GPC3L128A [GENERALPLUS]

Low Power 3--Channell Sound Conttrollller;
GPC3L128A
型号: GPC3L128A
厂家: Generalplus Technology Inc.    Generalplus Technology Inc.
描述:

Low Power 3--Channell Sound Conttrollller

文件: 总18页 (文件大小:730K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GPC3LXXXX  
Low Power 3-Channel Sound  
Controller  
Jun. 02, 2017  
Version 1.2  
GENERALPLUS TECHNOLOGY INC. reserves the right to change this documentation without prior notice. Information provided by GENERALPLUS  
TECHNOLOGY INC. is believed to be accurate and reliable. However, GENERALPLUS TECHNOLOGY INC. makes no warranty for any errors which may  
appear in this document. Contact GENERALPLUS TECHNOLOGY INC. to obtain the latest version of device specifications before placing your order. No  
responsibility is assumed by GENERALPLUS TECHNOLOGY INC. for any infringement of patent or other rights of third parties which may result from its use.  
In addition, GENERALPLUS products are not authorized for use as critical components in life support devices/systems or aviation devices/systems, where a  
malfunction or failure of the product may reasonably be expected to result in significant injury to the user, without the express written approval of Generalplus.  
GPC3LXXXX  
Table of Contents  
PAGE  
TABLE OF CONTENTS......................................................................................................................................................................................2  
LOW POWER 3-CHANNEL SOUND CONTROLLER ...................................................................................................................................4  
1. GENERAL DESCRIPTION.....................................................................................................................................................................4  
2. BLOCK DIAGRAM ................................................................................................................................................................................4  
3. FEATURES............................................................................................................................................................................................4  
4. APPLICATION FIELD............................................................................................................................................................................4  
5. GPC3LXXXX FAMILY AND FEATURE LIST ..........................................................................................................................................5  
6. SIGNAL DESCRIPTIONS ......................................................................................................................................................................6  
6.1. SIGNAL DESCRIPTIONS FOR GPC3L170A~GPC3L096A .....................................................................................................................6  
6.2. LQFP128 PIN MAP FOR GPC3L170A~GPC3L096A ...........................................................................................................................7  
7. FUNCTIONAL DESCRIPTIONS.............................................................................................................................................................8  
7.1. CPU ................................................................................................................................................................................................8  
7.2. RAM AREA .......................................................................................................................................................................................8  
7.3. ROMAREA.......................................................................................................................................................................................8  
7.4. MAP OF MEMORY AND I/OS ................................................................................................................................................................8  
7.5. I/O PORT ..........................................................................................................................................................................................8  
7.6. DC-DC.............................................................................................................................................................................................8  
7.7. POWER SAVING MODE.......................................................................................................................................................................8  
7.8. RTC (REAL TIME CLOCK)...................................................................................................................................................................9  
7.9. WATCHDOG.......................................................................................................................................................................................9  
7.10.LOW VOLTAGE RESET........................................................................................................................................................................9  
7.11.INTERRUPT .......................................................................................................................................................................................9  
7.12.TIMER/COUNTER ...............................................................................................................................................................................9  
7.13.SPEECH AND MELODY........................................................................................................................................................................9  
7.14.BATTERY VOLTAGE DETECT FUNCTION .................................................................................................................................................9  
8. ELECTRICAL SPECIFICATIONS ........................................................................................................................................................10  
8.1. ABSOLUTE MAXIMUM RATINGS .........................................................................................................................................................10  
8.2. POWER CHARACTERISTICS (ONE-BATTERY , TA = 25).....................................................................................................................10  
8.3. POWER CHARACTERISTICS (TWO-BATTERY , TA = 25) ....................................................................................................................10  
8.4. DC CHARACTERS (TA = 25).......................................................................................................................................................... 11  
8.5. PUMP EFFICIENCY (ONE-BATTERY , TA = 25).................................................................................................................................. 11  
8.6. PUMP EFFICIENCY (TWO-BATTERY , TA = 25) .................................................................................................................................12  
8.7. VDD15 V.S. MAX. SUPPLIED CURRENT (I(VDD)) (ONE-BATTERY , TA = 25)......................................................................................12  
8.8. VDD15 V.S. MAX. SUPPLIED CURRENT (I(VDD)) (TWO-BATTERY , TA = 25) .....................................................................................12  
8.9. (3VOLT) EXTERNAL OSCILLATOR R RELATIVE FOSC (THE TABLE IS FOR REFERENCE ONLY)......................................................................12  
8.10.THE RELATIONSHIP BETWEEN THE FOSC AND VDD...........................................................................................................................13  
9. APPLICATION CIRCUITS....................................................................................................................................................................14  
9.1. LIGHT LOADING AND CIRCUIT WITHOUT NOISE FOR GPC3L170A~GPC3L096A ..................................................................................14  
9.2. HEAVY LOADING OR CIRCUIT WITH NOISE FOR GPC3L170A~GPC3L096A.........................................................................................15  
10. PACKAGE/PAD LOCATIONS..............................................................................................................................................................16  
10.1.ORDERING INFORMATION .................................................................................................................................................................16  
10.2.PACKAGE LQFP128 INFORMATION ...................................................................................................................................................16  
© Generalplus Technology Inc.  
Proprietary & Confidential  
2
Jun. 02, 2017  
Version: 1.2  
 
