GS8324Z72C-133IT [GSI]

ZBT SRAM, 512KX72, 10ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209;
GS8324Z72C-133IT
型号: GS8324Z72C-133IT
厂家: GSI TECHNOLOGY    GSI TECHNOLOGY
描述:

ZBT SRAM, 512KX72, 10ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209

静态存储器
文件: 总46页 (文件大小:1157K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
250 MHz133MHz  
119- and 209-Pin BGA  
Commercial Temp  
Industrial Temp  
2M x 18, 1M x 36, 512K x 72  
2.5 V or 3.3 V V  
DD  
36Mb Sync NBT SRAMs  
2.5 V or 3.3 V I/O  
with either ADSP or ADSC inputs. In Burst mode, subsequent  
burst addresses are generated internally and are controlled by  
ADV. The burst address counter may be configured to count in  
either linear or interleave order with the Linear Burst Order (LBO)  
input. The Burst function need not be used. New addresses can be  
loaded on every cycle with no degradation of chip performance.  
Features  
• NBT (No Bus Turn Around) functionality allows zero wait  
Read-Write-Read bus utilization; fully pin-compatible with  
both pipelined and flow through NtRAM™, NoBL™ and  
ZBT™ SRAMs  
• FT pin for user-configurable flow through or pipeline operation  
• IEEE 1149.1 JTAG-compatible Boundary Scan  
• ZQ mode pin for user-selectable high/low output drive  
• 2.5 V or 3.3 V +10%/–5% core power supply  
• 2.5 V or 3.3 V I/O supply  
• LBO pin for Linear or Interleaved Burst mode  
• Byte Write (BW) and/or Global Write (GW) operation  
• Internal self-timed write cycle  
Flow Through/Pipeline Reads  
The function of the Data Output register can be controlled by the  
user via the FT mode . Holding the FT mode pin low places the  
RAM in Flow Through mode, causing output data to bypass the  
Data Output Register. Holding FT high places the RAM in  
Pipeline mode, activating the rising-edge-triggered Data Output  
Register.  
• Automatic power-down for portable applications  
• JEDEC-standard 119- and 209-bump BGA package  
Byte Write and Global Write  
Byte write operation is performed by using Byte Write enable  
(BW) input combined with one or more individual byte write  
signals (Bx). In addition, Global Write (GW) is available for  
writing all bytes at one time, regardless of the Byte Write control  
inputs.  
-250 -225 -200 -166 -150 -133 Unit  
Pipeline  
3-1-1-1  
tKQ  
tCycle  
2.3 2.5 3.0 3.5 3.8 4.0 ns  
4.0 4.4 5.0 6.0 6.6 7.5 ns  
Curr (x18) 365 335 305 265 245 215 mA  
Curr (x36) 560 510 460 400 370 330 mA  
Curr (x72) 660 600 540 460 430 380 mA  
FLXDrive™  
3.3 V  
2.5 V  
The ZQ pin allows selection between high drive strength (ZQ low)  
for multi-drop bus applications and normal drive strength (ZQ  
floating or high) point-to-point applications. See the Output Driver  
Characteristics chart for details.  
Curr (x18) 360 330 305 260 240 215 mA  
Curr (x36) 550 500 460 390 360 330 mA  
Curr (x72) 640 590 530 450 420 370 mA  
Sleep Mode  
Flow  
Through  
2-1-1-1  
Low power (Sleep mode) is attained through the assertion (High)  
of the ZZ signal, or by stopping the clock (CK). Memory data is  
retained during Sleep mode.  
tKQ  
tCycle  
6.0 6.5 7.5 8.5 10 11 ns  
7.0 7.5 8.5 10 10 15 ns  
Curr (x18) 235 230 210 200 195 150 mA  
Curr (x36) 300 300 270 270 270 200 mA  
Curr (x72) 350 350 300 300 300 220 mA  
Core and Interface Voltages  
3.3 V  
2.5 V  
The GS8324Z18/36/72 operates on a 2.5 V or 3.3 V power supply.  
All input are 3.3 V and 2.5 V compatible. Separate output power  
(VDDQ) pins are used to decouple output noise from the internal  
Curr (x18) 235 230 210 200 195 145 mA  
Curr (x36) 300 300 270 270 270 190 mA  
Curr (x72) 340 340 300 300 300 220 mA  
circuits and are 3.3 V and 2.5 V compatible.  
Functional Description  
Applications  
The GS8324Z18/36/72 is a 37,748,736-bit high performance 2-die  
synchronous SRAM module with a 2-bit burst address counter.  
Although of a type originally developed for Level 2 Cache  
applications supporting high performance CPUs, the device now  
finds application in synchronous SRAM applications, ranging  
from DSP main store to networking chip set support.  
Controls  
Addresses, data I/Os, chip enable (E1), address burst control  
inputs (ADSP, ADSC, ADV), and write control inputs (Bx, BW,  
GW) are synchronous and are controlled by a positive-edge-  
triggered clock input (CK). Output enable (G) and power down  
control (ZZ) are asynchronous inputs. Burst cycles can be initiated  
Rev: 1.00 10/2001  
1/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
NoBL is a trademark of Cypress Semiconductor Corp.. NtRAM is a trademark of Samsung Electronics Co.. ZBT is a trademark of Integrated Device Technology, Inc.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
GS8324Z72B Pad Out  
209-Bump BGA—Top View  
1
2
3
4
E2  
5
6
ADV  
W
7
8
E3  
9
10  
11  
A
B
C
D
DQG5  
DQG6  
DQG7  
DQG8  
DQG1  
DQG2  
DQG3  
DQG4  
A13  
BC  
BH  
VSS  
A14  
NC  
NC  
NC  
VDD  
A15  
A16  
NC  
NC  
VDD  
A17  
BF  
DQB1  
DQB2  
DQB3  
DQB4  
DQB5  
DQB6  
DQB7  
DQB8  
A
B
C
D
BG  
BD  
BB  
E1  
BE  
BA  
VSS  
NC  
VDDQ  
G
NC  
VDDQ  
VDDQ  
VSS  
VDDQ  
VSS  
VDD  
VDDQ  
VSS  
VDDQ  
VSS  
E
F
DQPG9  
DQC4  
DQC3  
DQC2  
DQC1  
NC  
DQPC9  
DQC8  
DQC7  
DQC6  
DQC5  
NC  
DQPF9  
DQF8  
DQF7  
DQF6  
DQF5  
NC  
DQPB9  
DQF4  
DQF3  
DQF2  
DQF1  
NC  
E
F
VSS  
VDDQ  
VSS  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDDQ  
VSS  
ZQ  
MCH  
MCL  
MCH  
MCL  
FT  
G
H
J
G
H
J
VDDQ  
VDDQ  
VDDQ  
VDDQ  
K
L
CK  
VDDQ  
VSS  
NC  
VDDQ  
VSS  
NC  
VDDQ  
VSS  
NC  
VDDQ  
VSS  
K
L
DQH1  
DQH2  
DQH3  
DQH4  
DQPD9  
DQH5  
DQH6  
DQH7  
DQH8  
DQPH9  
DQA5  
DQA6  
DQA7  
DQA8  
DQPA9  
DQA1  
DQA2  
DQA3  
DQA4  
DQPE9  
M
N
P
R
MCL  
MCH  
ZZ  
M
N
P
R
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VDD  
VDDQ  
T
U
V
DQD8  
DQD7  
DQD6  
DQD5  
DQD4  
DQD3  
DQD2  
DQD1  
NC  
A12  
A8  
NC  
NC  
A7  
A3  
LBO  
A11  
A1  
PE  
A18  
A6  
NC  
A10  
A5  
DQE4  
DQE3  
DQE2  
DQE1  
DQE8  
DQE7  
DQE6  
DQE5  
T
U
V
NC  
A9  
NC  
A4  
W
TMS  
TDI  
A0  
A2  
TDO  
TCK  
W
11 x 19 Bump BGA—14 x 22 mm2 Body—1 mm Bump Pitch  
Rev: 1.00 10/2001  
2/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
GS8324Z36C Pad Out  
209-Bump BGA—Top View  
1
2
3
4
E2  
5
6
ADV  
W
7
8
E3  
9
10  
11  
A
B
C
D
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
A13  
BC  
NC  
VSS  
A14  
A19  
NC  
A15  
A16  
NC  
NC  
VDD  
A17  
NC  
BA  
DQB1  
DQB2  
DQB3  
DQB4  
DQB5  
DQB6  
DQB7  
DQB8  
A
B
C
D
NC  
BD  
BB  
E1  
NC  
NC  
VDDQ  
VSS  
NC  
VDDQ  
NC  
G
VDDQ  
VSS  
VDDQ  
VSS  
VDD  
VDD  
VDDQ  
VSS  
VDDQ  
VSS  
E
F
NC  
DQC4  
DQC3  
DQC2  
DQC1  
NC  
DQPC9  
DQC8  
DQC7  
DQC6  
DQC5  
NC  
NC  
NC  
DQPB9  
NC  
E
F
VSS  
VDDQ  
VSS  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDDQ  
VSS  
ZQ  
MCH  
MCL  
MCH  
MCL  
FT  
G
H
J
NC  
NC  
G
H
J
NC  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
K
L
CK  
VDDQ  
VSS  
NC  
VDDQ  
VSS  
NC  
VDDQ  
VSS  
NC  
VDDQ  
VSS  
NC  
NC  
K
L
NC  
NC  
DQA5  
DQA6  
DQA7  
DQA8  
DQPA9  
DQA1  
DQA2  
DQA3  
DQA4  
NC  
M
N
P
R
NC  
NC  
MCL  
MCH  
ZZ  
M
N
P
R
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
NC  
NC  
NC  
NC  
VDDQ  
VDD  
VDDQ  
DQPD9  
NC  
T
U
V
DQD8  
DQD7  
DQD6  
DQD5  
DQD4  
DQD3  
DQD2  
DQD1  
NC  
A12  
A8  
NC  
NC  
A7  
A3  
LBO  
A11  
A1  
PE  
A18  
A6  
NC  
A10  
A5  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
T
U
V
NC  
A9  
NC  
A4  
W
TMS  
TDI  
A0  
A2  
TDO  
TCK  
W
11 x 19 Bump BGA—14 x 22 mm2 Body—1 mm Bump Pitch  
Rev: 1.00 10/2001  
3/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
GS8324Z18C Pad Out  
209-Bump BGA—Top View  
1
2
3
4
5
6
ADV  
W
7
8
9
10  
11  
A
B
C
D
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
A13  
BB  
VDD  
NC  
A14  
A19  
NC  
A15  
A16  
A20  
NC  
VSS  
NC  
A17  
NC  
BA  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
A
B
C
D
NC  
VSS  
NC  
E1  
NC  
VSS  
NC  
NC  
G
