GS8342S18AE-200 [GSI]

DDR SRAM, 2MX18, 0.45ns, CMOS, PBGA165, 15 X 17 MM, 1 MM PITCH, MO-216CAB-1, FPBGA-165;
GS8342S18AE-200
型号: GS8342S18AE-200
厂家: GSI TECHNOLOGY    GSI TECHNOLOGY
描述:

DDR SRAM, 2MX18, 0.45ns, CMOS, PBGA165, 15 X 17 MM, 1 MM PITCH, MO-216CAB-1, FPBGA-165

双倍数据速率 静态存储器 内存集成电路
文件: 总36页 (文件大小:1520K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GS8342S08/09/18/36AE-250/200/167  
250 MHz–167 MHz  
165-Bump BGA  
Commercial Temp  
Industrial Temp  
36Mb Burst of 2  
SigmaSIO DDR-II™ SRAM  
1.8 V V  
DD  
1.8 V and 1.5 V I/O  
Features  
Clocking and Addressing Schemes  
• Simultaneous Read and Write SigmaSIO™ Interface  
• JEDEC-standard pinout and package  
• Dual Double Data Rate interface  
• Byte Write (x36, x18, and x9) and Nybble Write (x8) function  
• DLL circuitry for wide output data valid window and future  
frequency scaling  
• Burst of 2 Read and Write  
• 1.8 V +100/–100 mV core power supply  
• 1.5 V or 1.8 V HSTL Interface  
A Burst of 2 SigmaSIO DDR-II SRAM is a synchronous  
device. It employs dual input regiter clock inputs, K and K.  
The device also allows the user to manipulate the output  
register clock input quasi independently with dual output  
register clock inputs, C and C. If the C clocks are tied high, the  
K clocks are routed internlly to fire the output registers  
instead. Each Burst of 2 SigmaSIO DDR-II SRAM also  
supplies Echo Clock outputs, CQ and CQ, which are  
synchronized with read data output. When used in a source  
synchronous clocking scheme, the Echo Clock outputs can be  
used to fire input registers at the data’s destination.  
• Pipelined read operation  
• Fully coherent read and write pipelines  
• ZQ mode pin for programmable output drive strength  
• IEEE 1149.1 JTAG-compliant Boundary Scan  
• 165-bump, 15 mm x 17 mm, 1 mm bump pitch BGA package  
• RoHS-compliant 165-bump BGA package available  
• Pin-compatible with 72Mb and 144Mb devices  
Each internal read and write operation in a SigmaSIO DDR-II  
B2 RAs two times wider than the device I/O bus. An input  
data bus de-multiplexer is used to accumulate incoming data  
before it is simultaneously written to the memory array. An  
output data multiplexer is used to capture the data produced  
from a single memory array read and then route it to the  
appropriate output drivers as needed. Therefore, the address  
field of a SigmaSIO DDR-II B2 is always one address pin less  
than the advertised index depth (e.g., the 4M x 8 has an 2M  
addressable index).  
SigmaSIO DDR-IIFamily Overview  
GS8342S08/09/18/36AE are built in compliance with the  
SigmaSIO DDR-II SRAM pinout standard for Separate I/O  
synchronous SRAMs. They are 37,748,736-bit (36Mb)  
SRAMs. These are the first in a family of wide, very low  
voltage HSTL I/O SRAMs designed to operate at the speeds  
needed to implement economical high performance  
networking systems.  
Parameter Synopsis  
-250  
4.0 ns  
0.45 ns  
-200  
5.0 ns  
0.45 ns  
-167  
tKHKH  
tKHQV  
6.0 ns  
0.5 ns  
Rev: 1.07 8/2012  
1/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
4M x 8 SigmaQuad SRAM—Top View  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
F
CQ  
NC  
SA  
R/W  
NW1  
K
NC  
LD  
SA  
SA  
CQ  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
D4  
NC  
NC  
D5  
NC  
NC  
NC  
Q4  
NC  
Q5  
SA  
NC  
SA  
K
NW0  
SA  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
D2  
Q3  
D3  
NC  
Q2  
NC  
NC  
ZQ  
D1  
NC  
Q0  
D0  
NC  
NC  
TDI  
V
V
SA  
V
SS  
SS  
SS  
SS  
V
V
V
V
V
V
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
D
DD  
DD  
DD  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
V
V
V
V
V
V
V
V
V
V
V
NC  
NC  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
G
H
J
V
V
V
D
V
V
V
V
REF  
OFF  
REF  
DDQ  
DDQ  
NC  
NC  
NC  
NC  
Q1  
K
L
NC  
NC  
NC  
Q6  
NC  
D6  
NC  
NC  
Q7  
SA  
V
NC  
NC  
NC  
NC  
NC  
SA  
NC  
NC  
V
V
V
V
V
DDQ  
SS  
SS  
SS  
SS  
M
N
P
R
NC  
NC  
D7  
V
V
NC  
SS  
SS  
SS  
SS  
NC  
V
SA  
SA  
SA  
SA  
C
SA  
SA  
SA  
V
NC  
NC  
NC  
TCK  
SA  
A  
SA  
SA  
NC  
TDO  
C
TMS  
11 x 15 Bump BGA—15 x 17 mm Body—1 mm Bump Pitch  
2
Notes:  
1. NW0 controls writes to D0:D3. NW1 controls writes to D4:D7.  
2. It is recommended that H1 be tied low for compatibility with future devices.  
3. A2, A7, and B5 are reserved for future use as an address pin for higher density devices. They are not connected to the die on this device.  
They may be left floating or be treated as an MCL pin (Must Connect Low) to assure the site will successfully accomodate a future, higher  
density device. These pins may be marked as V , NC, or MCL by some vendors of compatible SRAMs  
SS  
Expansion Address  
A2  
A7  
B5  
72Mb  
144Mb  
288Mb  
Rev: 1.07 8/2012  
2/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
4M x 9 SigmaQuad SRAM—Top View  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
F
CQ  
NC  
SA  
R/W  
NC  
K
NC  
LD  
SA  
SA  
CQ  
NC  
NC  
NC  
NC  
NC  
NC  
Doff  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
NC  
NC  
D5  
NC  
NC  
D6  
NC  
NC  
NC  
Q5  
NC  
Q6  
SA  
NC  
SA  
K
BW  
SA  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
D3  
Q4  
D4  
NC  
Q3  
NC  
NC  
ZQ  
D2  
NC  
Q1  
D1  
NC  
Q0  
TDI  
V
V
SA  
V
SS  
SS  
SS  
SS  
V
V
V
V
V
V
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
D
DD  
DD  
DD  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
V
V
V
V
V
V
V
V
V
V
V
NC  
NC  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
G
H
J
V
V
V
V
V
V
V
REF  
REF  
DDQ  
DDQ  
NC  
NC  
NC  
Q2  
K
L
NC  
Q7  
NC  
D7  
NC  
NC  
Q8  
SA  
V
NC  
NC  
NC  
NC  
NC  
SA  
NC  
NC  
V
V
V
V
V
DDQ  
SS  
SS  
SS  
SS  
M
N
P
R
NC  
D8  
V
V
NC  
SS  
SS  
SS  
SS  
V
SA  
SA  
SA  
SA  
C
SA  
SA  
SA  
V
NC  
NC  
TCK  
SA  
A  
SA  
SA  
D0  
C
TMS  
2
11 x 15 Bump BGA—15 x 17 mm Body—1 mm Bump Pitch  
Notes:  
1. NW0 controls writes to D0:D3. NW1 controls writes to D4:D7.  
2. It is recommended that H1 be tied low for compatibility with future devices.  
3. A2, A7, and B5 are reserved for future use as an address pin for higher density devices. They are not connected to the die on this device.  
They may be left floating or be treated as an MCL pin (Must Connect Low) to assure the site will successfully accomodate a future, higher  
density device. These pins may be marked as V , NC, or MCL by some vendors of compatible SRAMs  
SS  
Expansion Address  
A2  
A7  
B5  
72Mb  
144Mb  
288Mb  
Rev: 1.07 8/2012  
3/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
2M x 18 SigmaQuad SRAM—Top View  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
F
CQ  
NC  
SA  
R/W  
BW1  
K
NC  
LD  
SA  
NC  
CQ  
NC  
NC  
NC  
NC  
NC  
NC  
Q9  
NC  
D9  
SA  
NC  
SA  
K
BW0  
SA  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
Q7  
NC  
D6  
NC  
NC  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
Q0  
TDI  
D10  
Q10  
Q11  
D12  
Q13  
V
V
SA  
V
SS  
SS  
SS  
SS  
