GS8180DV18GD-200T [GSI]

暂无描述;
GS8180DV18GD-200T
型号: GS8180DV18GD-200T
厂家: GSI TECHNOLOGY    GSI TECHNOLOGY
描述:

暂无描述

静态存储器
文件: 总28页 (文件大小:849K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GS8180DV18D-250/200/167/133/100  
250 MHz–100 MHz  
165-Bump BGA  
Commercial Temp  
Industrial Temp  
18Mb Burst of 4  
SigmaQuad SRAM  
2.5 V V  
DD  
1.8 V or 1.5 V I/O  
SigmaQuad SRAMs are offered in a number of configurations.  
Some emulate and enhance other synchronous separate I/O  
SRAMs. A higher performance SDR (Single Data Rate) Burst  
of 2 version is also offered. The logical differences between  
the protocols employed by these RAMs hinge mainly on  
various combinations of address bursting, output data  
registering, and write cueing. Along with the Common I/O  
family of SigmaRAMs, the SigmaQuad family of SRAMs  
allows a user to implement the interface protocol best suited to  
the task at hand.  
Features  
• Simultaneous Read and Write SigmaQuad™ Interface  
• JEDEC-standard pinout and package  
• Dual DoubleData Rate interface  
• Byte Write controls sampled at data-in time  
• Burst of 4 Read and Write  
• 2.5 V +100/–100 mV core power supply  
• 1.5 V or 1.8 V HSTL Interface  
• Pipelined read operation  
• Fully coherent read and write pipelines  
• ZQ mode pin for programmable output drive strength  
• IEEE 1149.1 JTAG-compliant Boundary Scan  
• 165-bump, 13 mm x 15 mm, 1 mm bump pitch BGA package  
• Pin-compatible with future 36Mb, 72Mb, and 144Mb devices  
• Pb-Free 165-bump BGA package available  
Clocking and Addressing Schemes  
A Burst of 4 SigmaQuad SRAM is a synchronous device. It  
employs two input register clock inputs, K and K. K and K are  
independent single-ended clock inputs, not differential inputs  
to a single differential clock input buffer. The device also  
allows the user to manipulate the output register clock inputs  
quasi independently with the C and C clock inputs. C and C are  
also independent single-ended clock inputs, not differential  
inputs. If the C clocks are tied high, the K clocks are routed  
internally to fire the output registers instead.  
SigmaRAMFamily Overview  
GS8180DV18 are built in compliance with the SigmaQuad  
SRAM pinout standard for Separate I/O synchronous SRAMs.  
They are18,874,368-bit (18Mb) SRAMs. These are the first in  
a family of wide, very low voltage HSTL I/O SRAMs designed  
to operate at the speeds needed to implement economical high  
performance networking systems.  
Because Separate I/O Burst of 4 RAMs always transfer data in  
four packets, A0 and A1 are internally set to 0 for the first read  
Parameter Synopsis  
-250  
-200  
5.0 ns  
2.3 ns  
-167  
6.0 ns  
2.5 ns  
-133  
-100  
10 ns  
3.0 ns  
tKHKH  
tKHQV  
4.0 ns  
2.1 ns  
7.5 ns  
3.0 ns  
Rev: 2.04 4/2005  
1/28  
© 2002, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8180DV18D-250/200/167/133/100  
1M x 18 SigmaQuad SRAM—Top View (Package D)  
1
2
3
4
5
6
7
8
9
10  
11  
MCL/SA  
(144Mb) (36Mb)  
NC/SA  
MCL/SA  
(72Mb)  
A
NC  
W
BW1  
K
NC  
R
SA  
NC  
B
C
D
E
F
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
Q9  
NC  
D9  
SA  
NC  
SA  
K
BW0  
SA  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
Q7  
NC  
D6  
NC  
NC  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
Q0  
TDI  
D10  
Q10  
Q11  
D12  
Q13  
V
NC  
V
SS  
SS  
SS  
SS  
D11  
NC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
Q12  
D13  
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
G
H
J
V
V
V
V
V
V
V
REF  
REF  
DDQ  
DDQ  
NC  
D14  
NC  
Q4  
D3  
K
L
NC  
Q15  
NC  
Q14  
D15  
D16  
Q16  
Q17  
SA  
V
NC  
NC  
NC  
NC  
NC  
SA  
V
V
V
V
V
NC  
Q1  
DDQ  
SS  
SS  
SS  
SS  
M
N
P
R
V
V
SS  
SS  
SS  
SS  
D17  
NC  
V
SA  
SA  
SA  
SA  
C
SA  
SA  
SA  
V
NC  
D0  
SA  
SA  
SA  
SA  
TCK  
C
TMS  
11 x 15 Bump BGA—13 x 15 mm2 Body—1 mm Bump Pitch  
Notes:  
1. Expansion addresses: A3 for 36Mb, A10 for 72Mb, A2 for 144Mb  
2. BW0 controls writes to D0:D8. BW1 controls writes to D9:D17.  
3. MCL = Must Connect Low  
4. It is recommended that H1 be tied low for compatibility with future devices.  
Rev: 2.04 4/2005  
2/28  
© 2002, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8180DV18D-250/200/167/133/100  
Pin Description Table  
Symbol  
Description  
Synchronous Address Inputs  
No Connect  
Type  
Input  
Comments  
SA  
NC  
R
Synchronous Read  
Synchronous Write  
Synchronous Byte Writes  
Input Clock  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Input  
Input  
Active Low  
W
Active Low  
BW0–BW1  
Active Low  
K
K
Active High  
Input Clock  
Active Low  
C
Output Clock  
Active High  
C
Output Clock  
Active Low  
TMS  
TDI  
TCK  
TDO  
Test Mode Select  
Test Data Input  
Test Clock Input  
Test Data Output  
V
HSTL Input Reference Voltage  
Output Impedance Matching Input  
Must Connect Low  
Synchronous Data Inputs  
Synchronous Data Outputs  
Power Supply  
REF  
ZQ  
MCL  
D0–D17  
Q0–Q17  
Input  
Output  
Supply  
V
2.5 V Nominal  
DD  
V
Isolated Output Buffer Supply  
Power Supply: Ground  
Supply  
Supply  
1.8 or 1.5 V Nominal  
DDQ  
V
SS  
Note:  
NC = Not Connected to die or any other pin  
Background  
Separate I/O SRAMs, from a system architecture point of view, are attractive in applications where alternating reads and writes are  
needed. Therefore, the SigmaQuad SRAM interface and truth table are optimized for alternating reads and writes. Separate I/O  
SRAMs are unpopular in applications where multiple reads or multiple writes are needed because burst read or write transfers from  
Separate I/O SRAMs can cut the RAM’s bandwidth in half.  
