GX434CKC [GENNUM]

GX434 Monolithic 4x1 Video Multiplexer; GX434整体4X1视频多路复用器
GX434CKC
型号: GX434CKC
厂家: GENNUM CORPORATION    GENNUM CORPORATION
描述:

GX434 Monolithic 4x1 Video Multiplexer
GX434整体4X1视频多路复用器

复用器
文件: 总9页 (文件大小:203K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GX434 Monolithic 4x1  
Video Multiplexer  
DATA SHEET  
CIRCUIT DESCRIPTION  
FEATURES  
The GX434 is a high performance low cost monolithic 4x1  
video multiplexer incorporating four bipolar switches with a  
common output, a 2 to 4 address decoder and fast chip select  
circuitry. The chip select input allows for multi-chip paralleled  
operation in routing matrix applications. The chip is selected  
by applying a logic 0 on the chip select input.  
low differential gain: 0.03% typ. at 4.43 MHz  
low differential phase: 0.012 deg. typ. at 4.43 MHz  
low insertion loss: 0.05 dB max at 100 kHz  
low disabled power consumption: 5.2 mW typ.  
high off isolation: 110 dB at 10 MHz  
Unlike devices using MOS bilateral switching elements, these  
bipolarcircuitsrepresentfullybuffered,unilateraltransmission  
paths when selected. This results in extremely high output to  
input isolation. They also feature fast make-before-break  
switching action. These features eliminate such problems as  
switching 'glitches' and output-to-input signal feedthrough.  
all hostile crosstalk @ 5 MHz, 97 dB typ.  
bandwidth (-3dB) with 30 pF load, 100 MHz typ.  
fast make-before-break switching: 200 ns typ.  
TTL and 5 volt CMOS compatible logic inputs  
low cost 14 pin DIP and16 pin SOIC packages  
optimised performance for NTSC, PAL and SECAM  
applications  
The GX434 operates from ±7 to ± 13.2 volt DC supplies. They  
are specifically designed for video signal switching which  
requires extremely low differential phase and gain. Logic  
inputsareTTLand5voltCMOScompatibleprovidingaddress  
and chip select functions. When the chip is not selected, the  
output goes to a high impedance state.  
APPLICATIONS  
Glitch free analog switching for...  
• High quality video routing  
PIN CONNECTIONS  
• A/D input multiplexing  
TOP VIEW  
• Sample and hold circuits  
• TV/ CATV/ monitor switching  
IN 0  
GND  
IN 1  
+8V  
AO  
A1  
PIN 1  
14  
TOP VIEW  
IN 0  
GND  
IN 1  
PIN 1  
16  
+8V  
NC  
AO  
GND  
IN 2  
CS  
AVAILABLE PACKAGING  
GND  
IN 2  
A1  
O/P  
CS  
14 pin DIP and 16 pin SOIC (wide)  
GND  
REXT  
GND  
IN 3  
NC  
O/P  
N
REXT  
IN 3  
7
8
-8V  
8
9
-8V  
PIN CONNECTION  
16 PIN SOIC  
PIN CONNECTION  
14 PIN DIP  
FUNCTIONAL BLOCK DIAGRAM  
(wide)  
GX434  
IN 0  
X
TRUTH TABLE  
IN 1  
X
OUTPUT  
IN 2  
X
CS A1 A0  
OUTPUT  
0
0
0
0
0
1
IN 0  
IN 1  
IN 3  
X
0
0
1
1
0
1
IN 2  
IN 3  
A 0  
A 1  
CHIP  
SELECT  
2 TO 4 DECODER  
LOGIC  
CS  
1
X
X
HI - Z  
X = DON'T CARE  
Document No. 510 - 34 - 2  
GENNUM CORPORATION P.O. Box 489, Stn A, Burlington, Ontario, Canada L7R 3Y3 tel. (905) 632-2996 fax: (905) 632-5946  
Japan Branch: A-302 Miyamae Village, 2–10–42 Miyamae, Suginami–ku, Tokyo 168, Japan tel. (03) 3334-7700 fax (03) 3247-8839  
ABSOLUTE MAXIMUM RATINGS  
ORDERING INFORMATION  
Parameter  
Value & Units  
±13.5V  
Part Number  
Package Type  
Temperature Range  
0° to 70° C  
Supply Voltage  
GX434 – – CDB 14 Pin DIP  
GX434 – – CKC 16 Pin SOIC  
Operating Temperature Range  
0°C TA 70° C  
0° to 70° C  
GX434 – – CTC  
Tape 16 Pin SOIC  
0° to 70° C  
Storage Temperature Range  
-65°C TS150° C  
Lead Temperature (Soldering, 10 Sec)  
Analog Input Voltage  
260° C  
-4V VIN +2.4V  
CAUTION  
Analog Input Current  
Logic Input Voltage  
50µA AVG, 10 mA peak  
-4V VL +5.5V  
ELECTROSTATIC SENSITIVE DEVICES  
DO NOT OPEN PACKAGES OR HANDLE  
DEVICES EXCEPT AT A  
STATIC-FREE WORKSTATION  
+Vcc  
CS  
0.7pF  
1.5pF  
0.7pF  
1.2k  
0.7pF  
16pF  
0.7pF  