D11  
NC  
V
V
V
V
V
V
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
Q12  
D13  
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
G
H
J
V
V
V
D
V
V
V
V
REF  
OFF  
REF  
DDQ  
DDQ  
NC  
NC  
D14  
Q14  
D15  
D16  
Q16  
Q17  
SA  
NC  
Q4  
K
L
NC  
NC  
NC  
Q15  
NC  
V
NC  
NC  
NC  
NC  
NC  
SA  
D3  
NC  
Q1  
V
V
V
V
V
DDQ  
SS  
SS  
SS  
SS  
M
N
P
R
NC  
V
V
SS  
SS  
SS  
SS  
NC  
D17  
NC  
V
SA  
SA  
SA  
SA  
C
SA  
SA  
SA  
V
NC  
D0  
NC  
SA  
SA  
SA  
SA  
TDO  
TCK  
C
TMS  
2
11 x 15 Bump BGA—15 x 17 mm Body—1 mm Bump Pitch  
Notes:  
1. BW0 controls writes to D0:D8. BW1 controls writes to D9:D17.  
2. It is recommended that H1 be td low for compatibility with future devices.  
3. A2, A7, and A10 are reserved for future use as an address pin for higher density devices. They are not connected to the die on this device.  
They may be left floating or be treated as an MCL pin (Must Connect Low) to assure the site will successfully accomodate a future, higher  
density device. These pins may be marked as VSS, NC, or MCL by some vendors of compatible SRAMs.  
Expansion Address  
A10  
A2  
72Mb  
144Mb  
288Mb  
A7  
Rev: 1.07 8/2012  
4/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
1M x 36 SigmaQuad SRAM—Top View  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
F
CQ  
NC  
NC  
R/W  
BW2  
K
BW1  
LD  
SA  
NC  
CQ  
Q27  
D27  
D28  
Q29  
Q30  
D30  
Q18  
Q28  
D20  
D29  
Q21  
D22  
D18  
D19  
Q19  
Q20  
D21  
Q22  
SA  
BW3  
SA  
K
BW0  
SA  
SA  
17  
D16  
Q16  
Q15  
D14  
Q13  
Q17  
Q7  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
Q0  
TDI  
V
V
SA  
V
SS  
SS  
SS  
SS  
V
V
V
V
V
V
D15  
D6  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
V
V
V
V
V
V
V
V
V
V
V
Q14  
D13  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
G
H
J
V
V
V
D
V
V
V
V
REF  
OFF  
REF  
DDQ  
DDQ  
D31  
Q31  
D23  
Q23  
D24  
D25  
Q25  
Q26  
SA  
D12  
Q12  
D11  
D10  
Q10  
Q9  
Q4  
K
L
Q32  
Q33  
D33  
D34  
Q35  
TDO  
D32  
Q24  
Q34  
D26  
D35  
TCK  
V
D3  
Q11  
Q1  
V
V
V
V
V
DDQ  
SS  
SS  
SS  
SS  
M
N
P
R
V
V
SS  
SS  
SS  
SS  
V
SA  
SA  
SA  
SA  
C
SA  
SA  
SA  
V
D9  
SA  
SA  
SA  
SA  
D0  
C
SA  
TMS  
2
11 x 15 Bump BGA—15 x 17 mm Body—1 mm Bump Pitch  
Notes:  
1. BW0 controls writes to D0:D8. BW1 controls writes to D9:D17.  
2. BW2 controls writes to D18:D2. BW3 controls writes to D27:D35.  
3. It is recommended that H1 be tied low for compatibility with future devices.  
4. A2, A3, and A10 are resrved for future use as an address pin for higher density devices. They are not connected to the die on this device.  
They may be left floating or be treated as an MCL pin (Must Connect Low) to assure the site will successfully accomodate a future, higher  
density device. These pins may be marked as V , NC, or MCL by some vendors of compatible SRAMs.  
SS  
Expansion Addresses  
A3  
A10  
A2  
72Mb  
144Mb  
288Mb  
Rev: 1.07 8/2012  
5/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
Pin Description Table  
Symbol  
SA  
Description  
Synchronous Address Inputs  
No Connect  
Type  
Input  
Comments  
NC  
R/W  
Read/Write Contol Pin  
Input  
Write Active Low; Read Active High  
Active Low  
x08 Version  
NW0–NW1  
BW0–BW1  
BW0–BW3  
Synchronous Nybble Writes  
Synchronous Byte Writes  
Synchronous Byte Writes  
Input  
Input  
Input  
Active Low  
x18 Version  
Active Low  
x36 Version  
K
Input Clock  
Input Clock  
Input  
Input  
Input  
Input  
Input  
Output  
Input  
Input  
Input  
Output  
Active High  
C
Active High  
TMS  
TDI  
TCK  
TDO  
Test Mode Select  
Test Data Input  
Test Clock Input  
Test Data Output  
V
HSTL Input Reference Voltage  
Output Impedance Matching Input  
Input Clock  
REF  
ZQ  
K
Active Low  
Active Low  
Active Low  
Active Low  
Active Low  
Active High  
C
Input Clock  
D
DLL Disable  
OFF  
LD  
CQ  
CQ  
Dn  
Qn  
Synchronous Load Pin  
Output Echo Clock  
Output Echo Clock  
Synconous Data Inputs  
Synchronous Data Outputs  
Power Supply  
Output  
Output  
Input  
Output  
Supply  
V
1.8 V Nominal  
DD  
V
Isolated Output Buffer Supply  
Power Supply: Ground  
Supply  
Supply  
1.8 or 1.5 V Nominal  
DDQ  
V
SS  
Notes:  
1. C, C, K, or K cannot be set to V  
voltage.  
REF  
2. NC = Not Connected o die or any other pin.  
Rev: 1.07 8/2012  
6/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
Background  
Separate I/O SRAMs, like SigmaQuad SRAMs, are attractive in applications where alternating reads and writes are needed. On the  
other hand, Common I/O SRAMs like the SigmaCIO family are popular in applications where bursts of read or write traffic are  
needed. The SigmaSIO SRAM is a hybrid of these two devices. Like the SigmaQuad family devices, the SigmaSIO features a  
separate I/O data path, offering the user independent Data In and Data Out pins. However, the SigmaSIO devices offer a control  
protocol like that offered on the SigmaCIO devices. Therefore, while SigmaQuad SRAMs allow a user to operate both data ports at  
the same time, they force alternating loads of read and write addresses. SigmaSIO SRAMs allow continuous loads of read or write  
addresses like SigmaCIO SRAMs, but in a separate I/O configuration.  
Like a SigmaQuad SRAM, a SigmaSIO DDR-II SRAM can execute an alternating sequence of reads and writes. However, doing  
so results in the Data In port and the Data Out port stalling with nothing to do on alternate transfers. A SigmaQuad device would  
keep both ports running at capacity full time. On the other hand, the SigmaSIO device can acpt a continuous stream of read  
commands and read data or a continuous stream of write commands and write data. The SigmaQuad device, by contrast, restricts  
the user from loading a continuous stream of read or write addresses. The advantage of the SigmaSIO device is that it allows twice  
the random address bandwidth for either reads or writes than could be acheived with a SigmaQuad version of the device.  
SigmaCIO SRAMs offer this same advantage, but do not have the separate Data In and Data Out pins offered on the SigmaSIO  
SRAMs. Therefore, SigmaSIO devices are useful in psuedo dual port SRAM applications where communication of burst traffic  
between two electrically independent busses is desired.  
Each of the three SigmaQuad Family SRAMs—SigmaQuad, SigmaCIO, anSigmaSIO—supports similar address rates because  
random address rate is determined by the internal performance of the RAM. In addition, all three SigmaQuad Family SRAMs are  
based on the same internal circuits. Differences between the truth tables of the different devices proceed from differences in how  
the RAM’s interface is contrived to interact with the rest of the system. Each mode of operation has its own advantages and  
disadvantages. The user should consider the nature of the work to be done by the RAM to evaluate which version is best suited to  
the application at hand.  
Burst of 2 Sigma SIO-II SRAM DDR Read  
