0.60 (165x)  
1
2 3 4 5 6 7 8 9 10 11  
11 10 9 8  
7 6 5 4 3 2 1  
A
B
C
D
E
F
A
B
C
D
E
F
G
H
J
G
H
J
K
L
K
L
M
N
P
R
M
N
P
R
A
1.0  
10.0  
1.0  
13±0.05  
B
0.20(4x)  
SEATING PLANE  
C
Rev: 1.02c 12/2011  
31/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
Ordering Information—GSI SigmaDDR-II SRAM  
2
Org  
Part Number1  
Type  
Package  
Speed (MHz)  
T
J
8M x 8  
8M x 8  
8M x 8  
8M x 8  
8M x 8  
8M x 8  
8M x 8  
8M x 8  
8M x 8  
8M x 8  
8M x 9  
8M x 9  
8M x 9  
8M x 9  
8M x 9  
8M x 9  
8M x 9  
8M x 9  
8M x 9  
8M x 9  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
2M x 36  
2M x 36  
GS8662R08BD-400  
GS8662R08BD-350  
GS8662R08BD-333  
GS8662R08BD-300  
GS8662R08BD-250  
GS8662R08BD-400I  
GS8662R08BD-350I  
GS8662R08BD-333I  
GS8662R08BD-300I  
GS8662R08BD-250I  
GS8662R09BD-400  
GS8662R09BD-350  
GS8662R09BD-333  
GS8662R09BD-300  
GS8662R09BD-250  
GS8662R09BD-400I  
GS8662R09BD-350I  
GS8662R09BD-333I  
GS8662R09BD-300I  
GS8662R09BD-250I  
GS8662R18BD-400  
GS8662R18BD-350  
GS8662R18BD-333  
GS8662R18BD-300  
GS8662R18BD-250  
GS8662R18BD-400I  
GS8662R18BD-350I  
GS8662R18BD-333I  
GS8662R18BD-300I  
GS8662R18BD-250I  
GS8662R36BD-400  
GS8662R36BD-350  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
400  
350  
333  
300  
250  
400  
350  
333  
300  
250  
400  
350  
333  
300  
250  
400  
350  
333  
300  
250  
400  
350  
333  
300  
250  
400  
350  
333  
300  
250  
400  
350  
C
C
C
C
C
I
I
I
I
I
C
C
C
C
C
I
I
I
I
I
C
C
C
C
C
I
I
I
I
I
C
C
Notes:  
1. For Tape and Reel add the character “T” to the end of the part number. Example: GS8662Rx36BD-300T.  
2. C = Commercial Temperature Range. I = Industrial Temperature Range.  
Rev: 1.02c 12/2011  
32/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
Ordering Information—GSI SigmaDDR-II SRAM  
2
Org  
Part Number1  
Type  
Package  
Speed (MHz)  
T
J
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
8M x 8  
8M x 8  
8M x 8  
8M x 8  
8M x 8  
8M x 8  
8M x 8  
8M x 8  
8M x 8  
8M x 8  
8M x 9  
8M x 9  
8M x 9  
8M x 9  
8M x 9  
8M x 9  
8M x 9  
8M x 9  
8M x 9  
8M x 9  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
GS8662R36BD-333  
GS8662R36BD-300  
GS8662R36BD-250  
GS8662R36BD-400I  
GS8662R36BD-350I  
GS8662R36BD-333I  
GS8662R36BD-300I  
GS8662R36BD-250I  
GS8662R08BGD-400  
GS8662R08BGD-350  
GS8662R08BGD-333  
GS8662R08BGD-300  
GS8662R08BGD-250  
GS8662R08BGD-400I  
GS8662R08BGD-350I  
GS8662R08BGD-333I  
GS8662R08BGD-300I  
GS8662R08BGD-250I  
GS8662R09BGD-400  
GS8662R09BGD-350  
GS8662R09BGD-333  
GS8662R09BGD-300  
GS8662R09BGD-250  
GS8662R09BGD-400I  
GS8662R09BGD-350I  
GS8662R09BGD-333I  
GS8662R09BGD-300I  
GS8662R09BGD-250I  
GS8662R18BGD-400  
GS8662R18BGD-350  
GS8662R18BGD-333  
GS8662R18BGD-300  
GS8662R18BGD-250  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
165-bump BGA  
333  
300  
250  
400  
350  
333  
300  
250  
400  
350  
333  
300  
250  
400  
350  
333  
300  
250  
400  
350  
333  
300  
250  
400  
350  
333  
300  
250  
400  
350  
333  
300  
250  
C
C
C
I
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
I
165-bump BGA  
I
165-bump BGA  
I
165-bump BGA  
I
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
C
C
C
C
C
I
I
I
I
I
C
C
C
C
C
I
I
I
I
I
C
C
C
C
C
Notes:  
1. For Tape and Reel add the character “T” to the end of the part number. Example: GS8662Rx36BD-300T.  
2. C = Commercial Temperature Range. I = Industrial Temperature Range.  
Rev: 1.02c 12/2011  
33/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
Ordering Information—GSI SigmaDDR-II SRAM  
2
Org  
Part Number1  
Type  
Package  
Speed (MHz)  
T
J
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
GS8662R18BGD-400I  
GS8662R18BGD-350I  
GS8662R18BGD-333I  
GS8662R18BGD-300I  
GS8662R18BGD-250I  
GS8662R36BGD-400  
GS8662R36BGD-350  
GS8662R36BGD-333  
GS8662R36BGD-300  
GS8662R36BGD-250  
GS8662R36BGD-400I  
GS8662R36BGD-350I  
GS8662R36BGD-333I  
GS8662R36BGD-300I  
GS8662R36BGD-250I  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
SigmaDDR-II B4 SRAM  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
400  
350  
333  
300  
250  
400  
350  
333  
300  
250  
400  
350  
333  
300  
250  
I
I
I
I
I
C
C
C
C
C
I
I
I
I
I
Notes:  
1. For Tape and Reel add the character “T” to the end of the part number. Example: GS8662Rx36BD-300T.  
2. C = Commercial Temperature Range. I = Industrial Temperature Range.  
Rev: 1.02c 12/2011  
34/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8662R08/09/18/36BD-400/350/333/300/250  
Revision History  
Types of Changes  
Format or Content  
File Name  
Revisions  
• Creation of new datasheet  
• (Rev1.00a: Updated DLL Lock time to 2048 cycles)  
GS8662RxxB_r1  
Format  
• Removal of 200 MHz and 167 MHz speed bins  
• Addition of 400 MHz and 350 MHz speed bins  
GS8662RxxB_r1_01  
Content  
• (Rev1.01a: Removed T references)  
A
• Update to MP status  
• (Rev1.02a: Removed Power-up section and added AN1021 link  
to Power Supplies table)  
GS8662RxxB_r1_02  
Content  
• (Rev1.02b: Editorial updates)  
• (Rev1.02c: Updated DLL lock time in AC Char table)  
Rev: 1.02c 12/2011  
35/35  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  