0.65V  
VOUT  
V IN  
IN  
OUT  
# 2  
+
CS  
Common  
COUT  
2pF  
CS  
# 3  
# 4  
3mA  
+
600  
12pF  
1.3 V  
-V  
Fig.1 Crosspoint Equivalent Circuit  
Fig. 2 Disabled Crosspoint Equivalent Circuit  
(VS = ±8V DC, 0°C < TA < 70°C, CL = 30 pF, RL = 10kunless otherwise shown.)  
ELECTRICAL CHARACTERISTICS  
GX434  
MAX  
PARAMETER  
Supply Voltage  
DC  
SYMBOL  
±VS  
CONDITIONS  
MIN  
TYP  
8
UNITS  
V
7
-
13.2  
11.5  
0.58  
11.2  
0.38  
-
I+  
Chip selected (CS=0)  
Chip not selected (CS=1)  
Chip selected (CS=0)  
Chip not selected (CS=1)  
10.5  
0.4  
mA  
mA  
mA  
mA  
SUPPLY  
-
Supply current  
I-  
-
10.2  
0.25  
-
Analog Output  
VOUT  
Extremes before clipping  
occurs.  
-
-
+2  
-1.2  
V
Analog Input Bias  
Current  
IBIAS  
-
22  
-
µA  
STATIC  
Output Offset Voltage  
VOS  
TA = 25°C, 75 resistor  
on each input to gnd  
0
-
7
14  
mV  
Output Offset Voltage VOS/T  
+50  
+200  
µV/°C  
Drift  
R
EXT = 33.2 k, 1%  
2
510 -34 -2  
(V = ±8V DC, 0°C < T < 70°C,C = 30pF, R = 10kunless otherwise shown.)  
ELECTRICAL CHARACTERISTICS continued  
S
A
L
L
GX434  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP MAX  
UNITS  
Crosspoint Selection  
Turn-On Time  
tADR-ON  
tADR-OFF  
tCS-ON  
Control input to appearance  
of signal at the output.  
130  
200  
600  
300  
700  
270  
800  
400  
940  
ns  
Crosspoint Selection  
Turn-Off Time  
Control input to disappear-  
ance of signal at output.  
390  
200  
460  
ns  
ns  
ns  
Chip Selection  
Turn-On Time  
Control input to appearance  
of signal at output.  
Chip Selection  
Turn-Off Time  
tCS-OFF  
Control input to disappear-  
ance of signal at output.  
LOGIC  
Logic Input  
Thresholds  
V
1
0
2.0  
-
-
-
-
V
V
IH  
V
1.1  
IL  
Address Input  
Bias Current  
IBIAS(ADR)  
Chip selected A0,A1 = 1  
Chip selected A0,A1 = 0  
-
-
-
-
5.0  
0.1  
µA  
nA  
Chip Select Bias  
Current  
IBIAS(CS)  
CS = 1  
CS = 0  
-
-
-
-
1.0  
30  
nA  
µA  
Insertion Loss  
I.L.  
1V p-p sine or sq. wave at  
100 kHz  
0.025  
100  
0.03  
0.04  
dB  
Bandwidth (-3 dB)  
B.W.  
120  
-
-
MHz  
dB  
Gain Spread at 8 MHz  
-
+0.06  
-0.04  
T
= 25°C, R = 75Ω  
A
S
Input to Output Signal  
Delay Matching  
tP  
ƒ= 3.579545 MHz  
-
-
-
-
±0.15  
±0.3  
degrees  
degrees  
(chip to chip)  
0°C < T < 70°C, R as  
A
S
above, ƒas above.  
Input Resistance  
RIN  
CIN  
Chip selected (CS = 0)  
900  
-
-
kΩ  
DYNAMIC  
Input Capacitance  
Chip selected (CS = 0)  
-
-
2.0  
2.4  
-
-
pF  
pF  
Chip not selected (CS = 1)  
Output Resistance  
ROUT  
Chip selected (CS = 0)  
-
14  
-
Output Capacitance  
Differential Gain  
COUT  
dg  
Chip not selected (CS = 1)  
-
-
15  
-
pF  
%
0.03  
0.05  
at 3.579545 MHz  
Differential Phase  
dp  
VIN = 40 IRE, (Fig. 7)  
-
0.012  
0.025  
degrees  
All Hostile Crosstalk  
(see graph)  
XTALK (AH)  
Sweep on 3 inputs 1V p-p  
4th input has 10 resistor to  
gnd. ƒ = 5 MHz (Fig. 6)  
94  
97  
-
-
dB  
dB  
Chip Disabled Crosstalk XTALK(CD)  
(see graph)  
100  
110  
ƒ = 10 MHz (Fig. 5)  
+SR  
360  
160  
450  
200  
-
-
V/µs  
V/µs  
VIN = 3V p-p (CL = 0 pF)  
Slew Rate  
-SR  
REXT = 33.2k, 1%  
3
510 -34 -2  
TYPICAL PERFORMANCE CURVES OF THE GX434  
14  
12  
10  
8
0
15 pF  
-1  
30 pF  
50 pF  
70 pF  
-2  
-3  
Load Capacitance  
0 pF  
6
4
-4  
10 pF  
27 pF  
Load Capacitance  
-5  
-6  
47 pF  
2
0
-7  
-2  
-4  
-8  
-9  
-6  
-10  
1
10  
100  
200  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Gain vs Frequency  
Phase vs Frequency  
-40  
40  
50  
-50  
-60  
-70  
R
R
R
= 75 Ω  
IN  
IN  
60  
= 75 Ω  
= 37.5 Ω  
= 10 Ω  
R
R
= 75Ω  
IN  
IN  
= 37.5Ω  
= 10Ω  
70  
IN  
R
IN  
R
IN  
SW1 / SW2  
SW0 - SW3  
80  
-80  
-90  
90  
100  
110  
-100  
-110  
R
= 10 kΩ  
R
= 10 kΩ  
L
L
100  
0.1  
10  
1