The status of the Address Input, R/W, and LD pins are sampled at each rising edge of K. LD high causes chip disable. A high on  
the R/W pin begins a read cycle. The two resulting data output transfers begin after the next rising edge of the K clock. Data is  
clocked out by the next rising edge of the C if it is active. Otherwise, data is clocked out at the next rising edge of K. The next data  
chunk is clocked out on the rising edge of C, if active. Otherwise, data is clocked out on the rising edge of K.  
Burst of 2 Sigma SIO-II SRAM DDR Write  
The status of the Address Input, R/W, and LD pins are sampled at each rising edge of K. LD high causes chip disable. A low on the  
R/W pin, begins a write cycle. Data is clocked in by the next rising edge of K and then the rising edge of K.  
Rev: 1.07 8/2012  
7/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
Power-Up Sequence for SigmaQuad-II SRAMs  
SigmaQuad-II SRAMs must be powered-up in a specific sequence in order to avoid undefined operations.  
Power-Up Sequence  
1. Power-up and maintain Doff at low state.  
1a. Apply VDD  
.
1b. Apply VDDQ  
.
1c. Apply VREF (may also be applied at the same time as VDDQ).  
2. After power is achieved and clocks (K, K, C, C) are stablized, change Doff to high.  
3. An additional 1024 clock cycles are required to lock the DLL after it has been enabled.  
Note:  
The DLL may be reset by driving the Doff pin low or by stopping the K clocks for at least 30 ns. 1024 cycles of cln K clocks are always required to re-  
lock the DLL after reset.  
DLL Constraints  
• The DLL synchronizes to either K or C clock. These clocks should have low phase jitter (tKCVar ).  
• The DLL cannot operate at a frequency lower than that specified by the tKHKH maximum specification for the desired operating clock frequency.  
• If the incoming clock is not stablized when DLL is enabled, the DLL may lock on the wrong frequency and cause undefined errors or failures during  
the initial stage.  
Note:  
If the frequency is changed, DLL reset is required. After reset, a minimum of 1024 cycles is required for DLL lock.  
Rev: 1.07 8/2012  
8/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
Special Functions  
Byte Write and Nybble Write Control  
Byte Write Enable pins are sampled at the same time that Data In is sampled. A high on the Byte Write Enable pin associated with  
a particular byte (e.g., BW0 controls D0–D8 inputs) will inhibit the storage of that particular byte, leaving whatever data may be  
stored at the current address at that byte location undisturbed. Any or all of the Byte Write Enable pins may be driven high or low  
during the data in sample times in a write sequence.  
Each write enable command and write address loaded into the RAM provides the base address for a 2 beat data transfer. The x18  
version of the RAM, for example, may write 36 bits in association with each address loaded. Any 9-it byte may be masked in any  
write sequence.  
Nybble Write (4-bit) control is implemented on the 8-bit-wide version of the device. For the 8 version of the device, “Nybble  
Write Enable” and “NWx” may be substituted in all the discussion above.  
Example x18 RAM Write Sequence using Byte Write Enables  
Data In Sample Time  
BW0  
BW1  
D0–D8  
Data In  
D9–D17  
Don’t Care  
Data In  
Beat 1  
Beat 2  
0
1
1
0
Don’t Care  
Resulting Write Operation  
Beat 1  
Beat 2  
D0–D8  
D9–D17  
D0–D8  
D9–D17  
Written  
Unchanged  
Unchanged  
Written  
Output Register Control  
SigmaSIO DDR-II SRAMs offer two mechanisms r controlling the output data registers. Typically, control is handled by the  
Output Register Clock inputs, C and C. The Output Register Clock inputs can be used to make small phase adjustments in the firing  
of the output registers by allowing the user to deay driving data out as much as a few nanoseconds beyond the next rising edges of  
the K and K clocks. If the C and C clock inputs are tied high, the RAM reverts to K and K control of the outputs.  
Rev: 1.07 8/2012  
9/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
Example Four Bank Depth Expansion Schematic  
R/W  
3
LD  
3
R/W  
2
LD  
2
R/W  
1
LD  
R/W  
1
0
LD  
0
A –A  
0
n
K
D –D  
1
n
Bank 3  
Bank 1  
Bank 2  
Bank 0  
A
A
A
A
R/W  
R/W  
R/W  
R/W  
LD  
LD  
K
LD  
K
LD  
K
K
D
C
Q
D
C
Q
D
C
Q
D
C
Q
C
Q –Q  
1
n
Note:  
For simplicity BWn is not shown.  
Rev: 1.07 8/2012  
10/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
Burst of 2 SigmaSIO DDR-II SRAM Depth Expansion  
Write A  
Read B  
Write C  
Read D  
Write E  
Read F  
Read G  
Read H  
NOP  
K
K
Address  
A
B
C
D
E
F
G
H
LD(Bank_1)  
LD(Bank_2)  
R/W(Bank_1)  
R/W(Bank_2)  
BWx(Bank_1)  
BWx(Bank_2)  
D(Bank_1)  
D(Bank_2)  
C(Bank_1)  
C(Bank_1)  
Q(Bank_1)  
CQ(Bank)1  
CQ(Bank_1)  
C(Bank_2)  
C(Bank_2)  
Q(Bank_2)  
CQ(Bank_2)  
CQ(Bank_2)  
A
A
A+1  
A+1  
E
E
E+1  
E+1  
C
C
C+1  
C+1  
D
D+1  
G
B
B+1  
F
F+1  
Rev: 1.07 8/2012  
11/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
FLXDrive-II Output Driver Impedance Control  
HSTL I/O SigmaQuad-II SRAMs are supplied with programmable impedance output drivers. The ZQ pin must be connected to  
VSS via an external resistor, RQ, to allow the SRAM to monitor and adjust its output driver impedance. The value of RQ must be  
5X the value of the desired RAM output impedance. The allowable range of RQ to guarantee impedance matching continuously is  
between 175Ω and 350Ω. Periodic readjustment of the output driver impedance is necessary as the impedance is affected by drifts  
in supply voltage and temperature. The SRAM’s output impedance circuitry compensates for drifts in supply voltage and  
temperature. A clock cycle counter periodically triggers an impedance evaluation, resets and counts again. Each impedance  
evaluation may move the output driver impedance level one step at a time towards the optimum level
Separate I/O Burst of 2 Sigma SIO-II SRAM Truth Table  
Current  
A
LD  
R/W  
D
D
Q
Q
Operation  
K ↑  
K ↑  
K ↑  
K ↑  
K ↑  
K ↑  
K ↑  
K ↑  
(t )  
(t )  
(t )  
(t )  
(t  
)
(t  
)
(t  
)
½
(t  
)
n
n
n
n
n+1  
n+1  
n+1  
Hi-Z  
Q0  
n+2  
X
V
1
0
0
X
1
0
Deselect  
Read  
X
X
Q1  
V
Write  
D0  
D1  
Hi-Z  
Notes:  
1. “1” = input “high”; “0” = input “low”; “V” = input “valid”; “X” = input “don’t care”  
2. “—” indicates that the input requirement or output state is determined by the next operation.  
3. Q0 and Q1 indicate the first and second pieces of output data transferred during Read operations.  
4. D0 and D1 indicate the first and second pieces of input data trferred during Write operations.  
5. Qs are tristated for one cycle in response to Deselect and Write commands, one cycle after the command is sampled, except when pre-  
ceded by a Read command.  
6. CQ is never tristated.  
7. Users should not clock in metastable addresses.  
Rev: 1.07 8/2012  
12/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
x18 Byte Write Clock Truth Table  
BW  
BW  
Current Operation  
D
D
K ↑  