A SigmaQuad SRAM can begin an alternating sequence of reads and writes with either a read or a write. In order for any separate  
I/O SRAM that shares a common address between its two ports to keep both ports running all the time, the RAM must implement  
some sort of burst transfer protocol. The burst must be at least long enough to cover the time the opposite port is receiving  
instructions on what to do next. The rate at which a RAM can accept a new random address is the most fundamental performance  
metric for the RAM. Each of the three SigmaQuad SRAMs support similar address rates because random address rate is  
determined by the internal performance of the RAM and they are all based on the same internal circuits. Differences between the  
truth tables of the different SigmaQuad SRAMs, or any other Separate I/O SRAMs, follow from differences in how the RAM’s  
Rev: 2.04 4/2005  
3/28  
© 2002, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8180DV18D-250/200/167/133/100  
interface is contrived to interact with the rest of the system. Each mode of operation has its own advantages and disadvantages. The  
user should consider the nature of the work to be done by the RAM to evaluate which version is best suited to the application at  
hand.  
Alternating Read-Write Operations  
SigmaQuad SRAMs follow a few simple rules of operation.  
- Read or Write commands issued on one port are never allowed to interrupt an operation in progress on the other port.  
- Read or Write data transfers in progress may not be interrupted and re-started.  
- R and W high always deselects the RAM.  
- All address, data, and control inputs are sampled on clock edges.  
In order to enforce these rules, each RAM combines present state information with command inputs. See the Truth Table for  
details.  
Burst of 4 SigmaQuad SRAM DDR Read  
The status of the Address Input, W, and R pins are sampled at each rising edge of K. W and R high causes chip disable. A low on  
the Read Enable-bar pin, R, begins a read cycle. R is always ignored if the previous command loaded was a read command. The  
four resulting data output transfers begin after the next rising edge of the K clock. Data is clocked out by the next rising edge of the  
C, the rising edge of C after that, the next rising edge of C, and finally by the next rising edge of C.  
Burst of 4 Double Data Rate SigmaQuad SRAM Read First  
Read A  
NOP  
Read B  
Write C  
Read D  
Write E  
NOP  
K
K
Address  
A
B
C
D
E
R
W
BWx  
D
C
C+1  
C+2  
C+3  
E
E+1  
C
C
Q
A
A+1  
A+2  
A+3  
B
B+1  
B+2  
B+3  
D
D+1  
D+2  
Rev: 2.04 4/2005  
4/28  
© 2002, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8180DV18D-250/200/167/133/100  
Burst of 4 SigmaQuad SRAM DDR Write  
The status of the Address Input, W, and R pins are sampled at each rising edge of K. W and R high causes chip disable. A low on  
the Write Enable-bar pin, W, and a high on the Read Enable-bar pin, R, begins a write cycle. W is always ignored if the previous  
command was a write command. Data is clocked in by the next rising edge of K, the rising edge of K after that, the next rising edge  
of K, and finally by the next rising edge of K.  
Burst of 4 Double Data Rate SigmaQuad SRAM Write First  
Write A  
NOP  
Write B  
Read C  
NOP  
Read D  
NOP  
K
Kbar  
Address  
Rbar  
Wbar  
BWx bar  
D
A
B
C
D
B+3  
B+3  
A
A+1  
A+2  
A+3  
B
B+1  
B+2  
C
Cbar  
Q
C
C+1  
C+2  
C+3  
D
Special Functions  
Byte Write Control  
Byte Write Enable pins are sampled at the same time that Data In is sampled. A high on the Byte Write Enable pin associated with  
a particular byte (e.g., BW0 controls D0–D8 inputs) will inhibit the storage of that particular byte, leaving whatever data may be  
stored at the current address at that byte location undisturbed. Any or all of the Byte Write Enable pins may be driven high or low  
during the data in sample times in a write sequence.  
Each write enable command and write address loaded into the RAM provides the base address for a 4 beat data transfer. The x18  
version of the RAM, for example, may write 72 bits in association with each address loaded. Any 9-bit byte may be masked in any  
write sequence.  
Rev: 2.04 4/2005  
5/28  
© 2002, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8180DV18D-250/200/167/133/100  
Example x18 RAM Write Sequence using Byte Write Enables  
Data In Sample  
BW0  
BW1  
D0–D8  
D9–D17  
Time  
Beat 1  
Beat 2  
Beat 3  
Beat 4  
0
1
0
1
1
0
0
0
Data In  
Don’t Care  
Data In  
Don’t Care  
Data In  
Data In  
Don’t Care  
Data In  
Resulting Write Operation  
Beat 1  
D0–D8  
Beat 1  
D9–D17  
Beat 2  
D0–D8  
Beat 2  
D9–D17  
Beat 3  
D0–D8  
Beat 3  
D9–D17  
Beat 4  
D0–D8  
Beat 4  
D9–D17  
Written  
Unchanged  
Unchanged  
Written  
Written  
Written  
Unchanged  
Written  
Output Register Control  
SigmaQuad SRAMs offer two mechanisms for controlling the output data registers. Typically, control is handled by the Output  
Register Clock inputs, C and C. The Output Register Clock inputs can be used to make small phase adjustments in the firing of the  
output registers by allowing the user to delay driving data out as much as a few nanoseconds beyond the next rising edges of the K  
and K clocks. If the C and C clock inputs are tied high, the RAM reverts to K and K control of the outputs, allowing the RAM to  
function as a conventional pipelined read SRAM.  
Rev: 2.04 4/2005  
6/28  
© 2002, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8180DV18D-250/200/167/133/100  
Example Four Bank Depth Expansion Schematic  
R3  
W3  
R2  
W2  
R1  
W1  
