GM6155 [GAMMA]

150mA LOW-NOISE LDO REGULATOR; 150毫安低噪声LDO稳压器
GM6155
型号: GM6155
厂家: GAMMA MICROELECTRONICS INC.    GAMMA MICROELECTRONICS INC.
描述:

150mA LOW-NOISE LDO REGULATOR
150毫安低噪声LDO稳压器

稳压器
文件: 总9页 (文件大小:245K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
Description  
GM6155 is an efficient linear voltage regulator with ultralow  
- noise output, very low dropout voltage (typically 17mV at  
light loads and 165mV at 50mA), and very low ground cur-  
rent (600µA at 100mA output). GM6155 provides better  
than 1% initial accuracy.  
Ultra low noise output  
High output voltage accuracy  
Extremely accurate output voltage  
Guaranteed 150mA output  
Low quiescent current  
Designed especially for hand-held, battery-powered de-  
vices, GM6155 includes a CMOS or TTL compatible en-  
able/ shutdown control input. When shutdown, power con-  
sumption drops nearly to zero. Regulator ground current in-  
creases only slightly in dropout, further prolonging battery  
life. Key features of GM6155 include a reference bypass  
pin to improve its excellent low-noise performance, re-  
versed-battery protection, current limiting, and over-  
temperature shutdown.  
Low dropout voltage  
Extremely tight load and line regulation  
Very low temperature coefficient  
Current and thermal limiting  
Reverse-battery protection  
"Zero" off-mode current  
Logic-controlled electronic enable  
The GM6155 is available in SOT-25 package.  
Application  
Cellular telephones  
Consumer/ personal electronics  
Laptop, notebook, and palmtop computers  
Battery-powered equipment  
SMPS post-regulator/ dc-to-dc modules  
High-efficiency linear power supplies  
PCMCIA V and V regulation/ switching  
CC PP  
TYPICAL APPLICATION CIRCUITS  
V
5
V
1
2
3
IN  
OUT  
Enable  
Shutdown  
C
= 2.2µF  
OUT  
4
(tantalum)  
EN  
Low-Noise Operation:  
= 470pF, C  
C
BYP  
C
2.2µF  
BYP  
OUT  
EN (pin 3) may be connected  
directly to IN (pin1).  
Basic Operation:  
= not used, C  
C
1µF  
BYP  
OUT  
www.gammamicro.com  
1
MARKING INFORMATION & PIN CONFIGURATIONS (TOP VIEW)  
SOT-25 (SOT-23-5)  
SOT-25 (SOT-23-5)  
OUT  
BYP  
OUT  
ADJ  
Part  
Identification  
5
4
5
4
XXVYW  
XXVYW  
3
3
1
2
1
2
EN  
EN  
IN GND  
IN GND  
Fixed Voltages  
Adjustable Voltage  
XX = Marking Code(DA = GM6155)  
V
= Voltage Code  
= Year  
Y
W
= Weekly  
ORDERING INFORMATION  
Ordering Number  
Output Voltage Voltage Code  
Package  
Shipping  
SOT-25  
SOT-25  
SOT-25  
SOT-25  
SOT-25  
SOT-25  
SOT-25  
SOT-25  
SOT-25  
SOT-25  
SOT-25  
GM6155-AST25R  
GM6155-2.5ST25R  
GM6155-2.7ST25R  
GM6155-2.8ST25R  
GM6155-2.9ST25R  
GM6155-3.0ST25R  
GM6155-3.3ST25R  
GM6155-3.6ST25R  
GM6155-4.0ST25R  
GM6155-4.2ST25R  
GM6155-5.0ST25R  
Adj  
A
G
T
3,000 Units/ Tape & Reel  
3,000 Units/ Tape & Reel  
3,000 Units/ Tape & Reel  
3,000 Units/ Tape & Reel  
3,000 Units/ Tape & Reel  
3,000 Units/ Tape & Reel  
3,000 Units/ Tape & Reel  
3,000 Units/ Tape & Reel  
3,000 Units/ Tape & Reel  
3,000 Units/ Tape & Reel  
3,000 Units/ Tape & Reel  
2.5V  
2.7V  
2.8V  
2.9V  
3.0V  
3.3V  
3.6V  
4.0V  
4.2V  
5.0V  
H
X
J
K
L
M
Y