K ↑  
K ↑  
K ↑  
K ↑  
(t  
)
(t  
)
(t )  
(t  
)
(t  
)
n+1  
n+2  
n
n+1  
n+2  
Write  
T
T
D1  
D2  
Dx stored if BWn = 0 in both data transfers  
Write  
T
F
F
F
T
F
D1  
X
X
D2  
X
Dx stored if BWn = 0 in 1st data transfer only  
Write  
Dx stored if BWn = 0 in 2nd data transfer only  
Write Abort  
No Dx stored in either data transfer  
X
Notes:  
1. “1” = input “high”; “0” = input “low”; “X” = input “don’t care”; “T” = input “true”; “F” = input “false”.  
2. If one or more BWn = 0, then BW = “T”, else BW = “F”.  
x36 Byte Write Enable (BWn) Truth Table  
BW3  
BW2 BW1 BW0  
D27–D35  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Data In  
D18–D26  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Data In  
D9–D17  
Don’t Care  
Don’t Care  
Data In  
D0–D8  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
Don’t Care  
Data In  
Don’t Care  
Data In  
Data In  
Don’t Care  
Don’t Care  
Data In  
Don’t Care  
Data In  
Data In  
Data In  
Don’t Care  
Data In  
Data In  
Data In  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Data In  
Don’t Care  
Don’t Care  
Data In  
Don’t Care  
Data In  
Data In  
Data In  
Don’t Care  
Data In  
Data In  
Data In  
Data In  
Don’t Care  
Don’t Care  
Data In  
Don’t Care  
Data In  
Data In  
Data In  
Data In  
Data In  
Don’t Care  
Data In  
Data In  
Data In  
Data In  
Rev: 1.07 8/2012  
13/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
x8 Nybble Write Enable (NWn) Truth Table  
NW1  
NW0  
D9–D17  
Don’t Care  
Don’t Care  
Data In  
D0–D8  
Don’t Care  
Data In  
1
0
1
0
1
1
0
0
Don’t Care  
Data In  
Data In  
Rev: 1.07 8/2012  
14/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
Absolute Maximum Ratings  
(All voltages reference to V  
)
SS  
Symbol  
Description  
Value  
Unit  
V
Voltage on V Pins  
DD  
–0.5 to 2.9  
V
DD  
V
Voltage in V  
Voltage in V  
Pins  
Pins  
–0.5 to V  
V
V
DDQ  
DDQ  
REF  
DD  
V
–0.5 to V  
REF  
DDQ  
V
–0.5 to V  
–0.5 to V  
+0.3 (2.9 V max.)  
Voltage on I/O Pins  
V
I/O  
DDQ  
DDQ  
V
+0.3 (2.9 V max.)  
Voltage on Other Input Pins  
Input Current on Any Pin  
V
IN  
I
+/–100  
+/–100  
125  
mA dc  
mA dc  
IN  
I
Output Current on Any I/O Pin  
Maximum Junction Temperature  
Storage Temperature  
OUT  
o
T
C
J
o
T
–55 to 125  
C
STG  
Note:  
Permanent damage to the device may occur if the Absolute Maximum Ratings are eceeded. Operation should be restricted to Recommended  
Operating Conditions. Exposure to conditions exceeding the Recommended Operating Conditions, for an extended period of time, may affect  
reliability of this component.  
Recommended Operating Conditions  
Power Supplies  
Parameter  
Supply Voltage  
Symbol  
Min.  
1.7  
Typ.  
1.8  
Max.  
1.9  
Unit  
V
V
V
V
DD  
V
I/O Supply Voltage  
Reference Voltage  
1.4  
1.9  
DDQ  
V
0.68  
0.95  
REF  
Notes:  
1. Unless otherwise noted, all performance spcifications quoted are evaluated for worst case at both 1.4 V V  
1.6 V (i.e., 1.5 V I/O)  
DDQ  
and 1.7 V V  
1.9 V (i.e., 1.8 V I/O) and quoted at whichever condition is worst case.  
DDQ  
2. The power supplies need to be powered up simultaneously or in the following sequence: V , V , V , followed by signal inputs. The  
DD DDQ REF  
power down sequence must be the reverse. V  
must not exceed V .  
DD  
DDQ  
Operating Temperature  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Ambient Temperature  
(Commercial Range Versions)  
T
0
25  
70  
°C  
A
Ambient Temperature  
(Industrial Range Versions)  
T
–40  
25  
85  
°C  
A
Rev: 1.07 8/2012  
15/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
HSTL I/O DC Input Characteristics  
Parameter  
DC Input Logic High  
Symbol  
Min  
Max  
Units  
mV  
Notes  
V
(dc)  
V
+ 0.1  
V
+ 0.3  
DDQ  
1
1
IH  
REF  
V (dc)  
V
– 0.1  
REF  
DC Input Logic Low  
–0.3  
mV  
IL  
Note:  
Compatible with both 1.8 V and 1.5 V I/O drivers  
HSTL I/O AC Input Characteristics  
Parameter  
AC Input Logic High  
Symbol  
Min  
Max  
Units  
Notes  
2,3  
V
(ac)  
V
+ 0.2  
REF  
mV  
mV  
mV  
IH  
V (ac)  
V
– 0.2  
REF  
AC Input Logic Low  
2,3  
IL  
V
Peak-to-Peak AC Voltage  
V
(ac)  
5% V  
(DC)  
REF  
1
REF  
REF  
Notes:  
1. The peak-to-peak AC component superimposed on V  
may not exceed 5% of the DC component of V  
.
REF  
REF  
2. To guarantee AC characteristics, V ,V , Trise, and Tfall of inputs and clocks mst be within 10% of each other.  
IH IL  
3. For devices supplied with HSTL I/O input buffers. Compatible with both 1.8 V and 1.5 V I/O drivers.  
Undershoot Measurement and Timing  
Overshoot Measurement and Timing  
V
IH  
20% tKHKH  
V
+ 1.0 V  
DD  
V
SS  
50%  
50%  
V
DD  
V
– 1.0 V  
SS  
20% tKHKH  
V
IL  
Capacitance  
o
(T = 25 C, f = 1 MHZ, V = 3.3 V)  
A
DD  
Parameter  
Symbol  
Test conditions  
Typ.  
Max.  
Unit  
pF  
C
V
= 0 V  
Input Capacitance  
Output Capacitance  
4
6
5
7
IN  
IN  
C
V
OUT  
= 0 V  
pF  
OUT  
Note:  
This parameter is sample tested.  
Rev: 1.07 8/2012  
16/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
AC Test Conditions  
Parameter  
Conditions  
V
Input high level  
Input low level  
DDQ  
0 V  
Max. input slew rate  
Input reference level  
2 V/ns  
V
V
/2  
/2  
DDQ  
DDQ  
Output reference level  
Note:  
Test conditions as specified with output loading as shown unless otherwise noted.  
AC Test Load Diagram  
DQ  
RQ = 250 Ω (HSTL I/O)  
= 0.75 V  
V
REF  
50Ω  
VT = V /2  
DDQ  
Input and Output Leakage Characteristics  
Parameter  
Symbol  
Test Conditions  
Min.  
Max  
Input Leakage Current  
(except mode pins)  
I
V = 0 to V  
IN DD  
–2 uA  
2 uA  
IL  
V
V V  
IN  
–100 uA  
–2 uA  
2 uA  
2 uA  
DD  
IL  
IL  
I
Doff  
INDOFF  
0 V V V  
IN  
Output Disable,  
= 0 to V  
I
Output Leakage Current  
–2 uA  
2 uA  
OL  
V
OUT  
DDQ  
Rev: 1.07 8/2012  
17/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
Programmable Impedance HSTL Output Driver DC Electrical Characteristics  
Parameter  
Symbol  
Min.  
Max.  
Units Notes  
V
V
V
/2 – 0.12  
V
V
/2 + 0.12  
DDQ  
Output High Voltage  
Output Low Voltage  
Output High Voltage  
V
V
V
V
1, 3  
2, 3  
4, 5  
4, 6  
OH1  
DDQ  
V
/2 – 0.12  
– 0.2  
/2 + 0.12  
DDQ  
OL1  
DDQ  
V
V
V
DDQ  
OH2  
DDQ  
V
Output Low Voltage  
Vss  
0.2  
OL2  
Notes:  
1.  
I
= (V /2) / (RQ/5) +/– 15% @ V = V /2 (for: 175Ω ≤ RQ 350Ω).  
DDQ OH DDQ  
OH  
2.  
I
= (V /2) / (RQ/5) +/– 15% @ V = V /2 (for: 175Ω ≤ RQ 350Ω).  
OL  
DDQ  
OL  
DDQ  
3. Parameter tested with RQ = 250Ω and V  
4. 0Ω ≤ RQ ≤ ∞Ω  
= 1.5 V or 1.8 V  
DDQ  
5.  
I
= –1.0 mA  
OH  
OL  
6.  
I
= 1.0 mA  
Rev: 1.07 8/2012  
18/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
Operating Currents  
-250  
-200  
-167  
Parameter  
Symbol  
Test Conditions  
Notes  
0
to  
40  
to  
0
to  
40  
to  
0
to  
40  
to  
70°C  
85°C  
70°C  
8°C  
70°C  
85°C  
VDD = Max, IOUT = 0 mA  
650  
mA  
600  
mA  
500  
mA  
IDD  
IDD  
IDD  
IDD  
Operating Current (x36): DDR  
Operating Current (x18): DDR  
Operating Current (x9): DDR  