NC  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VSS  
VDDQ  
VSS  
E
F
NC  
DQB4  
DQB3  
DQB2  
DQB1  
NC  
DQPB9  
DQB8  
DQB7  
DQB6  
DQB5  
NC  
NC  
NC  
NC  
NC  
E
F
VSS  
VDDQ  
VSS  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDDQ  
VSS  
ZQ  
MCH  
MCL  
MCH  
MCL  
FT  
G
H
J
NC  
NC  
G
H
J
NC  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
K
L
CK  
VDDQ  
VSS  
NC  
VDDQ  
VSS  
NC  
VDDQ  
VSS  
NC  
VDDQ  
VSS  
NC  
NC  
K
L
NC  
NC  
DQA5  
DQA6  
DQA7  
DQA8  
DQPA9  
DQA1  
DQA2  
DQA3  
DQA4  
NC  
M
N
P
R
NC  
NC  
MCL  
VDD  
ZZ  
M
N
P
R
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
NC  
NC  
NC  
NC  
VDDQ  
VDD  
VDDQ  
NC  
NC  
T
U
V
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
A12  
A8  
NC  
NC  
A7  
A3  
LBO  
A11  
A1  
PE  
A18  
A6  
NC  
A10  
A5  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
T
U
V
NC  
A9  
NC  
A4  
W
TMS  
TDI  
A0  
A2  
TDO  
TCK  
W
11 x 19 Bump BGA—14 x 22 mm2 Body—1 mm Bump Pitch  
Rev: 1.00 10/2001  
4/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
GS8324Z18/36/72 209-Bump BGA Pin Description  
Pin Location  
Symbol Type  
Description  
W6, V6  
A0, A1  
I
Address field LSBs and Address Counter Preset Inputs.  
W7, W5, V9, V8, V7, V5, V4, V3, U8, U6, U4,  
A3, A5, A7, B7, A9, U7  
An  
I
Address Inputs  
B5  
C7  
A19  
A20  
I
I
Address Inputs (x36/x18 Versions)  
Address Inputs (x18 Version)  
L11, M11, N11, P11, L10, M10, N10, P10, R10 DQA1DQA9  
A10, B10, C10, D10, A11, B11, C11, D11, E11 DQB1DQB9  
J1, H1, G1, F1, J2, H2, G2, F2, E2  
W2, V2, U2, T2, W1, V1, U1, T1, R1  
W10, V10, U10, T10, W11, V11, U11, T11, R11 DQE1DQE9  
J11, H11, G11, F11, J10, H10, G10, F10, E10 DQF1DQF9  
DQC1DQC9  
DQD1DQD9  
I/O  
I/O  
Data Input and Output pins (x72 Version)  
Data Input and Output pins (x36 Version)  
A2, B2, C2, D2, A1, B1, C1, D1, E1  
L1, M1, N1, P1, L2, M2, N2, P2, R2  
DQG1DQG9  
DQH1DQH9  
L11, M11, N11, P11, L10, M10, N10, P10, R10 DQA1DQA9  
A10, B10, C10, D10, A11, B11, C11, D11, E11 DQB1DQB9  
J1, H1, G1, F1, J2, H2, G2, F2, E2  
W2, V2, U2, T2, W1, V1, U1, T1, R1  
DQC1DQC9  
DQD1DQD9  
L11, M11, N11, P11, L10, M10, N10, P10, R10 DQA1DQA9  
I/O  
Data Input and Output pins (x18 Version)  
J1, H1, G1, F1, J2, H2, G2, F2, E2  
DQB1DQB9  
C9, B8  
I
I
Byte Write Enable for DQA, DQB I/Os; active low  
BA, BB  
Byte Write Enable for DQC, DQD I/Os; active low  
(x72/x36 Versions)  
B3, C4  
BC,BD  
Byte Write Enable for DQE, DQF, DQG, DQH I/Os; active low  
(x72 Version)  
C8, B9, B4, C3  
I
BE, BF, BG,BH  
B5  
C7  
NC  
NC  
No Connect (x72 Version)  
No Connect (x72/x36 Versions)  
W10, V10, U10, T10, W11, V11, U11, T11, R11  
J11, H11, G11, F11, J10, H10, G10, F10, E10  
A2, B2, C2, D2, A1, B1, C1, D1, E1  
L1, M1, N1, P1, L2, M2, N2, P2, R2, C8, B9,  
B4, C3  
NC  
No Connect (x36/x18 Versions)  
B3, C4  
NC  
NC  
No Connect (x18 Version)  
No Connect  
C5, D4, D5, D7, D8, K1, K2, K4, K8, K9, K10,  
K11, T4, T5, T7, T8, U3, U5, U9  
K3  
C6  
A8  
A4  
D6  
A6  
CK  
E1  
I
I
I
I
I
I
Clock Input Signal; active high  
Chip Enable; active low  
Chip Enable; active low (x72/x36 Versions)  
Chip Enable; active high (x72/x36 Versions)  
Output Enable; active low  
E3  
E2  
G
Burst address counter advance enable  
ADV  
Rev: 1.00 10/2001  
5/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
GS8324Z18/36/72 209-Bump BGA Pin Description  
Pin Location  
Symbol Type  
Description  
Sleep Mode control; active high  
Flow Through or Pipeline mode; active low  
Linear Burst Order mode; active low  
Must Connect High  
P6  
I
I
I
I
I
ZZ  
FT  
L6  
T6  
LBO  
MCH  
MCH  
MCL  
MCL  
W
G6, J6  
N6  
Must Connect High (x72 and x36 versions)  
Must Connect Low  
H6, J6, K6, M6  
A8, N6  
B6  
Must Connect Low (x18 version)  
Write Enable; active low  
I
I
Parity Bit Enable; active low (High = x16/32 Mode, Low = x18/36  
Mode)  
T7  
PE  
FLXDrive Output Impedance Control  
(Low = Low Impedance [High Drive], High = High Impedance [Low  
Drive])  
F6  
I
ZQ  
W3  
W4  
I
I
Scan Test Mode Select  
Scan Test Data In  
TMS  
TDI  
W8  
O
I
Scan Test Data Out  
TDO  
TCK  
VDD  
W9  
Scan Test Clock  
A4, N6  
I
Core power supply (x18 version)  
E5, E6, E7, G5, G7, J5, J7, L5, L7, N5, N7, R5,  
R6, R7  
VDD  
I
I
I
Core power supply  
I/O and Core Ground  
D3, D9, F3, F4, F5, F7, F8, F9, H3, H4, H5, H7,  
H8, H9, K5, K7, M3, M4, M5, M7, M8, M9, P3,  
P4, P5, P7, P8, P9, T3, T9  
VSS  
E3, E4, E8, E9, G3, G4, G8, G9, J3, J4, J8, J9,  
L3, L4, L8, L9, N3, N4, N8, N9, R3, R4, R8, R9  
VDDQ  
Output driver power supply  
Rev: 1.00 10/2001  
6/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
GS8324Z36B Pad Out  
119-Bump BGA—Top View  
1
2
3
4
5
6
7
A
VDDQ  
A6  
A7  
A18  
A8  
A9  
VDDQ  
A
B
C
NC  
NC  
E2  
A5  
A4  
A3  
ADV  
VDD  
A15  
A14  
E3  
NC  
NC  
B
C
A16  
D
E
F
DQC  
DQC  
VDDQ  
DQPC  
DQC  
DQC  
VSS  
VSS  
VSS  
ZQ  
E1  
G
VSS  
VSS  
VSS  
DQPB  
DQB  
DQB  
DQB  
VDDQ  
D
E
F
DQB  
G
H
DQC  
DQC  
DQC  
DQC  
BC  
A17  
W
BB  
DQB  
DQB  
DQB  
DQB  
G
H
VSS  
VSS  
J
VDDQ  
DQD  
VDD  
NC  
VDD  
CK  
NC  
VDD  
VDDQ  
DQA  
J
K
DQD  
VSS  
VSS  
DQA  
K
L
DQD  
VDDQ  
DQD  
DQD  
BD  
NC  
BA  
DQA  
DQA  
DQA  
L
M
VSS  
CKE  
VSS  
VDDQ  
M
N
P
R
DQD  
DQD  
NC  
DQD  
DQPD  
A2  
VSS  
VSS  
LBO  
A1  
A0  
VSS  
VSS  
FT  
DQA  
DQPA  
A13  
DQA  
DQA  
PE  
N
P
R
VDD  
T
NC  
NC  
A10  
TDI  
A11  
A12  
A19  
ZZ  
T
U
VDDQ  
TMS  
TCK  
TDO  
NC  
VDDQ  
U
7 x 17 Bump BGA—14 x 22 mm2 Body—1.27 mm Bump Pitch  
Rev: 1.00 10/2001  
7/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
GS8324Z18B Pad Out  
119-Bump BGA—Top View  
1
2
3
4
5
6
7
A
VDDQ  
A6  
A7  
A18  
A8  
A9  
VDDQ  
A
B
C
NC  
NC  
VDD  
A4  
A3  
ADV  
VDD  
A15  
A14  
VSS  
NC  
NC  
B
C
A5  
A16  
D
E
F
DQB  
NC  
NC  
DQB  
NC  
VSS  
VSS  
VSS  
ZQ  
E1  
G
VSS  
VSS  
VSS  
DQPA  
NC  
NC  
D
E
F
DQA  
VDDQ  
VDDQ  
DQA  
G
H
NC  
DQB  
NC  
BB  
A17  
W
NC  
NC  
DQA  
NC  
G
H
DQB  
VSS  
VSS  
DQA  
J
VDDQ  
NC  
VDD  
NC  
VDD  
CK  
NC  
VDD  
NC  
VDDQ  
DQA  
J
K
DQB  
VSS  
VSS  
K
L
DQB  
NC  
NC  
VDD  
BA  
DQA  
NC  
NC  
L
M
VDDQ  
DQB  
VSS  
CKE  
VSS  
VDDQ  
M
N
P
R
DQB  
NC  
NC  
DQPB  
A2  
VSS  
VSS  
LBO  
A1  
A0  
VSS  
VSS  
FT  
DQA  
NC  
NC  
DQA  
PE  
N
P
R
NC  
VDD  
A13  
T
NC  
A10  
A11  
TDI  
A20  
A12  
A19  
NC  
ZZ  
T
U
VDDQ  
TMS  
TCK  
TDO  
VDDQ  
U
7 x 17 Bump BGA—14 x 22 mm2 Body—1.27 mm Bump Pitch  
Rev: 1.00 10/2001  
8/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
GS8324Z18/36 119-Bump BGA Pin Description  
Pin Location  
Symbol  
Type  
Description  
P4, N4  
A0, A1  
I
Address field LSBs and Address Counter Preset Inputs  
R2, C3, B3, C2, A2, A3, A5, A6, T3,  
T5, R6, C5, B5, C6, G4, A4  
An  
I
Address Inputs  
T4, T6  
T2  
An  
NC  
An  
Address Input (x36 Version)  
No Connect (x36 Version)  
Address Input (x18 Version)  
I
T2, T6, T4  
K7, L7, N7, P7, K6, L6, M6, N6  
H7, G7, E7, D7, H6, G6, F6, E6  
H1, G1, E1, D1, H2, G2, F2, E2  
K1, L1, N1, P1, K2, L2, M2, N2  
DQA1–DQA8  
DQB1–DQB8  
DQC1–DQC8  
DQD1–DQD8  
I/O  
Data Input and Output pins. (x36 Version)  
DQA9, DQB9,  
DQC9, DQD9  
P6, D6, D2, P2  
I/O  
I
Data Input and Output pins. (x36 Version)  
Byte Write Enable for DQA, DQB, DQC, DQD I/Os; active low (x36 Version)  
Data Input and Output pins (x18 Version)  
L5, G5, G3, L3  
BA, BB, BC, BD  
DQA1–DQA9  
D1, E2, G2, H1, K2, L1, M2, N1, P2 DQB1–DQB9  
P7, N6, L6, K7, H6, G7, F6, E7, D6  
I/O  
L5, G3  
BA, BB  
NC  
I
Byte Write Enable for DQA, DQB I/Os; active low (x18 Version)  
No Connect  
B1, C1, R1, T1, U6, B7, C7, J3, J5  
P6, N7, M6, L7, K6, H7, G6, E6, D7,  
D2, E1, F2, G1, H2, K1, L2, N2, P1,  
G5, L3  
NC  
No Connect (x18 Version)  
L4  
K4  
M4  
H4  
E4  
B6  
B2  
F4  
B4  
T7  
R5  
R3  
NC  
CK  
CKE  
W
I
No Connect (x36 Version)  
Clock Input Signal; active high  
Clock Enable; active low  
I
I
Write Enable; active low  
E1  
I