Q
* For detail Ordering Number identification, please see last page.  
PIN DESCRIPTION  
Pin Number  
Pin Name  
Function  
Supply Input  
Ground  
1
2
IN  
GND  
Enable/ Shutdown(Input): COMS compatible input. Logic high = enable,  
logic low or open = shutdown.  
3
EN  
Reference Bypass: Connect external 470pF capacitor to GND to reduce  
output noise. May be left open.  
4
BYP  
Regulator Output  
5
OUT  
2
BLOCK DIAGRAM  
V
OUT  
OUT  
IN  
V
IN  
+
C
OUT  
BYP  
C
BYP  
+
(Optional)  
Bandgap  
Ref.  
OUT  
IN  
-
V
V
IN  
OUT  
+
C
EN  
OUT  
R1  
ADJ  
Current Limit  
Thermal Shutdown  
+
C
BYP  
R2  
(Optional)  
Bandgap  
-
Ref.  
GND  
EN  
V
= V  
(1 + R2/ R1)  
OUT  
REF  
Figure 1. Ultra-Low-Noise Fixed Regulator  
Current Limit  
Thermal Shutdown  
GND  
Figure 2. Ultra-Low-Noise Adjustable Regulator  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
SYMBOL  
RATINGS  
-20 ~ + 20  
-20 ~ +20  
UNITS  
Supply Input Voltage  
V
IN  
V
Enable Input Voltage  
V
V
EN  
Power Dissipation (Note 3)  
Junction Temperature  
Lead Temperature (soldering, 5 seconds)  
Storage Temperature  
P
D
Internally Limited  
-40 ~ +125  
260  
W
°C  
°C  
°C  
T
J
T
LEAD  
T
S
-60 ~ +150  
OPERATING RATINGS  
PARAMETER  
Supply Input Voltage  
Enable Input Voltage  
Junction Temperature  
Thermal Resistance  
SYMBOL  
RATINGS  
UNITS  
V
IN  
+2.5 to +16  
V
V
V
EN  
0 to V  
IN  
T
J
-40 ~ + 125  
(Note 3)  
°C  
q
°C/ W  
JA  
3
ELECTRICAL CHARACTERISTICS  
(V = V  
IN  
+ 1V; I = 100µA; C = 1.0µF; V  
L L  
2.0; T = 25°C, bold values indicate -40°C  
J
T
J
+125°C;  
OUT  
EN  
unless otherwise noted)  
Symbol  
Typ  
Parameter  
Test Condition  
Min  
Max  
Unit  
-1  
1
V
O
Variation from specified V  
OUT  
Output Voltage Accuracy  
%
-2  
2
Output Voltage Temperature  
Coefficient  
DV / DT  
O
(Note 4)  
ppm/ °C  
40  
0.004 0.012/  
DV / V  
O
V
IN  
= V  
+ 1V to 16V  
Line Regulation  
%/ V  
O
OUT  
0.05  
DV / V  
O
I = 0.1mA to 150mA, (Note 5)  
L
Load Regulation  
0.02 0.2/ 0.5  
%
O
I
I
I
I
= 100µA  
10  
110  
140  
50  
70  
L
L
L
L
= 50mA  
150  
230  
250  
300  
275  
350  
1
V
IN  
- V  
Dropout Voltage (Note 6)  
mV  
O
= 100mA  
= 150mA  
165  
V
0.4V (shutdown)  
0.01  
EN  
I
GND  
µA  
Quiescent Current  
V
0.18V (shutdown)  
5
EN  
V
2.0V, I = 0.1mA  
L
80  
350  
600  
1300  
125  
EN  
150  
I
= 50mA  
= 100mA  
= 150mA  
600  
L
800  
I
Ground Pin Current (Note 7)  
µA  
GND  
I
1000  
1500  
1900  
2500  
L
I
L
f = 100Hz, I = 0.1mA  
L
Ripple Rejection  
Current Limit  
PSRR  
75  
dB  
I
V
= 0V  
320  
0.05  
500  
mA  
LIMT  
OUT  
(Note 8)  
= 50mA, C = 2.2µF,  
DV / DP  
O
Thermal Regulation  
%/ W  
D
I
L
L
e
Output Noise  
260  
nV/ Hz  
NO  
470pF from BYP to GND  
ENABLE Input  
Enable Input Logic-Low  
Voltage  
0.4  
V
Regulator shutdown  
V
IL  
0.18  
Enable Input Logic-High  
Voltage  
V
Regulator enabled  
2.0  
V
IH  
V
0.4V  
IL  
0.01  
-1  
I
µA  
IL  
-2  
V
0.18V  
IL  
Enable Input Current  
5
20  
I
IH  
V
IH  
2.0V  
µA  
2
25  
Note 1. Exceeding the absolute maximum rating may damage the device.  