GPC3LXXXX  
11. DISCLAIMER.......................................................................................................................................................................................17  
12. REVISION HISTORY............................................................................................................................................................................18  
© Generalplus Technology Inc.  
Proprietary & Confidential  
3
Jun. 02, 2017  
Version: 1.2  
GPC3LXXXX  
LOW POWER 3-CHANNEL SOUND CONTROLLER  
1. GENERAL DESCRIPTION  
3. FEATURES  
GPC3LXXXX is embedded with an 8-bit processor, 288K~512K  
bytes ROM and 256-byte working SRAM, three 12-bit  
timer/counters, 20 general I/Os, a 3-channel mixer, a pair of 12-bit  
PWM outputs and a Real Time Clock(RTC). GPC3LXXXX is  
designed for wide input voltage (1.0V~1.8V; 1.3V~3.6V), and the  
circuit works at a programmable pumped voltage (2.7V~4.5V). In  
audio processing, both melody and speech is capable of being  
mixed together into one output. Furthermore, it contains a Low  
Voltage Reset to assure system operating appropriately under low  
voltage condition and a sleep mode to save power while system is  
standing by. With a high cost/performance ratio characteristic,  
GPC3LXXXX is one of the most suitable engines in the industry  
for vocal applications.  
8-bit microprocessor  
288K ~ 512K bytes ROM (by body).  
256-byte working SRAM  
Wide input voltage (Code Option) : 1.0V~1.8V (one-battery)  
1.3V~3.6V (two-battery)  
*Lower input voltage can drive lighter loading only.  
Pumped voltage (DC-DC) for core power:2.7V~4.5V;Step:0.3V  
*The output pumped voltage is greater than or equal to input  
voltage  
Operating clock : 8.0MHz  
Three system clock sources: IOSC(8MHz), ROSC and XTAL  
(Code option)  
Standby mode (Clock Stop mode) for power savings.  
Max. 5.0A @1.5V (one-battery)  
Max. 10.0A @ 3.0V (two-battery)  
20 general I/Os  
2. BLOCK DIAGRAM  
Low Voltage Reset (LVR) function  
Three 12-bit timer/counters  
288KB~512KB  
ROM (by body)  
THREE 12-BIT  
AUTO RELOAD  
TIMER  
9 IRQs & 1 NMI interrupts  
8-bit 256B  
controller SRAM  
Three wake-up sources  
ROSC8M,  
XTAL8M,  
IOSC8M  
Watchdog function  
IOC1  
IOC0  
3 CHANNEL PWM  
MIXER  
RTC function  
(Code Option)  
IR function  
RESET  
RTC  
RESET  
Four sets of 256-level PWMIO outputs  
Feedback function  
IOB5  
IOB4  
AUDP  
AUDN  
PWM  
DC-DC  
Detect IO function  
IOA3  
IOA4  
Detect IO  
FeedBack  
A 3-channel mixer with melody or ADPCM/PCM input  
A pair of PWM outputs with volume control  
BVD (battery voltage detection) function.  
IOA1  
IOA2  
20 PIN GENERAL I/O  
PORT  
IOA[7:0]  
IOC[3:0]  
IOB[7:0]  
4. APPLICATION FIELD  
Talking instrument controller  
General music synthesizer  
High-end toy controller  
Intelligent education toys  
And more  
© Generalplus Technology Inc.  
Proprietary & Confidential  
4
Jun. 02, 2017  
Version: 1.2  
GPC3LXXXX  
5. GPC3LXXXX FAMILY AND FEATURE LIST  
Body  
Voice Duration  
GPC3L170A  
GPC3L128A  
GPC3L112A  
GPC3L096A  
170 Sec.  
(Code 1.0V~1.8V (one-battery)  
1.3V~3.6V (two-battery)  
128 Sec.  
112 Sec.  
96 Sec.  
Working  
Option)  
Voltage  
1.0V~1.8V  
1.0V~1.8V  
1.0V~1.8V  
(one-battery)  
(one-battery)  
(one-battery)  
1.3V~3.6V  
1.3V~3.6V  
1.3V~3.6V  
(two-battery)  
(two-battery)  
(two-battery)  
RAM Size  
ROM Size  
256B  
256B  
256B  
256B  
512KB  
384KB  
352KB  
288KB  
Clock Source  
(Code Option)  
IROSC(8MHz)  
IROSC(8MHz)  
IROSC(8MHz)  
IROSC(8MHz)  
ROSC  
ROSC  
ROSC  
ROSC  
XTAL  
XTAL  
XTAL  
XTAL  
IO Pin  
20 (IOA/B/C)  
20 (IOA/B/C)  
20 (IOA/B/C)  
20 (IOA/B/C)  
Hardware PWMIO  
IR  
V
V
V
V
V
9
V
V
V
V
V
9
V
V
V
V
V
9
V
V
V
V
V
9
RTC  
PWM Volume control  
Feedback function  
IRQ Interrupt  
NMI interrupt  
Wakeup source  
1
1
1
1
3
3
3
3
© Generalplus Technology Inc.  
Proprietary & Confidential  
5
Jun. 02, 2017  
Version: 1.2  
GPC3LXXXX  
6. SIGNAL DESCRIPTIONS  
6.1. Signal Descriptions for GPC3L170A~GPC3L096A  
PIN Name  
Type  
Description  
IOA[7:0]  
I/O IOA[7:0] is a bi-directional I/O port, which can be software programmed as a wakeup I/O with  
1Mohm or 100Kohm pull low resistor.  
IOA7 shares its pad with IR output.  
IOA[4:3]shares its pad with detecting IO function.  
IOA[2:1] shares its pad with feedback function.  
IOA1 shares its pad with external clock input.  
IOA0 shares its pad with external interrupt input.  
IOB[7:0]  
IOC[3:0]  
I/O IOB[7:0] is a bi-directional I/O port, which can be software programmed as a wakeup I/O with  
1Mohm or 100Kohm pull low resistor.  
IOB5 shares its pad with XTAL 32KHz inputs  
IOB4 shares its pad with XTAL 32KHz outputs  
IOB[3:0] shares its pad with 256-level PWM outputs  
I/O IOC[3:0] is a bi-directional I/O port, which can be software programmed as wakeup I/O with  
1Mohm or 100Kohm pull low resistor.  
IOC1 shares its pad with XTAL8M output.  
IOC0 shares its pad with ROSC8M or XTAL8M input.  
VDD15  
VSS15  
LX1  
P
G
I
Power PAD for DC-DC .  
Ground PAD for DC-DC.  
This pin must short with LX2 externally.  
Inductance input of DC-DC(Inductance must be connected to VDD15)  
LX2  
I
This pin must short with LX1 externally.  
Inductance input of DC-DC(Inductance must be connected to VDD15)  
DC-DC Pumped voltage output  
VDDO  
VDD  
O
P
G
G
P
G
P
G
I
Power supply voltage input for logic circuit  
Ground reference for logic circuit  
Ground reference for logic circuit  
Power supply voltage input for IO PAD  
Ground reference for IO PAD  
VSS2  
VSS3  
VDDIO  
VSS1  
PVDD  
PWM driver power  
PVSS  
PWM driver ground reference  
RESB  
System reset input, low active (with pull high)  
Test pin, high active (with pull low)  
PWM output  
TEST  
I
AUDP, AUDN  
O
Total: 36 pins  
Legend: I=Input, O=Output, P=Power, G=Ground  
© Generalplus Technology Inc.  
Proprietary & Confidential  
6
Jun. 02, 2017  
Version: 1.2  
GPC3LXXXX  
6.2. LQFP128 pin map for GPC3L170A~GPC3L096A  
1
96  
NC  
NC  
2
95  
NC  
NC  
3
94  
NC  
NC  
4
93  
NC  
NC  
5
92  
NC  
NC  
6
91  
NC  
NC  
7
90  
VDDO  
VSS_D  
8
89  
NC  
NC  
9
88  
NC  
NC  
10  
87  
NC  
NC  
11  
86  
NC  
NC  
12  
85  
NC  
NC  
13  
84  
NC  
NC  
14  
83  
NC  
LX2  
15  
82  
NC  
NC  
16  
81  
NC  
NC  
LQGP128  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
80  
NC  
NC  
NC  
79  
NC  
78  
VDD  
VSS2  
IOC0  
IOC1  
IOC2  
IOC3  
IOB0  
IOB1  
NC  
NC  
77  
NC  
76  
NC  
75  
AUDP  
74  
PVSS  
73  
PVDD  
72  
AUDN  
71  
NC  
70  
NC  
69  
NC  
NC  
68  
NC  
NC  
67  
NC  
NC  
66  
NC  
NC  
65  
IOB2  
NC  
© Generalplus Technology Inc.  
Proprietary & Confidential  
7
Jun. 02, 2017  
Version: 1.2  
 