R0  
W0  
A0–An  
K
D1–Dn  
Bank 3  
Bank 1  
Bank 2  
Bank 0  
A
A
A
A
W
R
W
W
W
R
K
R
K
R
K
K
D
C
Q
D
C
Q
D
C
Q
D
C
Q
C
Q –Q  
1
n
Note: For simplicity BWn, K, and C are not shown.  
Rev: 2.04 4/2005  
7/28  
© 2002, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8180DV18D-250/200/167/133/100  
Rev: 2.04 4/2005  
8/28  
© 2002, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8180DV18D-250/200/167/133/100  
FLXDrive-II Output Driver Impedance Control  
HSTL I/O SigmaQuad SRAMs are supplied with programmable impedance output drivers. The ZQ pin must be connected to V  
SS  
via an external resistor, RQ, to allow the SRAM to monitor and adjust its output driver impedance. The value of RQ must be 5X the  
value of the intended line impedance driven by the SRAM. The allowable range of RQ to guarantee impedance matching with a  
vendor-specified tolerance is between 150and 300. Periodic readjustment of the output driver impedance is necessary as the  
impedance is affected by drifts in supply voltage and temperature. A clock cycle counter periodically triggers an impedance  
evaluation, resets and counts again. Each impedance evaluation may move the output driver impedance level one step at a time  
towards the optimum level. The output driver is implemented with discrete binary weighted impedance steps. The SRAM requires  
32K start-up cycles, selected or deselected, after VDD reaches its operating range to reach its programmed output driver impedance.  
Separate I/O Burst of 4 SigmaQuad SRAM Truth Table  
Previous  
Operation  
Current  
Operation  
A
R
W
D
D
D
D
Q
Q
Q
Q
K ↑  
(tn)  
K ↑  
(tn)  
K ↑  
(tn)  
K ↑  
K ↑  
(tn)  
K ↑  
K ↑  
(tn+1½  
K ↑  
K ↑  
(tn+2½  
K ↑  
K ↑  
(tn+1½  
K ↑  
K ↑  
(tn+2½)  
(tn-1  
)
(tn+1  
)
)
(tn+2  
)
)
(tn+1  
)
)
(tn+2  
)
X
X
X
V
V
V
1
1
X
1
0
X
0
1
X
1
Deselect  
Write  
Deselect  
Deselect  
Deselect  
Write  
X
D2  
X
X
D3  
X
D2  
D2  
D3  
D3  
Hi-Z  
Hi-Z  
Q2  
Hi-Z  
Hi-Z  
Q3  
Read  
0
Deselect  
Deselect  
Read  
D0  
X
D1  
X
Hi-Z  
Q0  
Hi-Z  
Q1  
X
0
Read  
Q2  
Q3  
Write  
D0  
D2  
D1  
D3  
Q2  
Q3  
V
X
Write  
Read  
Q0  
Q1  
Q2  
Q3  
Notes:  
1. “1” = input “high”; “0” = input “low”; “V” = input “valid”; “X” = input “don’t care”  
2. “—” indicates that the input requirement or output state is determined by the next operation.  
3. Q0, Q1, Q2, and Q3 indicate the first, second, third, and fourth pieces of output data transferred during Read operations.  
4. D0, D1, D2, and D3 indicate the first, second, third, and fourth pieces of input data transferred during Write operations.  
5. Qs are tristated for one cycle in response to Deselect and Write commands, one cycle after the command is sampled, except when pre-  
ceded by a Read command.  
6. Users should not clock in metastable addresses.  
Rev: 2.04 4/2005  
9/28  
© 2002, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8180DV18D-250/200/167/133/100  
Byte Write Clock Truth Table  
BW  
BW  
BW  
BW  
Current Operation  
D
D
D
D
K ↑  
K ↑  
K ↑  
K ↑  
K ↑  
K ↑  
K ↑  
K ↑  
K ↑  
(t  
)
(t  
)
(t  
)
(t  
)
(t )  
(t  
)
(t  
)
(t  
)
(t  
)
n+1  
n+1½  
n+2  
n+2½  
n
n+1  
n+1½  
n+2  
n+2½  
Write  
T
T
T
T
D0  
D2  
X
D3  
D4  
X
Dx stored if BWn = 0 in all four data transfers  
Write  
T
F
F
F
F
T
F
F
F
F
F
T
F
F
F
F
F
T
F
D0  
X
X
X
Dx stored if BWn = 0 in 1st data transfer only  
Write  
D1  
X
X
Dx stored if BWn = 0 in 2nd data transfer only  
Write  
X
D2  
X
X
Dx stored if BWn = 0 in 3rd data transfer only  
Write  
X
X
D3  
X
Dx stored if BWn = 0 in 4th data transfer only  
Write Abort  
F
X
X
X
No Dx stored in any of the four data transfers  
Notes:  
1. “1” = input “high”; “0” = input “low”; “X” = input “don’t care”; “T” = input “true”; “F” = input “false”.  
2. If one or more BWn = 0, then BW = “T”, else BW = “F”.  
x18 Byte Write Enable (BWn) Truth Table  
BW0 BW1  
D0–D8  
Don’t Care  
Data In  
D9–D17  
Don’t Care  
Don’t Care  
Data In  
1
0
1
0
1
1
0
0
Don’t Care  
Data In  
Data In  
Rev: 2.04 4/2005  
10/28  
© 2002, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8180DV18D-250/200/167/133/100  
State Diagram  
Power-  
Read NOP  
Write NOP  
WRITE  
READ  
WRITE  
READ  
Load New  
WRITE  
Load New  
Read Address  
R Count = 0  
READ  
R Count = 2  
Write Address  
W Count = 2  
W Count = 0  
READ  
R Count = 2  
WRITE  
Always  
Always  
W Count = 2  
DDR Read  
DDR Write  
R Count = R Count + 1  
W Count = W Count + 1  
READ  
Always  
WRITE  
Always  
R Count = 1  
W Count = 1  
Increment  
Increment  
Read Address  
Write Address  
Notes:  
1. Internal burst counter is fixed as 2-bit linear (i.e., when first address is A0+), next internal burst address is A0+1.  
2. “READ” refers to read active status with R = Low, “READ” refers to read inactive status with R = High. The same is true for  
“WRITE” and “WRITE”.  
3. Read and write state machine can be active simultaneously.  
4. State machine control timing sequence is controlled by K.  
5. R Count is the read counter; Burst of 4 must complete 2 DDR reads.  
6. W Count is the write counter; Burst of 4 must complete 2 DDR writes.  
Rev: 2.04 4/2005  
11/28  
© 2002, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8180DV18D-250/200/167/133/100  
Absolute Maximum Ratings  
(All voltages reference to V  
)
SS  
Symbol  
Description  
Value  
–0.5 to 3.6  
–0.5 to 3.6  
–0.5 to V  
Unit  
V
Voltage on V Pins  
DD  
V
DD  
V
Voltage in V  
Voltage in V  
Pins  
Pins  
V
V
DDQ  
DDQ  
REF  
V
REF  
DDQ  
V
–0.5 to V  
–0.5 to V  
+0.5 (3.6 V max.)  
+0.5 (3.6 V max.)  
+/–100  
Voltage on I/O Pins  
V
I/O  
DDQ  
DDQ  
V