Note 2. The device is not guaranteed to function outside its operating rating.  
Note 3: The maximum allowable power dissipation at any T (ambient temperature) is P (max) = (T (max) -T )  
J
q . Exceeding the maximum  
JA  
A
D
A
allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown.  
Note 4: Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.  
Note 5: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the  
load range from 0.1mA to 150mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.  
Note 6: Dropout Voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at  
1V differential.  
Note 7: Ground pin current is the regulator quiescent current plus pass transistor base current. The total current drawn from the supply is the  
sum of the load current plus the ground pin current.  
Note 8: Thermal regulation is defined as the change in output voltage at a time "t" after a change in power dissipation is applied, excluding load  
or line regulation effects. Specifications are for a 150mA load pulse at V = 16V for t = 10ms.  
IN  
4
Applications Information  
Enable/ Shutdown  
Forcing EN (enable/ shutdown) high (>2V) enables the regulator. EN is compatible with CMOS logic gates. If  
enable shutdown feature is not required, connect EN (pin 3) to IN (supply input, pin 1). See Figure 3.  
Input Capacitor  
A 1µF capacitor should be placed from IN to GND if there is more than 10 inches of wire between the input  
and the acfilter capacitor or if a battery is used as the input .  
Reference Bypass Capacitor  
BYP (reference bypass) is connected to the internal voltage reference. A 470pF capacitor (C  
) connected  
BYP  
from BYP to GND quiets this reference, providing a significant reduction in output noise. C  
reduces the  
BYP  
regulator phase margin, when using C  
, output capacitors of 2.2µF or greater are generally required to  
BYP  
maintain stability.  
The start-up speed of GM6155 is inversely proportional to the size of the reference bypass capacitor.  
Applications requiring a slow ramp-up of output voltage should consider larger values of C . Likewise, if  
BYP  
rapid turn-on is necessary, consider omitting C  
.
BYP  
If output noise is not a major concern, omit C  
and leave BYP open.  
BYP  
Output Capacitor  
An output capacitor required between OUT and GND to prevent oscillation. The minimum size of the output  
capacitor is dependent upon whether a reference bypass capacitor is used. 1.0µF minimum is recommended  
when C is not used (see Figure 2). 2.2µF minimum is recommended when C is 470pF (see Figure 1).  
BYP  
BYP  
Larger values improve the regulator's transient response, the output capacitor value may be increased  
without limit.  
The output capacitor should have an ESR (effective series resistance) of about 5W or less and a resonant  
frequency above 1MHz. Ultra-low-ESR capacitors can cause a low amplitude oscillation on the output and/  
or underdamped transient response. Most tantalum or aluminum electrolytic capacitors are adequate; film  
types will work, but more expensive. Since many aluminum electrolytics have electrolytes that freeze at  