GPC3LXXXX  
7. FUNCTIONAL DESCRIPTIONS  
7.1. CPU  
7.5. I/O Port  
The microprocessor inside the GPC3LXXXX is an 8-bit high  
performance processor equipped with Accumulator, Program  
Counter, X and Y Register, Stack pointer and Processor Status  
Register (the same as CPU6502 instruction structure). The  
maximum CPU speed of 8.0MHz is capable of generating clearer  
speech, pleasant music as well as achieving the best  
performance.  
There are 20 IOs (IOA[7:0], IOB[7:0] and  
GPC3LXXXX, which are bit-control IOs.  
IOC[3:0] in  
They can be  
programmed as input (pure input or pull-low) or output buffer. As  
pull-low input, they keep a less impedance to get better noise  
immunity. While pressing the key (IOs to VDD), a less or large  
impedance can be selected at different conditions. IOA7 can be  
programmed as an IR transmitter. IOA[4:3] can be programmed as  
Detect IO. IOA[2:1] can also be programmed as feedback  
function with IOA2 connecting to the input of inverter and IOA1  
connecting to the output of inverter. With feedback function, RC  
or XTAL oscillation can be implemented. For more flexible  
application, IO wakeup and ECK as TMA clock source are also  
7.2. RAM Area  
The RAM size in GPC3LXXXX is 256-byte (including Stack), in  
which address starts from $0080 through $017F ($0100 - $017F  
mapping to $0180 - $01FF).  
available when feedback function enable.  
Please refer to  
programming guide for more detailed information about feedback  
function. IOA1 can be programmed as an external clock source.  
IOA0 is programmable as an external interrupt source. IOB5 and  
IOB4 can be programmed as a 32KHz crystal clock generator by  
7.3. ROM Area  
GPC3LXXXX builds a 288K~512K bytes of ROM, which can be  
defined as the program area, audio data area, or both. To access  
ROM, users shall program the BANK SELECT register, choose  
bank, and access address to fetch data.  
adding external components. IO port configuration:  
Input/Output port : IOA[7:0], IOB[7:0],IOC[3:0]  
Body  
ROM size  
512KB  
ROM Address  
Buffer(R)  
GPC3L170A  
GPC3L128A  
GPC3L112A  
GPC3L096A  
0x00840~0x07FFFF  
0x00840~0x05FFFF  
0x00840~0x057FFF  
0x00840~0x047FFF  
384KB  
Register  
352KB  
Port_Buffer(W)  
Pin pad  
288KB  
Control  
logic  
Port_DIR(R/W)  
P_IOPullLowCtrl  
(R/W)  
7.4. Map of Memory and I/Os  
1M ohm  
pull low  
100K ohm  
pull low  
CPUView  
Data(R)  
$0000-$007F  
$0080-$00FF  
$0100-$017F  
I/O &Reg.  
RAM1  
RAM2  
ROMView  
Sameas  
$80-$FF  
or $0100-$017F  
$00000 - $03FFF  
$04000 - $07FFF  
$08000 - $0BFFF  
$0C000 - $0FFFF  
$10000 - $13FFF  
$14000 - $17FFF  
Bank0  
Bank1  
Bank2  
Bank3  
7.6. DC-DC  
$0180-$01FF  
GPC3LXXXX can work with wide input voltage (1.0V~1.8V;  
1.3V~3.6V). Inside the chip, it is implemented with a high  
efficient DC-DC circuit. The DC-DC circuits pump input voltage  
to programmed voltage that supplies chip as working voltage.  
$0200-$07FF  
$0800-$0819  
$081A-$081F  
$0820-$0835  
$0836-$083F  
Test ROM  
Reserved  
Normal Vector  
Normal IRQ  
Reserved  
Bank4  
Bank5  
ProgramROM  
Bank0  
$0840-$3FFF  
$4000-$7FFF  
7.7. Power Saving Mode  
. . .  
GPC3LXXXX features a power saving mode (standby mode) for  
ProgramROM  
Bank1  
those applications requiring low standby current.  
To enter  
standby mode, the Wake-up Register must be enabled and then  
stop the CPU clock by writing the STOP CLOCK Register to enter  
standby mode. In such mode, RAM and I/Os will remain in their  
prior states until being awakened. All 20 IOs, RTC (8Hz/2Hz),  
and external interrupt (IOA0) are wake-up sources in  
GPC3LXXXX. After GPC3LXXXX wakes up, the internal CPU  
will proceed to execute the program.  
ProgramROM  
Bank2  
$8000-$BFFF  
$C000-$FFFF  
ProgramROM  
Bankregister to  
assignbank  
ROMaddress= $C000-$FFFF  
UseBankregister tomappingaddress  
© Generalplus Technology Inc.  
Proprietary & Confidential  
8
Jun. 02, 2017  
Version: 1.2  
GPC3LXXXX  
7.8. RTC (Real Time Clock)  
7.12. Timer/Counter  
GPC3LXXXX provides two RTC (real time clock) sources: 2Hz,  
8Hz. The RTC sources can be used for time counting or system  
awaking function. Each RTC occurs, system wakes up and users  
can use this signal for time counting. In addition, GPC3LXXXX  
supports 32768Hz OSC in auto mode; the first one second, it runs  
at strong mode (consumes the highest power) and then switches  
to weak mode automatically to save power.  
GPC3LXXXX has three 12-bit timer/counters: TMA, TMB, and  
TMC respectively. In timer mode, TMA, TMB, and TMC are  
re-loadable up-counters. When timer overflows from $0FFF to  
$0000, the carry (overflow) signal will make the user’s pre-set  
value to be loaded into timer automatically and count up again.  
At the same time, the carry signal will generate an INT signal if the  
corresponding bit in the INT ENABLE Register is enabled.  
Suppose TMB is specified as a counter, users can reset it by  
loading #0 into the counter. After the counter is activated, the  
counter value can also be read at the same time. The read  
instruction will not affect the counter value nor reset it.  
7.9. Watchdog  
The purpose of watchdog is to monitor whether the system  
operates normally. Within a certain period, watchdog must be  
cleared. It prevents system from incorrect code execution by  
generating a system reset when software fails to clear watchdog  
flag within 1 second. Watchdog function can be removed by  
option in GPC3LXXXX series.  
7.13. Speech and Melody  
In speech synthesis, the GPC3LXXXX can use NMI for accurate  
sampling frequency. User can store the speech data in ROM and  
play it back with realistic sound quality. Several algorithms are  
recommended for high fidelity and compression of sound: PCM,  
ADPCM, SACMA3400 and A3400Pro.  
7.10. Low Voltage Reset  
GPC3LXXXX has a Low Voltage Reset (LVR) function. In  
general, CPU becomes unstable and abnormal under low voltage  
condition. With the unique design of Low Voltage Reset in  
GPC3LXXXX, it is able to reset all functions to the initial  
operational (stable) state if the power voltage drops below certain  
operation voltage.  
7.14. Battery voltage detect function  
GPC3LXXXX has Battery Voltage Detection (BVD) function.  
There are four detecting levels can be chosen for 1-battery and  
2-battery application respectively. Please refer to programming  
guide for more detailed information about BVD function.  
7.11. Interrupt  
GPC3LXXXX has two interrupt (INT) modes: IRQ (interrupt  
Request) and NMI (Non-Mask Interrupt Request). The interrupt  
controller provides 9 IRQs and 1 NMI. A NMI cannot be  
interrupted by any other IRQs.  
Interrupt Source  
TIMER A  
Priority  
NMI  
TIMER A  
TIMER B  
TIMER C  
TB1  
IRQ1  
IRQ2  
IRQ3  
IRQ4  
IRQ5  
IRQ6  
IRQ7  
IRQ8  
IRQ9  
TB2  
RTC  
KEY  
EXT  
DETIO  
© Generalplus Technology Inc.  
Proprietary & Confidential  
9
Jun. 02, 2017  
Version: 1.2  
GPC3LXXXX  
8. ELECTRICAL SPECIFICATIONS  
8.1. Absolute Maximum Ratings  
Characteristics  
Symbol  
Ratings  
DC Supply Voltage  
V+  
VIN  
TA  
< 7.0V  
Input Voltage Range  
Operating Temperature  
Storage Temperature  
(VSS-0.3V) to (V+ + 0.3V)  
0to +70℃  
-65to +150℃  
TSTO  
Note: Stresses beyond those given in the Absolute Maximum Rating table may cause permanent damage to the device.  
8.2. Power Characteristics (One-Battery , TA = 25)  
Limit  
Characteristics  
Symbol  
Unit  
Test Condition  
Min.  
Typ.  
Max.  
I(VDD)=40mA@VDD=3.3V,  
Input Voltage (Min.) *  
VDD15  
1.0  
-
-
V
L=22uH/0.5W , ESR =1 ohm  
(Color Code Inductance)  
Input Voltage (Max.)  
Operating Voltage**  
Low Voltage Reset Level  
VDD15  
VDD  
-
-
-
1.8  
3.9  
2.5  
V
V
V
-
VLVR ***  
2.3  
-
VLVR  
2.4  
-
FOSC=8.0MHz @ VDD=3.3V(no load)  
VDD15=1.5V  
Operating Current  
IOP  
-
10  
-
mA  
Halt Current  
IHALT  
ISTBY  
-
-
5
-
-
A  
A  
VDD15=1.5V  
Standby Current  
5.0  
VDD15=1.5V  
*As I(VDD) is larger than the value of test condition; VDD can be observed voltage drop.  
**VDD is the pumped voltage. It is greater than or equal to input voltage. It is possible to be lower with heavy loading under operating condition.  
*** VLVR is 2.4V +/- 5%.  
8.3. Power Characteristics (Two-Battery , TA = 25)  
Limit  
Characteristics  
Symbol  
Unit  
Test Condition  
Min.  
Typ.  
Max.  
I(VDD)=40mA@VDD=3.3V,  
Input Voltage (Min.) *  
VDD15  
1.3  
-
-
V
L=22uH/0.5W , ESR =1 ohm  
(Color Code Inductance)  
Input Voltage (Max.)  
Operating Voltage**  
Low Voltage Reset Level  
VDD15  
VDD  
-
-
-
3.6  
4.5  
2.5  
V
V
V
-
VLVR ***  
2.3  
-
VLVR  
2.4  
-
FOSC=8.0MHz @ VDD=3.3V(no load)  
VDD15=3.0V  
-
-
5
-
-
mA  
mA  
Operating Current  
IOP  
FOSC=8.0MHz @ VDD=4.5V(no load)  
VDD15=3.0V  
10  
Halt Current  
IHALT  
ISTBY  
-
-
15  
-
-
A  
A  
VDD15=3.0V  
Standby Current  
10.0  
VDD15=3.0V  
*As I(VDD) is larger than the value of test condition; VDD can be observed voltage drop.  
**VDD is the pumped voltage. It is greater than or equal to input voltage. It is possible to be lower with heavy loading under operating condition.  
*** VLVR is 2.4V +/- 5%.  
© Generalplus Technology Inc.  
Proprietary & Confidential  
10  
Jun. 02, 2017  
Version: 1.2  
 