Chip Enable; active low  
E3  
I
Chip Enable; active low (x36 version)  
Chip Enable; active high (x36 version)  
Output Enable; active low  
E2  
I
G
I
ADV  
ZZ  
I
Burst address counter advance enable  
Sleep mode control; active high  
Flow Through or Pipeline mode; active low  
Linear Burst Order mode; active low  
I
FT  
I
LBO  
I
FLXDrive Output Impedance Control (Low = Low Impedance [High Drive],  
High = High Impedance [Low Drive])  
D4  
ZQ  
I
R7  
U2  
U3  
PE  
TMS  
TDI  
I
I
I
Parity Bit Enable; active low  
Scan Test Mode Select  
Scan Test Data In  
Rev: 1.00 10/2001  
9/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
GS8324Z18/36 119-Bump BGA Pin Description  
Pin Location  
Symbol  
Type  
Description  
Scan Test Data Out  
U5  
U4  
O
I
TDO  
TCK  
VDD  
Scan Test Clock  
J2, C4, J4, R4, J6  
B2, L4  
I
Core power supply  
VDD  
VSS  
I
Core power supply (x18 version)  
D3, E3, F3, H3, K3, M3, N3, P3, D5,  
E5, F5, H5, K5, M5, N5, P5  
I
I
I
I/O and Core Ground  
I/O and Core Ground (x18 version)  
Output driver power supply  
VSS  
B6  
A1, F1, J1, M1, U1, A7, F7, J7, M7,  
U7  
VDDQ  
Rev: 1.00 10/2001  
10/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
GS8324Z18/36/72 Block Diagram  
Register  
A0–An  
D
Q
A0  
A1  
A0  
A1  
D0  
D1  
Q0  
Q1  
Counter  
Load  
A
LBO  
ADV  
Memory  
Array  
CK  
ADSC  
ADSP  
Q
D
Register  
GW  
BW  
BA  
D
Q
36  
36  
Register  
D
Q
BB  
BC  
BD  
4
Register  
D
Q
Register  
D
Q
Register  
36  
D
Q
36  
Register  
E1  
D
Q
36  
Register  
D
Q
FT  
G
36  
DQx0–DQx9  
Power Down  
Control  
ZZ  
Note: Only x36 version shown for simplicity.  
Rev: 1.00 10/2001  
11/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
GS8324Z18 Die Layout  
Inputs  
Die A  
x18  
Die B  
x18  
TDI  
TDO  
TDI  
TDO  
16Mb  
16Mb  
18 I/Os  
GS8324Z36 Die Layout  
Inputs  
Die A  
x18  
Die B  
x18  
TDI  
TDO  
TDI  
TDO  
16Mb  
16Mb  
18 I/Os  
18 I/Os  
GS8324Z72 Die Layout  
Inputs  
Die A  
x36  
Die B  
x36  
TDI  
TDO  
TDI  
TDO  
32Mb  
32Mb  
36 I/Os  
36 I/Os  
Rev: 1.00 10/2001  
12/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
Functional Details  
Clocking  
Deassertion of the Clock Enable (CKE) input blocks the Clock input from reaching the RAM's internal circuits. It may be used to  
suspend RAM operations. Failure to observe Clock Enable set-up or hold requirements will result in erratic operation.  
Pipeline Mode Read and Write Operations  
All inputs (with the exception of Output Enable, Linear Burst Order and Sleep) are synchronized to rising clock edges. Single cycle  
read and write operations must be initiated with the Advance/Load pin (ADV) held low, in order to load the new address. Device  
activation is accomplished by asserting all three of the Chip Enable inputs (E1, E2, and E3). Deassertion of any one of the Enable  
inputs will deactivate the device.  
Function  
Read  
W
H
L
BA  
X
BB  
X
BC  
X
BD  
X
Write Byte “a”  
Write Byte “b”  
Write Byte “c”  
Write Byte “d”  
Write all Bytes  
Write Abort/NOP  
L
H
L
H
H
L
H
H
H
L
L
H
H
H
L
L
H
H
L
L
H
L
L
L
L
H
H
H
H
Read operation is initiated when the following conditions are satisfied at the rising edge of clock: CKE is asserted low, all three  
chip enables (E1, E2, and E3) are active, the write enable input signals W is deasserted high, and ADV is asserted low. The address  
presented to the address inputs is latched into the address register and presented to the memory core and control logic. The control  
logic determines that a read access is in progress and allows the requested data to propagate to the input of the output register. At  
the next rising edge of clock the read data is allowed to propagate through the output register and onto the output pins.  
Write operation occurs when the RAM is selected, CKE is active, and the Write input is sampled low at the rising edge of clock.  
The Byte Write Enable inputs (BA, BB, BC, and BD) determine which bytes will be written. All or none may be activated. A write  
cycle with no Byte Write inputs active is a no-op cycle. The pipelined NBT SRAM provides double late write functionality,  
matching the write command versus data pipeline length (2 cycles) to the read command versus data pipeline length (2 cycles). At  
the first rising edge of clock, Enable, Write, Byte Write(s), and Address are registered. The Data In associated with that address is  
required at the third rising edge of clock.  
Flow Through Mode Read and Write Operations  
Operation of the RAM in Flow Through mode is very similar to operations in Pipeline mode. Activation of a Read Cycle and the  
use of the Burst Address Counter is identical. In Flow Through mode the device may begin driving out new data immediately after  
new address are clocked into the RAM, rather than holding new data until the following (second) clock edge. Therefore, in Flow  
Through mode the read pipeline is one cycle shorter than in Pipeline mode.  
Write operations are initiated in the same way, but differ in that the write pipeline is one cycle shorter as well, preserving the ability  
to turn the bus from reads to writes without inserting any dead cycles. While the pipelined NBT RAMs implement a double late  
write protocol in Flow Through mode a single late write protocol mode is observed. Therefore, in Flow Through mode, address  
and control are registered on the first rising edge of clock and data in is required at the data input pins at the second rising edge of  
clock.  
Rev: 1.00 10/2001  
13/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
Byte Write Truth Table  
Function  
Read  
GW  
H
BW  
H
L
BA  
X
BB  
X
BC  
X
BD  
X
Notes  
1
Read  
H
H
L
H
H
L
H
H
H
L
H
H
H
H
L
1
Write byte a  
Write byte b  
Write byte c  
Write byte d  
Write all bytes  
Write all bytes  
H
L
2, 3  
H
L
H
H
H
L
2, 3  
H
L
H
H
L
2, 3, 4  
2, 3, 4  
2, 3, 4  
H
L
H
L
H
L
L
L
X
X
X
X
X
Notes:  
1. All byte outputs are active in read cycles regardless of the state of Byte Write Enable inputs.  
2. Byte Write Enable inputs BA, BB, BC, and/or BD may be used in any combination with BW to write single or multiple bytes.  
3. All byte I/Os remain High-Z during all write operations regardless of the state of Byte Write Enable inputs.  
4. Bytes C” and “D” are only available on the x36 version.  
Rev: 1.00 10/2001  
14/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
Synchronous Truth Table (x72 and x36 209-Bump BGA)  
Type Address E1 E2 E3 ZZ ADV W Bx G CKE CK DQ Notes  
Operation  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Continue  
Read Cycle, Begin Burst  
Read Cycle, Continue Burst  
NOP/Read, Begin Burst  
Dummy Read, Continue Burst  
Write Cycle, Begin Burst  
Write Cycle, Continue Burst  
NOP/Write Abort, Begin Burst  
Write Abort, Continue Burst  
Clock Edge Ignore, Stall  
Sleep Mode  
D
D
D
D
R
B
None  
None  
H
X
X
X
L
X
X
L
X
H
X
X
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
L
X
X
X
X
H
X
H
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
L
L
L
L
L
L
L
L
L
L
L
L
L
H
X
L-H High-Z  
L-H High-Z  
L-H High-Z  
L-H High-Z  
None  
L
None  
X
H
X
H
X
H
X
H
X
X
X
H
L
1
External  
Next  
L-H  
L-H  
Q
Q
X
L
X
L
H
L
L
1,10  
2
R
B
External  
Next  
H
H
X
X
X
X
X
X
L-H High-Z  
X
L
X
L
H
L
L-H High-Z 1,2,10  
W
B
External  
Next  
L-H  
L-H  
D
D
3
X
L
X
L
H
L
X
L
L
1,3,10  
2,3  
W
B
None  
H
H
X
X
L-H High-Z  
Next  
X
X
X
X
X
X
H
X
X
X
X
X
L-H High-Z 1,2,3,10  
Current  
None  
L-H  
X
-
4
High-Z  
Notes:  
1. Continue Burst cycles, whether Read or Write, use the same control inputs. A Deselect continue cycle can only be entered into if a  
Deselect cycle is executed first.  
2. Dummy Read and Write abort can be considered NOPs because the SRAM performs no operation. A Write abort occurs when the W pin  
is sampled low but no Byte Write pins are active, so no write operation is performed.  
3. G can be wired low to minimize the number of control signals provided to the SRAM. Output drivers will automatically turn off during write  