Voltage on Other Input Pins  
Input Current on Any Pin  
V
IN  
I
mA dc  
mA dc  
IN  
I
Output Current on Any I/O Pin  
Maximum Junction Temperature  
Storage Temperature  
+/–100  
OUT  
o
T
125  
C
J
o
T
–55 to 125  
C
STG  
Note:  
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended  
Operating Conditions. Exposure to conditions exceeding the Recommended Operating Conditions, for an extended period of time, may affect  
reliability of this component.  
Recommended Operating Conditions  
Power Supplies  
Parameter  
Supply Voltage  
Symbol  
Min.  
2.4  
Typ.  
2.5  
Max.  
2.6  
Unit  
Notes  
V
V
V
V
DD  
V
1.8 V I/O Supply Voltage  
1.5 V I/O Supply Voltage  
1.7  
1.8  
1.95  
1.6  
1
1
DDQ  
V
1.4  
1.5  
DDQ  
Ambient Temperature  
(Commercial Range Versions)  
T
0
25  
25  
70  
85  
°C  
°C  
2
2
A
Ambient Temperature  
(Industrial Range Versions)  
T
–40  
A
Notes:  
1. Unless otherwise noted, all performance specifications quoted are evaluated for worst case at both 1.4 V V  
1.6 V (i.e., 1.5 V I/O)  
DDQ  
and 1.7 V V  
1.95 V (i.e., 1.8 V I/O) and quoted at whichever condition is worst case.  
DDQ  
2. The power supplies need to be powered up simultaneously or in the following sequence: V , V , V , followed by signal inputs. The  
DD DDQ REF  
power down sequence must be the reverse. V  
must not exceed V .  
DD  
DDQ  
3. Most speed grades and configurations of this device are offered in both Commercial and Industrial Temperature ranges. The part number  
of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are  
evaluated for worst case in the temperature range marked on the device.  
Rev: 2.04 4/2005  
12/28  
© 2002, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8180DV18D-250/200/167/133/100  
HSTL I/O DC Input Characteristics  
Parameter  
DC Input Logic High  
Symbol  
Min  
Max  
Units  
mV  
Notes  
V
(dc)  
V
+ 200  
REF  
1
1
1
IH  
V (dc)  
V
– 200  
REF  
DC Input Logic Low  
mV  
IL  
V
DC Voltage  
V
(dc)  
V
(min)/2  
V
(max)/2  
DDQ  
V
REF  
REF  
DDQ  
Note:  
Compatible with both 1.8 V and 1.5 V I/O drivers  
HSTL I/O AC Input Characteristics  
Parameter  
AC Input Logic High  
Symbol  
Min  
Max  
Units  
Notes  
3,4  
V
(ac)  
V
+ 400  
REF  
mV  
mV  
mV  
IH  
V (ac)  
V
– 400  
REF  
AC Input Logic Low  
3,4  
IL  
V
Peak to Peak AC Voltage  
V
(ac)  
5% V  
(DC)  
REF  
1
REF  
REF  
Notes:  
1. The peak to peak AC component superimposed on V  
may not exceed 5% of the DC component of V  
.
REF  
REF  
2. To guarantee AC characteristics, V ,V , Trise, and Tfall of inputs and clocks must be within 10% of each other.  
IH IL  
3. For devices supplied with HSTL I/O input buffers. Compatible with both 1.8 V and 1.5 V I/O drivers.  
4. See AC Input Definition drawing below.  
HSTL I/O AC Input Definitions  
V
(ac)  
IH  
V
REF  
V (ac)  
IL  
Rev: 2.04 4/2005  
13/28  
© 2002, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8180DV18D-250/200/167/133/100  
Undershoot Measurement and Timing  
Overshoot Measurement and Timing  
V
IH  
20% tKHKH  
V
+ 1.0 V  
DD  
V
SS  
50%  
50%  
V
DD  
V
– 1.0 V  
SS  
20% tKHKH  
V
IL  
Capacitance  
o
(T = 25 C, f = 1 MHZ, V = 3.3 V)  
A
DD  
Parameter  
Symbol  
Test conditions  
Typ.  
Max.  
Unit  
pF  
C
V
= 0 V  
Input Capacitance  
Output Capacitance  
4
6
5
7
IN  
IN  
C
V
OUT  
= 0 V  
pF  
OUT  
Note:  
This parameter is sample tested.  
AC Test Conditions  
Parameter  
Conditions  
V
Input high level  
Input low level  
DDQ  
0 V  
Max. input slew rate  
Input reference level  
2 V/ns  
V
V
/2  
/2  
DDQ  
DDQ  
Output reference level  
Notes:  
Test conditions as specified with output loading as shown unless otherwise noted.  
AC Test Load Diagram  
DQ  
RQ = 250 (HSTL I/O)  
= 0.75 V  
V
REF  
50Ω  
VT = V /2  
DDQ  
Rev: 2.04 4/2005  
14/28  
© 2002, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8180DV18D-250/200/167/133/100  
Input and Output Leakage Characteristics  
Parameter  
Symbol  
Test Conditions  
Min.  
Max  
Notes  
Input Leakage Current  
(except mode pins)  
I
V = 0 to V  
IN DD  
–2 uA  
2 uA  
IL  
Output Disable,  
= 0 to V  
I
Output Leakage Current  
–2 uA  
2 uA  
OL  
V
OUT  
DDQ  
Programmable Impedance HSTL Output Driver DC Electrical Characteristics  
Parameter  
Symbol  
Min.  
Max.  
Units Notes  
V
V
/2  
V
Output High Voltage  
Output Low Voltage  
Output High Voltage  
V
V
V
V
1, 3  
2, 3  
4, 5  
4, 6  
OH1  
DDQ  
DDQ  
V
V
/2  
DDQ  
Vss  
OL1  
V
V
– 0.2  
V
DDQ  
OH2  
DDQ  
V
Output Low Voltage  
Vss  
0.2  
OL2  
Notes:  
1.  
I
= (V /2) / (RQ/5) +/– 15% @ V = V /2 (for: 175Ω ≤ RQ 350Ω).  
DDQ OH DDQ  
OH  
2.  
I
= (V /2) / (RQ/5) +/– 15% @ V = V /2 (for: 175Ω ≤ RQ 350Ω).  
OL  
DDQ  
OL  
DDQ  
3. Parameter tested with RQ = 250and V  
= 1.5 V or 1.8 V  
DDQ  
4. Minimum Impedance mode, ZQ = V  
SS  
5.  
6.  
I
I
= –1.0 mA  
= 1.0 mA  
OH  
OL  
Operating Currents  
-250  
-200  
–40°C  
-167  
–40°C  
-133  
-100  
Parameter  
Org Symbol  
Test Conditions  
0°C  
to  
–40°C  
to  
0°C  
to  
0°C  
to  
0°C  
to  
–40°C  
to  
0°C  
to  
–40°C  
to  
to  
to  
70°C  
+85°C  
70°C  
+85°C  
70°C  
+85°C  
70°C  
+85°C  
70°C  
+85°C  
460  
mA  
400  
mA  
340  
mA  
280  
mA  
R and W VIL Max.  
tKHKH tKHKH Min.  
All other inputs  
VIN VIL Max. or VIN VIH Min.  
IDD  
x18  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Operating  
Current  
IDDQ  
95 mA  
85 mA  
70 mA  
65 mA  
130  
mA  
120  
mA  
115  
mA  
110  
mA  
R and W VIH Min.  
tKHKH tKHKH Min.  
All other inputs  
ISB1  
x18  
Chip  
Disable  
Current  
ISBQ1  
5 mA  
5 mA  
5 mA  
5 mA  
VIN VIL Max. or VIN VIH Min.  
Note:  