GPC3LXXXX  
8.4. DC Characters (TA = 25)  
Limit  
Typ.  
-
Characteristics  
Symbol  
VIH  
Unit  
Test Condition  
Min.  
Max.  
0.7VDD  
-
V
V
VDD = 3.3V  
VDD = 4.5V  
VDD = 3.3V  
VDD = 4.5V  
GPIO Input High Level  
(IOA, IOB, IOC)  
0.7VDD  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0.3VDD  
V
GPIO Input Low Level  
(IOA, IOB, IOC)  
VIL  
-
0.3VDD  
V
5
-
-
-
-
-
-
-
-
-
-
-
mA  
VDD = 3.3V, VOH = 0.7*VDD  
VDD = 4.5V, VOH = 0.7*VDD  
VDD = 3.3V, VOL = 0.3*VDD  
VDD =4.5V, VOL = 0.3*VDD  
VDD = 1.5V, IO = 1.5V  
Output High Current  
(IOA, IOB, IOC)  
IOH  
10  
mA  
10  
mA  
Output Low Current  
(IOA, IOB, IOC)  
IOL  
20  
mA  
1000  
200  
120  
100  
100  
200  
300  
Kohm  
Kohm  
Kohm  
Kohm  
Kohm  
mA  
Input 1M Ohm Pull Low  
Resistor (IOA, IOB, IOC)  
RPLM**  
VDD = 3.3V, IO = 3.3V  
VDD = 4.5V, IO = 4.5V  
VDD = 3.3V, IO = 0V or VDD  
VDD = 4.5V, IO = 0V or VDD  
VDD = 3.3V, 8 Ohms load (bypass DC-DC)  
Input 100K Ohm Pull Low  
Resistor(IOA, IOB, IOC)  
RPL100K***  
PWM Driver Current  
IPWM  
mA  
VDD = 4.5V, 8 Ohms load (bypass DC-DC)  
Fosc(4.5v) Fosc(3.0v)  
Fosc(4.5v)  
-2  
-2  
-3  
-7  
-
-
-
-
2
2
3
7
%
%
%
%
Frequency deviation by  
voltage drop  
FCPU = 8MHz, For IOSC  
F/F  
Fosc(4.5v) Fosc(3.0v)  
Fosc(4.5v)  
FCPU = 8MHz, For ROSC  
Fmax(3.6v) Fmin(3.6v)  
Fmax(3.6v)  
FCPU = 8MHz  
@
3.6V,For IOSC  
Frequency lot deviation  
F/F  
Fmax(3.6v) Fmin(3.6v)  
Fmax(3.6v)  
FCPU = 8MHz  
@
3.6V,For ROSC  
* VDD is the pumped voltage. It is greater than or equal to input voltage. It is possible to be lower with heavy loading under operating condition.  
**RPLM increases enormously while VDD drops.  
***RPL100K keeps remain while VDD drops.  
8.5. Pump Efficiency (One-Battery , TA = 25)  
Limit  
Characteristics  
Symbol  
Unit  
Test Condition  
Min.  
Typ.  
Max.  
-
-
-
-
86  
78  
86  
76  
-
-
-
-
%
%
%
%
I(VDD)=30mA;VDD15=1.5V; VDD=3.3V  
I(VDD)=60mA;VDD15=1.5V; VDD=3.3V  
I(VDD)=30mA;VDD15=1.5V; VDD=3.9V  
I(VDD)=60mA;VDD15=1.5V; VDD=3.9V  
Pump Efficiency  
(Color Code Inductance  
L=22uH/0.5W , ESR =1 ohm)  
Eff.  
© Generalplus Technology Inc.  
Proprietary & Confidential  
11  
Jun. 02, 2017  
Version: 1.2  
 