cycles.  
4. If CKE High occurs during a pipelined read cycle, the DQ bus will remain active (Low Z). If CKE High occurs during a write cycle, the bus  
will remain in High Z.  
5. X = Don’t Care; H = Logic High; L = Logic Low; Bx = High = All Byte Write signals are high; Bx = Low = One or more Byte/Write signals  
are Low  
6. All inputs, except G and ZZ must meet setup and hold times of rising clock edge.  
7. Wait states can be inserted by setting CKE high.  
8. This device contains circuitry that ensures all outputs are in High Z during power-up.  
9. A 2-bit burst counter is incorporated.  
10. The address counter is incriminated for all Burst continue cycles.  
Rev: 1.00 10/2001  
15/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
Synchronous Truth Table (x18 209-Bump BGA and x36/x18 119-Bump BGA)  
Type Address E1 ZZ ADV W Bx G CKE CK DQ Notes  
Operation  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Continue  
Read Cycle, Begin Burst  
Read Cycle, Continue Burst  
NOP/Read, Begin Burst  
Dummy Read, Continue Burst  
Write Cycle, Begin Burst  
Write Cycle, Continue Burst  
NOP/Write Abort, Begin Burst  
Write Abort, Continue Burst  
Clock Edge Ignore, Stall  
Sleep Mode  
D
D
D
D
R
B
None  
None  
H
X
X
X
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
L
X
X
X
X
H
X
H
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
L
L
L
L
L
L
L
L
L
L
L
L
L
H
X
L-H High-Z  
L-H High-Z  
L-H High-Z  
L-H High-Z  
None  
L
None  
H
L
1
External  
Next  
L-H  
L-H  
Q
Q
X
L
H
L
L
1,10  
2
R
B
External  
Next  
H
H
X
X
X
X
X
X
L-H High-Z  
X
L
H
L
L-H High-Z 1,2,10  
W
B
External  
Next  
L-H  
L-H  
D
D
3
X
L
H
L
X
L
L
1,3,10  
2,3  
W
B
None  
H
H
X
X
L-H High-Z  
Next  
X
X
X
H
X
X
X
X
X
L-H High-Z 1,2,3,10  
Current  
None  
L-H  
X
-
4
High-Z  
Notes:  
1. Continue Burst cycles, whether Read or Write, use the same control inputs. A Deselect continue cycle can only be entered  
into if a Deselect cycle is executed first.  
2. Dummy Read and Write abort can be considered NOPs because the SRAM performs no operation. A Write abort occurs  
when the W pin is sampled low but no Byte Write pins are active, so no write operation is performed.  
3. G can be wired low to minimize the number of control signals provided to the SRAM. Output drivers will automatically turn off  
during write cycles.  
4. If CKE High occurs during a pipelined read cycle, the DQ bus will remain active (Low Z). If CKE High occurs during a write  
cycle, the bus will remain in High Z.  
5. X = Don’t Care; H = Logic High; L = Logic Low; Bx = High = All Byte Write signals are high; Bx = Low = One or more Byte/  
Write signals are Low  
6. All inputs, except G and ZZ must meet setup and hold times of rising clock edge.  
7. Wait states can be inserted by setting CKE high.  
8. This device contains circuitry that ensures all outputs are in High Z during power-up.  
9. A 2-bit burst counter is incorporated.  
10. The address counter is incriminated for all Burst continue cycles.  
Rev: 1.00 10/2001  
16/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
Pipelined and Flow Through Read Write Control State Diagram  
D
B
Deselect  
R
D
D
W
New Read  
New Write  
R
R
W
B
B
R
W
W
R
Burst Read  
Burst Write  
B
B
D
D
Key  
Notes  
Input Command Code  
1. The Hold command (CKE Low) is not  
shown because it prevents any state change.  
ƒ
Transition  
2. W, R, B, and D represent input command  
codes as indicated in the Synchronous Truth Table.  
Current State (n)  
Next State (n+1)  
n
n+1  
n+2  
n+3  
Clock (CK)  
Command  
ƒ
ƒ
ƒ
ƒ
Current State  
Next State  
Current State and Next State Definition for Pipelined and Flow through Read/Write Control State Diagram  
Rev: 1.00 10/2001  
17/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
Pipeline Mode Data I/O State Diagram  
Intermediate  
Intermediate  
R
W
B
Intermediate  
B
R
Data Out  
(Q Valid)  
High Z  
(Data In)  
W
D
Intermediate  
D
Intermediate  
W
R
High Z  
B
D
Intermediate  
Key  
Notes  
Input Command Code  
1. The Hold command (CKE Low) is not  
shown because it prevents any state change.  
ƒ
Transition  
Transition  
2. W, R, B, and D represent input command  
codes as indicated in the Truth Tables.  
Current State (n)  
Next State (n+2)  
Intermediate State (N+1)  
n
n+1  
n+2  
n+3  
Clock (CK)  
Command  
ƒ
ƒ
ƒ
ƒ
Intermediate  
State  
Current State  
Next State  
Current State and Next State Definition for Pipeline Mode Data I/O State Diagram  
Rev: 1.00 10/2001  
18/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
Flow Through Mode Data I/O State Diagram  
R
B
W
B
R
Data Out  
(Q Valid)  
High Z  
(Data In)  
W
D
D
W
R
High Z  
B
D
Key  
Notes  
Input Command Code  
1. The Hold command (CKE Low) is not  
shown because it prevents any state change.  
ƒ
Transition  
2. W, R, B, and D represent input command  
codes as indicated in the Truth Tables.  
Current State (n)  
Next State (n+1)  
n
n+1  
n+2  
n+3  
Clock (CK)  
Command  
ƒ
ƒ
ƒ
ƒ
Current State  
Next State  
Current State and Next State Definition for: Pipeline and Flow Through Read Write Control State Diagram  
Rev: 1.00 10/2001  
19/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
Burst Cycles  
Although NBT RAMs are designed to sustain 100% bus bandwidth by eliminating turnaround cycle when there is transition from  
read to write, multiple back-to-back reads or writes may also be performed. NBT SRAMs provide an on-chip burst address  
generator that can be utilized, if desired, to further simplify burst read or write implementations. The ADV control pin, when  
driven high, commands the SRAM to advance the internal address counter and use the counter generated address to read or write  
the SRAM. The starting address for the first cycle in a burst cycle series is loaded into the SRAM by driving the ADV pin low, into  
Load mode.  
Burst Order  
The burst address counter wraps around to its initial state after four addresses (the loaded address and three more) have been  
accessed. The burst sequence is determined by the state of the Linear Burst Order pin (LBO). When this pin is Low, a linear burst  
sequence is selected. When the RAM is installed with the LBO pin tied high, Interleaved burst sequence is selected. See the tables  
below for details.  
Mode Pin Functions  
Pin  
Mode Name  
Burst Order Control  
Output Register Control  
Power Down Control  
Parity Enable  
State  
Function  
Name  
L
Linear Burst  
Interleaved Burst  
Flow Through  
Pipeline  
LBO  
H
L
FT  
ZZ  
PE  
ZQ  
H or NC  
L or NC  
H
Active  
Standby, IDD = ISB  
L or NC Activate 9th I/O’s (x18/36 Mode)  
H
L
Deactivate 9th I/O’s (x16/32 Mode)  
High Drive (Low Impedance)  
Low Drive (High Impedance)  
FLXDrive Output Impedance Control  
H or NC  
Note:  
There are pull-up devices on the ZQ, SCD DP, and FT pins and a pull-down devices on the PE and ZZ pins, so those input pins can  
be unconnected and the chip will operate in the default states as specified in the above tables.  
Enable/Disable Parity I/O Pins  
This SRAM allows the user to configure the device to operate in Parity I/O active (x18, x36, or x72) or in Parity I/O inactive (x16,  
x32, or x64) mode. Holding the PE bump low or letting it float will activate the 9th I/O on each byte of the RAM. Grounding PE  
deactivates the 9th I/O of each byte, although the bit in each byte of the memory array remains active to store and recall parity bits  
generated and read into the ByteSafe parity circuits.  
Rev: 1.00 10/2001  
20/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
x16/32/64 Mode (PE = 0) Read Parity Error Output Timing Diagram  
CK  
Address A  
Address B  
D Out A  
Address C  
D Out B  
Address D  
D Out C  
Address E  
D Out D  
Address F  
D Out E  
DQ  
tKQ  
tLZ  
tKQX  
tHZ  
QE  
DQ  
Err A  
Err C  
D Out A  
D Out B  
D Out C  
D Out D  
tKQ  
tLZ  
tKQX  
tHZ  
QE  
Err A  
Err C  
Rev: 1.00 10/2001  