Power measured with output pins floating.  
Rev: 2.04 4/2005  
15/28  
© 2002, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8180DV18D-250/200/167/133/100  
AC Electrical Characteristics  
-250  
-200  
-167  
-133  
-100  
Parameter  
Symbol  
Units Notes  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
t
KHKH  
K, K Clock Cycle Time  
C, C Clock Cycle Time  
4.0  
1.5  
1.5  
1.8  
1.8  
5.0  
1.9  
1.9  
2.2  
2.2  
6.0  
2.4  
2.4  
2.7  
2.7  
7.5  
3.0  
3.0  
3.4  
3.4  
10  
3.0  
3.0  
4.6  
4.6  
ns  
ns  
ns  
t
CHCH  
t
KHKL  
K, K Clock High Pulse Width  
C, C Clock High Pulse Width  
t
CHCL  
t
KLKH  
K, K Clock Low Pulse Width  
C, C Clock Low Pulse Width  
t
CLCH  
t
KHKH  
K Clock High to K Clock High  
C Clock High to C Clock High  
ns  
ns  
4
t
CHCH  
t
KHKH  
K Clock High to K Clock High  
C Clock High to C Clock High  
t
CHCH  
t
K, K Clock High to C, C Clock High  
Address Input Setup Time  
Address Input Hold Time  
Control Input Setup Time  
Control Input Hold Time  
0
1.8  
0
2.3  
0
2.0  
0
2.5  
0
3.0  
ns  
ns  
ns  
ns  
ns  
KHCH  
t
0.5  
0.5  
0.5  
0.5  
0.6  
0.6  
0.6  
0.6  
0.7  
0.7  
0.7  
0.7  
0.8  
0.8  
0.8  
0.8  
1.0  
1.0  
1.0  
1.0  
AVKH  
KHAX  
BVKH  
KHBX  
t
t
t
1
1
Data and Byte Write Input Setup  
Time  
t
0.5  
0.5  
0.6  
0.6  
0.7  
0.7  
0.8  
0.8  
1.0  
1.0  
ns  
ns  
DVKH  
KHDX  
t
Data and Byte Write Input Hold Time  
t
KHQV  
K, K Clock High to Data Output Valid  
C, C Clock High to Data Output Valid  
2.1  
1.0  
1.0  
2.2  
1.2  
1.2  
2.5  
1.2  
1.2  
3.0  
1.2  
1.2  
3.0  
ns  
ns  
ns  
ns  
t
CHQV  
t
KHQX  
K, K Clock High to Data Output Hold  
C, C Clock High to Data Output Hold  
0.5  
0.5  
0.5  
2
t
CHQX  
t
KHQX1  
K Clock High to Data Output Low-Z  
C Clock High to Data Output Low-Z  
2,3  
2,3  
t
CHQX1  
t
KHQZ  
K Clock High to Data Output High-Z  
C Clock High to Data Output High-Z  
2.1  
2.2  
2.5  
3.0  
3.0  
t
CHQZ  
Notes:  
1. These parameters apply to control inputs R and W.  
2. These parameters are guaranteed by design and characterization. Not 100% tested.  
3. These parameters are measured at ±50mV from steady state voltage.  
4.  
t
Max is specified by t  
Min. t  
Max is specified by t  
Min.  
KHKH  
KHKH  
CHCH  
CHCH  
Rev: 2.04 4/2005  
16/28  
© 2002, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8180DV18D-250/200/167/133/100  
Rev: 2.04 4/2005  
Rev: 2.04 4/2005  
17/28  
17/28  
© 2002, GSI Technology  
© 2002, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8180DV18D-250/200/167/133/100  
Rev: 2.04 4/2005  
Rev: 2.04 4/2005  
18/28  
18/28  
© 2002, GSI Technology  
© 2002, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8180DV18D-250/200/167/133/100  
JTAG Port Operation  
Overview  
The JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan  
interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with V . The JTAG output  
DD  
drivers are powered by V  
.
DDQ  
Disabling the JTAG Port  
It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless  
clocked. TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG  
Port unused, TCK, TDI, and TMS may be left floating or tied to either V or V . TDO should be left unconnected.  
DD  
SS  
JTAG Port Registers  
JTAG Pin Descriptions  
Pin  
Pin Name  
I/O  
Description  
Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate  
from the falling edge of TCK.  
TCK  
Test Clock  
In  
The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP  
TMS  
TDI  
Test Mode Select  
Test Data In  
In controller state machine. An undriven TMS input will produce the same result as a logic one input  
level.  
The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers  
placed between TDI and TDO. The register placed between TDI and TDO is determined by the  
In state of the TAP Controller state machine and the instruction that is currently loaded in the TAP  
Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce  
the same result as a logic one input level.  
Output that is active depending on the state of the TAP state machine. Output changes in  
Out response to the falling edge of TCK. This is the output side of the serial registers placed between  
TDI and TDO.  
TDO  
Test Data Out  
Note:  
This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is  
held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.  
Overview  
The various JTAG registers, refered to as Test Access Port orTAP Registers, are selected (one at a time) via the sequences of 1s  
and 0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the  
rising edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the  
TDI and TDO pins.  
Instruction Register  
The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or  
the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the  
TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the  
controller is placed in Test-Logic-Reset state.  
Bypass Register  
The Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through  
the RAM’s JTAG Port to another device in the scan chain with as little delay as possible.  
Rev: 2.04 4/2005  
19/28  
© 2002, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8180DV18D-250/200/167/133/100  
Boundary Scan Register  
The Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins.  
The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The  
Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the  
device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan  
Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in  
Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z,  
SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.  