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
All Hostile Crosstalk (14 pin DIP)  
All Hostile Crosstalk (16 pin SOIC)  
For all graphs, VS = ±8 V DC and TA = 25°C. The curves shown above represent typical batch sampled results.  
4
510 -34 -2  
110  
100  
110  
90  
100  
90  
80  
70  
60  
Analog signal  
IN is 40 IRE  
(286 mV p-p)  
at 10 MHz  
50  
80  
100  
10  
+3  
+1  
0
+2  
-1  
FREQUENCY (MHz)  
INPUT BIAS (V)  
Chip Disabled Crosstalk vs Frequency  
Chip Disabled Crosstalk vs Input Bias (V)  
+0.05  
+0.05  
+0.04  
+0.03  
+0.02  
+0.01  
dg %  
Blanking level  
0V DC  
+0.04  
+0.03  
dg %  
0
dp °  
-0.01  
+0.02  
ƒ = 3.58 MHz  
Blanking level is  
-0.02  
-0.03  
dp °  
clamped to V  
BIAS  
+0.01  
0
-0.04  
-0.05  
-0.2  
-0.8  
-0.6  
0
+0.2 +0.4  
+0.6  
+0.8  
-0.4  
INPUT BIAS (V)  
2
4
5
8
10  
1
3
3.58  
dg/dp vs Input Bias  
FREQUENCY (MHz)  
dg/dp vs Frequency  
30 MΩ  
10 MΩ  
+1.0  
+0.8  
4
3
R
+0.6  
IN OFF  
R
+0.4  
+0.2  
IN ON  
1 MΩ  
100 kΩ  
10 kΩ  
0.1  
C
IN OFF  
-0.2  
C
IN ON  
-0.4  
-0.6  
2
1
-0.8  
-1.0  
1
10  
0.1  
100  
-1  
0
+1  
+2  
+3  
FREQUENCY (MHz)  
INPUT BIAS (V)  
Input Impedance  
Normalized Gain Spread CL = 30pF  
5
510 -34 -2  
0.1 V/div  
10 mV/div  
1 µs/div  
0.5 µs/div  
Fig. 4 Switching Envelope (crosspoint to crosspoint)  
Fig.3 Switching Transient (crosspoint to crosspoint)  
VIN  
VOUT  
Chip disabled crosstalk = 20 log  
All hostile crosstalk = 20 log  
VOUT  
VIN  
RIN  
VOUT  
VOUT  
ENABLED  
VIN  
CROSSPOINT  
RL 10 kΩ  
VIN  
37.5 Ω  
Fig. 6 All Hostile Crosstalk Test Circuit  
Fig. 5 Chip Disabled Crosstalk Test Circuit  
10 µH  
10 µH  
LUMINANCE LEVEL  
BLANKING LEVEL  
RELAY SWITCH  
220 Ω  
8 V  
3.9 kΩ  
CONTROL BIT  
FROM I/O PORT  
0.1µF  
BUFFER  
AC  
COUPLING  
150 Ω  
150 Ω  
AMP  
R.F. SIGNAL  
SOURCE  
75 Ω  
x 2  
75 Ω  
75 Ω  
RL  
DUT  
CL  
Fig. 7 Differential Phase and Gain Test Circuit  
DIFFERENTIAL GAIN AND PHASE TEST CIRCUIT  
The test circuit of Figure 7 allows two DC bias levels, set by  
the user, to be superimposed on a high frequency signal  
source. Acomputercontrolledrelayselectseitherthepreset  
blanking or luminance level. One measurement is taken at  
each level and the change in gain or phase is calculated.  
This procedure is repeated one hundred times to provide a  
reasonably large sample.  
The results are averaged to reduce the standard deviation  
and therefore improve the accuracy of the measurement.  
The output from the device under test is AC coupled to a  
buffer amplifier which allows the buffer to operate at a  
constant luminance level so that it does not contribute any dg  
or dp to the measurement.  
6
510 -34 -2  
OPTIMISING THE PERFORMANCE OF THE GX434  
1. Power Supply Considerations  
Table 1 shows the effect on differential gain (dg) and  
differentialphase(dp)ofvariouspowersupplyvoltages  
that may be used. A nominal supply voltage of ±8  
volts result in parameter values as shown in the top  
row of the table. By using other power supply voltage  
combinations, improvements to these parameters are  
possible at the sacrifice of increased chip power  
dissipation. Maximum degradation of the differential  
gain and phase occurs for the last combination of +12  
, -7 volts along with an increase in power dissipation;  
these voltages are not recommended.  
Supply  
Voltage  
Differential Gain  
Differential Phase  
degrees  
%
(Typical)  
(Typical)  
±8  
0.030  
0.010  
0.010  
0.084  
0.012  
0.007  
0.007  
0.080  
+8/ -12  
±12  
+12/ -7  
Table 2 shows the general characteristic variations  
of the GX434 when different combinations of power  
supply voltages are used. These changes are rela-  
tive to a circuit using ± 8 volts Vcc.  
Supply Voltage  
Characteristic Changes  
± 7  
- lower logic thresholds  