21/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
x18/x36 Mode (PE = 1) Write Parity Error Output Timing Diagram  
CK  
DQ  
D In A  
D In B  
D In C  
tKQX  
D In D  
D In E  
tKQ  
tLZ  
tHZ  
QE  
DQ  
Err A  
Err C  
D In A  
D In B  
D In C  
D In D  
tKQX  
tHZ  
D In E  
tKQ  
tLZ  
QE  
Err A  
Err C  
BPR 1999.05.18  
Burst Counter Sequences  
Linear Burst Sequence  
Interleaved Burst Sequence  
A[1:0] A[1:0] A[1:0] A[1:0]  
A[1:0] A[1:0] A[1:0] A[1:0]  
1st address  
2nd address  
3rd address  
4th address  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
1st address  
2nd address  
3rd address  
4th address  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Note: The burst counter wraps to initial state on the 5th clock.  
Note: The burst counter wraps to initial state on the 5th clock.  
BPR 1999.05.18  
Sleep Mode  
During normal operation, ZZ must be pulled low, either by the user or by its internal pull down resistor. When ZZ is pulled high,  
the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to  
low, the SRAM operates normally after 2 cycles of wake up time.  
Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to ISB2. The duration of  
Rev: 1.00 10/2001  
22/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
Sleep mode is dictated by the length of time the ZZ is in a High state. After entering Sleep mode, all inputs except ZZ become  
disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode.  
When the ZZ pin is driven high, ISB2 is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending  
operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated  
until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a Deselect or Read commands  
may be applied while the SRAM is recovering from Sleep mode.  
Sleep Mode Timing Diagram  
CK  
tZZR  
ZZ  
Sleep  
tZZS  
tZZH  
Designing for Compatibility  
The GSI NBT SRAMs offer users a configurable selection between Flow Through mode and Pipeline mode via the FT signal  
found on . Not all vendors offer this option, however most mark as VDD or VDDQ on pipelined parts and VSS on flow through  
parts. GSI NBT SRAMs are fully compatible with these sockets.  
Absolute Maximum Ratings  
(All voltages reference to VSS  
)
Symbol  
VDD  
Description  
Value  
0.5 to 4.6  
Unit  
V
Voltage on VDD Pins  
VDDQ  
VCK  
Voltage in VDDQ Pins  
0.5 to 4.6  
V
Voltage on Clock Input Pin  
Voltage on I/O Pins  
0.5 to 6  
V
VI/O  
0.5 to VDDQ +0.5 (£ 4.6 V max.)  
0.5 to VDD +0.5 (£ 4.6 V max.)  
V
VIN  
Voltage on Other Input Pins  
Input Current on Any Pin  
Output Current on Any I/O Pin  
Package Power Dissipation  
Storage Temperature  
V
IIN  
+/20  
+/20  
mA  
mA  
W
IOUT  
PD  
1.5  
oC  
oC  
TSTG  
55 to 125  
55 to 125  
TBIAS  
Temperature Under Bias  
Note:  
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended  
Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of  
this component.  
Rev: 1.00 10/2001  
23/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
Power Supply Voltage Ranges  
Parameter  
3.3 V Supply Voltage  
Symbol  
VDD3  
Min.  
3.0  
Typ.  
3.3  
Max.  
3.6  
Unit  
Notes  
V
V
V
V
VDD2  
2.5 V Supply Voltage  
2.3  
2.5  
2.7  
3.3 V VDDQ I/O Supply Voltage  
VDDQ3  
VDDQ2  
3.0  
3.3  
3.6  
2.5 V VDDQ I/O Supply Voltage  
Notes:  
2.4  
2.5  
2.7  
1. The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are  
evaluated for worst case in the temperature range marked on the device.  
2. Input Under/overshoot voltage must be 2 V > Vi < VDDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.  
V
Range Logic Levels  
DDQ3  
Parameter  
Symbol  
VIH  
Min.  
1.7  
Typ.  
Max.  
Unit  
Notes  
VDD Input High Voltage  
VDD Input Low Voltage  
VDDQ I/O Input High Voltage  
VDDQ I/O Input Low Voltage  
VDD + 0.3  
V
V
V
V
1
VIL  
0.3  
1.7  
0.8  
1
VIHQ  
VILQ  
VDDQ + 0.3  
1,3  
1,3  
0.3  
0.8  
Notes:  
1. The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are  
evaluated for worst case in the temperature range marked on the device.  
2. Input Under/overshoot voltage must be 2 V > Vi < VDDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.  
3. VIHQ (max) is voltage on VDDQ pins plus 0.3 V.  
V
Range Logic Levels  
DDQ2  
Parameter  
Symbol  
VIH  
Min.  
Typ.  
Max.  
VDD + 0.3  
0.3*VDD  
Unit  
Notes  
VDD Input High Voltage  
VDD Input Low Voltage  
VDDQ I/O Input High Voltage  
VDDQ I/O Input Low Voltage  
0.6*VDD  
V
V
V
V
1
VIL  
0.3  
1
VIHQ  
VILQ  
0.6*VDD  
VDDQ + 0.3  
0.3*VDD  
1,3  
1,3  
0.3  
Notes:  
1. The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are  
evaluated for worst case in the temperature range marked on the device.  
2. Input Under/overshoot voltage must be 2 V > Vi < VDDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.  
3. VIHQ (max) is voltage on VDDQ pins plus 0.3 V.  
Rev: 1.00 10/2001  
24/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
Recommended Operating Temperatures  
Parameter  
Symbol  
Min.  
0
Typ.  
25  
Max.  
70  
Unit  
°C  
Notes  
TA  
TA  
Ambient Temperature (Commercial Range Versions)  
2
2
Ambient Temperature (Industrial Range Versions)  
Note:  
40  
25  
85  
°C  
1. The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are  
evaluated for worst case in the temperature range marked on the device.  
2. Input Under/overshoot voltage must be 2 V > Vi < VDDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.  
Undershoot Measurement and Timing  
Overshoot Measurement and Timing  
VIH  
20% tKC  
VDD + 2.0 V  
VSS  
50%  
VDD  
50%  
V
SS 2.0 V  
20% tKC  
VIL  
Capacitance  
(TA = 25oC, f = 1 MHZ, VDD = 2.5 V)  
Parameter  
Symbol  
CIN  
Test conditions  
VIN = 0 V  
Typ.  
6.5  
6
Max.  
7.5  
7
Unit  
pF  
Input Capacitance  
CI/O  
VOUT = 0 V  
Input/Output Capacitance (x36/x72)  
Input/Output Capacitance (x18)  
Note: These parameters are sample tested.  
pF  
CI/O  
VOUT = 0 V  
8.5  
9.5  
pF  
Package Thermal Characteristics  
Rating  
Junction to Ambient (at 200 lfm)  
Junction to Ambient (at 200 lfm)  
Junction to Case (TOP)  
Notes:  
Layer Board  
Symbol  
RQJA  
Max  
40  
Unit  
Notes  
1,2  
single  
four  
°C/W  
°C/W  
°C/W  
RQJA  
24  
1,2  
RQJC  
9
3
1. Junction temperature is a function of SRAM power dissipation, package thermal resistance, mounting board temperature, ambient. Temper-  
ature air flow, board density, and PCB thermal resistance.  
2. SCMI G-38-87  
3. Average thermal resistance between die and top surface, MIL SPEC-883, Method 1012.1  
Rev: 1.00 10/2001  
25/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
AC Test Conditions  
Parameter  
Input high level  
Input low level  
Conditions  
2.3 V  
0.2 V  
Input slew rate  
1 V/ns  
Input reference level  
Output reference level  
Output load  
1.25 V  
1.25 V  
Fig. 1& 2  
Notes:  
1. Include scope and jig capacitance.  
2. Test conditions as specified with output loading as shown in Fig.  
1 unless otherwise noted.  
3. Output Load 2 for tLZ, tHZ, tOLZ and tOHZ  
4. Device is deselected as defined by the Truth Table.  
Output Load 2  
2.5 V  
Output Load 1  
DQ  
225W  
DQ  
30pF*  
50W  
5pF*  
225W  
VT = 1.25 V  
* Distributed Test Jig Capacitance  
DC Electrical Characteristics  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Input Leakage Current  
(except mode pins)  
IIL  
VIN = 0 to VDD  
2 uA  
2 uA  
VDD ³ VIN ³ VIH  
0 V £ VIN £ VIH  
1 uA  
1 uA  
1 uA  
100 uA  
IIN1  
ZZ and PE Input Current  
VDD ³ VIN ³ VIL  
0 V £ VIN £ VIL  
100 uA  
1 uA  
1 uA  
1 uA  
IIN2  
FT, SCD, ZQ, DP Input Current  
IOL  
IOL  
Output Disable, VOUT = 0 to VDD  
Output Disable, VOUT = 0 to VDD  
IOH = 8 mA, VDDQ = 2.375 V  
IOH = 8 mA, VDDQ = 3.135 V  
IOL = 8 mA  
Output Leakage Current (x36/x72)  
Output Leakage Current (x18)  
Output High Voltage  
1 uA  
2 uA  
1.7 V  
2.4 V  
1 uA  
2 uA  
VOH2  
VOH3  
VOL  
Output High Voltage  
Output Low Voltage  
0.4 V  
Rev: 1.00 10/2001  
26/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