JTAG TAP Block Diagram  
·
·
·
·
·
·
·
·
Boundary Scan Register  
·
·
·
0
Bypass Register  
2
1 0  
Instruction Register  
TDI  
TDO  
ID Code Register  
31 30 29  
2 1  
0
·
· · ·  
Control Signals  
Test Access Port (TAP) Controller  
TMS  
TCK  
Identification (ID) Register  
The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in  
Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM.  
It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the  
controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins.  
Rev: 2.04 4/2005  
20/28  
© 2002, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8180DV18D-250/200/167/133/100  
Tap Controller Instruction Set  
ID Register Contents  
Die  
Revision  
Code  
GSI Technology  
JEDEC Vendor  
ID Code  
I/O  
Configuration  
Not Used  
Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  
0
1
x18  
X
X
X
X
0
0
0
X
1
0
0
1
0
0
0
0
1
0
1
0
0
0 0 1 1 0 1 1 0 0 1  
Overview  
There are two classes of instructions defined in the Standard 1149.1-1990; the standard (Public) instructions, and device specific  
(Private) instructions. Some Public instructions are mandatory for 1149.1 compliance. Optional Public instructions must be  
implemented in prescribed ways. The TAP on this device may be used to monitor all input and I/O pads, and can be used to load  
address, data or control signals into the RAM or to preload the I/O buffers.  
When the TAP controller is placed in Capture-IR state the two least significant bits of the instruction register are loaded with 01.  
When the controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired  
instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the  
TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP instruction set for this  
device is listed in the following table.  
Rev: 2.04 4/2005  
21/28  
© 2002, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8180DV18D-250/200/167/133/100  
JTAG Tap Controller State Diagram  
Test Logic Reset  
1
0
1
1
1
Run Test Idle  
Select DR  
Select IR  
0
0
0
1
1
1
1
Capture DR  
Capture IR  
0
0
Shift DR  
Shift IR  
0
0
1
1
Exit1 DR  
Exit1 IR  
0
0
Pause DR  
Pause IR  
0
0
0
0
1
1
Exit2 DR  
Exit2 IR  
1
1
Update DR  
Update IR  
1
0
1
0
Instruction Descriptions  
BYPASS  
When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This  
occurs when the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facili-  
tate testing of other devices in the scan path.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is  
loaded in the Instruction Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and  
I/O buffers into the Boundary Scan Register. Boundary Scan Register locations are not associated with an input or I/O pin, and  
are loaded with the default state identified in the Boundary Scan Chain table at the end of this section of the datasheet. Because  
the RAM clock is independent from the TAP Clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents  
while the input buffers are in transition (i.e. in a metastable state). Although allowing the TAP to sample metastable inputs will  
not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the  
TAPs input data capture set-up plus hold time (tTS plus tTH). The RAMs clock inputs need not be paused for any other TAP  
operation except capturing the I/O ring contents into the Boundary Scan Register. Moving the controller to Shift-DR state then  
places the boundary scan register between the TDI and TDO pins.  
EXTEST  
EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register is loaded with  
all logic 0s. The EXTEST command does not block or override the RAM’s input pins; therefore, the RAM’s internal state is  
Rev: 2.04 4/2005  
22/28  
© 2002, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8180DV18D-250/200/167/133/100  
still determined by its input pins.  
Typically, the Boundary Scan Register is loaded with the desired pattern of data with the SAMPLE/PRELOAD command.  
Then the EXTEST command is used to output the Boundary Scan Register’s contents, in parallel, on the RAM’s data output  
drivers on the falling edge of TCK when the controller is in the Update-IR state.  
Alternately, the Boundary Scan Register may be loaded in parallel using the EXTEST command. When the EXTEST instruc-  
tion is selected, the sate of all the RAM’s input and I/O pins, as well as the default values at Scan Register locations not asso-  
ciated with a pin, are transferred in parallel into the Boundary Scan Register on the rising edge of TCK in the Capture-DR  
state, the RAM’s output pins drive out the value of the Boundary Scan Register location with which each output pin is associ-  
ated.  
IDCODE  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and  
places the ID register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction  
loaded in at power up and any time the controller is placed in the Test-Logic-Reset state.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (high-  
Z) and the Boundary Scan Register is connected between TDI and TDO when the TAP controller is moved to the Shift-DR  
state.  
RFU  
These instructions are Reserved for Future Use. In this device they replicate the BYPASS instruction.  
Rev: 2.04 4/2005  
23/28  
© 2002, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8180DV18D-250/200/167/133/100  
JTAG Port AC Test Conditions  
Parameter  
Conditions  
JTAG Port AC Test Load  
DQ  
V
– 0.2 V  
Input high level  
Input low level  
DD  
0.2 V  
1 V/ns  
*
50Ω  
30pF  
Input slew rate  
V
V
/2  
Input reference level  
DDQ  
V
/2  
DDQ  
/2  
Output reference level  
* Distributed Test Jig Capacitance  