Operating Current (x8): DDR  
660 mA  
610 mA  
560 mA  
560 mA  
610 mA  
560 mA  
510 mA  
510 mA  
510 mA  
460 mA  
410 mA  
410 mA  
2, 3  
2, 3  
2, 3  
2, 3  
Cycle Time tKHKH Min  
VDD = Max, IOUT = 0 mA  
600  
mA  
50  
mA  
450  
mA  
Cycle Time tKHKH Min  
VDD = Max, IOUT = 0 mA  
550  
mA  
500  
mA  
400  
mA  
Cycle Time tKHKH Min  
VDD = Max, IOUT = 0 mA  
550  
mA  
500  
mA  
400  
mA  
Cycle Time tKHKH Min  
Device deselected,  
IOUT = 0 mA, f = Max,  
220  
mA  
210  
mA  
200  
mA  
ISB1  
Standby Current (NOP): DDR  
230 mA  
220 mA  
210 mA  
2, 4  
All Inputs 0.2 V or VDD – 0.2 V  
Notes:  
1.  
2.  
Power measured with output pins floating.  
Minimum cycle, IOUT = 0 mA  
3.  
4.  
Operating current is calculated with 50% read cycles and 50% write cycles.  
Standby Current is only after all pending read and write burst operations are completed.  
Rev: 1.07 8/2012  
19/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
AC Electrical Characteristics  
-250  
-200  
-167  
Parameter  
Symbol  
Units  
Min  
Max  
Min  
Max  
Min  
Max  
Clock  
tKHKH  
tCHCH  
K, K Clock Cycle Time  
C, C Clock Cycle Time  
4.0  
8.4  
0.2  
5.0  
8.4  
0.2  
6.0  
8.4  
0.2  
ns  
ns  
ns  
tKCVar  
tTKC Variable  
5
tKHKL  
tCHCL  
K, K Clock High Pulse Width  
C, C Clock High Pulse Width  
1.6  
2.0  
2.4  
tKLKH  
tCLCH  
K, K Clock Low Pulse Width  
C, C Clock Low Pulse Width  
1.6  
1.8  
1.8  
2.0  
2.2  
2.2  
2.4  
2.7  
2.7  
ns  
ns  
ns  
tKHKH  
tCHCH  
K to K High  
C to C High  
tKHKH  
tCHCH  
K to K High  
C to C High  
tKHCH  
tKCLock  
tKCReset  
K, K Clock High to C, C Clock High  
DLL Lock Time  
0
1.8  
0
2.3  
0
2.8  
ns  
cycle  
ns  
1024  
30  
1024  
30  
1024  
30  
6
K Static to DLL reset  
Output Times  
tKHQV  
tCHQV  
K, K Clock High to Data Output Valid  
C, C Clock High to Data Output Valid  
0.45  
0.45  
–0.5  
0.5  
ns  
ns  
ns  
ns  
3
3
tKHQX  
tCHQX  
K, K Clock High to Data Output Hold  
C, C Clock High to Data Output Hold  
–0.45  
–0.45  
tKHCQV  
tCHCQV  
K, K Clock High to Echo Clock Valid  
C, C Clock High to Echo Clock Valid  
0.45  
0.45  
0.5  
tCQX  
tCHCQX  
K, K Clock High to Echo Clock Hold  
C, C Clock High to Echo Clock Hold  
–0.45  
–0.45  
–0.5  
tCQHQV  
tCQHQX  
tCQHCQH  
tCQHCQH  
tKHQZ  
tCHQZ  
tKHQX1  
tCHQX1  
CQ, CQ High Output Valid  
CQ, CQ High Output Hold  
0.30  
0.35  
0.40  
ns  
ns  
7
7
–0.30  
–0.35  
–0.40  
CQ Phase Distortion  
1.55  
0.45  
1.95  
0.45  
2.45  
0.5  
ns  
ns  
ns  
K Clock High to Data Output High-Z  
C Clock High to Data Output High-Z  
3
3
K Clock High to Data Output Low-Z  
C Clock High to Data Output Low-Z  
–0.45  
–0.45  
–0.5  
Setup Times  
tAVKH  
tIVKH  
Address Input Setup Time  
0.5  
0.5  
0.6  
0.6  
0.4  
0.7  
0.7  
0.5  
ns  
ns  
ns  
Control Input Setup Time  
Data Input Setup Time  
2
tDVKH  
0.35  
Rev: 1.07 8/2012  
20/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
AC Electrical Characteristics (Continued)  
-250  
-200  
-167  
Parameter  
Symbol  
Units  
Min  
Max  
Min  
Max  
Min  
Max  
Hold Times  
tKHAX  
tKHIX  
Address Input Hold Time  
0.5  
0.5  
0.6  
0.6  
0.4  
0.7  
0.7  
0.5  
ns  
ns  
ns  
Control Input Hold Time  
tKHDX  
Data Input Hold Time  
0.35  
Notes:  
1. All Address inputs must meet the specified setup and hold times for all latching clock edges.  
2. Control signals are R, W, BW0, BW1, and (NW0, NW1 for x8) and (BW2, BW3 for x36).  
3. If C, C are tied high, K, K become the references for C, C timing parameters  
4. To avoid bus contention, at a given voltage and temperature tCHQX1 is bigger than tCHQZ. The specs as shown do not imply bus conten-  
tion because tCHQX1 is a MIN parameter that is worst case at totally different test conditions (0°C, 1.9 V) than tCHQZ, which is a MAX  
parameter (worst case at 70°C, 1.7 V). It is not possible for two SRAMs on the same board to be at such different voltages and tempera-  
tures.  
5. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.  
6.  
V
slew rate must be less than 0.1 V DC per 50 ns for DLL lock retention. DLL lock time begins once V and input clock are stable.  
D
D
D
D
7. Echo clock is very tightly controlled to data valid/data hold. By design, there is a ±0.1 ns variation from echo clock to data. The datasheet  
parameters reflect tester guard bands and test setup variations.  
Rev: 1.07 8/2012  
21/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
Rev: 1.07 8/2012  
22/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
Rev: 1.07 8/2012  
23/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
Rev: 1.07 8/2012  
24/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
Rev: 1.07 8/2012  
25/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
JTAG Port Operation  
Overview  
The JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan  
interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with V . The JTAG output  
DD  
drivers are powered by V  
.
DD  
Disabling the JTAG Port  
It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless  
clocked. TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG  
Port unused, TCK, TDI, and TMS may be left floating or tied to either V or V . TDO should be left unconnected.  
DD  
SS  
JTAG Pin Descriptions  
Pin  
Pin Name  
I/O  
Description  
Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate  
from the falling edge of TCK.  
TCK  
Test Clock  
In  
The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP  
TMS  
TDI  
Test Mode Select  
Test Data In  
In controller state machine. An undriven TMS input will produce the same result as a logic one input  
level.  
The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers  
placed between TDI and TDO. The register placed between TDI and TDO is determined by the  
In state of the TAP Controller state machine and the instruction that is currently loaded in the TAP  
Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce  
the same result as a logic one input level.  
Output that is active depending on the state of the TAP state machine. Output changes in  
Out response to the falling edge of TCK. This is the output side of the serial registers placed between  
TDI and TDO.  
TDO  
Test Data Out  
Note:  
This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is  
held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.  
JTAG Port Registers  
Overview  
The various JTAG registers, refered to as Test Access Port or TAP Registers, are selected (one at a time) via the sequences of 1s  
and 0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the  
rising edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the  
TDI and TDO pins.  
Instruction Register  
The Instruction Register hods the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or  
the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the  
TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the  
controller is placed in Test-Logic-Reset state.  
Bypass Register  
The Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through  
the RAM’s JTAG Port to another device in the scan chain with as little delay as possible.  
Rev: 1.07 8/2012  
26/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
Boundary Scan Register  
The Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins.  
The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The  
Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the  
device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan  
Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in  
Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z,  
SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.  
JTAG TAP Block Diagram  
·
·
·
·
·
·
·
·
Boundary Scan Register  
·
·
·
0
Bypass Register  
2
1 0  
Instruction Regiser  
TDI  
TDO  
ID Code Register  
31 30 29  
2 1  
0
·
· · ·  
Control Signals  
Test Access Port (TAP) Controller  
TMS  
TCK  
Identification (ID) Register  
The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in  
Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM.  
It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the  
controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins.  
Rev: 1.07 8/2012  
27/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
ID Register Contents  
GSI Technology  
JEDEC Vendor  
ID Code  
Not Used  
Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 8 7 6 5 4 3 2 1  
0 1 1 0 1 1 0 0 1  
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
Tap Controller Instruction Set  
Overview  
There are two classes of instructions defined in the Standard 1149.1-1990; the standard (Public) instructions, and device specific  
(Private) instructions. Some Public instructions are mandatory for 1149.1 compliance. Optional Public instructions must be  
implemented in prescribed ways. The TAP on this device may be used to monitor ll input and I/O pads, and can be used to load  
address, data or control signals into the RAM or to preload the I/O buffers.  
When the TAP controller is placed in Capture-IR state the two least significat bits of the instruction register are loaded with 01.  
When the controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired  
instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the  
TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP instruction set for this  
device is listed in the following table.  
Rev: 1.07 8/2012  
28/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
JTAG Tap Controller State Diagram  
Test Logic Reset  
1
0
1
1
1
Run Test Idle  
Select DR  
Select IR  
0
0
0
1
1
1
1
Capture DR  
Capture IR  
0
0
Shift DR  
Shift IR  
0
0
1
1
Exit1 DR  
Exit1 IR  
0
0
Pause DR  
Pause IR  
0
0
0
0
1
1
Exit2 DR  
Exit2 IR  
1
1
Update DR  
Update IR  
1
0
1
0
Instruction Descriptions  
BYPASS  
When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This  
occurs when the TAP controller is moved tthe Shift-DR state. This allows the board level scan path to be shortened to facili-  
tate testing of other devices in the scan path.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is  
loaded in the Instruction Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and  
I/O buffers into the Boundary Scan Register. Boundary Scan Register locations are not associated with an input or I/O pin, and  
are loaded with the default stte identified in the Boundary Scan Chain table at the end of this section of the datasheet. Because  
the RAM clock is independent from the TAP Clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents  
while the input buffers are in transition (i.e. in a metastable state). Although allowing the TAP to sample metastable inputs will  
not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the  
TAPs input data capture set-up plus hold time (tTS plus tTH). The RAMs clock inputs need not be paused for any other TAP  
operation except capturing the I/O ring contents into the Boundary Scan Register. Moving the controller to Shift-DR state then  
places the boundary scan register between the TDI and TDO pins.  
EXTEST  
EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register is loaded with  
all logic 0s. The EXTEST command does not block or override the RAM’s input pins; therefore, the RAM’s internal state is  
still determined by its input pins.  
Rev: 1.07 8/2012  
29/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
Typically, the Boundary Scan Register is loaded with the desired pattern of data with the SAMPLE/PRELOAD command.  
Then the EXTEST command is used to output the Boundary Scan Register’s contents, in parallel, on the RAM’s data output  
drivers on the falling edge of TCK when the controller is in the Update-IR state.  
Alternately, the Boundary Scan Register may be loaded in parallel using the EXTEST command. When the EXTEST instruc-  
tion is selected, the sate of all the RAM’s input and I/O pins, as well as the default values at Scan Register locations not asso-  
ciated with a pin, are transferred in parallel into the Boundary Scan Register on the rising edge of TCK in the Capture-DR  
state, the RAM’s output pins drive out the value of the Boundary Scan Register location with which each output pin is associ-  
ated.  
IDCODE  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and  
places the ID register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction  
loaded in at power up and any time the controller is placed in the Test-Logic-Reset state.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (high-  
Z) and the Boundary Scan Register is connected between TDI and TDO when he TAP controller is moved to the Shift-DR  
state.  
RFU  
These instructions are Reserved for Future Use. In this device they replicate the BYPASS instruction.  
JTAG TAP Instruction Set Summary  
Instruction  
EXTEST  
Code  
000  
Description  
Notes  
1
Places the Boundary Scan Register between TDI and TDO.  
Preloads ID Register and places it between TDI and TDO.  
IDCODE  
001  
1, 2  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO.  
Forces all RAM output drivers to High-Z except CQ.  
SAMPLE-Z  
RFU  
010  
011  
1
1
Do not use this instruction; Reserved for Future Use.  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
SAMPLE/PRELOAD  
GSI  
100  
101  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO.  
GSI private instruction.  
1
1
Do not use this instruction; Reserved for Future Use.  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
RFU  
110  
111  
1
1
BYPASS  
Places Bypass Register between TDI and TDO.  
Notes:  
1. Instruction codes expresed in binary, MSB on left, LSB on right.  
2. Default instruction automatically loaded at power-up and in test-logic-reset state.  
Rev: 1.07 8/2012  
30/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
JTAG Port Recommended Operating Conditions and DC Characteristics  
Parameter  
Symbol  
Min.  
0.3  
Max.  
Unit Notes  
V
0.3 * V  
Test Port Input Low Voltage  
V
V
1
1
ILJ  
DD  
V
0.6 * V  
V
+0.3  
DD  
Test Port Input High Voltage  