Rev: 1.00 10/2001  
27/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
AC Electrical Characteristics  
-250  
-225  
-200  
-166  
-150  
-133  
Parameter  
Symbol  
Unit  
Min Max Min Max Min Max Min Max Min Max Min Max  
Clock Cycle Time  
Clock to Output Valid  
Clock to Output Invalid  
Clock to Output in Low-Z  
Clock Cycle Time  
tKC  
tKQ  
4.0  
2.3  
6.0  
4.4  
2.5  
6.0  
5.0  
3.0  
7.5  
6.0  
3.4  
8.5  
6.7  
3.8  
7.5  
4.0  
ns  
ns  
ns  
ns  
ns  
Pipeline  
tKQX  
1.5  
1.5  
7.0  
1.5  
1.5  
7.5  
1.5  
1.5  
8.5  
1.5  
1.5  
10.0  
1.5  
1.5  
10.0  
1.5  
1.5  
15.0  
tLZ1  
tKC  
Clock to Output Valid  
Clock to Output Invalid  
Clock to Output in Low-Z  
Clock HIGH Time  
tKQ  
10.0  
10.0 ns  
Flow  
Through  
tKQX  
3.0  
3.0  
1.3  
1.5  
3.0  
3.0  
1.3  
1.5  
3.0  
3.0  
1.3  
1.5  
3.0  
3.0  
1.3  
1.5  
3.0  
3.0  
1.5  
1.7  
3.0  
3.0  
1.7  
2
ns  
ns  
ns  
ns  
tLZ1  
tKH  
tKL  
Clock LOW Time  
Clock to Output in  
High-Z  
tHZ1  
1.5  
2.3  
1.5  
2.5  
1.5  
3.0  
1.5  
3.5 1.5 3.8 1.5 4.0  
ns  
G to Output Valid  
tOE  
2.3  
2.5  
3.2  
3.5  
3.8  
4.0  
ns  
ns  
tOLZ1  
G to output in Low-Z  
0
0
0
0
0
0
tOHZ1  
tS  
G to output in High-Z  
Setup time  
1.5  
0.5  
5
2.3  
1.5  
0.5  
5
2.5  
1.5  
0.5  
5
3.0  
1.5  
0.5  
5
3.5  
1.5  
0.5  
5
3.8  
1.5  
0.5  
5
4.0  
ns  
ns  
ns  
ns  
Hold time  
tH  
tZZS2  
ZZ setup time  
tZZH2  
tZZR  
ZZ hold time  
ZZ recovery  
1
1
1
1
1
1
ns  
ns  
100  
100  
100  
100  
100  
100  
Notes:  
1. These parameters are sampled and are not 100% tested.  
2. ZZ is an asynchronous signal. However, in order to be recognized on any given clock cycle, ZZ must meet the specified setup and hold  
times as specified above.  
Rev: 1.00 10/2001  
28/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
Pipeline Mode Read/Write Cycle Timing  
1
2
3
4
5
6
7
8
9
10  
CK  
tH  
tH  
tH  
tH  
tH  
tS  
tS  
tS  
tS  
tS  
tS  
tKH tKL tKC  
CKE  
E*  
ADV  
W
Bn  
tH  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A0–An  
tKQ  
tKHQZ  
tGLQV  
tKQHZ  
tKQLZ  
D
Q
(A4+1)  
DQA–DQD  
D(A2)  
Q(A3)  
Q(A4)  
Q(A6)  
D(A1)  
D(A5)  
(A2+1)  
tKQX  
tH  
tS  
tOEHZ  
tOELZ  
G
Write  
D(A5)  
Write  
D(A2) Write  
D(A2+1)  
BURST Read  
Q(A3)  
Read  
Q(A4) Read  
Q(A4+1)  
BURST  
Read  
Q(A6)  
DESELECT  
Write  
D(A1)  
Write  
D(A7)  
COMMAND  
DON’T CARE  
UNDEFINED  
*Note: E = High (False) if E1 = 1 or E2 = 0 or E3 = 1  
Rev: 1.00 10/2001  
29/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
Pipeline Mode No-Op, Stall and Deselect Timing  
2
8
4
3
5
6
10  
7
9
1
CK  
tH  
tH  
tH  
tS  
tS  
tS  
CKE  
E*  
ADV  
tS  
tH  
W
Bn  
A0–An  
DQ  
A1  
A2  
A5  
A3  
A4  
tKHQZ  
Q(A2)  
D(A1)  
Q(A3)  
D(A4)  
Q(A5)  
tKQHZ  
NOP  
Read  
Q(A2)  
STALL Read  
Q(A3)  
Write  
D(A4)  
STALL  
Read  
Q(A5)  
CONTINUE  
DESELECT  
Write  
D(A1)  
DESELECT  
COMMAND  
DON’T CARE  
UNDEFINED  
*Note: E = High (False) if E1 = 1 or E2 = 0 or E3 = 1  
Rev: 1.00 10/2001  
30/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
Flow Through Mode Read/Write Cycle Timing  
4
3
5
6
8
10  
7
9
1
2
CK  
CKE  
E*  
tH  
tH  
tH  
tH  
tH  
tH  
tS  
tS  
tS  
tS  
tS  
tS  
tKH tKL  
tKC  
ADV  
W
Bn  
A7  
A0–An  
A1  
A2  
A3  
A4  
A5  
A6  
tKQ  
tKHQZ  
tGLQV  
tKQHZ  
tKQLZ  
D
Q
DQ  
D(A2)  
Q(A3)  
Q(A4)  
Q(A6)  
D(A1)  
D(A5)  
(A2+1)  
(A4+1)  
tOELZ  
tKQX  
tH  
tS  
tOEHZ  
G
Write  
D(A5)  
Write  
D(A2)  
BURST Read  
Read  
Q(A4) Read  
Q(A4+1)  
BURST  
Read  
Q(A6)  
DESELECT  
Write  
D(A1)  
Write  
D(A7)  
COMMAND  
Write  
Q(A3)  
D(A2+1)  
DON’T CARE  
UNDEFINED  
*Note: E = High (False) if E1 = 1 or E2 = 0 or E3 = 1  
Rev: 1.00 10/2001  
31/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
Flow Through Mode No-Op, Stall and Deselect Timing  
4
3
5
6
8
10  
7
9
1
2
CK  
tH  
tS  
tS  
tS  
CKE  
E*  
tH  
tH  
ADV  
W
Bn  
A1  
A2  
A3  
A4  
A5  
A0–An  
tKHQZ  
Q(A3)  
Q(A2)  
D(A1)  
Q(A5)  
D(A4)  
NOP  
DQ  
tKQHZ  
Read  
Q(A2)  
STALL Read  
Q(A3)  
Write  
D(A4)  
STALL  
Read  
Q(A5)  
DESELECT  
CONTINUE  
DESELECT  
Write  
D(A1)  
COMMAND  
DON’T CARE  
UNDEFINED  
*Note: E = High (False) if E1 = 1 or E2 = 0 or E3 = 1  
Rev: 1.00 10/2001  
32/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
JTAG Port Operation  
Due to the fact that this device is built from two die, the two JTAG parts are chained together internally. The following describes  
the behavior of each die.  
Overview  
The JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan  
interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with VDD. The JTAG output  
drivers are powered by VDDQ  
.
Disabling the JTAG Port  
It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless  
clocked. TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG  
Port unused, TCK, TDI, and TMS may be left floating or tied to either VDD or VSS. TDO should be left unconnected.  
JTAG Pin Descriptions  
Pin  
Pin Name  
I/O  
Description  
Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate  
from the falling edge of TCK.  
TCK  
Test Clock  
In  
The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP  
TMS  
TDI  
Test Mode Select  
Test Data In  
In controller state machine. An undriven TMS input will produce the same result as a logic one input  
level.  
The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers  
placed between TDI and TDO. The register placed between TDI and TDO is determined by the  
In state of the TAP Controller state machine and the instruction that is currently loaded in the TAP  
Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce  
the same result as a logic one input level.  
Output that is active depending on the state of the TAP state machine. Output changes in  
Out response to the falling edge of TCK. This is the output side of the serial registers placed between  
TDI and TDO.  
TDO  
Test Data Out  
Note:  
This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is  
held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.  
JTAG Port Registers  
Overview  
The various JTAG registers, refered to as Test Access Port orTAP Registers, are selected (one at a time) via the sequences of 1s  
and 0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the  
rising edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the  
TDI and TDO pins.  
Instruction Register  
The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or  
the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the  
TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the  
controller is placed in Test-Logic-Reset state.  
Rev: 1.00 10/2001  
33/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
Bypass Register  
The Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through  
the RAM’s JTAG Port to another device in the scan chain with as little delay as possible.  
Boundary Scan Register  
The Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins.  
The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The  
Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the  
device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan  
Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in  
Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z,  
SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.  
JTAG TAP Block Diagram  
0
Bypass Register  
2
1 0  
Instruction Register  
TDI  
TDO  
ID Code Register  
31 30 29  
2 1 0  
·
· · ·  
Boundary Scan Register  
n
2 1 0  
· · · · · · · · ·  
TMS  
TCK  
Test Access Port (TAP) Controller  
Identification (ID) Register  
The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in  
Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM.  
It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the  
controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins.  
Rev: 1.00 10/2001  
34/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
ID Register Contents  
Die  
Revision  
Code  
GSI Technology  