DDQ  
Notes:  
1. Include scope and jig capacitance.  
2. Test conditions as shown unless otherwise noted.  
JTAG TAP Instruction Set Summary  
Instruction  
EXTEST  
Code  
000  
Description  
Notes  
1
Places the Boundary Scan Register between TDI and TDO.  
Preloads ID Register and places it between TDI and TDO.  
IDCODE  
001  
1, 2  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and  
SAMPLE-Z  
RFU  
010  
011  
TDO.  
1
1
Forces all RAM output drivers to High-Z.  
Do not use this instruction; Reserved for Future Use.  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
SAMPLE/  
PRELOAD  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and  
TDO.  
100  
101  
110  
111  
1
1
1
1
GSI  
GSI private instruction.  
Do not use this instruction; Reserved for Future Use.  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
RFU  
BYPASS  
Places Bypass Register between TDI and TDO.  
Notes:  
1. Instruction codes expressed in binary, MSB on left, LSB on right.  
2. Default instruction automatically loaded at power-up and in test-logic-reset state.  
Rev: 2.04 4/2005  
24/28  
© 2002, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8180DV18D-250/200/167/133/100  
JTAG Port Recommended Operating Conditions and DC Characteristics  
Parameter  
Symbol  
Min.  
Max.  
Unit Notes  
V
0.6 * V  
V
+0.3  
DD2  
Test Port Input High Voltage  
V
V
1
1
IHJ  
DD  
V
0.3 * V  
1
Test Port Input Low Voltage  
0.3  
300  
1  
ILJ  
DD  
I
TMS, TCK and TDI Input Leakage Current  
TMS, TCK and TDI Input Leakage Current  
TDO Output Leakage Current  
Test Port Output High Voltage  
Test Port Output Low Voltage  
Test Port Output CMOS High  
Test Port Output CMOS Low  
uA  
uA  
uA  
V
2
INHJ  
I
100  
1
3
INLJ  
I
1  
4
OLJ  
V
1.7  
5, 6  
5, 7  
5, 8  
5, 9  
OHJ  
V
0.4  
V
OLJ  
V
V
– 100 mV  
DDQ  
V
OHJC  
V
100 mV  
V
OLJC  
Notes:  
1. Input Under/overshoot voltage must be V > Vi < V  
+ V not to exceed .6 V maximum, with a pulse width not to exceed 20% tTKC.  
DDn  
2.  
V
V V  
ILJ  
IN  
DDn  
ILJn  
3. 0 V V V  
IN  
4. Output Disable, V  
= 0 to V  
DDn  
OUT  
5. The TDO output driver is served by the V  
supply.  
DDQ  
6.  
7.  
8.  
9.  
I
I
I
I
= 4 mA  
OHJ  
= + 4 mA  
OLJ  
= –100 uA  
= +100 uA  
OHJC  
OLJC  
JTAG Port Timing Diagram  
tTKC  
tTKH  
tTKL  
TCK  
tTH  
tTS  
TDI  
tTH  
tTS  
TMS  
TDO  
tTKQ  
tTH  
tTS  
Parallel SRAM input  
Rev: 2.04 4/2005  
25/28  
© 2002, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8180DV18D-250/200/167/133/100  
JTAG Port AC Electrical Characteristics  
Parameter  
Symbol  
tTKC  
tTKQ  
tTKH  
tTKL  
tTS  
Min  
50  
Max  
Unit  
ns  
TCK Cycle Time  
TCK Low to TDO Valid  
TCK High Pulse Width  
TCK Low Pulse Width  
TDI & TMS Set Up Time  
TDI & TMS Hold Time  
20  
ns  
20  
20  
10  
10  
ns  
ns  
ns  
tTH  
ns  
Rev: 2.04 4/2005  
26/28  
© 2002, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8180DV18D-250/200/167/133/100  
Package Dimensions—165-Bump FPBGA (Package D; Variation 3)  
A1 CORNER  
TOP VIEW  
BOTTOM VIEW  
A1 CORNER  
M
M
Ø0.10  
C
Ø0.25 C A B  
Ø0.44~0.64 (165x)  
1
2 3 4 5 6 7 8 9 10 11  
11 10 9 8  
7 6 5 4 3 2 1  
A
B
C
D
E
F
A
B
C
D
E
F
G
H
J
G
H
J
K
L
K
L
M
N
P
R
M
N
P
R
A
1.0  
10.0  
1.0  
13±0.05  
B
0.20(4x)  
SEATING PLANE  
C
Rev: 2.04 4/2005  
27/28  
© 2002, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8180DV18D-250/200/167/133/100  
Ordering Information—GSI SigmaQuad SRAM  
Speed  
(MHz)  
3
1
Org  
Type  
Package  
T
Part Number  
A
1M x 18  
1M x 18  
1M x 18  
1M x 18  
1M x 18  
1M x 18  
1M x 18  
1M x 18  
1M x 18  
1M x 18  
1M x 18  
1M x 18  
1M x 18  
1M x 18  
1M x 18  
1M x 18  
1M x 18  
1M x 18  
1M x 18  
1M x 18  
GS8180DV18D-250  
GS8180DV18D-200  
GS8180DV18D-167  
GS8180DV18D-133  
GS8180DV18D-100  
GS8180DV18D-250I  
GS8180DV18D-200I  
GS8180DV18D-167I  
GS8180DV18D-133I  
GS8180DV18D-100I  
GS8180DV18GD-250  
GS8180DV18GD-200  
GS8180DV18GD-167  
GS8180DV18GD-133  
GS8180DV18GD-100  
GS8180DV18GD-250I  
GS8180DV18GD-200I  
GS8180DV18GD-167I  
GS8180DV18GD-133I  
GS8180DV18GD-100I  
SigmaQuad SRAM  
SigmaQuad SRAM  
SigmaQuad SRAM  
SigmaQuad SRAM  
SigmaQuad SRAM  
SigmaQuad SRAM  
SigmaQuad SRAM  
SigmaQuad SRAM  
SigmaQuad SRAM  
SigmaQuad SRAM  
SigmaQuad SRAM  
SigmaQuad SRAM  
SigmaQuad SRAM  
SigmaQuad SRAM  
SigmaQuad SRAM  
SigmaQuad SRAM  
SigmaQuad SRAM  
SigmaQuad SRAM  
SigmaQuad SRAM  
SigmaQuad SRAM  
1 mm Pitch, 165-Pin BGA (var. 3)  
1 mm Pitch, 165-Pin BGA (var. 3)  
250  
200  
167  
133  
100  
250  
200  
167  
133  
100  
250  
200  
167  
133  
100  
250  
200  
167  
133  
100  
C
C
C
C
C
I
1 mm Pitch, 165-Pin BGA (var. 3)  
1 mm Pitch, 165-Pin BGA (var. 3)  
1 mm Pitch, 165-Pin BGA (var. 3)  
1 mm Pitch, 165-Pin BGA (var. 3)  
1 mm Pitch, 165-Pin BGA (var. 3)  
I
1 mm Pitch, 165-Pin BGA (var. 3)  
I
1 mm Pitch, 165-Pin BGA (var. 3)  
I
1 mm Pitch, 165-Pin BGA (var. 3)  
I
Pb-Free 1 mm Pitch, 165-Pin BGA (var. 3)  
Pb-Free 1 mm Pitch, 165-Pin BGA (var. 3)  
Pb-Free 1 mm Pitch, 165-Pin BGA (var. 3)  
Pb-Free 1 mm Pitch, 165-Pin BGA (var. 3)  
Pb-Free 1 mm Pitch, 165-Pin BGA (var. 3)  
Pb-Free 1 mm Pitch, 165-Pin BGA (var. 3)  
Pb-Free 1 mm Pitch, 165-Pin BGA (var. 3)  
Pb-Free 1 mm Pitch, 165-Pin BGA (var. 3)  
Pb-Free 1 mm Pitch, 165-Pin BGA (var. 3)  
Pb-Free 1 mm Pitch, 165-Pin BGA (var. 3)  
C
C
C
C
C
I
I
I
I
I
Notes:  
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS818x18D-200T.  
2. T = C = Commercial Temperature Range. T = I = Industrial Temperature Range.  
A
A
Rev: 2.04 4/2005  
28/28  
© 2002, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  