- max logic I/P (4.5V)  
- loss of off isolation (20 dB)  
- poorer dg and dp  
+8/ -12  
- slight increase in negative  
supply current  
- slight decrease in offset  
- very similar frequency response  
- better dg and dp  
±12  
- increase in supply current (10%)  
- increase in offset (2-4 mV)  
- very similar frequency response  
- better dg and dp  
+12/ -7  
- loss in off isolation (20 dB)  
- poorer dg and dp  
The GX434 does not require input DC biasing to  
optimise dg or dp nor does it need switching  
transient suppression at the output. Furthermore,  
both the analog signal and logic circuits within the  
chipuseonecommonpowersupply,makingpower  
supplyconfigurationsrelatively simpleandstraight-  
forward. Several of the input characteristic graphs  
onpages4-5showthatforbestoperation, theinput  
bias should be 0 volts. The switching transient  
photographs on page 6 show how small the actual  
transients are and clearly show the make-before-  
breakactionoftheGX434videomultiplexerswitch.  
7
510 -34 -2  
2.  
Load Resistance Considerations  
3. Multi-chip Considerations  
TheGX434crosspointswitchisoptimisedforloadresistances  
equal to or greater than 3 k. Figure 8 shows the effect on the  
differential gain and phase when the load resistance is varied  
from 100 to 100 k.  
Whenever multi-chip bus systems are to be used, the total  
input and output capacitance must be carefully considered.  
Theinput capacitanceofanenabledcrosspoint(chipselected),  
is typically only 2 pF and increases slightly to 2.4 pF when the  
chip is disabled. The total output capacitance when the chip  
is disabled is approximately 15 pF per chip.  
10  
ƒ= 3.58 MHz, 20 IRE  
BLANKING LEVEL = 0V DC  
1.0  
Usually the GX434 multiplexer switch is used in a matrix  
configuration of (n x 1) crosspoints perhaps combined in an  
(n x m) total routing matrix. This means for example, that four  
ICs produce a 16 x 1 configuration and have a total output  
capacitance of 4 x15 pF or 60 pF if all four chips are disabled.  
Foranyoneenabledcrosspoint,theeffectiveloadcapacitance  
will be 3 x15 pF or 45 pF.  
dg  
dp  
0.1  
0.01  
In a multi-input/multi-output matrix, it is important to consider  
thetotalinputbuscapacitance.Thehigher thebuscapacitance  
and the more it varies from the ON to OFF condition, the more  
difficult it is to maintain a wide frequency response and  
constant drive from the input buffer. A 16 x 16 matrix using 64  
ICs (16 x 4), would have a total input bus capacitance of 16 x  
2.4 pF or 40 pF.  
0.001  
100  
1K  
10K  
100K  
RL ()  
Fig. 8 dg/dp vs RL  
The negative slew rate is dependant upon the output current  
and load capacitance as shown below.  
-SR = I + 3 mA  
I 8 mA  
CL  
The current I is determined from the following equation:  
GX  
414  
GX  
414  
I = -VEE  
R 1 k Ω  
1
2
3
4
GX  
414  
GX  
414  
R
It is possible to increase the negative slew rate (-S.R.) and thus  
the large signal bandwidth, by adding a resistance from the  
output to - VEE. This resistor increases the output current above  
the 3 mA provided by the internal current generator and  
increases the negative slew rate. The additional slew rate  
improving resistance must not be less than 1kin order to  
prevent excessive currents in the output of the device. An  
adverse effect of utilising this negative slew rate improving  
resistor, is the increase in differential phase from typically  
0.009° to 0.014°. Under these same conditions, the differential  
gain drops from typically 0.033 % to 0.021 %.  
GX  
414  
5
6
7
8
GX  
414  
GX  
414  
GX  
414  
GX  
414  
9
10  
11  
12  
GX  
414  
GX  
414  
GX  
414  
+8V  
n
1
14  
13  
12  
IN 0  
2
A0  
A1  
GND  
IN 1  
3
O
U
T
P
U
11  
T
4
5
6
7
B
U
F
F
E
R
GND  
IN 2  
CS  
NC  
S
10  