GPC3LXXXX  
8.6. Pump Efficiency (Two-Battery , TA = 25)  
Limit  
Typ.  
Characteristics  
Symbol  
Unit  
Test Condition  
Min.  
Max.  
-
-
-
-
91  
88  
92  
87  
-
-
-
-
%
%
%
%
I(VDD)=50mA;VDD15=3.0V; VDD=3.9V  
I(VDD)=100mA;VDD15=3.0V; VDD=3.9V  
I(VDD)=50mA;VDD15=3.0V; VDD=4.5V  
I(VDD)=100mA;VDD15=3.0V; VDD=4.5V  
Pump Efficiency  
(Color Code Inductance  
L=22uH/0.5W , ESR =1 ohm)  
Eff.  
8.7. VDD15 v.s. Max. Supplied Current (I(VDD)) (One-Battery , TA = 25)  
VIN (V)  
I(VDD) (mA)  
Condition  
50  
30  
VDD=3.3V ; L=22uH/0.5W , ESR = 1 ohm (Color Code Inductor)  
VDD=3.9V ; L=22uH/0.5W , ESR = 1 ohm (Color Code Inductor)  
VDD=3.3V ; L=22uH/0.5W , ESR = 1 ohm (Color Code Inductor)  
VDD=3.9V ; L=22uH/0.5W , ESR = 1 ohm (Color Code Inductor)  
VDD=3.3V ; L=22uH/0.5W , ESR = 1 ohm (Color Code Inductor)  
VDD=3.9V ; L=22uH/0.5W , ESR = 1 ohm (Color Code Inductor)  
1.0  
70  
1.2  
1.5  
50  
110  
90  
* VDD drops about 0.3V in max supplied current condition.  
8.8. VDD15 v.s. Max. Supplied Current (I(VDD)) (Two-Battery , TA = 25)  
VIN (V)  
I(VDD) (mA)  
Condition  
40  
10  
VDD=3.9V ; L=22uH/0.5W, ESR = 1 ohm (Color Code Inductance)  
VDD=4.5V ; L=22uH/0.5W, ESR = 1 ohm (Color Code Inductance)  
VDD=3.9V ; L=22uH/0.5W , ESR = 1 ohm (Color Code Inductance)  
VDD=4.5V ; L=22uH/0.5W , ESR = 1 ohm (Color Code Inductance)  
VDD=3.9V ; L=22uH/0.5W , ESR = 1 ohm (Color Code Inductance)  
VDD=4.5V ; L=22uH/0.5W, ESR = 1 ohm (Color Code Inductance)  
VDD=3.9V ; L=22uH/0.5W, ESR = 1 ohm (Color Code Inductance)  
VDD=4.5V ; L=22uH/0.5W, ESR = 1 ohm (Color Code Inductance)  
1.5  
90  
1.8  
2.4  
3.0  
70  
140  
140  
250  
190  
* VDD drops about 0.3V in max supplied current condition.  
8.9. (3volt) External Oscillator R Relative FOSC (the table is for reference only).  
R(Kohm)  
39  
51  
75  
FOSC (MHz)  
8
6
4
© Generalplus Technology Inc.  
Proprietary & Confidential  
12  
Jun. 02, 2017  
Version: 1.2  
 