IHJ  
DD  
I
TMS, TCK and TDI Input Leakage Current  
TMS, TCK and TDI Input Leakage Current  
TDO Output Leakage Current  
Test Port Output High Voltage  
Test Port Output Low Voltage  
Test Port Output CMOS High  
Test Port Output CMOS Low  
300  
1  
1
uA  
uA  
uA  
V
2
INHJ  
I
100  
1
3
INLJ  
I
1  
4
OLJ  
V
V
V
– 200 mV  
0.4  
5, 6  
5, 7  
5, 8  
5, 9  
OHJ  
DD  
V
V
OLJ  
V
– 100 mV  
V
OHJC  
DD  
V
100 mV  
V
OLJC  
Notes:  
1. Input Under/overshoot voltage must be 1 V < Vi < V  
+1 V not to exceed 2.9 V maximum, with a pulse width not to exceed 20% tTKC.  
DDn  
2.  
V
V V  
ILJ  
IN  
DDn  
ILJn  
3. 0 V V V  
IN  
4. Output Disable, V  
= 0 to V  
DDn  
OUT  
5. The TDO output driver is served by the V supply.  
DD  
6.  
7.  
8.  
9.  
I
I
I
I
= 2 mA  
OHJ  
= + 2 mA  
OLJ  
= –100 uA  
= +100 uA  
OHJC  
OLJC  
JTAG Port AC Test Conditions  
Parameter  
Conditions  
JTAG Port AC Test Load  
TDO  
V
– 0.2 V  
Input high level  
Input low level  
DD  
0.2 V  
1 V/ns  
*
50Ω  
30pF  
Input slew rate  
V
/2  
DD  
V
V
/2  
Input reference level  
DD  
* Distributed Test Jig Capacitance  
/2  
Output reference level  
DD  
Notes:  
1. Include scope and jig capacitance.  
2. Test conditions as shown unless otherwise noted.  
Rev: 1.07 8/2012  
31/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
JTAG Port Timing Diagram  
tTKC  
tTKH  
tTKL  
TCK  
TDI  
tTH  
tTH  
tTS  
tTS  
TMS  
TDO  
tTKQ  
tTH  
tTS  
Parallel SRAM input  
JTAG Port AC Electrical Characteristics  
Parameter  
Symbol  
tTKC  
tTKQ  
tTKH  
tTKL  
tTS  
Min  
Max  
Unit  
TCK Cycle Time  
50  
ns  
ns  
ns  
ns  
ns  
ns  
TCK Low to TDO Valid  
TCK High Pulse Width  
TCK Low Pulse Width  
TDI & TMS Set Up Time  
TDI & TMS Hold Time  
20  
20  
20  
10  
10  
tTH  
Rev: 1.07 8/2012  
32/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
Package Dimensions—165-Bump FPBGA (Package E)  
A1 CORNER  
TOP VIEW  
BOTTOM VIEW  
A1 CORNER  
M
M
Ø0.10  
C
Ø0.25 C A B  
Ø0.40~0.60 (165x)  
1
2 3 4 5 6 7 8 9 10 11  
11 10 9 8  
7 6 5 4 3 2 1  
A
B
C
D
E
F
A
B
C
D
E
F
G
H
J
G
H
J
K
L
K
L
M
N
P
R
M
N
P
R
A
1.0  
10.0  
1.0  
15±0.05  
B
0.20(4x)  
SEATING PLANE  
C
Rev: 1.07 8/2012  
33/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
Ordering Information—GSI SigmaSIODDR-II SRAM  
Speed  
(MHz)  
2
1
Org  
Type  
Package  
T
Part Number  
A
1M x 36  
1M x 36  
1M x 36  
1M x 36  
1M x 36  
1M x 36  
2M x 18  
2M x 18  
2M x 18  
2M x 18  
2M x 18  
2M x 18  
4M x 9  
GS8342S36AE-250  
GS8342S36AE-200  
GS8342S36AE-167  
GS8342S36AE-250I  
GS8342S36AE-200I  
GS8342S36AE-167I  
GS8342S18AE-250  
GS8342S18AE-200  
GS8342S18AE-167  
GS8342S18AE-250I  
GS8342S18AE-200I  
GS8342S18AE-167I  
GS8342S09AE-250  
GS8342S09AE-200  
GS8342S09AE-167  
GS8342S09AE-250I  
GS8342S09AE-200I  
GS8342S09AE-167I  
GS8342S08AE-250  
GS8342S08AE-200  
GS8342S08AE-167  
GS8342S08AE-250I  
GS8342S08AE-200I  
GS8342S08AE167I  
GS8342S36AGE-250  
GS8342S36AGE-200  
GS832S36AGE-167  
GS8342S36AGE-250I  
GS8342S36AGE-200I  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
165-Pin BGA  
165-Pin BGA  
250  
200  
167  
250  
200  
167  
250  
200  
167  
250  
200  
167  
250  
200  
167  
250  
200  
167  
250  
200  
167  
250  
200  
167  
250  
200  
167  
250  
200  
C
C
C
I
165-Pin BGA  
165-Pin BGA  
165-Pin BGA  
I
165-Pin BGA  
I
165-Pin BGA  
C
C
C
I
165-Pin BGA  
165-Pin BGA  
165-Pin BGA  
165-Pin BGA  
I
165-Pin BGA  
I
165-Pin BGA  
C
C
C
I
4M x 9  
165-Pin BGA  
4M x 9  
165-Pin BGA  
4M x 9  
165-Pin BGA  
4M x 9  
165-Pin BGA  
I
4M x 9  
165-Pin BGA  
I
4M x 8  
165-Pin BGA  
C
C
C
I
4M x 8  
165-Pin BGA  
4M x 8  
165-Pin BGA  
4M x 8  
165-Pin BGA  
4M x 8  
165-Pin BGA  
I
4M x 8  
165-Pin BGA  
I
1M x 36  
1M x 36  
1M x 36  
1M x 36  
1M x 36  
RoHS-compliant 165-Pin BGA  
RoHS-compliant 165-Pin BGA  
RoHS-compliant 165-Pin BGA  
RoHS-compliant 165-Pin BGA  
RoHS-compliant 165-Pin BGA  
C
C
C
I
I
Notes:  
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8342S36AE-200T.  
2. C = Commercial Temperature Range. I = Industrial Temperature Range.  
Rev: 1.07 8/2012  
34/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
Ordering Information—GSI SigmaSIODDR-II SRAM  
Speed  
(MHz)  
2
1
Org  
Type  
Package  
T
Part Number  
A
1M x 36  
2M x 18  
2M x 18  
2M x 18  
2M x 18  
2M x 18  
2M x 18  
4M x 9  
4M x 9  
4M x 9  
4M x 9  
4M x 9  
4M x 9  
4M x 8  
4M x 8  
4M x 8  
4M x 8  
4M x 8  
4M x 8  
GS8342S36AGE-167I  
GS8342S18AGE-250  
GS8342S18AGE-200  
GS8342S18AGE-167  
GS8342S18AGE-250I  
GS8342S18AGE-200I  
GS8342S18AGE-167I  
GS8342S09AGE-250  
GS8342S09AGE-200  
GS8342S09AGE-167  
GS8342S09AGE-250I  
GS8342S09AGE-200I  
GS8342S09AGE-167I  
GS8342S08AGE-250  
GS8342S08AGE-200  
GS8342S08AGE-167  
GS8342S08AGE-250I  
GS8342S08AGE-200I  
GS8342S08AGE-167I  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
SigmaSIO DDR-II SRAM  
RoHS-compliant 165-Pin BGA  
RoHS-compliant 165-Pin BGA  
RoHS-compliant 165-Pin BGA  
RoHS-compliant 165-Pin BGA  
RoHS-compliant 165-PBGA  
RoHS-compliant 165Pin BGA  
RoHS-compliant 165-Pin BGA  
RoHS-compliant 165-Pin BGA  
RoHS-compliant 165-Pin BGA  
RoHS-compliant 165-Pin BGA  
RoHS-compliant 165-Pin BGA  
RoHS-compliant 165-Pin BGA  
RoHS-compliant 165-Pin BGA  
RoHS-compliant 165-Pin BGA  
RoHS-compliant 165-Pin BGA  
RoHS-compliant 165-Pin BGA  
RoHS-compliant 165-Pin BGA  
RoHS-compliant 165-Pin BGA  
RoHS-compliant 165-Pin BGA  
167  
250  
200  
167  
250  
200  
167  
250  
200  
167  
250  
200  
167  
250  
200  
167  
250  
200  
167  
I
C
C
C
I
I
I
C
C
C
I
I
I
C
C
C
I
I
I
Notes:  
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8342S36AE-200T.  
2. C = Commercial Temperature Range. I = Industrial Temperature Range.  
Rev: 1.07 8/2012  
35/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8342S08/09/18/36AE-250/200/167  
SigmaSIO DDR-II Revision History  
File Name  
Format/Content  
Description of changes  
8342SxxA_r1  
Creation of datasheet  
• Updated MAX tKHKH  
8342SxxA_r1; 8342SxxA_r1_01  
Content  
Content  
• (Rev. 1.01a: Updated Note 4 in HSTL Output Driver DC Electrical  
Characteristics table)  
• Updated tKHKH, tKHCH in AC Char table  
• Added tKHKH and CQ Phase Distortion to AC Char table  
8342SxxA_r1_01; 8342SxxA_r1_02  
• Added Power-up sequencsection  
• Added CZ operating current data  
8342SxxA_r1_02; 8342SxxA_r1_03  
8342SxxA_r1_03; 8342SxxA_r1_04  
Content  
Content  
• Updated status to PQ  
• Added V  
note to Pin Description table  
REF  
8342SxxA_r1_04; 8342SxxA_r1_05  
Content  
• Updated FLXDrive-II Output Driver Impedance Control section  
• Removed Preliminary banner due to production status  
• Updated 165 BGA Package Mechanical Drawing  
• UpdateHSTL I/O AC Input Definitions  
• (Rev1.06a: Editorial updates)  
8342SxxA_r1_05; 8342SxxA_r1_06  
8342SxxA_r1_06; 8342SxxA_r1_07  
Content  
Content  
• Removed 333 & 300 MHz bins  
Rev: 1.07 8/2012  
36/36  
© 2006, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  