about -30°C, solid tantalums ate recommended for operation below -25°C.  
At lower values for output current, less output capacitance is required for output stability. The capacitor can  
be reduced to 0.47µF for current below 10mA or 0.33µF for current below 1mA.  
No-Load Stability  
GM6155 will remain stable and in regulation with no load (other than the internal voltage divider) unlike  
many other voltage regulators. This is especially important in CMOS RAM keep-alive applications.  
Thermal Considerations  
Gm6155 is designed to provide 150mA of continuous current in a very small package. Maximum power  
dissipation can be calculated based on the output current and the voltage drop across the part. To determine  
the maximum power dissipation of the package, use the junction-to-ambient thermal resistance of the device  
and the following basic equation:  
(T  
J(max)  
- T )  
A
P
=
D(max)  
R
qJA  
T
is the maximum junction temperature of the die, 125°C, and T is the ambient operating temperature.  
A
J(max)  
R
is layout dependent; Table 1 shows examples of junction-to-ambient thermal resistance for the GM6155.  
qJA  
5
R
1" Square  
JA  
q
R
Recommended  
JA  
q
R
Parameter  
JC  
q
Minimum Footprint  
Copper Clad  
SOT-23-5  
220°C/ W  
170°C/ W  
130°C/ W  
Table 1. SOT-25 Thermal Resistance  
The actual power dissipation of the regulator circuit can be determined by using the equation:  
P = (V - V ) I  
D IN OUT OUT  
+ V I  
IN GND  
Substituting P  
for P and solving for the operating conditions that are critical to the application will give  
D
D(max)  
the maximum operating conditions for the regulator circuit. For example, when operating Gm6155 at room  
temperature with a minimum footprint layout, the maximum input voltage for a set output current can be  
determined as follows:  
(125°C - 25°C)  
P
=
D(max)  
220°C/W  
P
= 455mW  
D(max)  
The junction-to-ambient thermal resistance for the minimum footprint is 220°C/ W, from Table 1. The maximum  
power dissipation must not be exceeded for proper operation. Using the output voltage of 3.3V and an output  
current of 150mA, the maximum input voltage can be determined. From the Electrical Characteristics table, the  
maximum ground current for150mA output current is 2500µA or 2.5mA.  
455mW = (V - 3.3V) 150mA + V • 2.5mA  
IN IN  
455mW = V • 150mA - 495mA + V • 2.5mA  
IN IN  
950mW = V • 152.5mA  
IN  
V
= 6.23V  
IN(max)  
Therefore, a 3.3V application at 150mA of output current can accept a maximum input voltage of 6.2V in a  
SOT-25 package. For a full discussion of heat sinking and thermal effects on voltage regulators.  
Fixed Regulator Applications  
Figure 3. Ultra-Low-Noise Fixed Voltage Application  
Figure 4. Low-Noise Fixed Voltage Application  
V
V
V
V
OUT  
OUT  
IN  
IN  
5
1
2
3
5
1
2
3
2.2µF  
1.0µF  
Enable  
Shutdown  
4
4
EN  
470pF  
Figure 3. includes a 470pF capacitor for low-noise Figure 4. is an example of a low-noise configuration  
operation and shows EN (pin 3) connected to IN (pin 1) where C  
is not required. C = 1µF minimum.  
BYP  
OUT  
for an application where enable/ shutdown is not  