9
OUTPUT  
GND  
IN 3  
1
R 1kΩ  
8
2
3
m
-8V  
Fig.9 Negative Slew Rate (-SR) Improvement  
Fig.10 Multi-chip Connections  
8
510 -34 -2  
APPLICATIONS INFORMATION  
The GX434 multiplexer is a very high performance,  
widebandcircuitrequiringcarefulexternalcircuitdesign.  
Good power supply regulation and decoupling are  
necessarytoachieveoptimumresults.Thecircuitdesigner  
must use proper lead dress, component placement and  
PCB layout as in any high frequency circuit.  
A typical video routing application is shown in Figure 11.  
Four ICs are used in a 16 x 1 multiplexer switching circuit.  
An external address decoder is shown which generates  
the 16 address and chip enable codes from a binary  
number. The address inputs to each chip are active high  
whilethechipselectinputsareactivelow. Dependingon  
the application and speed of the logic family used,  
latchesmayberequiredforsynchronizationwheretiming  
and delays are critical. Since the individual crosspoint  
switchingcircuitsareunidirectionalbipolarelements,low  
crosstalk and high isolation are inherent. The make-  
before-break switching characteristics of the GX434  
means virtually 'glitch' free switching.  
Functionally, the video switches are non-inverting, unity  
gain bipolar switches with buffered inputs requiring DC  
coupling and 75line terminating resistors when directly  
driven from 75cable. The output must be buffered to  
drive 75lines. This is usually accomplished with the  
addition of an operational amplifier/ buffer which also  
allows adjustments to be made to the gain, offset and  
frequency response of the overall circuit.  
VIDEO INPUTS  
GX434 SWITCHES  
BINARY ADDRESS  
DECODER  
+8V  
0.1  
1
2
14  
IN 0  
+V  
V 0  
13  
12  
A 0  
A 1  
GND  
IN 1  
A 0  
A 1  
3
4
5
6
V 1  
V 2  
V 3  
11  
10  
9
8
CS  
GND  
IN 2 OUT  
GND  
REXT  
-V  
7
IN 3  
33K  
1%  
4
3
0.1  
0.1  
A 2  
75  
75  
75  
75  
1
2
5
6
A 3  
2
-8V  
+8V  
74HC139  
1
ENABLE  
7
1
2
14  
IN 0  
GND  
IN 1  
V 4  
+V  
13  
12  
11  
A 0  
A 1  
16  
8
+5V  
0.1  
3
4
5
6
V 5  
V 6  
V 7  
CS  
GND  
IN 2  
10  
OUT  
REXT  
-V  
9
8
GND  
IN 3  
7
33K  
1%  
0.1  
75  
75  
75  
75  
+5V  
-8V  
+8V  
0.1  
0.1  
0.1  
330  
3
7
4
+
1
2
14  
75  
IN 0  
GND  
+V  
6
V 8  
Video  
Out  
13  
12  
2-10pF  
100  
A 0  
A 1  
2
3
4
5
6
-
IN 1  
GND  
IN 2  
V 9  
250  
11  
10  
9
8
CS  
V 10  
530000  
OUT  
REXT  
-V  
GND  
7
V 11  
IN 3  
33K  
1%  
CLC 410 (comlinear)  
0.1  
75  
75  
-5V  
75  
75  
-8V  
+8V  
DOCUMENT  
IDENTIFICATION  
0.1  
PRODUCT PROPOSAL  
This data has been compiled for market investigation purposes  
only, and does not constitute an offer for sale.  
1
14  
IN 0  
+V  
V 12  
V 13  
13  
12  
2
3
4
5
6
7
GND  
IN 1  
GND  
IN 2  
A 0  
A 1  
ADVANCE INFORMATION NOTE  
11  
10  
9
8
CS  
OUT  
REXT  
This product is in development phase and specifications are  
subject to change without notice. Gennum reserves the right to  
remove the product at any time. Listing the product does not  
constitute an offer for sale.  
V14  
V15  
GND  
-V  
IN 3  
0.1  
33K  
1%  
75  
75  
PRELIMINARY DATA SHEET  
75  
75  
The product is in a preproduction phase and specifications are  
subject to change without notice.  
-8V  
All resistors in ohms, all capacitors in  
microfarads unless otherwise stated.  
DATA SHEET  
The product is in production. Gennum reserves the right to make  
changes at any time to improve reliability, function or design, in  
order to provide the best product possible.  
Fig.11  
16 x 1 Video Multiplexer Circuit  
Gennum Corporation assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement.  
©Copyright August 1989 Gennum Corporation.  
Revision date: January 1993.  
All rights reserved.  
Printed in Canada.  
9
510 -34 -2  