JEDEC Vendor  
Configuration  
ID Code  
I/O  
Not Used  
Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  
0
1
1
1
1
1
x72  
x36  
x32  
x18  
x16  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
1
0
1
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 1 1 0 1 1 0 0 1  
0 1 1 0 1 1 0 0 1  
0 1 1 0 1 1 0 0 1  
0 1 1 0 1 1 0 0 1  
0 1 1 0 1 1 0 0 1  
Tap Controller Instruction Set  
Overview  
There are two classes of instructions defined in the Standard 1149.1-1990; the standard (Public) instructions, and device specific  
(Private) instructions. Some Public instructions are mandatory for 1149.1 compliance. Optional Public instructions must be  
implemented in prescribed ways. The TAP on this device may be used to monitor all input and I/O pads, and can be used to load  
address, data or control signals into the RAM or to preload the I/O buffers.  
When the TAP controller is placed in Capture-IR state the two least significant bits of the instruction register are loaded with 01.  
When the controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired  
instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the  
TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP instruction set for this  
device is listed in the following table.  
Rev: 1.00 10/2001  
35/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
JTAG Tap Controller State Diagram  
Test Logic Reset  
1
0
1
1
1
Run Test Idle  
Select DR  
Select IR  
0
0
0
1
1
1
Capture DR  
Capture IR  
0
0
Shift DR  
Shift IR  
0
0
1
1
1
Exit1 DR  
Exit1 IR  
0
0
Pause DR  
Pause IR  
0
0
0
0
1
1
Exit2 DR  
Exit2 IR  
1
1
Update DR  
Update IR  
1
0
1
0
Instruction Descriptions  
BYPASS  
When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This occurs when  
the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices  
in the scan path.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is loaded in the Instruc-  
tion Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and I/O buffers into the Boundary Scan  
Register. Boundary Scan Register locations are not associated with an input or I/O pin, and are loaded with the default state identified in the  
Boundary Scan Chain table at the end of this section of the datasheet. Because the RAM clock is independent from the TAP Clock (TCK) it  
is possible for the TAP to attempt to capture the I/O ring contents while the input buffers are in transition (i.e. in a metastable state). Although  
allowing the TAP to sample metastable inputs will not harm the device, repeatable results cannot be expected. RAM input signals must be  
stabilized for long enough to meet the TAPs input data capture set-up plus hold time (tTS plus tTH). The RAMs clock inputs need not be  
paused for any other TAP operation except capturing the I/O ring contents into the Boundary Scan Register. Moving the controller to Shift-  
DR state then places the boundary scan register between the TDI and TDO pins.  
EXTEST  
EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register is loaded with all logic 0s.  
Rev: 1.00 10/2001  
36/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
The EXTEST command does not block or override the RAM’s input pins; therefore, the RAM’s internal state is still determined by its input  
pins.  
Typically, the Boundary Scan Register is loaded with the desired pattern of data with the SAMPLE/PRELOAD command. Then the EXTEST  
command is used to output the Boundary Scan Register’s contents, in parallel, on the RAM’s data output drivers on the falling edge of TCK  
when the controller is in the Update-IR state.  
Alternately, the Boundary Scan Register may be loaded in parallel using the EXTEST command. When the EXTEST instruction is selected,  
the sate of all the RAM’s input and I/O pins, as well as the default values at Scan Register locations not associated with a pin, are trans-  
ferred in parallel into the Boundary Scan Register on the rising edge of TCK in the Capture-DR state, the RAM’s output pins drive out the  
value of the Boundary Scan Register location with which each output pin is associated.  
IDCODE  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and places the ID  
register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up and any  
time the controller is placed in the Test-Logic-Reset state.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (high-Z) and the  
Boundary Scan Register is connected between TDI and TDO when the TAP controller is moved to the Shift-DR state.  
RFU  
These instructions are Reserved for Future Use. In this device they replicate the BYPASS instruction.  
JTAG TAP Instruction Set Summary  
Instruction  
EXTEST  
Code  
000  
Description  
Notes  
1
Places the Boundary Scan Register between TDI and TDO.  
Preloads ID Register and places it between TDI and TDO.  
IDCODE  
001  
1, 2  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and  
SAMPLE-Z  
010  
011  
TDO.  
1
1
Forces all RAM output drivers to High-Z.  
Do not use this instruction; Reserved for Future Use.  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
RFU  
SAMPLE/  
PRELOAD  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and  
TDO.  
100  
101  
110  
111  
1
1
1
1
GSI  
GSI private instruction.  
Do not use this instruction; Reserved for Future Use.  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
RFU  
BYPASS  
Places Bypass Register between TDI and TDO.  
Notes:  
1. Instruction codes expressed in binary, MSB on left, LSB on right.  
2. Default instruction automatically loaded at power-up and in test-logic-reset state.  
Rev: 1.00 10/2001  
37/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
JTAG Port Recommended Operating Conditions and DC Characteristics  
Parameter  
Symbol  
VIHJ3  
VILJ3  
Min.  
2.0  
Max.  
Unit Notes  
VDD3 +0.3  
3.3 V Test Port Input High Voltage  
3.3 V Test Port Input Low Voltage  
2.5 V Test Port Input High Voltage  
2.5 V Test Port Input Low Voltage  
TMS, TCK and TDI Input Leakage Current  
TMS, TCK and TDI Input Leakage Current  
TDO Output Leakage Current  
V
V
1
1
0.3  
0.8  
VIHJ2  
VILJ2  
0.6 * VDD2  
VDD2 +0.3  
0.3 * VDD2  
V
1
0.3  
V
1
IINHJ  
300  
1
100  
1
uA  
uA  
uA  
V
2
IINLJ  
1  
3
IOLJ  
1  
4
VOHJ  
VOLJ  
Test Port Output High Voltage  
Test Port Output Low Voltage  
1.7  
5, 6  
5, 7  
5, 8  
5, 9  
0.4  
V
VOHJC  
VOLJC  
VDDQ – 100 mV  
Test Port Output CMOS High  
V
Test Port Output CMOS Low  
100 mV  
V
Notes:  
1. Input Under/overshoot voltage must be 2 V > Vi < VDDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tTKC.  
2. ILJ £ VIN £ VDDn  
V
3. 0 V £ VIN £ VILJn  
4. Output Disable, VOUT = 0 to VDDn  
5. The TDO output driver is served by the VDDQ supply.  
6. IOHJ = 4 mA  
7. IOLJ = + 4 mA  
8. IOHJC = –100 uA  
9. IOHJC = +100 uA  
JTAG Port AC Test Conditions  
Parameter  
Input high level  
Conditions  
JTAG Port AC Test Load  
2.3 V  
0.2 V  
DQ  
Input low level  
30pF*  
Input slew rate  
1 V/ns  
1.25 V  
1.25 V  
50W  
Input reference level  
Output reference level  
VT = 1.25 V  
* Distributed Test Jig Capacitance  
Notes:  
1. Include scope and jig capacitance.  
2. Test conditions as as shown unless otherwise noted.  
Rev: 1.00 10/2001  
38/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
JTAG Port Timing Diagram  
tTKL  
tTS  
tTKH  
tTKC  
TCK  
tTH  
TMS  
TDI  
TDO  
tTKQ  
JTAG Port AC Electrical Characteristics  
Parameter  
Symbol  
tTKC  
tTKQ  
tTKH  
tTKL  
tTS  
Min  
50  
Max  
Unit  
ns  
TCK Cycle Time  
TCK Low to TDO Valid  
TCK High Pulse Width  
TCK Low Pulse Width  
TDI & TMS Set Up Time  
TDI & TMS Hold Time  
20  
ns  
20  
20  
10  
10  
ns  
ns  
ns  
tTH  
ns  
Rev: 1.00 10/2001  
39/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
GS8324Z18/36/72 Boundary Scan Chain Order  
Bump  
Order  
x72  
x36  
x18  
x72 x36 x18  
1(TBD)  
Notes:  
1. Depending on the package, some input pads of the scan chain may not be connected to any external pin. In such case: LBO = 1, ZQ = 1,  