相关型号:

GS8180DV18GD-250

18Mb Burst of 4 SigmaQuad SRAM
GSI

GS8180DV18GD-250I

18Mb Burst of 4 SigmaQuad SRAM
GSI

GS8180DV18GD-250IT

Standard SRAM, 1MX18, 2.1ns, CMOS, PBGA165, 13 X 15 MM, 1 MM PITCH, ROHS COMPLIANT, FPBGA-165
GSI

GS8180DV18GD-250T

暂无描述
GSI

GS8180DV18GD-300

Standard SRAM, 1MX18, 1.8ns, CMOS, PBGA165, 13 X 15 MM, 1 MM PITCH, MO-216CAB-1, BGA-165
GSI

GS8180DV18GD-300I

Standard SRAM, 1MX18, 1.8ns, CMOS, PBGA165, 13 X 15 MM, 1 MM PITCH, MO-216CAB-1, BGA-165
GSI

GS8180DV18GD-300T

Standard SRAM, 1MX18, 1.8ns, CMOS, PBGA165, 13 X 15 MM, 1 MM PITCH, MO-216CAB-1, BGA-165
GSI

GS8180DV18GD-330

Standard SRAM, 1MX18, 1.6ns, CMOS, PBGA165, 13 X 15 MM, 1 MM PITCH, MO-216CAB-1, BGA-165
GSI

GS8180DV18GD-330I

Standard SRAM, 1MX18, 1.6ns, CMOS, PBGA165, 13 X 15 MM, 1 MM PITCH, MO-216CAB-1, BGA-165
GSI
GSI

GS8180DV18GD-330T

Standard SRAM, 1MX18, 1.6ns, CMOS, PBGA165, 13 X 15 MM, 1 MM PITCH, MO-216CAB-1, BGA-165
GSI

GS8180Q18D

18Mb Burst of 2 SigmaQuad SRAM
GSI