GPC3LXXXX  
8.10. The Relationship between the FOSC and VDD  
8.10.1. Frequency vs. VDD (external ROSC  
)
8.10.2. Frequency vs. VDD (build-in 8MHz ROSC)  
9
9
8.5  
8
8.5  
8
7.5  
7.5  
7
7
2.2  
2.4  
2.7  
3
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
2.2  
2.4  
2.7  
3
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
VDD(V)  
VDD(V)  
© Generalplus Technology Inc.  
Proprietary & Confidential  
13  
Jun. 02, 2017  
Version: 1.2  
GPC3LXXXX  
9. APPLICATION CIRCUITS  
9.1. Light Loading and Circuit without Noise for GPC3L170A~GPC3L096A  
LX1  
*4  
L*5  
22uH  
LX2  
R2*6  
(0.5k)  
(Battery Power)  
(Battery Ground)  
VDD15  
C1*6  
0.1uF  
(Battery)  
AUDP  
AUDN  
VSS15  
VSS  
(DCDC1 Power Output)  
(Audio Power)  
VDDO  
PVDD  
PVSS  
VDDIO  
VSS1  
IOA[7:0]  
IOA[7:0]  
C3*2  
0.1uF  
IOB[7:6]&[3:0]  
IOC[3:1]  
IOB[7:6]&[3:0]  
IOC[3:1]  
(Audio Ground)  
(GPIO Power)  
(GPIO Ground)  
25pF * 7  
25pF * 7  
IOB5  
IOB4  
C2*3, 8  
10uF ~  
47uF  
R1*1  
IOC0  
VSS  
(Core Power)  
(Core Ground)  
VDD  
VSS2  
VSS3  
RESB  
(Core Ground)  
VSS  
PCB Layout Guidelines :  
1. R1 (used for ROSC) should be as close as possible to IOC0 pin.  
2. C3 should be as close as possible to PVDD/PVSS, and C3 can be removed if there is good power line layout on PCB that  
no harm to sound quality.  
3. The value of C2 depends on the loading. 10uF~47uF is the suggested value range. One end of C2 should be placed between  
VSS1, VSS2, VSS3 and VSS15. The other end of C2 should be placed between VDDO, VDDIO and VDD. C2 should be as  
close as possible to VDDO/VDDIO/VDD  
4. Net between LX1 and LX2 should be as short as possible.  
5. L should be as close as possible to VDD15/LX1/LX2. Please use inductance with lower resistance to gain higher  
efficiency, 22uH/0.5W@IDC(max)>250mA, DCR<1 ohm is the suggested inductance spec.  
6. R2 and C1 could be removed if do not care BVD flag vibration due to VDD15 bouncing.  
7. These capacitor values are for design guidance only. The recommended 32K XTAL features are ESR=11.2~60K and  
CL1=CL2 =26~36pF (including PCB parasitic loading, for example, user should apply additional 20~30pF on X32I and X32O  
if PCB parasitic loading is 6pF).  
8. Please use capacitor (C2) with lower resistance to reduce noise, ESR<2 ohm in 0~70C is suggested.  
© Generalplus Technology Inc.  
Proprietary & Confidential  
14  
Jun. 02, 2017  
Version: 1.2  
 