相关型号:

GX434CTC

GX434 Monolithic 4x1 Video Multiplexer
GENNUM

GX4404

GX4404 Wideband, Monolithic 4x1 Video Multiplexer
GENNUM

GX4404-CDC

GX4404 Wideband, Monolithic 4x1 Video Multiplexer
GENNUM

GX4404-CKD

GX4404 Wideband, Monolithic 4x1 Video Multiplexer
GENNUM

GX4404-CTD

GX4404 Wideband, Monolithic 4x1 Video Multiplexer
GENNUM

GX5

Omron Date Codes
OMRON

GX50T100T8X16TP

CAPACITOR, ALUMINUM ELECTROLYTIC, NON SOLID, POLARIZED, 50V, 10uF, THROUGH HOLE MOUNT, AXIAL LEADED
CHEMI-CON

GX50T100T8X16TP22

CAPACITOR, ALUMINUM ELECTROLYTIC, NON SOLID, POLARIZED, 50V, 10uF, THROUGH HOLE MOUNT, AXIAL LEADED
CHEMI-CON

GX50T100T8X16TP42

CAPACITOR, ALUMINUM ELECTROLYTIC, NON SOLID, POLARIZED, 50V, 10uF, THROUGH HOLE MOUNT, AXIAL LEADED
CHEMI-CON

GX50T221T16X30TP

CAPACITOR, ALUMINUM ELECTROLYTIC, NON SOLID, POLARIZED, 50V, 220uF, THROUGH HOLE MOUNT, AXIAL LEADED
CHEMI-CON

GX60-18P

0.4 mm Pitch, Space-saving Interface Connectors
HRS

GX60-18P(30)

CONN RCPT 18POS R/A W/PIN
HRS