相关型号:

GS8662R18E-167

72Mb SigmaCIO DDR-II Burst of 4 SRAM
GSI

GS8662R18E-167I

72Mb SigmaCIO DDR-II Burst of 4 SRAM
GSI

GS8662R18E-200

72Mb SigmaCIO DDR-II Burst of 4 SRAM
GSI

GS8662R18E-200I

72Mb SigmaCIO DDR-II Burst of 4 SRAM
GSI

GS8662R18E-250

72Mb SigmaCIO DDR-II Burst of 4 SRAM
GSI

GS8662R18E-250I

72Mb SigmaCIO DDR-II Burst of 4 SRAM
GSI

GS8662R18E-300

72Mb SigmaCIO DDR-II Burst of 4 SRAM
GSI

GS8662R18E-300I

72Mb SigmaCIO DDR-II Burst of 4 SRAM
GSI

GS8662R18E-333

72Mb SigmaCIO DDR-II Burst of 4 SRAM
GSI

GS8662R18E-333I

72Mb SigmaCIO DDR-II Burst of 4 SRAM
GSI

GS8662R18E-333IT

DDR SRAM, 4MX18, 0.45ns, CMOS, PBGA165, 15 MM X 17 MM, 1MM PITCH, FPBGA-165
GSI

GS8662R18GE-167

72Mb SigmaCIO DDR-II Burst of 4 SRAM
GSI