GPC3LXXXX  
9.2. Heavy Loading or Circuit with Noise for GPC3L170A~GPC3L096A  
LX1  
*5  
L*6  
22uH  
LX2  
R2*7  
(0.5k)  
(Battery Power)  
(Battery Ground)  
VDD15  
C1*7  
0.1uF  
C4  
(Battery)  
47uF  
AUDP  
AUDN  
VSS15  
C2*10  
47~100uF  
VSS  
(DCDC1 Power Output)  
(Audio Power)  
VDDO  
PVDD  
PVSS  
VDDIO  
VSS1  
IOA[7:0]  
IOB[7:0]  
IOC[3:1]  
IOA[7:0]  
IOB[7:0]  
IOC[3:1]  
C3*2  
0.1uF  
(Audio Ground)  
(GPIO Power)  
C5*3  
0.1uF  
25pF * 9  
25pF * 9  
(GPIO Ground)  
IOB5  
IOB4  
R1*1  
R3*8  
0 or 1 ohm  
IOC0  
VSS  
(Core Power)  
(Core Ground)  
VDD  
C6*4, 10  
4.7uF~100u  
F
C7  
0.1uF  
VSS2  
VSS3  
RESB  
(Core Ground)  
VSS  
PCB Layout Guidelines :  
1. R1 (used for ROSC) should be as close as possible to IOC0 pin.  
2. C3 should be as close as possible to PVDD/PVSS, and C3 can be removed if there is good power line layout on PCB that  
no harm to sound quality.  
3. C5 should be as close as possible to VDDIO/VSS1, and C5 can be removed if there is good power line layout on PCB  
that the power stable enough.  
4. The value of C6 depends on the loading. 4.7uF~100uF is the suggested value range. C6 should be as close as possible to  
VDD/VSS2, and C6 can be smaller if there is good power line layout on PCB that the power stable enough.  
5. Net between LX1 and LX2 should be as short as possible.  
6. L should be as close as possible to VDD15/LX1/LX2. Please use inductance with lower resistance to gain higher  
efficiency, 22uH/0.5W@IDC(max)>250mA ,DCR<1 ohm is the suggested inductance spec.  
7. R2 and C1 could be removed if do not care BVD flag vibration due to VDD15 bouncing.  
8. R3 with 0 Ohm is suggested for 2 batteries or C6 > 10uF and with 1 Ohm is suggested for 1 battery and C6 < 10uF.  
9. These capacitor values are for design guidance only. The recommended 32K XTAL features are ESR=11.2~60K and  
CL1=CL2 =26~36pF (including PCB parasitic loading, for example, user should apply additional 20~30pF on X32I and X32O  
if PCB parasitic loading is 6pF).  
10. Please use capacitors (C2 and C6) with lower resistance to reduce noise, ESR<2 ohm in 0~70C is suggested.  
© Generalplus Technology Inc.  
Proprietary & Confidential  
15  
Jun. 02, 2017  
Version: 1.2  
 