相关型号:

GS8342S18AE-200IS

DDR SRAM, 2MX18, 0.45ns, CMOS, PBGA165, 15 X 17 MM, 1 MM PITCH, MO-216CAB-1, FPBGA-165
GSI

GS8342S18AE-200IT

DDR SRAM, 2MX18, 0.45ns, CMOS, PBGA165, 15 X 17 MM, 1 MM PITCH, MO-216CAB-1, FPBGA-165
GSI

GS8342S18AE-200S

DDR SRAM, 2MX18, 0.45ns, CMOS, PBGA165, 15 X 17 MM, 1 MM PITCH, MO-216CAB-1, FPBGA-165
GSI

GS8342S18AE-250I

DDR SRAM, 2MX18, 0.45ns, CMOS, PBGA165, 15 X 17 MM, 1 MM PITCH, MO-216CAB-1, FPBGA-165
GSI

GS8342S18AE-300

DDR SRAM, 2MX18, 0.45ns, CMOS, PBGA165, 15 X 17 MM, 1 MM PITCH, MO-216CAB-1, FPBGA-165
GSI

GS8342S18AE-300IT

DDR SRAM, 2MX18, 0.45ns, CMOS, PBGA165, 15 X 17 MM, 1 MM PITCH, MO-216CAB-1, FPBGA-165
GSI

GS8342S18AE-300S

DDR SRAM, 2MX18, 0.45ns, CMOS, PBGA165, 15 X 17 MM, 1 MM PITCH, MO-216CAB-1, FPBGA-165
GSI

GS8342S18AE-300T

DDR SRAM, 2MX18, 0.45ns, CMOS, PBGA165, 15 X 17 MM, 1 MM PITCH, MO-216CAB-1, FPBGA-165
GSI

GS8342S18AE-333

DDR SRAM, 2MX18, 0.45ns, CMOS, PBGA165, 15 X 17 MM, 1 MM PITCH, MO-216CAB-1, FPBGA-165
GSI

GS8342S18AE-333IS

DDR SRAM, 2MX18, 0.45ns, CMOS, PBGA165, 15 X 17 MM, 1 MM PITCH, MO-216CAB-1, FPBGA-165
GSI

GS8342S18AE-333IT

DDR SRAM, 2MX18, 0.45ns, CMOS, PBGA165, 15 X 17 MM, 1 MM PITCH, MO-216CAB-1, FPBGA-165
GSI

GS8342S18AGE-167

DDR SRAM, 2MX18, 0.5ns, CMOS, PBGA165, 15 X 17 MM, 1 MM PITCH, ROHS COMPLIANT, MO-216CAB-1, FPBGA-165
GSI