required. C = 2.2µF minimum.  
OUT  
Adjustable Regulator Applications  
The GM6155 can be adjusted to a specific output voltage by using two externa resistors (Figure 5). The resistors set the  
output voltage based on the following equation:  
R2  
V
= 1.242V X (  
+1)  
OUT  
R1  
6
This equation is correct due to the configuration of the bandgap reference. The bandgap voltage is relative to  
the output, as seen in the block diagram. Traditional regulators normally have the reference voltage relative to  
ground and have a different V equation.  
OUT  
Resistor values are not critical because ADJ(adjust) has a high input impedance, but for best results use  
resistors of 470kW or less for best results. A capacitor from ADJ to ground provides greatly improved noise  
performance.  
V
V
IN  
OUT  
1
2
3
5
2.2µF  
R1  
4
R2  
470pF  
Figure 5. Ultra-Low- Noise Adjustable Voltage Application  
Figure 5 includes the optional 470pF noise bypass capacitor from ADJ to GND to reduce output noise.  
Dual-Supply Operation  
When used in dual supply systems where the regulator load is returned to a negative supply, the output voltage  
Typical Characteristics  
0
0
V
= 6V  
V
= 6V  
IN  
IN  
V
= 5V  
V
= 5V  
OUT  
OUT  
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
I
=100mA  
OUT  
I
=100mA  
C
= 2.2µF  
OUT  
OUT  
C
= 1µF  
C
= 0.01µF  
OUT  
BYP  
-100  
-100  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY(Hz)  
FREQUENCY(Hz)  
Figure 6. Power Supply Rejection Ratio  
Figure 7. Power Supply Rejection Ratio  
320  
280  
240  
200  
160  
120  
80  
10  
125°C  
1
100mA  
25°C  
0.1  
10mA  
-40°C  
0.01  
0.001  
0.0001  
1mA  
V
OUT  
=5V  
C
=10µF  
OUT  
electrolytic  
=10nF  
40  
C
BYP  
0
0
40  
80  
120  
160  
10  
100  
1k  
10k  
100k 1M  
10M  
OUTPUT CURRENT (mA)  
FREQUENCY(Hz)  
Figure 8. Dropout Voltage vs.  
Output Current  
Figure 9. Noise Performance  
7
SOT-25(SOT-23-5) PACKAGE OUTLINE DIMENSIONS  
2.9 ± 0.1  
1.9 ± 0.05  
0.13  
0.95 ± 0.038  
0.028  
0.7  
Pad Layout  
0~0.1  
1.5 ± 0.05  
0.039  
1.0  
2.8 ± 0.1  
0.094  
2.4  
0.65 ± 0.05  
0.8 ± 0.05  
0.35 ± 0.03  
0.037  
0.95  
0.037  
0.95  
0.074  
1.9  
Inches  
(
)
5°  
5°  
mm  
1.10 ± 0.1  
Unit:mm  
ORDERING NUMBER  
GM 6155 A ST25 R  
Gamma Micro.  
Shipping  
R: Tape & Reel  
Circuit Type  
Package  
ST25: SOT-25  
Output Voltage  
A: Adj, 2.5: 2.5V  
2.7: 2.7V, 2.8: 2.8V  
2.9: 2.9V, 3.0: 3.0V  
3.3: 3.3V, 3.6: 3.6V  
4.0: 4.0V, 4.2: 4.2V  
8
9

相关型号:

GM6155-2.5ST25R

150mA LOW-NOISE LDO REGULATOR
GAMMA

GM6155-2.7ST25R

150mA LOW-NOISE LDO REGULATOR
GAMMA

GM6155-2.8ST25R

150mA LOW-NOISE LDO REGULATOR
GAMMA

GM6155-2.9ST25R

150mA LOW-NOISE LDO REGULATOR
GAMMA

GM6155-3.0ST25R

150mA LOW-NOISE LDO REGULATOR
GAMMA

GM6155-3.3ST25R

150mA LOW-NOISE LDO REGULATOR
GAMMA

GM6155-3.6ST25R

150mA LOW-NOISE LDO REGULATOR
GAMMA

GM6155-4.0ST25R

150mA LOW-NOISE LDO REGULATOR
GAMMA

GM6155-4.2ST25R

150mA LOW-NOISE LDO REGULATOR
GAMMA

GM6155-5.0ST25R

150mA LOW-NOISE LDO REGULATOR
GAMMA

GM6155-AST25R

150mA LOW-NOISE LDO REGULATOR
GAMMA

GM6156

150mA LOW-NOISE LDO REGULATOR
GAMMA