GPC3LXXXX  
10. PACKAGE/PAD LOCATIONS  
10.1. Ordering Information  
Product Number  
Package Type  
GPC3LXXXX - C  
Chip form  
GPC3LXXXX - NnnV QL09X  
Halogen free LQFP128 package  
10.2. Package LQFP128 Information  
© Generalplus Technology Inc.  
Proprietary & Confidential  
16  
Jun. 02, 2017  
Version: 1.2  
 
GPC3LXXXX  
11. DISCLAIMER  
The information appearing in this publication is believed to be accurate.  
Integrated circuits sold by Generalplus Technology are covered by the warranty and patent indemnification provisions stipulated in the  
terms of sale only. GENERALPLUS makes no warranty, express, statutory implied or by description regarding the information in this  
publication or regarding the freedom of the described chip(s) from patent infringement. FURTHERMORE, GENERALPLUS MAKES NO  
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE. GENERALPLUS reserves the right to halt production or alter  
the specifications and prices at any time without notice. Accordingly, the reader is cautioned to verify that the data sheets and other  
information in this publication are current before placing orders. Products described herein are intended for use in normal commercial  
applications. Applications involving unusual environmental or reliability requirements, e.g. military equipment or medical life support  
equipment, are specifically not recommended without additional processing by GENERALPLUS for such applications. Please note that  
application circuits illustrated in this document are for reference purposes only.  
© Generalplus Technology Inc.  
Proprietary & Confidential  
17  
Jun. 02, 2017  
Version: 1.2  
GPC3LXXXX  
12. REVISION HISTORY  
Date  
Revision #  
Description  
Page  
Jun. 02, 2017  
Dec. 20, 2013  
1.2  
1.1  
1.Add LQFP128 information.  
7, 16  
10, 11, 12,  
14, 15  
1.Add notice to capacitors in application circuits.  
2.Modify ESRto DCRfor inductor impedance.  
3.Modify VDD max supplied current.  
Original  
Oct. 07, 2013  
1.0  
© Generalplus Technology Inc.  
Proprietary & Confidential  
18  
Jun. 02, 2017  
Version: 1.2  

相关型号:

GPC3L170A

Low Power 3--Channell Sound Conttrollller
GENERALPLUS

GPC3LXXXX

Low Power 3--Channell Sound Conttrollller
GENERALPLUS

GPC3LXXXX-C

Low Power 3--Channell Sound Conttrollller
GENERALPLUS

GPC3LXXXX-Nnny-QL09X

Low Power 3--Channell Sound Conttrollller
GENERALPLUS

GPC3XXXAX

3--channell Sound Conttrollller
GENERALPLUS

GPC3XXXAx-NnnV-C

3--channell Sound Conttrollller
GENERALPLUS

GPC3XXXAx-NnnV-G08X

3--channell Sound Conttrollller
GENERALPLUS

GPC3XXXAx-NnnV-QL09X

3--channell Sound Conttrollller
GENERALPLUS

GPC3XXXAx-NnnV-QL23X

3--channell Sound Conttrollller
GENERALPLUS

GPC3XXXBx

3--channell Sound Conttrollller
GENERALPLUS

GPC3XXXBx-NnnV-C

3--channell Sound Conttrollller
GENERALPLUS

GPC3XXXBx-NnnV-G08X

3--channell Sound Conttrollller
GENERALPLUS