PE = 0, SD = 0, ZZ = 0, FT = 1, DP = 1, and SCD = 1.  
2. Every DQ pad consists of two scan registers—D is for input capture, and Q is for output capture.  
3. A single register (#194) for controlling tristate of all the DQ pins is at the end of the scan chain (i.e., the last bit shifted in this tristate control  
is effective after JTAG EXTEST instruction is executed.  
4. 1 = no connect, internally set to logic value 1  
5. 0 = no connect, internally set to logic value 0  
6. X = no connect, value is undefined  
Rev: 1.00 10/2001  
40/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
209 BGA Package Drawing  
14 mm x 22 mm Body, 1.0 mm Bump Pitch, 11 x 19 Bump Array  
C A1  
A
Side View  
D
aaa  
D1  
e
Bottom View  
Æb  
e
Symbol  
Min  
Typ  
Max  
1.70  
0.60  
0.70  
0.38  
22.1  
Units  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
A
A1  
Æb  
c
0.40  
0.50  
0.31  
21.9  
0.50  
0.60  
0.36  
D
22.0  
D1  
E
18.0 (BSC)  
14.0  
13.9  
14.1  
E1  
e
10.0 (BSC)  
1.00 (BSC)  
0.15  
aaa  
Rev 1.0  
Rev: 1.00 10/2001  
41/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
Package Dimensions—119-Pin PBGA  
119-Bump BGA Package  
Pin 1  
Corner  
A
7 6 5 4 3 2  
1
A
B
C
D
E
F
G
H
J
A
B
C
D
E
F
G
H
J
G
D
B
S
K
L
K
L
M
N
P
R
T
M
N
P
R
T
U
U
R
Bottom View  
Top View  
Package Dimensions—119-Pin PBGA  
Symbol  
Description  
Width  
Min. Nom. Max  
13.9 14.0 14.1  
21.9 22.0 22.1  
A
B
Length  
C
Package Height (including ball) 1.73 1.86 1.99  
D
Ball Size  
0.60 0.75 0.90  
0.50 0.60 0.70  
E
Ball Height  
F
Package Height (excluding balls) 1.16 1.26 1.36  
G
Width between Balls  
Package Height above board  
Width of package between balls  
Length of package between balls  
Variance of Ball Height  
1.27  
K
0.65 0.70 0.75  
R
7.62  
20.32  
0.15  
S
T
Unit: mm  
Side View  
Rev: 1.00 10/2001  
42/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
Ordering Information for GSI Synchronous NBT SRAMs  
2
Speed  
3
1
Org  
Type  
Package  
T
Part Number  
A
(MHz/ns)  
2M x 18  
2M x 18  
2M x 18  
2M x 18  
2M x 18  
2M x 18  
2M x 18  
2M x 18  
2M x 18  
2M x 18  
2M x 18  
2M x 18  
1M x 36  
1M x 36  
1M x 36  
1M x 36  
1M x 36  
1M x 36  
1M x 36  
1M x 36  
1M x 36  
1M x 36  
1M x 36  
1M x 36  
512K x 72  
512K x 72  
512K x 72  
512K x 72  
512K x 72  
GS8324Z18B-250  
GS8324Z18B-225  
GS8324Z18B-200  
GS8324Z18B-166  
GS8324Z18B-150  
GS8324Z18B-133  
GS8324Z18C-250  
GS8324Z18C-225  
GS8324Z18C-200  
GS8324Z18C-166  
GS8324Z18C-150  
GS8324Z18C-133  
GS8324Z36B-250  
GS8324Z36B-225  
GS8324Z36B-200  
GS8324Z36B-166  
GS8324Z36B-150  
GS8324Z36B-133  
GS8324Z36C-250  
GS8324Z36C-225  
GS8324Z36C-200  
GS8324Z36C-166  
GS8324Z36C-150  
GS8324Z36C-133  
GS8324Z72C-250  
GS8324Z72C-225  
GS8324Z72C-200  
GS8324Z72C-166  
GS8324Z72C-150  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
209 BGA  
209 BGA  
209 BGA  
209 BGA  
209 BGA  
209 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
209 BGA  
209 BGA  
209 BGA  
209 BGA  
209 BGA  
209 BGA  
209 BGA  
209 BGA  
209 BGA  
209 BGA  
209 BGA  
250/6  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
225/6.5  
200/7.5  
166/8.5  
150/10  
133/11  
250/6  
225/6.5  
200/7.5  
166/8.5  
150/10  
133/11  
250/6  
225/6.5  
200/7.5  
166/8.5  
150/10  
133/11  
250/6  
225/6.5  
200/7.5  
166/8.5  
150/10  
133/11  
250/6  
225/6.5  
200/7.5  
166/8.5  
150/10  
Notes:  
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8324Z18B-150IB.  
2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each  
device is Pipeline/Flow Through mode-selectable by the user.  
3. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range.  
4. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which  
are covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings.  
Rev: 1.00 10/2001  
43/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
Ordering Information for GSI Synchronous NBT SRAMs (Continued)  
2
Speed  
3
1
Org  
Type  
Package  
T
Part Number  
A
(MHz/ns)  
133/11  
250/6  
512K x 72  
2M x 18  
2M x 18  
2M x 18  
2M x 18  
2M x 18  
2M x 18  
2M x 18  
2M x 18  
2M x 18  
2M x 18  
2M x 18  
2M x 18  
1M x 36  
1M x 36  
1M x 36  
1M x 36  
1M x 36  
1M x 36  
1M x 36  
1M x 36  
1M x 36  
1M x 36  
1M x 36  
1M x 36  
512K x 72  
GS8324Z72C-133  
GS8324Z18B-250I  
GS8324Z18B-225I  
GS8324Z18B-200I  
GS8324Z18B-166I  
GS8324Z18B-150I  
GS8324Z18B-133I  
GS8324Z18C-250I  
GS8324Z18C-225I  
GS8324Z18C-200I  
GS8324Z18C-166I  
GS8324Z18C-150I  
GS8324Z18C-133I  
GS8324Z36B-250I  
GS8324Z36B-225I  
GS8324Z36B-200I  
GS8324Z36B-166I  
GS8324Z36B-150I  
GS8324Z36B-133I  
GS8324Z36C-250I  
GS8324Z36C-225I  
GS8324Z36C-200I  
GS8324Z36C-166I  
GS8324Z36C-150I  
GS8324Z36C-133I  
GS8324Z72C-250I  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
209 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
209 BGA  
209 BGA  
209 BGA  
209 BGA  
209 BGA  
209 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
209 BGA  
209 BGA  
209 BGA  
209 BGA  
209 BGA  
209 BGA  
209 BGA  
C
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
225/6.5  
200/7.5  
166/8.5  
150/10  
133/11  
250/6  
225/6.5  
200/7.5  
166/8.5  
150/10  
133/11  
250/6  
225/6.5  
200/7.5  
166/8.5  
150/10  
133/11  
250/6  
225/6.5  
200/7.5  
166/8.5  
150/10  
133/11  
250/6  
Notes:  
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8324Z18B-150IB.  
2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each  
device is Pipeline/Flow Through mode-selectable by the user.  
3. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range.  
4. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which  
are covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings.  
Rev: 1.00 10/2001  
44/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
Ordering Information for GSI Synchronous NBT SRAMs (Continued)  
2
Speed  
3
1
Org  
Type  
Package  
T
Part Number  
A
(MHz/ns)  
225/6.5  
200/7.5  
166/8.5  
150/10  
512K x 72  
512K x 72  
512K x 72  
512K x 72  
512K x 72  
GS8324Z72C-225I  
GS8324Z72C-200I  
GS8324Z72C-166I  
GS8324Z72C-150I  
GS8324Z72C-133I  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
209 BGA  
209 BGA  
209 BGA  
209 BGA  
209 BGA  
I
I
I
I
I
133/11  
Notes:  
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8324Z18B-150IB.  
2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each  
device is Pipeline/Flow Through mode-selectable by the user.  
3. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range.  
4. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which  
are covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings.  
Rev: 1.00 10/2001  
45/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8324Z18(B/C)/GS8324Z36(B/C)/GS8324Z72(C)  
36Mb Sync SRAM Datasheet Revision History  
DS/DateRev. Code: Old;  
New  
Types of Changes  
Format or Content  
Page;Revisions;Reason  
• Creation of new datasheet  
8324Z18_r1  
Rev: 1.00 10/2001  
46/46  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  

相关型号:

GS8324Z72C-150

2M x 18, 1M x 36, 512K x 72 36Mb Sync NBT SRAMs
GSI

GS8324Z72C-150I

2M x 18, 1M x 36, 512K x 72 36Mb Sync NBT SRAMs
GSI

GS8324Z72C-150IT

ZBT SRAM, 512KX72, 10ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI

GS8324Z72C-150T

ZBT SRAM, 512KX72, 10ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI

GS8324Z72C-166

2M x 18, 1M x 36, 512K x 72 36Mb Sync NBT SRAMs
GSI

GS8324Z72C-166I

2M x 18, 1M x 36, 512K x 72 36Mb Sync NBT SRAMs
GSI

GS8324Z72C-166IT

ZBT SRAM, 512KX72, 8.5ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI

GS8324Z72C-166T

暂无描述
GSI

GS8324Z72C-200

2M x 18, 1M x 36, 512K x 72 36Mb Sync NBT SRAMs
GSI

GS8324Z72C-200I

2M x 18, 1M x 36, 512K x 72 36Mb Sync NBT SRAMs
GSI

GS8324Z72C-200IT

ZBT SRAM, 512KX72, 7.5ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI

GS8324Z72C-200T

ZBT SRAM, 512KX72, 7.5ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI